Preliminary survey of backdrivable linear actuators for humanoid robots

Philippe Lucidarme¹, Nicolas Delanoue¹, Franck Mercier¹, Yannick Aoustin², Christine Chevallereau², Philippe Wenger²

¹LARIS, 62 avenue Notre Dame du Lac, 49000 Angers, France,

²LS2N UMR CNRS 6004, 1 Rue de la Noë, 44300 Nantes, France

Romansy 2018

22nd CISM IFToMM Symposium on Robot Design, Dynamics and Control June 25-28, 2018, Rennes, France https://romansv2018.ls2n.fr/

Introduction

Experiment

Figure: Experiment on cushioned landing of a 40cm high fall.

http://perso-laris.univ-angers.fr/~delanoue/b4d2/720p.mp4

Backdrivability and compliance

Remark

To our point of view, cushioning is a crucial issue in humanoid robotics and remains a scientific and technological lock.

Remark

Indeed, most of robots tries to reach the ground with velocity zero in order to do not break the structure.

Definition

Backdrivability is the ability for bidirectional interactive transmission of force between input axis and output axis.

Spring	Hardware	Software	

Spring	Hardware	Software	

Spring Backdrivability	Hardware	Software	
Hardware			
Software (active compliance)			

Spring Backdrivability	Hardware	Software	
Hardware	Constant spring rate		
Software (active compliance)	Constant spring rate		

Spring Backdrivability	Hardware	Software
Hardware	Constant spring rate	
Software (active compliance)	Constant spring rate Non-zero response time	Non-zero response time

Spring Backdrivability	Hardware	Software
Hardware	Constant spring rate	
Software (active compliance)	Constant spring rate Non-zero response time	Non-zero response time

Spring Backdrivability	Hardware	Software
Hardware	Constant spring rate	Our approach
Software (active compliance)	Constant spring rate Non-zero response time	Non-zero response time

Direct drive linear actuator

Figure: Sectional view of a direct-drive linear motor.

Direct drive linear actuator

Figure: Sectional view of a direct-drive linear motor.

Classical linear actuator

Figure: Sectional a "classical" linear motor.

Classical linear actuator

Figure: Sectional a "classical" linear motor.

Direct drive linear actuator

Figure: Photography of direct drive linear actuator (source LinMot®).

Numerical optimization

Figure: The single actuator architecture studied for this preliminary work (left).

Definition

A geometry is a specific positioning of the motors.

Definition

A geometry is a specific positioning of the motors.

Definition

A geometry is a specific positioning of the motors.

Choose the best geometry in a finite dimensional family

Choose the best geometry in a finite dimensional family

Choose the best geometry in a finite dimensional family

Choose the best geometry in a finite dimensional family

Choose the best geometry in a finite dimensional family

 $\max_{M_1,M_2} \min_{\alpha} W(\alpha, M_1, M_2)$

W is the supported weight, α is the knee angle.

Optimal solution of the optimization problem

Figure: Optimal position of the motors

Comparison of optimization algorithms

Figure: Comparison of optimization algorithms

Philippe Lucidarme et al. Backdrivability for humanoid robots

28/34

Experimental results

Figure: CAD model of the experimental setup.

Experimental results

Conclusion

- We have designed and built a leg with a backdrivable actuator : "hardware compliance" and "electrical spring".
- The system is successfully able to deal with high impacts.
- The motion is clearly a flexible and natural cushioning like human beings.

Future work

Future work

Figure: Different architectures

Philippe Lucidarme et al. Backdrivability for humanoid robots

33/34

Thank you for your attention.