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Let us consider the following dynamical system :{
ẋ = f (x)
x ∈ Rn where f ∈ C∞(Rn, Rn). (1)
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{
ẋ = f (x)
x ∈ Rn where f ∈ C∞(Rn, Rn).

Notation

φ.(x) : R → Rn

t 7→ φt(x)

denotes the solution of (1) satisfying φ0(x) = x .
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With [x0] ⊂ Rn,
Find [x∞] ⊂ [x ] ⊂ [x0] such that ∃x∞ ∈ [x∞] :

f (x∞) = 0.

∀x ∈ [x ],∀t ∈ R+, φt(x) ∈ [x0].

∀x ∈ [x ], φt(x) →
t→+∞

x∞.

[x∞] ⊂ [x] ⊂ [x0]
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With [x0] ⊂ Rn,
Find [x∞] ⊂ [x ] ⊂ [x0] such that ∃x∞ ∈ [x∞] :

f (x∞) = 0.

∀x ∈ [x ],∀t ∈ R+, φt(x) ∈ [x0] ⇔ φR+
([x ]) ⊂ [x0]

∀x ∈ [x ], φt(x) →
t→+∞

x∞. ⇔ φ∞([x ]) = {x∞}

[x∞] ⊂ [x] ⊂ [x0]
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With [x0] ⊂ Rn,
Find [x∞] ⊂ [x ] ⊂ [x0] such that ∃x∞ ∈ [x∞] :

f (x∞) = 0 (Uniqueness - Interval Newton algorithm)

φR+
([x ]) ⊂ [x0] (Stability - Lyapunov)

φ∞([x ]) = {x∞} (Convergence - Lyapunov)

[x∞] ⊂ [x] ⊂ [x0]
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Interval Newton method
Positivity

Newton-Raphson Method

Output

An approximation of a solution of f (x) = 0 where x ∈ [x ] where
f ∈ C∞(Rn, Rn).

Algorithm

Initialization x0

xn+1 = xn − Df −1(xn)f (xn)
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Interval Newton method
Positivity

Interval Newton Method

Output

A box enclosing the solution of f (x) = 0.

A flag indicating the uniqueness and the existence of the
solution.
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Algorithm

[x ]0 = [x ]

[x ]n+1 = [x ]n ∩ ρx1([x ]n)

where ρx1 : [x ] → Rn with ρx1(x) = x1 − Df −1(x)f (x1) and
x1 ∈ [x ]n
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Properties

Let f ∈ C∞(Rn, Rn), x1 ∈ [x ]. If 0 6∈ det(Df ([x ])) then

1 x∗ ∈ [x ], f (x∗) = 0 ⇒ x∗ ∈ ρx1([x ])

2 ρx1([x ]) ⊂ [x ] ⇒ ∃!x∗ ∈ [x ], f (x∗) = 0
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Positivity

Positivity

A flag indicating that f ([x ]) ≥ 0.

3 cases :

Interval analysis is good for ∀x ∈ [x ], f (x) > 0

Algebra calculus is good for ∀x ∈ [x ], f (x) = 0.

Otherwise.
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x

y
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Interval Newton method
Positivity

Algebra calculus is not enough ...

Minimazing polynomial function.

Interval analysis is not enough ...

In general, one only has :

f ([x ]) & [f ]([x ]).

multiple occurrence of variables.

outward rounding.
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Positivity
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Interval Newton method
Positivity

x

y

Algebra calculus and Interval Analysis
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Theorem

Let x0 ∈ E where E is a convex set of Rn, and f ∈ C2(Rn, R). We
have the following implication :

1 ∃x0 such that f (x0) = 0 and Df (x0) = 0.

2 ∀x ∈ E ,D2f (x) > 0.

then ∀x ∈ E , f (x) ≥ 0.
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Example

Let us prove that f (x) ≥ 0,∀x ∈ [−1/2, 1/2]2

where f : R2 → R is defined by
f (x , y) = − cos(x2 +

√
2 sin2 y) + x2 + y2 + 1.
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Interval Newton method
Positivity

Example

Let f : R2 → R be the function defined by :
f (x , y) = − cos(x2 +

√
2 sin2 y) + x2 + y2 + 1.

