Tropical algebra
From shortest path algorithms to Hamilton-Jacobi-Bellman Equation

Nicolas Delanoue
LARIS - Université d’Angers - France
http://perso-laris.univ-angers.fr/~delanoue/

Medellin - EAFIT http://www.eafit.edu.co/

November 2019
Outline

1. Graph theory
 - Bellman Ford Algorithm
 - An example

2. Tropical linear algebra
 - Semi ring
 - Bellman-Ford algorithm with tropical algebra

3. Optimal control - Hamilton Jacobi Bellman
Definition - Graph

A *directed graph* is an ordered pair $G = (V, E)$ where
- V is a set whose elements are called vertices,
- E is a set of ordered pairs of vertices, called directed edges.

Example

Here, $V = \{v_1, v_2, v_3, v_4\}$ and
$E = \{(v_1, v_2), (v_1, v_3), (v_1, v_4), (v_2, v_3), (v_3, v_4)\}$
Weighted graph

A *weighted directed graph* is a directed graph with weights assigned to their edges, i.e. one has function $h : E \to \mathbb{R}$.

Example

Here, $h(v_1, v_2) = 2$, $h(v_1, v_3) = 5, \ldots$
Shortest path problem

The **shortest path problem** is the problem of finding a path between two vertices in a graph such that the sum of the weights of its constituent edges is minimized.

Algorithms

- Dijkstra’s algorithm solves the single-source shortest path problem with non-negative edge weight.
- Bellman Ford algorithm solves the single-source problem if edge weights may be negative.
- ...
Bellman-Ford Algorithm

Input: A weighted directed graph \((V, E, h)\), a source vertex \(s\)
Bellman-Ford Algorithm

Input: A weighted directed graph \((V, E, h)\), a source vertex \(s\)

Output: The cost of the shortest path from \(s\) to all other nodes:

\[
V \ni c \mapsto J(c) \in \mathbb{R}
\]
Bellman-Ford Algorithm

Input: A weighted directed graph \((V, E, h)\), a source vertex \(s\)

Output: The cost of the shortest path from \(s\) to all other nodes:

\[
V \ni c \mapsto J(c) \in \mathbb{R}
\]

\[
\text{for } c \in V - \{s\} \text{ do}
\]
\[
\quad J(c, 0) \leftarrow +\infty ;
\]

\[
\text{end}
\]

\[
J(s, 0) \leftarrow 0;
\]
Bellman-Ford Algorithm

Input: A weighted directed graph \((V, E, h)\), a source vertex \(s\)

Output: The cost of the shortest path from \(s\) to all other nodes:

\[V \ni c \mapsto J(c) \in \mathbb{R} \]

for \(c \in V - \{s\}\) do
 \(J(c, 0) \leftarrow +\infty\);
end

\(J(s, 0) \leftarrow 0;\)

for \(k \leftarrow 1\) to \(#V - 1\) do
 for \(c \in V\) do
 \(J' \leftarrow +\infty;\)
 for \((u, c) \in E\) do
 \(J' \leftarrow \min(J', J(u, k - 1) + h(u, c))\);
 end
 \(J(c, k) \leftarrow J';\)
 end
end

\(J(\cdot) = \min_k J(\cdot, k)\)
An example

Graph theory
Tropical linear algebra
Optimal control - Hamilton Jacobi Bellman

A graph with nodes v_1, v_2, v_3, and v_4. The edges are labeled with the following weights: v_1 to v_2 with 0, v_2 to v_3 with 1, v_3 to v_4 with 2, v_1 to v_4 with 9, v_2 to v_1 with 2, and v_3 to v_2 with 5.
Initialisation steps:

- $J(v_1) = (0, \ldots)$ since v_1 is the source,
An example

Initialisation steps:

- $J(v_1) = (0, \ldots)$ since v_1 is the source,
- $J(v_i) = (\infty, \ldots)$ for all other vertices.
Initialisation steps:

- $J(v_1) = (0, \ldots)$ since v_1 is the source,
- $J(v_i) = (\infty, \ldots)$ for all other vertices.
Iteration $k = 1$:

