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.
Prove S = ﬂ {x € D C R"; fi(x) <0} is convex
i=1
where
@ D is a compact subset of R”,
o f; cC’(R",R),ic{1,...,r}.
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Introduction - Motivation Con
Hahn- ach Theorem

Convex function
Application optimization

Interval analysis is often able to prove that a set defined by
inequalities is empty.
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Example
Let

R

f: R —
x + (sinx —x%+1)cosx

Let us prove that S = {x € [0; 3], f(x) =0} = 0)

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



Introduction - Motivation Convex set
Hahn- ch Theorem
Convex function
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Example
Let

R

f: R —
x + (sinx —x%+1)cosx

Let us prove that S = {x € [0; 3], f(x) =0} = 0)

IR — IR

ne defines UK
One def { [x] — (sin[x] — [x]? + 1) cos[x]
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Introduction - Motivation

Application optimization

Example
Let

R

f: R —
x + (sinx —x%+1)cosx

Let us prove that S = {x € [0; 3], f(x) =0} = 0)

IR — IR

ne defines UK
One def { [x] — (sin[x] — [x]? + 1) cos[x]

[f]([O; %]) = (sin[O; %] — [0; %]2 + 1) COS[O; %]
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Introduction - Motivation

Application optimization

Example
Let

R

f: R
X (sinx — x% + 1) cos x

N
.
Let us prove that S = {x € [0; 3], f(x) =0} = 0)

IR — IR

ne defines UK
One def { [x] — (sin[x] — [x]? + 1) cos[x]

[f]([O; %]) = (sin[O; %] — [0; %]2 + 1) COS[O; %]

= (sin[0; 3] — [0; ] + 1) cos[0; 3]
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Introduction - Motivation Convex set
Hahn-Banach Theorem

Cor function
Application optimization

= (sin[0; %] + [—%; 0] + 1) cos|0; %]

= ([0;sin %] + [2;1])[cos %; 1]
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Introduction - Motivation Convex set
Hahn- ch Theorem

Convex function
Application optimization

= (sin[0; %] + [—%; 0] + 1) cos|0; %]
— ([0:sin 3]+ [3: )cos &; 1]

= [3;1+sin 3] x [cos 3;1]
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Introduction - Motivation Convex set
Hahn-Banach Theorem

Application optimization

= (sin[0; 3] + [~%; 0] + 1) cos[0; 3]
= ([0;sin 3] +[3; 1])[cos 3; 1]
= [3;1+sin 3] x [cos 3;1]

= [3cosi;1+sini]

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



Introduction - Motivation

Application optimization

= (sin[0; 3] + [~: 0] + 1) cos[0; 3]
= ([0:sin 3] + [3: 1])[cos 3; 1]

= [3;1+sin 3] x [cos 3;1]

= [3cosi;1+sini]

[£1([0; 4]) < [0.65818;1.4795]

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



Introduction - Motivation

Application optimization

= (sin[0; 3] + [~4: 0] + 1) cos[0; ]
= ([0ssin 3] + [3: 1])[cos 5: 1]
= [3;1+sin 3] x [cos 3;1]
= [2cos3;1+sini]
[F1([0; 4]) < [0.65818;1.4795]

Conclusion

0 ¢ [f]([0; &]), therefore S = @}

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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Hahn-Banach Theorem
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Application optimization

inition (Convex)

A subset X of R” is convex if

Vx,y € X,Vt € [0,1],tx+ (1 — t)y € X

F1cG.: Convex set
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Hahn-Banach Theorem
Convex function
Application optimization

Proposi

A and B convex = AN B convex.

F1G.: Intersection
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Convex function
Application optimization

Proposition

A and B convex = A + B convex.

F1G.: Addition
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A and B convex = A + B convex.

F1G.: Addition
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Introduction - Motivation Convex set
Hahn-Banach Theorem
Convex function
Application optimization

hn-Banach Theorem

Let A, B, two convex, nonempty and disjoint sets.

