# Stabilility analysis of a nonlinear system using interval analysis.

Groupe de Travail - Méthode ensembliste

### Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau

Université d'Angers - LISA

16 mars 2006

Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau Stabilility analysis of a nonlinear system using interval analysis.

- 4 同 6 4 日 6 4 日 6

Let us consider the following dynamical system :

$$\begin{cases} \dot{x} = f(x) \\ x \in \mathbb{R}^n \end{cases} \text{ where } f \in \mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^n).$$
(1)



イロト イヨト イヨト イヨト

-2

$$\begin{cases} \dot{x} = f(x) \\ x \in \mathbb{R}^n \end{cases} \text{ where } f \in \mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^n). \end{cases}$$

#### Notation

$$\phi^{\cdot}(x) : \mathbb{R} \to \mathbb{R}^n \ t \mapsto \phi^t(x)$$

denotes the solution of (1) satisfying  $\phi^0(x) = x$ .

Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau

Stabilility analysis of a nonlinear system using interval analysis.

With  $[x_0] \subset \mathbb{R}^n$ , Find  $[x_\infty] \subset [x] \subset [x_0]$  such that  $\exists x_\infty \in [x_\infty]$ :



Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau

Stabilility analysis of a nonlinear system using interval analysis.

-2

With 
$$[x_0] \subset \mathbb{R}^n$$
,  
Find  $[x_\infty] \subset [x] \subset [x_0]$  such that  $\exists x_\infty \in [x_\infty]$ :  
•  $f(x_\infty) = 0$ .

$$[x_\infty] \subset [x] \subset [x_0]$$

Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau

Stabilility analysis of a nonlinear system using interval analysis.

◆臣 → ◆臣 → □

æ.,

With 
$$[x_0] \subset \mathbb{R}^n$$
,  
Find  $[x_\infty] \subset [x] \subset [x_0]$  such that  $\exists x_\infty \in [x_\infty]$ 

•  $f(x_{\infty}) = 0.$ 

• 
$$\forall x \in [x], \forall t \in \mathbb{R}^+, \phi^t(x) \in [x_0].$$



Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau

Stabilility analysis of a nonlinear system using interval analysis.

With 
$$[x_0] \subset \mathbb{R}^n$$
,  
Find  $[x_\infty] \subset [x] \subset [x_0]$  such that  $\exists x_\infty \in [x_\infty]$ 

- $f(x_{\infty}) = 0$ .
- $\forall x \in [x], \forall t \in \mathbb{R}^+, \phi^t(x) \in [x_0].$

• 
$$\forall x \in [x], \phi^t(x) \xrightarrow[t \to +\infty]{} x_{\infty}.$$



 $[x_{\infty}] \subset [x] \subset [x_0]$ 

Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau

イロト イヨト イヨト イヨト Stabilility analysis of a nonlinear system using interval analysis.

With 
$$[x_0] \subset \mathbb{R}^n$$
,  
Find  $[x_\infty] \subset [x] \subset [x_0]$  such that  $\exists x_\infty \in [x_\infty]$ :  
•  $f(x_\infty) = 0$ .

• 
$$\forall x \in [x], \forall t \in \mathbb{R}^+, \phi^t(x) \in [x_0] \Leftrightarrow \phi^{\mathbb{R}^+}([x]) \subset [x_0]$$

• 
$$\forall x \in [x], \phi^t(x) \xrightarrow[t \to +\infty]{} x_{\infty}. \Leftrightarrow \phi^{\infty}([x]) = \{x_{\infty}\}$$



Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau

Stabilility analysis of a nonlinear system using interval analysis.

With  $[x_0] \subset \mathbb{R}^n$ , Find  $[x_\infty] \subset [x] \subset [x_0]$  such that  $\exists x_\infty \in [x_\infty]$ :



Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau

Stabilility analysis of a nonlinear system using interval analysis.

With 
$$[x_0] \subset \mathbb{R}^n$$
,  
Find  $[x_\infty] \subset [x] \subset [x_0]$  such that  $\exists x_\infty \in [x_\infty]$ :

•  $f(x_{\infty}) = 0$  (Uniqueness - Interval Newton algorithm)



Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau

Stabilility analysis of a nonlinear system using interval analysis.

