# Set convexity analysis with Interval Analysis.

## Nicolas Delanoue, Didier Henrion

LISA, Université d'Angers, LAAS Toulouse, GT MEA - Groupe de travail du GDR MACS du CNRS

13 mars 2008

## Aims

Prove 
$$S = \bigcap_{i=1}^{r} \{x \in D \subset \mathbb{R}^{n}; f_{i}(x) \leq 0\}$$
 is convex

## where

- D is a compact subset of  $\mathbb{R}^n$ ,
- $f_i \in \mathcal{C}^2(\mathbb{R}^n, \mathbb{R}), i \in \{1, \ldots, r\}.$

イロン イロン イヨン イヨン

# Outline

# Introduction - Motivation

- Convex set
- Convex function
- Application optimization
- 2 Sufficient condition for set convexity
  - A weak sufficient condition
  - Not necessary
  - Sufficient condition
  - Proof idea, by contradiction
  - Example



Conclusion

Introduction - Motivation

Sufficient condition for set convexity theorem discussion and other methods Conclusion

Convex set Hahn-Banach Theorem Convex function Application optimization

# Interval analysis is often able to prove that a set defined by inequalities is empty.

Introduction - Motivation

Sufficient condition for set convexity theorem discussion and other methods Conclusion

Convex set Hahn-Banach Theorem Convex function Application optimization

## Example

#### Let

<ロ> <部> < 2> < 2> < 2> < 2> < 2</p>

æ

Convex set Hahn-Banach Theorem Convex function Application optimization

## Example

Let

L

$$\begin{array}{rcl} f: & \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & (\sin x - x^2 + 1) \cos x \end{array}$$
  
et us prove that  $S = \{x \in [0; \frac{1}{2}], f(x) = 0\} = \emptyset$ 

One defines 
$$\begin{cases} [f]: & \mathbb{IR} \to & \mathbb{IR} \\ & [x] \mapsto & (\sin[x] - [x]^2 + 1) \cos[x] \end{cases}$$

æ

Convex set Hahn-Banach Theorem Convex function Application optimization

#### Example

Let

$$\begin{array}{rcl} f: & \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & (\sin x - x^2 + 1) \cos x \end{array}$$
  
et us prove that  $S = \{x \in [0; \frac{1}{2}], f(x) = 0\} = \emptyset$ 

One defines 
$$\begin{cases} [f]: & \mathbb{IR} \to & \mathbb{IR} \\ & [x] \mapsto & (\sin[x] - [x]^2 + 1) \cos[x] \end{cases}$$

 $[f]([0; \frac{1}{2}]) = (\sin[0; \frac{1}{2}] - [0; \frac{1}{2}]^2 + 1)\cos[0; \frac{1}{2}]$ 

・ロト ・回ト ・ヨト ・ヨト

Convex set Hahn-Banach Theorem Convex function Application optimization

#### Example

#### Let

$$\begin{array}{rcl} f: & \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & (\sin x - x^2 + 1) \cos x \end{array}$$
  
Let us prove that  $S = \{x \in [0; \frac{1}{2}], f(x) = 0\} = \emptyset$ 

One defines 
$$\begin{cases} [f]: & \mathbb{IR} \to & \mathbb{IR} \\ & [x] \mapsto & (\sin[x] - [x]^2 + 1)\cos[x] \end{cases}$$

 $[f]([0; \frac{1}{2}]) = (\sin[0; \frac{1}{2}] - [0; \frac{1}{2}]^2 + 1)\cos[0; \frac{1}{2}]$ 

$$= (\sin[0; \frac{1}{2}] - [0; \frac{1}{4}] + 1) \cos[0; \frac{1}{2}]$$

・ロト ・回ト ・ヨト ・ヨト

Convex set Hahn-Banach Theorem Convex function Application optimization

$$= (\sin[0; \frac{1}{2}] + [-\frac{1}{4}; 0] + 1) \cos[0; \frac{1}{2}]$$

$$= ([0; \sin \frac{1}{2}] + [\frac{3}{4}; 1])[\cos \frac{1}{2}; 1]$$

э.

Convex set Hahn-Banach Theorem Convex function Application optimization

$$= (\sin[0; \frac{1}{2}] + [-\frac{1}{4}; 0] + 1) \cos[0; \frac{1}{2}]$$

$$= ([0; \sin \frac{1}{2}] + [\frac{3}{4}; 1])[\cos \frac{1}{2}; 1]$$

$$= [\frac{3}{4}; 1 + \sin \frac{1}{2}] \times [\cos \frac{1}{2}; 1]$$

<ロ> <部> < 2> < 2> < 2> < 2> < 2</p>

э.

Convex set Hahn-Banach Theorem Convex function Application optimization

$$= (\sin[0; \frac{1}{2}] + [-\frac{1}{4}; 0] + 1) \cos[0; \frac{1}{2}]$$

$$= ([0; \sin \frac{1}{2}] + [\frac{3}{4}; 1])[\cos \frac{1}{2}; 1]$$

$$= [\frac{3}{4}; 1 + \sin \frac{1}{2}] \times [\cos \frac{1}{2}; 1]$$

$$= \ [\tfrac{3}{4}\cos\tfrac{1}{2}; 1+\sin\tfrac{1}{2}]$$

<ロ> <部> < 2> < 2> < 2> < 2> < 2</p>

э.