- v_1 has only v_1 as predecessors, therefore $J(v_1) = (0, 0, \ldots)$
An example

\[J = (\infty, \ldots) \]

\[J = (\infty, \ldots) \]

Iteration \(k = 1 \):
- \(v_1 \) has only \(v_1 \) as predecessors, therefore \(J(v_1) = (0, 0, \ldots) \)
An example

\[J = (\infty, \ldots) \]

\[J = (\infty, \ldots) \]

Iteration \(k = 1 \):

\[J = (0, 0, \ldots) \]

\[J = (\infty, \ldots) \]
An example

Iteration $k = 1$:

- v_2 has two predecessors: v_1 and v_2, therefore

$J = (\infty, \ldots)$

$J = (\infty, \ldots)$

$J = (0, 0, \ldots)$

$J = (\infty, \ldots)$
An example

\[J = (\infty, \ldots) \quad J = (\infty, \ldots) \]

\[J = (0, 0, \ldots) \quad J = (\infty, \ldots) \]

Iteration k = 1:

- \(v_2 \) has two predecessors: \(v_1 \) and \(v_2 \), therefore
 \[J(v_2, k) = \min \{ J(v_1, 0) + h(v_1, v_2), J(v_2, 0) + h(v_2, v_2) \} \]
An example

\[J = (\infty, \ldots) \quad J = (\infty, \ldots) \]

\[J = (0, 0, \ldots) \quad J = (\infty, \ldots) \]

Iteration k = 1:

- \(v_2 \) has two predecessors: \(v_1 \) and \(v_2 \), therefore

\[
J(v_2, k) = \min\{ J(v_1, 0) + h(v_1, v_2), J(v_2, 0) + h(v_2, v_2) \} = \min\{ 0 + 2, \infty + 0 \} = 2
\]
Iteration $k = 1$:

- v_2 has two predecessors: v_1 and v_2, therefore

 $$J(v_2, k) = \min \{J(v_1, 0) + h(v_1, v_2), J(v_2, 0) + h(v_2, v_2)\}$$

 $$= \min \{0 + 2, \infty + 0\}$$

 $$= 2$$
An example

\[J = (\infty, 2, \ldots) \]

\[J = (\infty, \ldots) \]

\[J = (0, 0, \ldots) \]

\[J = (\infty, \ldots) \]

Iteration \(k = 1 \):

- \(v_2 \) has two predecessors: \(v_1 \) and \(v_2 \), therefore
 \[
 J(v_2, k) = \min\{ J(v_1, 0) + h(v_1, v_2), J(v_2, 0) + h(v_2, v_2) \}
 \]
 \[
 = \min\{ 0 + 2, \infty + 0 \}
 \]
 \[
 = 2
 \]
An example

\[J = (\infty, 2, \ldots) \quad \text{and} \quad J = (\infty, \ldots) \]

\[J = (0, 0, \ldots) \quad \text{and} \quad J = (\infty, \ldots) \]

\textbf{Iteration } k = 1 :

- \(J(v_3, k) = 5 \)
An example

Graph theory

Tropical linear algebra

Optimal control - Hamilton Jacobi Bellman

Iteration $k = 1$

- $J(v_3, k) = 5$
An example

\[
J = (\infty, 2, \ldots) \quad J = (\infty, 5, \ldots)
\]

\[
J = (0, 0, \ldots) \quad J = (\infty, \ldots)
\]

Iteration \(k = 1\) :

- \(J(v_4, k) = 9\)
An example

\[J = (\infty, 2, \ldots) \quad J = (\infty, 5, \ldots) \]

\[J = (0, 0, \ldots) \quad J = (\infty, 9, \ldots) \]

Iteration k = 1:

- \(J(v_4, k) = 9 \)
An example

Initialisation

\[J = (\infty, \ldots) \quad J = (\infty, \ldots) \]

\[J = (0, \ldots) \quad J = (\infty, \ldots) \]
An example

$k = 1$

\[J = (\infty, 2, \ldots) \quad \quad J = (\infty, 5, \ldots) \]

\[J = (0, 0, \ldots) \quad \quad J = (\infty, 9, \ldots) \]
An example

\(k = 2 \)

\[J = (\infty, 2, 2, \ldots) \quad J = (\infty, 5, 3, \ldots) \]

\[J = (0, 0, 0, \ldots) \quad J = (\infty, 9, 7, \ldots) \]
An example

\[k = 3 \]

\[J = (\infty, 2, 2, 2) \quad J = (\infty, 5, 3, 3) \]

\[
\begin{array}{c}
\text{\(v_1\)} \\
0 \\
\text{\(v_2\)} \\
0 \\
\text{\(v_3\)} \\
0 \\
\text{\(v_4\)} \\
0
\end{array}
\]

\[
\begin{array}{cccc}
0 & 2 & 5 & 9 \\
1 & 1 & 2 & 9 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}
\]
Initialisation

| ν_1 | 0 |
| ν_2 |
| ν_3 |
| ν_4 |
An example

<table>
<thead>
<tr>
<th>ν_1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_2</td>
<td>∞</td>
</tr>
<tr>
<td>ν_3</td>
<td>∞</td>
</tr>
<tr>
<td>ν_4</td>
<td>∞</td>
</tr>
</tbody>
</table>
An example

$k = 1$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_2</td>
<td>∞</td>
<td>2</td>
</tr>
<tr>
<td>v_3</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>v_4</td>
<td>∞</td>
<td>9</td>
</tr>
</tbody>
</table>
An example:

\(k = 2 \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(v_2)</td>
<td>(\infty)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(v_3)</td>
<td>(\infty)</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>(v_4)</td>
<td>(\infty)</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>
An example

$k = 3$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_2</td>
<td>∞</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>v_3</td>
<td>∞</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>v_4</td>
<td>∞</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>
An example

\[k = 3 \]

<table>
<thead>
<tr>
<th>(\nu_1)</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu_2)</td>
<td>(\infty)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(\nu_3)</td>
<td>(\infty)</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>(\nu_4)</td>
<td>(\infty)</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

\[J_0 = \begin{pmatrix} 0 \\ \infty \\ \infty \\ \infty \end{pmatrix}, \text{ and } J_{k+1} = f(J_k). \]
Definition

Let (V, E, h) be a weighted directed graph with $V = \{v_1, \ldots, v_n\}$, we define the square matrix $A = (a_{ij})_{i,j \in 1, \ldots, n}$ with

$$a_{ij} = h(v_i, v_j).$$

I call the matrix A the HJB matrix.
Example 2

\begin{align*}
A = \begin{pmatrix}
0 & 2 & 5 & 9 \\
2 & 0 & 1 & \infty \\
5 & 1 & 0 & 2 \\
9 & \infty & 2 & 0
\end{pmatrix}
\end{align*}

Remark

The coefficient i,j of A is the cost from node v_i to v_j using one edge.
Recall - Matrix multiplication

Let $A = (a_{ij})_{i,j \in 1,...,n}$ be a square matrix then the i,j coefficient of A^2, c_{ij} is given by

$$c_{ij} = \sum_{k=1}^{n} a_{ik} a_{kj}$$

Example

$$c_{23} = a_{21} a_{13} + a_{22} a_{23} + a_{23} a_{33} + a_{24} a_{43}$$
Interpretation

The coefficient c_{ij} is composed of all paths from i to j with two edges.

$$c_{23} = a_{21}a_{13} + a_{22}a_{23} + a_{23}a_{33} + a_{24}a_{43}$$
Interpretation

The coefficient c_{ij} is composed of all paths from i to j with two edges.

\[c_{23} = a_{21} \]
Interpretation

The coefficient c_{ij} is composed of all paths from i to j with two edges.

$$c_{23} = a_{21}a_{13}$$
Interpretation

The coefficient \(c_{ij} \) is composed of all paths from \(i \) to \(j \) with two edges.

\[
c_{23} = a_{21}a_{13} + a_{22}a_{23}
\]
The coefficient \(c_{ij} \) is composed of all paths from \(i \) to \(j \) with two edges.

\[
c_{23} = a_{21}a_{13} + a_{22}a_{23} + a_{23}a_{33}
\]
Interpretation

The coefficient c_{ij} is composed of all paths from i to j with two edges.

$$c_{23} = a_{21} a_{13} + a_{22} a_{23} + a_{23} a_{33} + a_{24} a_{43}$$
Definition

The min tropical semiring is the semiring \((\mathbb{R} \cup \{\infty\}, \oplus, \otimes)\), with the operations:

1. \(x \oplus y = \min\{x, y\}\),
2. \(x \otimes y = x + y\).
Definition

The min tropical semiring is the semiring \((\mathbb{R} \cup \{\infty\}, \oplus, \otimes)\), with the operations:

- \(x \oplus y = \min\{x, y\}\),
- \(x \otimes y = x + y\).