With  $[x_0] \subset \mathbb{R}^n$ , Find  $[x_\infty] \subset [x] \subset [x_0]$  such that  $\exists x_\infty \in [x_\infty]$ :

- $f(x_{\infty}) = 0$  (Uniqueness Interval Newton algorithm)
- $\phi^{\mathbb{R}^+}([x]) \subset [x_0]$  (Stability Lyapunov)



 $[x_{\infty}] \subset [x] \subset [x_0]$ 

Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau

Stabilility analysis of a nonlinear system using interval analysis.

イロン イボン イヨン イヨン 一座

With 
$$[x_0] \subset \mathbb{R}^n$$
,  
Find  $[x_\infty] \subset [x] \subset [x_0]$  such that  $\exists x_\infty \in [x_\infty]$ :

- $f(x_{\infty}) = 0$  (Uniqueness Interval Newton algorithm)
- $\phi^{\mathbb{R}^+}([x]) \subset [x_0]$  (Stability Lyapunov)
- $\phi^{\infty}([x]) = \{x_{\infty}\}$  (Convergence Lyapunov)



 $[x_{\infty}] \subset [x] \subset [x_0]$ 

Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau

Stabilility analysis of a nonlinear system using interval analysis.

# Outline

# Tools

- Interval Newton method
- Positivity
- 2 Lyapunov theory
  - Definitions of stability
  - Lyapunov function
  - The linear case
- 3 Algorithm to prove stability
  - Algorithm
  - Example

# 4 Future work

同 ト イヨ ト イヨト

Lyapunov theory Algorithm to prove stability Future work Interval Newton method Positivity

# Newton-Raphson Method

#### Output

An approximation of a solution of f(x) = 0 where  $x \in [x]$  where  $f \in C^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ .

・ロン ・回 と ・ ヨ と ・ ヨ と

Lyapunov theory Algorithm to prove stability Future work Interval Newton method Positivity

# Newton-Raphson Method

#### Output

An approximation of a solution of f(x) = 0 where  $x \in [x]$  where  $f \in C^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ .

# Algorithm

- Initialization x<sub>0</sub>
- $x_{n+1} = x_n Df^{-1}(x_n)f(x_n)$

Lyapunov theory Algorithm to prove stability Future work Interval Newton method Positivity

# Interval Newton Method

# Output

• A box enclosing the solution of f(x) = 0.

Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau Stabilility analysis of a nonlinear system using interval analysis.

・ロン ・回 と ・ ヨ と ・ ヨ と

Lyapunov theory Algorithm to prove stability Future work Interval Newton method Positivity

# Interval Newton Method

# Output

- A box enclosing the solution of f(x) = 0.
- A flag indicating the uniqueness and the existence of the solution.

・ロン ・回 と ・ ヨ と ・ ヨ と

Interval Newton method Positivity

# Algorithm

- $[x]_0 = [x]$
- $[x]_{n+1} = [x]_n \cap \rho_{x_1}([x]_n)$

where  $\rho_{x_1}: [x] \to \mathbb{R}^n$  with  $\rho_{x_1}(x) = x_1 - Df^{-1}(x)f(x_1)$  and  $x_1 \in [x]_n$ 



◆□> ◆□> ◆目> ◆目> ◆目 ● ○ ○ ○

Interval Newton method Positivity

# Algorithm

- $[x]_0 = [x]$
- $[x]_{n+1} = [x]_n \cap \rho_{x_1}([x]_n)$

where  $\rho_{x_1}: [x] \to \mathbb{R}^n$  with  $\rho_{x_1}(x) = x_1 - Df^{-1}(x)f(x_1)$  and  $x_1 \in [x]_n$ 



Interval Newton method Positivity

# Algorithm

- $[x]_0 = [x]$
- $[x]_{n+1} = [x]_n \cap \rho_{x_1}([x]_n)$

where  $\rho_{x_1}: [x] \to \mathbb{R}^n$  with  $\rho_{x_1}(x) = x_1 - Df^{-1}(x)f(x_1)$  and  $x_1 \in [x]_n$ 



