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Introduction

Experiment

Figure: Experiment on cushioned landing of a 40cm high fall.

http://perso-laris.univ-angers.fr/˜delanoue/b4d2/720p.mp4
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Remark
To our point of view, cushioning is a crucial issue in humanoid
robotics and remains a scientific and technological lock.

Remark
Indeed, most of robots tries to reach the ground with velocity
zero in order to do not break the structure.

Definition
Backdrivability is the ability for bidirectional interactive
transmission of force between input axis and output axis.
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Shock absorption during impact
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Direct drive linear actuator

Figure: Sectional view of a direct-drive linear motor.
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Direct drive linear actuator

Figure: Sectional view of a direct-drive linear motor.
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Classical linear actuator

Figure: Sectional a “classical” linear motor.

Philippe Lucidarme et al. Backdrivability for humanoid robots



15/34

Backdrivability and compliance
Numerical optimization

Experimental results
Conclusion

Classical linear actuator

Figure: Sectional a “classical” linear motor.
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Direct drive linear actuator

Figure: Photography of direct drive linear actuator (source LinMot R©).
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Numerical optimization
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Figure: The single actuator architecture studied for this preliminary
work (left).
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Definition
A geometry is a specific positioning of the motors.

Example 1
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Definition
A geometry is a specific positioning of the motors.

Example 2
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Definition
A geometry is a specific positioning of the motors.

Example 3
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Choose the best geometry in a finite dimensional family
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Figure: Parameters of the model and restricted areas for M1 (green)
and M2 (purple).
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Figure: Parameters of the model and restricted areas for M1 (green)
and M2 (purple).
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and M2 (purple).
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Figure: Parameters of the model and restricted areas for M1 (green)
and M2 (purple).
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Choose the best geometry in a finite dimensional family
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Figure: Parameters of the model and restricted areas for M1 (green)
and M2 (purple).
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max
M1,M2

min
α

W (α,M1,M2)

W is the supported weight, α is the knee angle.
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Optimal solution of the optimization problem
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Figure: Optimal position of the motors
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Comparison of optimization algorithms

Figure: Comparison of optimization algorithms
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Experimental results

Figure: CAD model of the experimental setup.
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Experimental results

Figure: Experiment on cushioned landing of a 40cm high fall.
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Conclusion
We have designed and built a leg with a backdrivable
actuator : “hardware compliance” and “electrical spring”.
The system is successfully able to deal with high impacts.
The motion is clearly a flexible and natural cushioning like
human beings.
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Future work
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Future work
1 2 3 4
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Figure: Different architectures
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Thank you for your attention.
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