Proving that a set is connected via interval analysis Minisymposium, Interval methods, Para' 04

N. Delanoue, L. Jaulin, B. Cottenceau

University of Angers - LISA - France

Wednesday, June 23, 2004

OutLine

Motivation

2 Topology recall

Proving that a set is star-shaped

- A sufficient condition for proving that a set is star-shaped
- An example

Discretization

- The idea
- Theorem
- An example and the solver CIA

5 Conclusion

- What have we done?
- Future work

イロト イポト イヨト イヨト

Topology recall Proving that a set is star-shaped Discretization Conclusion A robot in 2D Coordinates Constraints Feasible configuration se

Topology recall Proving that a set is star-shaped Discretization Conclusion A robot in 2D Coordinates Constraints Feasible configuration set

Topology recall Proving that a set is star-shaped Discretization Conclusion A robot in 2D Coordinates Constraints Feasible configuration set

Coordinates of A

$$\begin{cases} x_A = 2\cos(\alpha) \\ y_A = 2\sin(\alpha) \end{cases}$$

Topology recall Proving that a set is star-shaped Discretization Conclusion A robot in 2D Coordinates Constraints Feasible configuration set

Coordinates of A

$$\begin{cases} x_A = 2\cos(\alpha) \\ y_A = 2\sin(\alpha) \end{cases}$$

Coordinates of B

$$\begin{cases} x_B = 2\cos(\alpha) + 1.5\cos(\alpha + \beta) \\ y_B = 2\sin(\alpha) + 1.5\sin(\alpha + \beta) \end{cases}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目目 のへの

Topology recall Proving that a set is star-shaped Discretization Conclusion A robot in 2D Coordinates Constraints Feasible configuration set

Topology recall Proving that a set is star-shaped Discretization Conclusion A robot in 2D Coordinates Constraints Feasible configuration set

Constraints on A

$$y_A \in [0,y_0]$$

Topology recall Proving that a set is star-shaped Discretization Conclusion A robot in 2D Coordinates Constraints Feasible configuration set

$$y_A \in [0,y_0]$$

Constraints on B

$$y_B \in]-\infty, y_0$$

Constraints on α and β

$$\alpha \in]-\pi,\pi[,\beta \in]-\pi,\pi[$$

Topology recall Proving that a set is star-shaped Discretization Conclusion A robot in 2D Coordinates Constraints Feasible configuration set

Topology recall Proving that a set is star-shaped Discretization Conclusion A robot in 2D Coordinates Constraints Feasible configuration set

Feasible configuration set

$$\mathbb{S} = \left\{ (\alpha, \beta) \in] - \pi, \pi [^2 / \left\{ \begin{array}{l} 2\sin(\alpha) & \in & [0, y_0] \\ 2\sin(\alpha) + 1.5\sin(\alpha + \beta) & \in &] - \infty, y_0] \end{array} \right\}$$

Path connected set Star Star shaped set

Definition (path-connected set)

A topological space \mathbb{S} is *path-connected* if and only if for every two points $x, y \in \mathbb{S}$, there is a continuous function f from [0,1] to \mathbb{S} such that f(0) = x and f(1) = y.

비로 (로) (로) (로) (집) (리)

Path connected set Star Star shaped set

Definition (star)

The point v^* is a *star* for a subset X of an Euclidean space if $\forall x \in X$, the segment $[x, v^*]$ is include in X.

비로 (로) (로) (로) (집) (리)

Path connected set Star Star shaped set

Definition (*star-shaped set*)

If there exists $v^* \in X$ such that v^* is a star for X, then we say that X is *star-shaped* or v^* -*star-shaped*.

Path connected set Star Star shaped set

Proposition 1

A star-shaped set is a path-connected set.

**'1

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目目 ののの

Path connected set Star Star shaped set

Proposition 1

A star-shaped set is a path-connected set.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目目 ののの

Path connected set Star Star shaped set

Proposition 1

A star-shaped set is a path-connected set.

N. Delanoue, L. Jaulin, B. Cottenceau Proving that a set is connected via interval analysis 12/49

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目目 ののの

 $*^{v_1}$

Path connected set Star Star shaped set

Proposition 1

A star-shaped set is a path-connected set.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目目 ののの

Path connected set Star Star shaped set

Proposition 2

Let X and Y two v*-star-shaped set, then $X \cap Y$ and $X \cup Y$ are also v*-star-shaped.