Interval Newton method Positivity

# Algorithm

- $[x]_0 = [x]$
- $[x]_{n+1} = [x]_n \cap \rho_{x_1}([x]_n)$

where  $\rho_{x_1}: [x] \to \mathbb{R}^n$  with  $\rho_{x_1}(x) = x_1 - Df^{-1}(x)f(x_1)$  and  $x_1 \in [x]_n$ 



Interval Newton method Positivity

# Algorithm

- $[x]_0 = [x]$
- $[x]_{n+1} = [x]_n \cap \rho_{x_1}([x]_n)$

where  $\rho_{x_1}: [x] \to \mathbb{R}^n$  with  $\rho_{x_1}(x) = x_1 - Df^{-1}(x)f(x_1)$  and  $x_1 \in [x]_n$ 



Interval Newton method Positivity

# Algorithm

- $[x]_0 = [x]$
- $[x]_{n+1} = [x]_n \cap \rho_{x_1}([x]_n)$

where  $\rho_{x_1}: [x] \to \mathbb{R}^n$  with  $\rho_{x_1}(x) = x_1 - Df^{-1}(x)f(x_1)$  and  $x_1 \in [x]_n$ 



Interval Newton method Positivity

#### Properties

Let  $f \in \mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ ,  $x_1 \in [x]$ . If  $0 \notin det(Df([x]))$  then

**1** 
$$x^* \in [x], f(x^*) = 0 \Rightarrow x^* \in \rho_{x_1}([x])$$



・ロン ・回 と ・ ヨン ・ ヨン

-21

Interval Newton method Positivity

# Positivity

# A flag indicating that $f([x]) \ge 0$ .

Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau Stabilility analysis of a nonlinear system using interval analysis.

イロン 不同と 不同と 不同と

Interval Newton method Positivity

# Positivity

# A flag indicating that $f([x]) \ge 0$ .

3 cases :

Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau Stabilility analysis of a nonlinear system using interval analysis.

・ロン ・回 と ・ ヨ と ・ ヨ と

Interval Newton method Positivity

# Positivity

# A flag indicating that $f([x]) \ge 0$ .

3 cases :

• Interval analysis is good for  $\forall x \in [x], f(x) > 0$ 

Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau Stabilility analysis of a nonlinear system using interval analysis.

・ロン ・回 と ・ ヨ と ・ ヨ と

Interval Newton method Positivity

# Positivity

# A flag indicating that $f([x]) \ge 0$ .

3 cases :

- Interval analysis is good for  $\forall x \in [x], f(x) > 0$
- Algebra calculus is good for  $\forall x \in [x], f(x) = 0$ .

・ロン ・回 と ・ ヨ と ・ ヨ と

Interval Newton method Positivity

# Positivity

# A flag indicating that $f([x]) \ge 0$ .

3 cases :

- Interval analysis is good for  $\forall x \in [x], f(x) > 0$
- Algebra calculus is good for  $\forall x \in [x], f(x) = 0$ .
- Otherwise.

・ロン ・回 と ・ ヨ と ・ ヨ と

Lyapunov theory Algorithm to prove stability Future work Interval Newton method Positivity



◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Lyapunov theory Algorithm to prove stability Future work Interval Newton method Positivity

# Algebra calculus is not enough ...

Minimazing polynomial function.

・ロン ・回 と ・ ヨ と ・ ヨ と

Lyapunov theory Algorithm to prove stability Future work Interval Newton method Positivity

### Algebra calculus is not enough ...

Minimazing polynomial function.

Interval analysis is not enough ....

In general, one only has :

# $f([x]) \subsetneqq [f]([x]).$

・ロン ・回 と ・ ヨ と ・ ヨ と

-

Lyapunov theory Algorithm to prove stability Future work Interval Newton method Positivity

### Algebra calculus is not enough ...

Minimazing polynomial function.

Interval analysis is not enough ...

In general, one only has :

 $f([x]) \subsetneqq [f]([x]).$ 

• multiple occurrence of variables.

・ロン ・回 と ・ ヨ と ・ ヨ と

-

Lyapunov theory Algorithm to prove stability Future work Interval Newton method Positivity

### Algebra calculus is not enough ...

Minimazing polynomial function.

Interval analysis is not enough ...

In general, one only has :

 $f([x]) \subsetneqq [f]([x]).$ 

- multiple occurrence of variables.
- outward rounding.