Example

- \(2 \oplus 3 = 2\),
Definition

The min tropical semiring is the semiring \((\mathbb{R} \cup \{\infty\}, \oplus, \otimes)\), with the operations:

- \(x \oplus y = \min\{x, y\}\),
- \(x \otimes y = x + y\).

Example

- \(2 \oplus 3 = 2\),
- \(2 \otimes 3 = 5\).

Remarks

- The operations \(\oplus\) and \(\otimes\) are referred to as tropical addition and tropical multiplication respectively,
- The unit for \(\oplus\) is \(\infty\),
- the unit for \(\otimes\) is 0.
Linear tropical algebra

Let $A = (a_{ij})_{i,j \in 1,\ldots,n}$ be a square matrix then the i,j coefficient of A^2, c_{ij} is given by

$$c_{ij} = \bigoplus_{k=1}^{n} a_{ik} \otimes a_{kj}$$

Example with HJB matrix

$$c_{2,3} = (a_{2,1} \otimes a_{1,3}) \oplus (a_{2,2} \otimes a_{2,3}) \oplus (a_{2,3} \otimes a_{3,3}) \oplus (a_{2,4} \otimes a_{4,3})$$

Lemma

The real value c_{ij} is the smallest cost of paths from v_i to v_j following by two edges.
Proposition

Let $k \in \mathbb{N}$, with the min tropical semi ring, coefficient i, j of the matrix A^k contains the smallest cost of all paths from v_i to v_j using k edges.
Proposition

Let \(k \in \mathbb{N} \), with the min tropical semi ring, coefficient \(i, j \) of the matrix \(A^k \) contains the smallest cost of all paths from \(v_i \) to \(v_j \) using \(k \) edges.

Bellman-Ford algorithm from the tropical point of view :

\[
\begin{cases}
 J_0 & = & H, \\
 J_{n+1} & = & AJ_n,
\end{cases}
\]

(1)

with \(H = (\infty, \ldots, \infty, 0, \infty, \ldots, \infty)^T \).
Proposition

Let $k \in \mathbb{N}$, with the min tropical semi ring, coefficient i, j of the matrix A^k contains the smallest cost of all paths from v_i to v_j using k edges.

Bellman-Ford algorithm from the tropical point of view:

\[
\begin{align*}
J_0 &= H, \\
J_{n+1} &= AJ_n,
\end{align*}
\]

(1)

with $H = (\infty, \ldots, \infty, 0, \infty, \ldots, \infty)^T$.

Solution:

\[J_n = A^n J_0\]
Remarks

Due to tropical linearity, i.e. superposition property:

\[
A^k(H_1 \oplus H_2) = A^k H_1 \oplus A^k H_2.
\]

- \(A^k(0, 0, \infty, \ldots, \infty)^T\) is the smallest cost to reach any nodes from one of the two sources \(v_1\) and \(v_2\).
- \((0, \infty, \ldots, \infty)A^k\) is the cost from any nodes to the target \(v_1\).
Controlled dynamical system

\[
\begin{cases}
 x(0) = x_0 \\
 \dot{x}(\tau) = f(x(\tau), u(\tau)), \forall \tau \in [0, T],
\end{cases}
\]

where

- τ is the time,
- x is the state,
- f is a vector field (the dynamics),
- u is the control.
Optimal control problem

\[
J^* = \min_{u: [0, T] \rightarrow U} \int_0^T h(\tau, x(\tau), u(\tau)) d\tau + H(x(T))
\]