<ロ> (四) (四) (注) (注) ()

문 노

Path connected set Star Star shaped set

Proposition 2

Let X and Y two v*-star-shaped set, then $X \cap Y$ and $X \cup Y$ are also v*-star-shaped.

<ロ> (四) (四) (注) (注) ()

문 노

Path connected set Star Star shaped set

Proposition 2

Let X and Y two v*-star-shaped set, then $X \cap Y$ and $X \cup Y$ are also v*-star-shaped.

<ロ> (四) (四) (注) (注) ()

문 문

A sufficient condition for proving that a set is star-shaped An example

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへの

Theorem

If $\mathbb{S} = \{x \in D \subset \mathbb{R}^n / f(x) \le 0\}$ where f is a C^1 function from D to \mathbb{R} , D a convex set, v^* be in \mathbb{S} and if

$$f(x) = 0, Df(x).(x - v^*) \le 0, x \in D$$

is inconsistent then v^* is star a for \mathbb{S} .

Proof idea - Geometric interpretation

N. Delanoue, L. Jaulin, B. Cottenceau Proving that a set is connected via interval analysis 17/49

A sufficient condition for proving that a set is star-shaped An example

Let us prove that
$$v^* = (0.6, -0.5)$$
 is a star for the set defined by

$$\mathbb{S} = \{(x,y) \in \mathbb{R}^2, \text{ such that } f(x,y) = x^2 + y^2 + xy - 2 \le 0\}$$

A sufficient condition for proving that a set is star-shaped An example

Let us prove that
$$u^*=(0.6,-0.5)$$
 is a star for the set defined by

$$\mathbb{S} = \{(x,y) \in \mathbb{R}^2, \text{ such that } f(x,y) = x^2 + y^2 + xy - 2 \leq 0\}$$

$$\Leftarrow \left\{ \begin{array}{l} f(\mathbf{x}) = 0\\ Df(\mathbf{x}).(\mathbf{x} - v^*) \leq 0 \end{array} \right. \text{ is inconsistent}$$

A sufficient condition for proving that a set is star-shaped An example

Let us prove that
$$v^*=(0.6,-0.5)$$
 is a star for the set defined by

$$\mathbb{S}=\{(x,y)\in\mathbb{R}^2, \text{ such that } f(x,y)=x^2+y^2+xy-2\leq 0\}$$

$$\Leftarrow \begin{cases} f(\mathbf{x}) = 0\\ Df(\mathbf{x}).(\mathbf{x} - v^*) \leq 0 \end{cases}$$
 is inconsistent

$$\Leftrightarrow \left\{ \begin{array}{l} x^2 + y^2 + xy - 2 = 0\\ \partial_x f(x, y).(x - 0.6) + \partial_y f(x, y).(y + 0.5) \le 0 \end{array} \right. \text{ is inconsistent}$$

A sufficient condition for proving that a set is star-shaped An example

Let us prove that
$$v^*=(0.6,-0.5)$$
 is a star for the set defined by

$$\mathbb{S}=\{(x,y)\in\mathbb{R}^2, \text{ such that } f(x,y)=x^2+y^2+xy-2\leq 0\}$$

$$\Leftarrow \begin{cases} f(\mathbf{x}) = 0\\ Df(\mathbf{x}).(\mathbf{x} - v^*) \leq 0 \end{cases}$$
 is inconsistent

$$\Leftrightarrow \begin{cases} x^2 + y^2 + xy - 2 = 0\\ \partial_x f(x, y).(x - 0.6) + \partial_y f(x, y).(y + 0.5) \le 0 \end{cases}$$
 is inconsistent

$$\Leftrightarrow \begin{cases} x^2 + y^2 + xy - 2 = 0\\ (2x + y)(x - 0.6) + (2y + x)(y + 0.5) \le 0 \end{cases}$$
 is inconsistent

N. Delanoue, L. Jaulin, B. Cottenceau Proving that a set is connected via interval analysis 18/49

The idea Theorem An example and the solver CIA

The idea Theorem An example and the solver CIA

The idea

To divide it with a paving \mathcal{P} such that, on each part $p, \mathbb{S} \cap p$ is star-shaped.

The idea Theorem An example and the solver CIA

The idea

Let us define the notion of *star-spangled* graph with the relation : $\mathbb{S} \cap p \cap q \neq \emptyset$.

The idea Theorem An example and the solver CIA

The idea

Let us define the notion of *star-spangled* graph with the relation : $\mathbb{S} \cap p \cap q \neq \emptyset$.