・ロン ・回 と ・ ヨ と ・ ヨ と

Lyapunov theory Algorithm to prove stability Future work Interval Newton method Positivity



◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Lyapunov theory Algorithm to prove stability Future work Interval Newton method Positivity



◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで
Lyapunov theory Algorithm to prove stability Future work Interval Newton method Positivity



・ロト ・回ト ・ヨト ・ヨト

Lyapunov theory Algorithm to prove stability Future work Interval Newton method Positivity

#### Theorem

Let  $x_0 \in E$  where E is a convex set of  $\mathbb{R}^n$ , and  $f \in C^2(\mathbb{R}^n, \mathbb{R})$ . We have the following implication :

•  $\exists x_0 \text{ such that } f(x_0) = 0 \text{ and } Df(x_0) = 0.$ 

$$2 \quad \forall x \in E, D^2 f(x) > 0.$$

then  $\forall x \in E, f(x) \geq 0$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

Lyapunov theory Algorithm to prove stability Future work Interval Newton method Positivity

#### Example

Let us prove that 
$$f(x) \ge 0, \forall x \in [-1/2, 1/2]^2$$
  
where  $f : \mathbb{R}^2 \to \mathbb{R}$  is defined by  
 $f(x, y) = -\cos(x^2 + \sqrt{2}\sin^2 y) + x^2 + y^2 + 1.$ 



Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau Stabilility analysis of a nonlinear system using interval analysis.

Interval Newton method Positivity

### Example

Let 
$$f : \mathbb{R}^2 \to \mathbb{R}$$
 be the function defined by :  
 $f(x, y) = -\cos(x^2 + \sqrt{2}\sin^2 y) + x^2 + y^2 + 1.$   
One has :  $f(0, 0) = 0$  and  $\nabla f(0, 0) = 0$   
 $\nabla f(x, y) = \begin{pmatrix} 2x(\sin(x^2 + \sqrt{2}\sin^2 y) + 1) \\ 2\sqrt{2}\cos y\sin y\sin(\sqrt{2}\sin^2 y + x^2) + 2y \end{pmatrix}.$ 



Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau Stabilility analysis of a nonlinear system using interval analysis.

・ロン ・回 と ・ ヨ と ・ モ と

æ

Lyapunov theory Algorithm to prove stability Future work Interval Newton method Positivity

١.

æ.,

・ロン ・回 と ・ ヨン ・ モン

$$\nabla^2 f = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}$$

$$a_{1,1} = 2\sin(\sqrt{2}\sin^2 y + x^2) + 4x^2\cos(\sqrt{2}\sin^2 y + x^2) + 2.$$

$$\begin{array}{rcl} a_{2,2} & = & -2\sqrt{2}\sin^2 y \sin(\sqrt{2}\sin^2 y + x^2) \\ & +2\sqrt{2}\cos^2 y \sin(\sqrt{2}\sin^2 y + x^2) \\ & +8\cos^2 y \sin^2 y \cos(\sqrt{2}\sin^2 y + x^2) + 2 \end{array}$$

$$a_{1,2} = a_{2,1} = 4\sqrt{2}x \cos y \sin y$$
  
 $\cos (\sqrt{2} \sin y^2 + x^2).$ 

Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau Stabilility analysis of a nonlinear system using interval analysis.

Interval Newton method Positivity

Interval analysis : 
$$\forall x \in [-1/2, 1/2]^2$$
,  $\nabla^2 f(x) \subset [A]$ 

$$[A] = \begin{pmatrix} [1.9, 4.1] & [-1.3, 1.4] \\ [-1.3, 1.4] & [1.9, 5.4] \end{pmatrix}.$$

It remains to check :  $\forall A \in [A]$ , A is positive.

・ロン ・回 と ・ヨン ・ヨン

Interval Newton method Positivity

Interval analysis : 
$$\forall x \in [-1/2, 1/2]^2$$
,  $\nabla^2 f(x) \subset [A]$ 

$$[A] = \begin{pmatrix} [1.9, 4.1] & [-1.3, 1.4] \\ [-1.3, 1.4] & [1.9, 5.4] \end{pmatrix}.$$

It remains to check :  $\forall A \in [A]$ , A is positive.