A is closed and B is compact.

Then there is a hyperplane H which strictly separates A and B.
eométricamente la separacion significa que A y B se sitian «de un lado y de otro de H».

H

Recordemos finalmente que un conjunto A C E es convexo si
tx + (1l —tiveA ¥x. veA. Yeel0. 11

F1G.: Haim Brézis, Analyse fonctionnelle - Théorie et applications

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



Introduction - Motivation Convex set
Hahn-Banach Theorem
Convex function
Application optimization

inition (Convex functi

A real-valued function f : X — R is called convex if

Vx € X,Vy € X,Vt € [0,1], f(tx+ (1 —t)y) < tf(x)+ (1 —t)f(y).

tf(x)+ (1—t)f(y)

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



Introduction - Motivation Convex set
Hahn-Banach Theorem

Convex function
Application optimization

@ If f and g are convex functions,
then so are x — max(f(x), g(x)) and x — f(x) + g(x).

@ If f and g are convex functions and if g is increasing,
then h(x) = g o f(x) is convex.

© Convexity is invariant under affine maps :
if x — f(x) is convex with x ¢ R", and g : y — Ay + b
then sois y — f o g(y) = f(Ay + b),
where A € R™™ b e R™.

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



Introduction - Motivation Convex set
Hahn-Banach Theorem
Convex function
Application optimization

Definition (epigraph)

The epigraph of a function f : R” — R is the set of points lying on
or above its graph :

epi f ={(x,y) : xER", p€R, f(x) <y} CR"L

epi f

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



Introduction - Motivation Convex set
Hahn-Banach Theorem

Convex function
Application optimization

Proposition

A function f : R" — R is convex if and only if its epigraph is
convex.

epi f

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



Introduction - Motivation Convex set
Hahn-Banach Theorem
Convex function
Application optimization

Proposition
A function f € C?(R",R) is convex if and only if Vx, V2f(x) is
semi definite positive (i.e. Vx, V2f(x) =0 ).

Example
o f:R > x> x? € R is convex since f”(x) =2 > 0.
e g:R?> (x,y) — x2 + y?2 € R is convex since

g 2t 2 0
Ox0.
sz(xa}/) = {;(2f &y = ( 0 2 )
Ox0y  0y?

is positive definite.

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



Introduction - Motivation
ch Theorem

Application optimization

in f
xEngICnR" (X)

theorem - uniqueness

If S is a convex subset of R” and f € C2(D,R) a convex function,
the following conditions are equivalent

@ x is a local minimum.

@ x is a global minimum.

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



A weak sufficient condition
Sufficient condition for set convexity ’S\‘:\‘tflgieecnissca()rn}wjtliﬁon
Proof idea, by contradiction
Example

Corollary

Let f € C3(R",R).
If Vx € D, V2f(x) »= 0 then

{x € D CR"| f(x) <0} is a convex set

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



A weak sufficient condition
Not necessary

Sufficient condition

Proof idea, by contradiction
Example

Sufficient condition for set convexity

Example

The set {x € R | f(x) = x? + y? — 1 < 0} is convex since
Vx, V2f(x) = 0.

Nicolas Dela Didier Henrion Set convexity analysis with Interval Analysis.



A weak sufficient condition
Not necessary

Sufficient condition

Proof idea, by contradiction
Example

Sufficient condition for set convexity

Not necessary

There exists function such that

{x € D CR"| f(x) <0} is a convex set
Ix € D, V?f(x) %0

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



A weak sufficient condition
Not necessary

Sufficient condition

Proof idea, by contradiction
Example

f(x,y) =log(x* +y?+1) -3

Sufficient condition for set convexity

s with Interval Analys



condition

Sufficient condition for set convexity

N
Sufficient condition

Proof idea, by contradiction
Example

Let use denote by
S theset {x e D CR"|f(x) <0} and
0S theset {x € D C R" | f(x) =0}

Theorem

Suppose that
@ D is convex,
@ S is path-connected,
@ Vx € 95, ker Vf(x) has codimension 1,

If Vx € 0S, sz(x)‘Ke,vf(X) > 0 then S is convex.