The idea Theorem An example and the solver CIA

The idea

Let us define the notion of *star-spangled* graph with the relation : $\mathbb{S} \cap p \cap q \neq \emptyset$.

The idea Theorem An example and the solver CIA

The idea

Let us define the notion of *star-spangled* graph with the relation : $\mathbb{S} \cap p \cap q \neq \emptyset$.

The idea Theorem An example and the solver CIA

The idea

Let us define the notion of *star-spangled* graph with the relation : $\mathbb{S} \cap p \cap q \neq \emptyset$.

The idea Theorem An example and the solver CIA

The idea

Let us define the notion of *star-spangled* graph with the relation : $\mathbb{S} \cap p \cap q \neq \emptyset$.

The idea Theorem An example and the solver CIA

The idea

Let us define the notion of *star-spangled* graph with the relation : $\mathbb{S} \cap p \cap q \neq \emptyset$.

The idea Theorem An example and the solver CIA

The idea

Let us define the notion of *star-spangled* graph with the relation : $\mathbb{S} \cap p \cap q \neq \emptyset$.

The idea Theorem An example and the solver CIA

The idea

Let us define the notion of *star-spangled* graph with the relation : $\mathbb{S} \cap p \cap q \neq \emptyset$.

The idea Theorem An example and the solver CIA

Definition

A star-spangled graph of a set S, noted by \mathcal{G}_S , is a relation \mathcal{R} on a paving \mathcal{P} where

- $\mathcal{P} = (p_i)_{i \in I}$, for all p of $\mathcal{P}, \mathbb{S} \cap p$ is star-shaped. And $\mathbb{S} \subset \bigcup_{i \in I} p_i$
- \mathcal{R} is the reflexive and symmetric relation on \mathcal{P} defined by $p \mathcal{R} q \Leftrightarrow \mathbb{S} \cap p \cap q \neq \emptyset$.

The idea Theorem An example and the solver CIA

Theorem

Proof idea

The idea Theorem An example and the solver CIA

Corollary

Let $\mathcal{G}_{\mathbb{S}}$ be a star-spangled graph of a set \mathbb{S} . $\mathcal{G}_{\mathbb{S}}$ has the same number of connected components than \mathbb{S} . i.e. $\pi_0(\mathbb{S}) = \pi_0(\mathcal{G}_{\mathbb{S}})$.

Proof idea

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目目 ののの

The idea Theorem An example and the solver CIA

Feasible configuration set, $y_0 = 2.3$

$$\mathbb{S} = \left\{ (\alpha, \beta) \in] - \pi, \pi [^2 / \left\{ \begin{array}{ll} 2\sin(\alpha) & \in & [0, y_0] \\ 2\sin(\alpha) + 1.5\sin(\alpha + \beta) & \in &] - \infty, y_0] \end{array} \right\}$$

An example and the solver CIA

The solver CIA (path-Connected via Interval Analysis)

Feasible configuration set, $y_0 = 2.3$

$$\mathbb{S} = \left\{ (\alpha, \beta) \in] - \pi, \pi [^2 / \left\{ \begin{array}{ll} 2\sin(\alpha) & \in & [0, y_0] \\ 2\sin(\alpha) + 1.5\sin(\alpha + \beta) & \in &] - \infty, y_0] \end{array} \right. \right\}$$

<u>Feasible</u> configuration set, $y_0 = 2.3$

$$\begin{aligned} (\alpha,\beta) \in &] - \pi,\pi \begin{bmatrix} 2 \\ / \\ &\begin{cases} f_1(\alpha,\beta) = 2\sin(\alpha) - y_0 &\leq 0\\ f_2(\alpha,\beta) = -2\sin(\alpha) &\leq 0\\ f_3(\alpha,\beta) = 2\sin(\alpha) + 1.5\sin(\alpha+\beta) - y_0 &\leq 0 \end{aligned}$$

<ロ> (四) (四) (注) (注) ()

What have we done? Future work

Conclusion

What have we done? Future work

Future work

- Build a triangulation to guarantee more topology properties of a set, e.g. to be able to compute its :
 - homotopy type, Fundamental Group $(\pi_1(\mathbb{S}))$
 - homology groups $(H_1(\mathbb{S}), H_2(\mathbb{S}), \dots)$
 - Betti number

N. Delanoue, L. Jaulin, B. Cottenceau

Proving that a set is connected via interval analysis 36/49

If $\mathbb{S} = \{x \in D \subset \mathbb{R}^n / f(x) \le 0\}$ where f is a C^1 function from D to \mathbb{R} , D a convex set, v^* be in \mathbb{S} and if

$$f(x) = 0, Df(x).(x - v^*) \le 0, x \in D$$

is inconsistent then v^* is star a for \mathbb{S} .