1 One has : f (0, 0) = 0 and ∇f (0, 0) = 0

∇f (x , y) =

(
2x(sin(x2 +

√
2 sin2 y) + 1)

2
√

2 cos y sin y sin
(√

2 sin2 y + x2
)

+ 2y

)
.
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∇2f =

(
a1,1 a1,2

a2,1 a2,2

)
=

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)

a1,1 = 2 sin
(√

2 sin2 y + x2
)

+4x2 cos
(√

2 sin2 y + x2
)

+ 2.

a2,2 = −2
√

2 sin2 y sin(
√

2 sin2 y + x2)

+2
√

2 cos2 y sin(
√

2 sin2 y + x2)

+8 cos2 y sin2 y cos(
√

2 sin2 y + x2) + 2.

a1,2 = a2,1 = = 4
√

2x cos y sin y

cos
(√

2 sin y2 + x2
)
.
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Interval analysis : ∀x ∈ [−1/2, 1/2]2, ∇2f (x) ⊂ [A]

[A] =

(
[1.9, 4.1] [−1.3, 1.4]

[−1.3, 1.4] [1.9, 5.4]

)
.

It remains to check : ∀A ∈ [A], A is positive.

Definition

A symmetric matrix A is positive definite if

∀x ∈ Rn − {0}, xTAx > 0

The set of positive definite symmetric n× n matrices is denoted by
Sn+.

Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau Stabilility analysis of a nonlinear system using interval analysis.



Tools
Lyapunov theory

Algorithm to prove stability
Future work

Interval Newton method
Positivity

Interval analysis : ∀x ∈ [−1/2, 1/2]2, ∇2f (x) ⊂ [A]

[A] =

(
[1.9, 4.1] [−1.3, 1.4]

[−1.3, 1.4] [1.9, 5.4]

)
.

It remains to check : ∀A ∈ [A], A is positive.

Definition

A symmetric matrix A is positive definite if

∀x ∈ Rn − {0}, xTAx > 0

The set of positive definite symmetric n× n matrices is denoted by
Sn+.

Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau Stabilility analysis of a nonlinear system using interval analysis.



Tools
Lyapunov theory

Algorithm to prove stability
Future work

Interval Newton method
Positivity

Definition

A set of symmetric matrices [A] is an interval symmetric matrix if :

[A] = {(aij)ij , aij = aji , aij ∈ [a]ij}

i.e.
[A,A] =

{
A symmetric, A ≤ A ≤ A

}
.
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Interval Newton method
Positivity

Example

Working in R2, a symmetric matrix A

A =

(
a1,1 a1,2

a1,2 a2,2

)

a11

a22

a12

A

A

Ac
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Remark - Rohn

Let V ([A]) denotes the finite set of corners of [A]. Sn+ and [A] are
convex subsets of Sn :

[A] ⊂ Sn+ ⇔ V ([A]) ⊂ Sn+

Sn is a vector space of dimension n(n+1)
2 . #V ([A]) = 2

n(n+1)
2 .

a1,1 axis

a2,2 axis

a1,2 axis

[A]
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Interval Newton method
Positivity

Theorem - Adefeld

Let [A] be an interval symmetric matrix.
and C = {z ∈ Rn tel que |zi | = 1}
If ∀z ∈ C , Az = Ac + Diag(z)∆Diag(z) is positive definite.
then [A] is positive definite.

a1,1 axis

a2,2 axis

a1,2 axis

[A]
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Definitions of stability
Lyapunov function
The linear case

Let us consider the following dynamical system :{
ẋ = f (x)
x ∈ Rn where f ∈ C∞(Rn, Rn).
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Definitions of stability
Lyapunov function
The linear case

Definition

Let x ∈ R, x is an equilibrium state if :

f (x) = 0
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Definitions of stability
Lyapunov function
The linear case