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



condition

Sufficient condition for set convexity Sufficient condition

Proof idea, by contradiction
Example

Let use denote by
S theset {x e D CR"|f(x) <0} and
0S theset {x € D C R" | f(x) =0}

Theorem

Suppose that
@ D is convex,
@ S is path-connected,
@ Vx € 95, ker Vf(x) has codimension 1,

If S is non convex then 3x € 95, V2f(X) kervf(x) # O

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



A weak sufficient condition
Not necessary

Sufficient condition for set convexity Sufficient condition

Proof idea, by contradiction
Example

If S is non convex then Ix € 985, V2f(X)‘Kervf(x) # 0

Since D is convex,

D

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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A weak sufficient condition
Not necessary

Sufficient condition for set convexity Sufficient condition

Proof idea, by contradiction
Example

If S is non convex then Ix € 08§, v2f(X)|Kervf(X) # 0
ie.

Ix € 8S,3h € ker VF(x), hT V2f(x)h < 0
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A weak sufficient condition
Not necessary

Sufficient condition

Proof idea, by contradiction
Example

Sufficient condition for set convexity

Ix € 8S,3h € ker VF(x), hT V2f(x)h < 0

t convexity analysis with Interval Analysi:



A weak sufficient condition
Not necessary

Sufficient condition

Proof idea, by contradiction
Example

Sufficient condition for set convexity

Ix € 8S,3h € ker VF(x), hT V2f(x)h < 0
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A weak sufficient condition
Not necessary
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Proof idea, by contradiction
Example

Sufficient condition for set convexity

Ix € 0S,3h € ker VF(x), hT V2f(x)h < 0

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



A weak sufficient condition
Not necessary

Sufficient condition

Proof idea, by contradiction
Example

Sufficient condition for set convexity

Ix € 8S,3h € ker VF(x), hT V2f(x)h < 0
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A weak sufficient condition
Not necessary

Sufficient condition

Proof idea, by contradiction
Example

Sufficient condition for set convexity

x € dS, h € ker Vf(x), h" V2f(x)h >0

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



WE cient condition
Not n ry
Sufficient condition
Proof idea, by contradiction
Example

Sufficient condition for set convexity

Example
Let f be the function

f: [-10,10] — R
(x,y) +— log(x*+y?+1)-3

To prove that S = {(x,y) € [-10,10]? | f(x,y) < 0} is convex,
one only has to check that :

S is path-connected
f(x)=0=VF(x)#0
f(x) =0= V2f(x) = 0

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



condition

Sufficient condition for set convexity

Example

{ F(x) = 0 = VF(x) £ 0
f(x) = 0= V2F(X)|kerve(x) = O

f(x) = 0 A Vf(x) = 0 has no solution
)=0AV

27C(X)| ker VF(x) # 0 has no solution

f(x) = 0 A Vf(x) = 0 has no solution
f(x) =0A h € ker VF(x) A hTV2f(x)h < 0 has no solution

f(x) = 0 A Vf(x) = 0 has no solution
f(x) =0A VFf(x)h=0AhTV2f(x)h < 0 has no solution

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



A weak sufficient condition
Not necessary

Sufficient condition for set convexity Sufficient condition

Proof idea, by contradiction
Example

f(x) = 0 A Vf(x) = 0 has no solution
f(x) =0A VFf(x)h=0AhTV?f(x)h < 0 has no solution

log(x?> +y?+1)—-3=0
2x _

e has no solution

and

log(x?> +y?+1)—3=0 .
8x2+8y2 has no solution

x0+3x4y24+3x4+3x2y4+6x2y2+3x2+y04+3y4+3y2+1 <0

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



Sufficient condition for set convexity

A weak sufficient condition
Not necessary
Sufficient condition

Proof idea, by contradiction
Example

Convex - Nicolas DELANOUE
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Conditions
theorem discussion and other methods Others methods

Theorem

Suppose that
@ D is convex,
@ S is path-connected,
e Vx € 05, ker Vf(x) has codimension 1,

If Yx € 0S, sz(x)‘Kervf(X) > 0 then S is convex.