(1) is inconsitent $\Leftrightarrow \forall x \in D, f(x) = 0 \Rightarrow Df(x).(x - v^*) > 0$

(日) (周) (王) (王) (王)

If $\mathbb{S} = \{x \in D \subset \mathbb{R}^n / f(x) \le 0\}$ where f is a C^1 function from D to \mathbb{R} , D a convex set, v^* be in \mathbb{S} and if

$$f(x) = 0, Df(x).(x - v^*) \le 0, x \in D$$

is inconsistent then v^* is star a for \mathbb{S} .

(1) is inconsitent $\Leftrightarrow \forall x \in D, f(x) = 0 \Rightarrow Df(x).(x - v^*) > 0$

If $\mathbb{S} = \{x \in D \subset \mathbb{R}^n / f(x) \le 0\}$ where f is a C^1 function from D to \mathbb{R} , D a convex set, v^* be in \mathbb{S} and if

$$f(x) = 0, Df(x).(x - v^*) \le 0, x \in D$$

is inconsistent then v^* is star a for \mathbb{S} .

(1) is inconsitent $\Leftrightarrow \forall x \in D, f(x) = 0 \Rightarrow Df(x).(x - v^*) > 0$

If $\mathbb{S} = \{x \in D \subset \mathbb{R}^n / f(x) \le 0\}$ where f is a C^1 function from D to \mathbb{R} , D a convex set, v^* be in \mathbb{S} and if

$$f(x) = 0, Df(x).(x - v^*) \le 0, x \in D$$

is inconsistent then v^* is star a for \mathbb{S} .

(1) is inconsitent $\Leftrightarrow \forall x \in D, f(x) = 0 \Rightarrow Df(x).(x - v^*) > 0$

If $\mathbb{S} = \{x \in D \subset \mathbb{R}^n / f(x) \le 0\}$ where f is a C^1 function from D to \mathbb{R} , D a convex set, v^* be in \mathbb{S} and if

$$f(x) = 0, Df(x).(x - v^*) \le 0, x \in D$$

is inconsistent then v^* is star a for \mathbb{S} .

(1) is inconsitent $\Leftrightarrow \forall x \in D, f(x) = 0 \Rightarrow Df(x).(x - v^*) > 0$

If $\mathbb{S} = \{x \in D \subset \mathbb{R}^n / f(x) \le 0\}$ where f is a C^1 function from D to \mathbb{R} , D a convex set, v^* be in \mathbb{S} and if

$$f(x) = 0, Df(x).(x - v^*) \le 0, x \in D$$

is inconsistent then v^* is star a for \mathbb{S} .

(1) is inconsitent $\Leftrightarrow \forall x \in D, f(x) = 0 \Rightarrow Df(x).(x - v^*) > 0$

(日) (周) (日) (日) (日)

If $\mathbb{S} = \{x \in D \subset \mathbb{R}^n / f(x) \le 0\}$ where f is a C^1 function from D to \mathbb{R} , D a convex set, v^* be in \mathbb{S} and if

$$f(x) = 0, Df(x).(x - v^*) \le 0, x \in D$$

is inconsistent then v^* is star a for \mathbb{S} .

イロト イポト イヨト イヨト

Corollary

Let $\mathcal{G}_{\mathbb{S}}$ be a star-spangled graph of a set \mathbb{S} . $\mathcal{G}_{\mathbb{S}}$ has the same number of connected components than \mathbb{S} . i.e. $\pi_0(\mathbb{S}) = \pi_0(\mathcal{G}_{\mathbb{S}})$.

Return

正明 (小田) (田) (田) (日)

N. Delanoue, L. Jaulin, B. Cottenceau Proving

Proving that a set is connected via interval analysis 45/49

N. Delanoue, L. Jaulin, B. Cottenceau Proving that a set is connected via interval analysis 46/49

N. Delanoue, L. Jaulin, B. Cottenceau Proving that a set is connected via interval analysis 47/49

N. Delanoue, L. Jaulin, B. Cottenceau Proving that a set is

Proving that a set is connected via interval analysis 48/49

N. Delanoue, L. Jaulin, B. Cottenceau

Proving that a set is connected via interval analysis 49/49