subject to

\[
\begin{align*}
 x(0) &= x_0 \\
 \dot{x}(\tau) &= f(x(\tau), u(\tau)), \forall \tau \in [0, T], \\
 x(\tau) &\in X, \forall \tau \in [0, T], \\
 x(T) &\in K.
\end{align*}
\]

where

- \(U \) is the set of admissible control,
- \(h \) and \(H \) are real valued functions.
Definition - Optimal cost

\[J^*(x, t) = \min_{u: [t, T] \rightarrow U} \int_t^T h(x(\tau), u(\tau))\,d\tau + H(x(T)) \]

such that \(x : t \mapsto X \) satisfies

\[\begin{aligned}
\dot{x}(\tau) &= f(x(\tau), u(\tau)) \\
\quad \\
x(t) &= x
\end{aligned} \]
The value function \((t, x) \mapsto J^*(t, x)\) satisfies the partial differential equation:

\[
\frac{\partial J^*}{\partial t} = - \min_{u(t) \in U} \left\{ h(x, u(t)) + \frac{\partial J^*}{\partial x} f(x, u(t)) \right\}
\]

with final condition \(J^*(T, x) = H(x)\).
Hamilton Jacobi Bellman Theorem

The value function \((t, x) \mapsto J^*(t, x)\) satisfies the partial differential equation:

\[
\frac{\partial J^*}{\partial t} = - \min_{u(t) \in U} \left\{ h(x, u(t)) + \frac{\partial J^*}{\partial x} f(x, u(t)) \right\}
\]

(2)

with final condition \(J^*(T, x) = H(x)\).

Remark

- Equation (2) is an infinite dimensional dynamical system, indeed, the state space is the set of real value function \(\varphi : X \to \mathbb{R}\).
Proposition

Let us denote by $S^T(H)$ the solution of optimal control problem with final cost H. One has:

- $S^0 = \text{Id},$
- $S^{t_1+t_2} = S^{t_1}S^{t_2},$
- $S^t(\alpha \otimes H) = \alpha \otimes S^tH_1.$
- $S^t(H_1 \oplus H_2) = S^tH_1 \oplus S^tH_2.$
To finish

Suppose the function J is solution of the following Hamilton-Jacobi equation

$$\frac{\partial J}{\partial t} = H(x, \frac{\partial J}{\partial x}) \text{ and } J(0, \cdot) = \varphi(\cdot)$$

with

$$H(x, p) = \min_u (h(u, x) + p \cdot u)$$

Hopf formula gives:

$$J(t, x) = \min_y t \cdot h\left(\frac{x - y}{t}\right) + \varphi(y)$$
To finish

Suppose the function J is solution of the following Hamilton-Jacobi equation

$$\frac{\partial J}{\partial t} = H(x, \frac{\partial J}{\partial x})$$

and $J(0, \cdot) = \varphi(\cdot)$

with

$$H(x, p) = \min_u (h(u, x) + p \cdot u)$$

Hopf formula gives:

$$J(t, x) = \min_y t \cdot h\left(\frac{x - y}{t}\right) + \varphi(y) = \bigoplus_y t \cdot h_t(x - y)\varphi(y)dy$$

Note that in this case h is the Legendre transform of H.
To finish

Suppose the function J is solution of the following Hamilton-Jacobi equation

$$\frac{\partial J}{\partial t} = H(x, \frac{\partial J}{\partial x}) \text{ and } J(0, \cdot) = \varphi(\cdot)$$

with

$$H(x, p) = \min_u (h(u, x) + p \cdot u)$$

Hopf formula gives:

$$J(t, x) = \min_y t \cdot h\left(\frac{x - y}{t}\right) + \varphi(y) = \bigoplus_y t \cdot h_t(x - y)\varphi(y)dy$$

Note that in this case h is the Legendre transform of H.

2. Max-plus approximations: from optimal control to template methods, Gaubert 2014

3. Dower, P.M. and McEneaney, W.M. A max-plus based fundamental solution for a class of infinite dimensional Riccati equations.

2. Max-plus approximations : from optimal control to template methods, Gaubert 2014

3. Dower, P.M. and McEneaney, W.M. A max-plus based fundamental solution for a class of infinite dimensional Riccati equations.

Gracias por su atención.