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



Conditions

theorem discussion and other methods Others methods

If D is non convex,

D

Set convexity analysis with Interval Analysi:



Conditions

theorem discussion and other methods Others methods

If S is not path-connected,

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



Conditions

theorem discussion and other methods Others methods

If 3x € S, ker Vf(x) has not codimension 1,

3
X
{Gae) | 66+ + =2 +5 <0}

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



Conditions

theorem discussion and other methods Others methods

@ CVX : Matlab Software for Disciplined Convex Programming

@ Cylindrical algebraic decomposition

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



Conditions
theorem discussion and other methods Others methods

CVX : Matlab Software for Disciplined Convex
Programming

@ constraint propagation

@ symbolic differentiation

e C. Crusius.
A parser/solver for convex optimization problems.
PhD thesis, Stanford Univ., USA, 2002.

e M. C. Grant.
Disciplined convex programming.
PhD thesis, Stanford Univ., USA, 2004.

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



Conditions
theorem discussion and other methods Others methods

CVX : Matlab Software for Disciplined Convex
Programming

x > f(x) = exp(3x — 2) + x2 is convex since

+
exp (_)(-)

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



Conditions
theorem discussion and other methods Others methods

Cylindrical algebraic decomposition

Tarski's theorem

The solution set of a quantified system of real algebraic equations
and inequations is a semialgebraic set (Tarski 1951, Strzebonski
2000).

@ Tarski's theorem gives rise to an impractical method
(Davenport and Heintz 1988)

@ A much more efficient procedure for implementing quantifier
elimination is called cylindrical algebraic decomposition. It was
developed by Collins (1975).

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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theorem discussion and other methods Others methods

If P and Q have a common root then Res(P, Q) = 0.

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



Conditions

theorem discussion and other methods Others methods

Let P and @ have a common root a with deg P = p and
deg @ = gq.

One has P(X) = (X — a)P(X) and Q(X) = (X — a)Q(X), then :
PQ-QP=0

wheredegﬁ’:p—land deg@zq—l.

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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theorem discussion and other methods Others methods

Proof
Note that

(b2X2+b1X+bo)(32X2+21X+30) = C4X4+C3X3+C2X2+C1X+CQ
is equivalent to

d» di1 ai 0 0
(b2 b1 bo) 0 dp di 4o 0 :(C4 3 C O Co)
0 0 dp di1 4o

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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theorem discussion and other methods Others methods

JP£03Q #£0,PQ—- QP =0
is equilavent to det Sy/ = 0 with :

ap ... .o ... ... a O

o
o O O

<
Il

)

<

[

o

bg i oo e ... by O

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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theorem discussion and other methods Others methods

Example

P(X)=(X -1)(X —2) = X? -3X +2
QX)=(X-1)(X—-3)=X?-4X+3
have common root,

1 -3 2 0
0 1 -3 2
detl 1 4 3 0|7
0 1 —43

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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theorem discussion and other methods Others methods

Example

P(X)=(X—-1)(X —2) = X? —3X 42
QIX)=(X—-1)(X-3)=X?—-4X+3
have common root since

1 -3 2 0
0 1 -3 2

(1 -3 -1 2)f, , 5 ,|=(0000)
0 1 —43

(X =3)P(X)—(X—-2)Q(X)=0

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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Iy eR,x>+y>2-1<0

Set convexity analysis with Interval Analysi:
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Iy eR,x>+y>2-1<0
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theorem discussion and other methods Others methods

Iy eR,x>+y>2-1<0

y+— P(x,y) and y — d%P(x,y) has a common root.

ie. 1xY?24+0x Y4+ (X2—1)%Y%and 2% Y has a common root.