#### Definition

A symmetric matrix A is positive definite if

$$\forall x \in \mathbb{R}^n - \{0\}, x^T A x > 0$$

The set of positive definite symmetric  $n \times n$  matrices is denoted by  $S^{n+}$ .

・ロン ・回 と ・ ヨ と ・ ヨ と

Lyapunov theory Algorithm to prove stability Future work Interval Newton method Positivity

## Definition

A set of symmetric matrices [A] is an interval symmetric matrix if :

$$[A] = \{(a_{ij})_{ij}, a_{ij} = a_{ji}, a_{ij} \in [a]_{ij}\}$$

i.e.

$$[\underline{A}, \overline{A}] = \{A \text{ symmetric}, \underline{A} \leq A \leq \overline{A}\}.$$

Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau Stabilility analysis of a nonlinear system using interval analysis.

・ロン ・回 とくほど ・ ほとう



Interval Newton method Positivity





$$A = \left(\begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{1,2} & a_{2,2} \end{array}\right)$$



・ロン ・回 と ・ ヨ と ・ ヨ と

Interval Newton method Positivity

# Remark - Rohn

Let V([A]) denotes the finite set of corners of [A].  $S^{n+}$  and [A] are convex subsets of  $S^n$ :

$$[A] \subset S^{n+} \Leftrightarrow V([A]) \subset S^{n+}$$

 $S^n$  is a vector space of dimension  $\frac{n(n+1)}{2}$ .  $\#V([A]) = 2^{\frac{n(n+1)}{2}}$ .



Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau Stabilility analysis of a nonlinear system using interval analysis.

Lyapunov theory Algorithm to prove stability Future work Interval Newton method Positivity

#### Theorem - Adefeld

Let [A] be an interval symmetric matrix. and  $C = \{z \in \mathbb{R}^n \text{ tel que } |z_i| = 1\}$ If  $\forall z \in C$ ,  $A_z = A_c + \text{Diag}(z)\Delta \text{Diag}(z)$  is positive definite. then [A] is positive definite.



Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau Stabilility analysis of a nonlinear system using interval analysis.

Definitions of stability Lyapunov function The linear case

Let us consider the following dynamical system :

$$\left\{ egin{array}{ll} \dot{x}=f(x)\ x\in\mathbb{R}^n \end{array} 
ight. ext{ where } f\in\mathcal{C}^\infty(\mathbb{R}^n,\mathbb{R}^n). \end{array} 
ight.$$



イロト イヨト イヨト イヨト

Definitions of stability Lyapunov function The linear case

#### Definition

Let  $x \in \mathbb{R}$ , x is an *equilibrium state* if :

f(x)=0



イロト イヨト イヨト イヨト

-2

Definitions of stability Lyapunov function The linear case

## Definition

A set D is stable if :

$$\phi^{\mathbb{R}^+}(D)\subset D$$



・ロト ・回ト ・ヨト ・ヨト

Definitions of stability Lyapunov function The linear case

## Definition

A set D is stable if :

$$\phi^{\mathbb{R}^+}(D)\subset D$$



・ロト ・回ト ・ヨト ・ヨト

Definitions of stability Lyapunov function The linear case

#### Non stable example



Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau Stabilility analysis of a nonlinear system using interval analysis.

< □ > < □ > < □ > < □ > < □ > .

-21

Definitions of stability Lyapunov function The linear case

## Definition

An equilibrium state  $x_{\infty}$  is asymptotically  $(D, D_0)$ -stable if



Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau

Stabilility analysis of a nonlinear system using interval analysis.

Definitions of stability Lyapunov function The linear case

# Definition

An equilibrium state  $x_{\infty}$  is asymptotically  $(D, D_0)$ -stable if

•  $\phi^{\mathbb{R}^+}(D) \subset D_0$ 



Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau

Stabilility analysis of a nonlinear system using interval analysis.

Definitions of stability Lyapunov function The linear case

# Definition

An equilibrium state  $x_{\infty}$  is asymptotically  $(D, D_0)$ -stable if

- $\phi^{\mathbb{R}^+}(D) \subset D_0$
- $\phi^{\infty}(D) = \{x_{\infty}\}$



Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau

Stabilility analysis of a nonlinear system using interval analysis.