Definition

A set D is stable if :
φR+

(D) ⊂ D
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Definitions of stability
Lyapunov function
The linear case

Non stable example
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Definitions of stability
Lyapunov function
The linear case

Definition

An equilibrium state x∞ is asymptotically (D,D0)-stable if

φR+
(D) ⊂ D0

φ∞(D) = {x∞}

D ⊂ D0
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Definitions of stability
Lyapunov function
The linear case

Definition

One says that a function L : Rn → R is Lyapunov for (1) if :

1 L(x) = 0 ⇔ x = x∞
2 x ∈ D − {x∞} ⇒ L(x) > 0

3 〈∇L(x), f (x)〉 < 0, ∀x ∈ D − {x∞}

With V : t 7→ L(x(t)), one has :

d
dt V (t) = d

dt (L(x(t)))

= d
dx L · d

dt x(t)
= 〈∇L(x), f (x(t))〉 < 0
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Definitions of stability
Lyapunov function
The linear case

Lyapunov’s Theorem

Let D ′ be a compact subset of Rn and x∞ in the interior of D ′.
If L : D ′ → R is Lyapunov for (1) then
there exists a subset D of D ′ such that the equilibrium state x∞ is
asymptotically D,D ′-stable.
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Definitions of stability
Lyapunov function
The linear case

For linear systems :
ẋ = Ax (2)

One usually takes L = xTWx where W ∈ Sn.
and 〈∇L(x), f (x)〉 = xT (ATW + WA)x .

Lyapunov conditions translate into

1 W ∈ Sn+.

2 −(ATW + WA) ∈ Sn+.
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ẋ = Ax (2)

One usually takes L = xTWx where W ∈ Sn.
and 〈∇L(x), f (x)〉 = xT (ATW + WA)x .

Lyapunov conditions translate into

1 W ∈ Sn+.

2 −(ATW + WA) ∈ Sn+.

Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau Stabilility analysis of a nonlinear system using interval analysis.



Tools
Lyapunov theory

Algorithm to prove stability
Future work

Definitions of stability
Lyapunov function
The linear case

For linear systems :
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Lyapunov theory
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Future work

Definitions of stability
Lyapunov function
The linear case

For ẋ = Ax , to find a Lyapunov function for 2, one solves the
Lyapunov equation of unknown

ATW + WA = −I

and we check that W ∈ Sn+.
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Definitions of stability
Lyapunov function
The linear case

Theorem

The system ẋ = Ax is asymptotically stable is equivalent to for all
Q ∈ Sn+, the matrix W solution of

ATW + WA = −Q

is positive definite.

Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau Stabilility analysis of a nonlinear system using interval analysis.



Tools
Lyapunov theory

Algorithm to prove stability
Future work

Definitions of stability
Lyapunov function
The linear case

Example

The system (
ẋ
ẏ

)
=

(
−1 0
1 −1

)(
x
y

)
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Algorithm
Example

Algorithm

1 Prove that [x0] contains an unique equilibrium state x∞.

2 Find [x∞] ⊂ [x0] which contains x∞.

3 Linearize the system around an approximation x̃∞.

4 Find a Lyapunov function Lx∞ for the linearized system.

5 Check that Lx∞ is also Lyapunov for ẋ = f (x).

Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau Stabilility analysis of a nonlinear system using interval analysis.
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Algorithm
Example

Explanations

Step 4 : Lx∞(x) = (x − x∞)TWx̃∞(x − x∞)
Step 5 : It remains to check :

gx∞(x) = −〈∇Lx∞(x), f (x)〉 ≥ 0

One has :

g(x∞) = 0

∇gx∞(x∞) = 0

According to theorem of positivity, one only has to check that

∇2gx∞([x0]) ⊂ Sn+
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Algorithm
Example

(
ẋ1

ẋ2

)
=

(
−x2

x1 − (1− x2
1 )x2

)
where [x0] = [−0.6, 0.6]2.
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Future work

To combine :

These results.

Guaranteed integration of ODE.

Graph theory.

to compute a guaranteed approximation of the attraction domain
of x∞ .
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