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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theorem discussion and other methods Others methods

JyeR,x>+y>—-1<0
1+ Y240+ YP+(X%2—-1)%Y%and 2% Y?! has a common root.

1 0 X2-1
det[ 2 0 0 =0
0 2 0
e (-2)(-2)(X?2-1)=0
& (X*-1)=0

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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Iy eR, x> +y>2-1<0
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Iy eR, x> +y>2-1<0

w nico@lisa-auto3: xample/gesource/bin
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Enter a prenex formula:
(Ey) [x24y°2-1=0] .

Before Normalization =
finish

An equivalent quantifier-free formila:

X+1l>B8/\x-1l=8

The End

0 Garbage collections, 8 Cells and 0 Arrays reclaimed, in 0 milliseconds.
490802 Cells in AVAIL, 500000 Cells in SPACE.

System time: 32 milliseconds.
System time after the initialization: B milliseconds.

nico@lisa-autos:

~/solver/cad_example/gesource/bing |
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JyeR,x*4+y2-1<0

S (x+1>0)A(x—1<0)

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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Proposition

Convexity is a semi-algebraic property.

Let S be a semi-algebraic set, S is convex if

VxVyVt, (t€[0,1],x€e S,y e S=tx+(1-t)y €5)

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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Let S be a semi-algebraic set, S is convex if

VxVyVt,(t € [0,1],x e S,y e S=tx+ (1 —-t)y € 5)

Example

Proving that {x € R,x?> — 1 <0} = [~1,1] is convex remains to
prove :

VxVyVt,0 < t < 1AX*—1 < 0Ay?—1 <0 = (tx+(1—-t)y)>~1<0

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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{x € R, x> —1 <0} =[-1,1] is convex.

Jsolver/cad_example/gesource/bin
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{x € R, x> —1 <0} =[-1,1] is convex.
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{x € R, x> —1 <0} =[-1,1] is convex.
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{x € R, x> —1 <0} =[-1,1] is convex.
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nter a prenex formula:

(M) (Ay) (AE)[[t >=0 /At <=1 /A X2 -1<0/\y2-1<0]=>[(tx+(1-1) |
v1*2 -1 <=011.1 z
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{x € R, x> —1 <0} =[-1,1] is convex.
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Enter a variable list:
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Enter a prenex formula:
(Ax) (Ay) (ALI[[E =0 /At == 1 /A x2 - 1 == 8 /% y"2 -1 «=B] ==> [ (t x + (L-t)
¥)72 -1 <=0]].

Before Normalization >
finish]
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Enter a prenex formula:

(Ax) (Ay) (ALJITE =0 At == 1 /A x2 - 1 =0 /\ y2 -1 =] ==> [ (t x + (L-t]
y)*2 -1 <=0]].

Before Normalization =
Finis

An equivalent quantifier-free formula:

TRUE

The End

0 Garbage collections, @ Cells and O Arrays reclaimed, in @ milliseconds.
472816 Cells in AVAIL, 508000 Cells in SPACE.

System time: 40 milliseconds.
System time after the initialization: 8 milliseconds.
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Future works
Conclusion

Conclusion

Let use denote by
S theset {x e D CR"| f(x) <0} and
0S the set {x € D C R" | f(x) =0}

Theorem

Suppose that
@ D is convex,
@ S is path-connected,
e Vx € 05, ker Vf(x) has codimension 1,

If Vx € 0S, sz(x)‘Kervf(X) > 0 then S is convex.

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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Future works

@ Prove that the proposed algorithm terminates in the generic
case.

@ Expand this method to cases where f; depends of unknown
parameters.

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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