Definitions of stability Lyapunov function The linear case

## Definition

# One says that a function $L: \mathbb{R}^n \to \mathbb{R}$ is Lyapunov for (1) if :

Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau Stabilility analysis of a nonlinear system using interval analysis.

・ロン ・回 と ・ヨン ・ヨン

∃ 990

Definitions of stability Lyapunov function The linear case

## Definition

One says that a function  $L: \mathbb{R}^n \to \mathbb{R}$  is Lyapunov for (1) if :

・ロン ・回 と ・ヨン ・ヨン

Definitions of stability Lyapunov function The linear case

## Definition

One says that a function  $L: \mathbb{R}^n \to \mathbb{R}$  is Lyapunov for (1) if :

$$L(x) = 0 \Leftrightarrow x = x_{\infty}$$

・ロン ・四 ・ ・ ヨン ・ ヨン

Definitions of stability Lyapunov function The linear case

## Definition

One says that a function  $L: \mathbb{R}^n \to \mathbb{R}$  is Lyapunov for (1) if :

$$L(x) = 0 \Leftrightarrow x = x_{\infty}$$

・ロト ・回ト ・ヨト ・ヨト

Definitions of stability Lyapunov function The linear case

## Definition

One says that a function  $L: \mathbb{R}^n \to \mathbb{R}$  is Lyapunov for (1) if :

• 
$$L(x) = 0 \Leftrightarrow x = x_{\infty}$$
  
•  $x \in D - \{x_{\infty}\} \Rightarrow L(x) > 0$   
•  $\langle \nabla L(x), f(x) \rangle < 0, \ \forall x \in D - \{x_{\infty}\}$ 

With  $V: t \mapsto L(x(t))$ , one has :

$$egin{array}{rcl} rac{d}{dt}V(t)&=&rac{d}{dt}(L(x(t)))\ &=&rac{d}{dx}L\cdotrac{d}{dt}x(t)\ &=&\langle 
abla L(x),f(x(t))
angle < 0 \end{array}$$

Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau Stabilility analysis of a nonlinear system using interval analysis.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● ●

Definitions of stability Lyapunov function The linear case



イロン イヨン イヨン イヨン

Definitions of stability Lyapunov function The linear case

#### Lyapunov's Theorem

Let D' be a compact subset of  $\mathbb{R}^n$  and  $x_\infty$  in the interior of D'. If  $L: D' \to \mathbb{R}$  is Lyapunov for (1) then there exists a subset D of D' such that the equilibrium state  $x_\infty$  is asymptotically D, D'-stable.



Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau Stabilility analysis of a nonlinear system using interval analysis.

イロト イヨト イヨト イヨト

Definitions of stability Lyapunov function The linear case

For linear systems :

$$\dot{x} = Ax$$
 (2)

・ロン ・回 と ・ ヨ と ・ ヨ と

-

One usually takes  $L = x^T W x$  where  $W \in S^n$ . and  $\langle \nabla L(x), f(x) \rangle = x^T (A^T W + W A) x$ .

Lyapunov conditions translate into

Definitions of stability Lyapunov function The linear case

For linear systems :

$$\dot{x} = Ax$$
 (2)

・ロン ・回 と ・ ヨ と ・ ヨ と

-

One usually takes  $L = x^T W x$  where  $W \in S^n$ . and  $\langle \nabla L(x), f(x) \rangle = x^T (A^T W + W A) x$ .

Lyapunov conditions translate into

$$W \in S^{n+}.$$

Definitions of stability Lyapunov function The linear case

For linear systems :

$$\dot{x} = Ax$$
 (2)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

One usually takes  $L = x^T W x$  where  $W \in S^n$ . and  $\langle \nabla L(x), f(x) \rangle = x^T (A^T W + W A) x$ .

Lyapunov conditions translate into

• 
$$W \in S^{n+}$$
.  
•  $-(A^T W + WA) \in S^{n+}$ .

Definitions of stability Lyapunov function The linear case

For  $\dot{x} = Ax$ , to find a Lyapunov function for 2, one solves the Lyapunov equation of unknown

$$A^T W + W A = -I$$

and we check that  $W \in S^{n+}$ .

・ロト ・回ト ・ヨト ・ヨト

-

Definitions of stability Lyapunov function The linear case

#### Theorem

The system  $\dot{x} = Ax$  is asymptotically stable is equivalent to for all  $Q \in S^{n+}$ , the matrix W solution of

$$A^TW + WA = -Q$$

is positive definite.

・ロン ・回 と ・ ヨ と ・ ヨ と

Definitions of stability Lyapunov function The linear case

#### Example

The system  $\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ 

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

Algorithm Example

## Algorithm

**Q** Prove that  $[x_0]$  contains an unique equilibrium state  $x_{\infty}$ .

・ロン ・回 と ・ ヨ と ・ ヨ と

Algorithm Example

## Algorithm

- **Q** Prove that  $[x_0]$  contains an unique equilibrium state  $x_{\infty}$ .
- ② Find  $[x_{\infty}] \subset [x_0]$  which contains  $x_{\infty}$ .

・ロン ・回 と ・ ヨン ・ ヨン

Algorithm Example

## Algorithm

- **Q** Prove that  $[x_0]$  contains an unique equilibrium state  $x_{\infty}$ .
- ② Find  $[x_{\infty}] \subset [x_0]$  which contains  $x_{\infty}$ .
- **③** Linearize the system around an approximation  $\tilde{x}_{\infty}$ .

・ロト ・回ト ・ヨト ・ヨト

Algorithm Example

#### Algorithm

- **Q** Prove that  $[x_0]$  contains an unique equilibrium state  $x_{\infty}$ .
- ② Find  $[x_{\infty}] \subset [x_0]$  which contains  $x_{\infty}$ .
- **③** Linearize the system around an approximation  $\tilde{x}_{\infty}$ .
- Find a Lyapunov function  $L_{x_{\infty}}$  for the linearized system.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで
Algorithm Example

## Algorithm

- **1** Prove that  $[x_0]$  contains an unique equilibrium state  $x_{\infty}$ .
- ② Find  $[x_{\infty}] \subset [x_0]$  which contains  $x_{\infty}$ .
- **③** Linearize the system around an approximation  $\tilde{x}_{\infty}$ .
- Find a Lyapunov function  $L_{x_{\infty}}$  for the linearized system.
- **(**) Check that  $L_{x_{\infty}}$  is also Lyapunov for  $\dot{x} = f(x)$ .

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

Algorithm Example

## Explanations

Step 4 : 
$$L_{x_{\infty}}(x) = (x - x_{\infty})^T W_{\tilde{x}_{\infty}}(x - x_{\infty})$$
  
Step 5 : It remains to check :

$$g_{x_{\infty}}(x) = -\langle 
abla L_{x_{\infty}}(x), f(x) 
angle \geq 0$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Algorithm Example

## Explanations

Step 4 : 
$$L_{x_{\infty}}(x) = (x - x_{\infty})^T W_{\tilde{x}_{\infty}}(x - x_{\infty})$$
  
Step 5 : It remains to check :

$$\mathsf{g}_{\mathsf{x}_\infty}(x) = -\langle 
abla \mathsf{L}_{\mathsf{x}_\infty}(x), f(x) 
angle \geq 0$$

One has :

- $g(x_{\infty}) = 0$
- $\nabla g_{x_{\infty}}(x_{\infty}) = 0$

According to theorem of positivity, one only has to check that

 $abla^2 g_{x_{\infty}}([x_0]) \subset S^{n+}$ 

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Algorithm Example

$$\begin{pmatrix} \dot{x_1} \\ \dot{x_2} \end{pmatrix} = \begin{pmatrix} -x_2 \\ x_1 - (1 - x_1^2)x_2 \end{pmatrix}$$
 where  $[x_0] = [-0.6, 0.6]^2$ .

Nicolas Delanoue, Luc Jaulin, Bertrand Cottenceau Stabilility analysis of a nonlinear system using interval analysis.

・ロト ・回 ト ・ヨト ・ヨト - ヨー

## Future work

To combine :

- These results.
- Guaranteed integration of ODE.
- Graph theory.

to compute a guaranteed approximation of the attraction domain of  $x_{_{\! \infty}}.$ 

・ロン ・回と ・ヨン・

3