Convex set Hahn-Banach Theorem Convex function Application optimization

$$= (\sin[0; \frac{1}{2}] + [-\frac{1}{4}; 0] + 1) \cos[0; \frac{1}{2}]$$

$$= ([0; \sin \frac{1}{2}] + [\frac{3}{4}; 1])[\cos \frac{1}{2}; 1]$$

$$= [\frac{3}{4}; 1 + \sin \frac{1}{2}] \times [\cos \frac{1}{2}; 1]$$

$$= \ [\tfrac{3}{4}\cos\tfrac{1}{2}; 1+\sin\tfrac{1}{2}]$$

 $[f]([0; \frac{1}{2}]) \subset [0.65818; 1.4795]$ 

・ロト ・回ト ・ヨト ・ヨト

Convex set Hahn-Banach Theorem Convex function Application optimization

$$= (\sin[0; \frac{1}{2}] + [-\frac{1}{4}; 0] + 1) \cos[0; \frac{1}{2}]$$

$$= ([0; \sin \frac{1}{2}] + [\frac{3}{4}; 1])[\cos \frac{1}{2}; 1]$$

$$= [\frac{3}{4}; 1 + \sin \frac{1}{2}] \times [\cos \frac{1}{2}; 1]$$

$$= \ [\tfrac{3}{4}\cos\tfrac{1}{2}; 1+\sin\tfrac{1}{2}]$$

 $[f]([0; \frac{1}{2}]) \subset [0.65818; 1.4795]$ 

# Conclusion

$$0
ot\in [f]([0;rac{1}{2}]),$$
 therefore  $S=\emptyset$ 

イロン イロン イヨン イヨン

Convex set Hahn-Banach Theorem Convex function Application optimization

# Definition (Convex)

A subset X of  $\mathbb{R}^n$  is *convex* if

$$\forall x, y \in X, \forall t \in [0, 1], tx + (1 - t)y \in X$$



Convex set Hahn-Banach Theorem Convex function Application optimization

# Definition (Convex)

A subset X of  $\mathbb{R}^n$  is *convex* if





Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.

Convex set Hahn-Banach Theorem Convex function Application optimization

# Definition (Convex)

A subset X of  $\mathbb{R}^n$  is *convex* if

$$\forall x, y \in X, \forall t \in [0, 1], tx + (1 - t)y \in X$$



Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.

Convex set Hahn-Banach Theorem Convex function Application optimization

# Definition (Convex)

A subset X of  $\mathbb{R}^n$  is *convex* if

$$\forall x, y \in X, \forall t \in [0, 1], tx + (1 - t)y \in X$$



Convex set Hahn-Banach Theorem Convex function Application optimization

#### Proposition

## A and B convex $\Rightarrow$ A $\cap$ B convex.



FIG.: Intersection

イロン イロン イヨン イヨン

Convex set Hahn-Banach Theorem Convex function Application optimization

## Proposition

A and B convex  $\Rightarrow$  A + B convex.



Convex set Hahn-Banach Theorem Convex function Application optimization

## Proposition

#### A and B convex $\Rightarrow$ A + B convex.



Convex set Hahn-Banach Theorem Convex function Application optimization

#### Hahn-Banach Theorem

Let A, B, two convex, nonempty and disjoint sets. A is closed and B is compact. Then there is a hyperplane U which strictly convertes A or

Then there is a hyperplane H which strictly separates A and B.



Convex set Hahn-Banach Theorem Convex function Application optimization

# Definition (Convex function)

A real-valued function  $f: X \to \mathbb{R}$  is called convex if

$$\forall x \in X, \forall y \in X, \forall t \in [0,1], f(tx+(1-t)y) \le tf(x)+(1-t)f(y).$$



< 日 > < 同 > < 三 > < 三 >

Introduction - Motivation

Sufficient condition for set convexity theorem discussion and other methods Conclusion

Convex set Hahn-Banach Theorem Convex function Application optimization

#### Proposition

- If f and g are convex functions, then so are  $x \mapsto \max(f(x), g(x))$  and  $x \mapsto f(x) + g(x)$ .
- 2 If f and g are convex functions and if g is increasing, then  $h(x) = g \circ f(x)$  is convex.
- Convexity is invariant under affine maps : if x → f(x) is convex with x ∈ ℝ<sup>n</sup>, and g : y → Ay + b then so is y → f ∘ g(y) = f(Ay + b), where A ∈ ℝ<sup>n×m</sup>, b ∈ ℝ<sup>m</sup>.

< 日 > < 同 > < 三 > < 三 >

Convex set Hahn-Banach Theorem Convex function Application optimization

# Definition (epigraph)

The epigraph of a function  $f : \mathbb{R}^n \mapsto \mathbb{R}$  is the set of points lying on or above its graph :

epi  $f = \{(x, y) : x \in \mathbb{R}^n, \mu \in \mathbb{R}, f(x) \le y\} \subseteq \mathbb{R}^{n+1}.$ 



Convex set Hahn-Banach Theorem Convex function Application optimization

#### Proposition

# A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if and only if its epigraph is convex.



《口》《聞》《臣》《臣》

Convex set Hahn-Banach Theorem Convex function Application optimization

#### Proposition

A function  $f \in C^2(\mathbb{R}^n, \mathbb{R})$  is convex if and only if  $\forall x, \nabla^2 f(x)$  is semi definite positive (*i.e.*  $\forall x, \nabla^2 f(x) \succeq 0$ ).

#### Example

- $f : \mathbb{R} \ni x \mapsto x^2 \in \mathbb{R}$  is convex since  $f''(x) = 2 \ge 0$ .
- $g: \mathbb{R}^2 
  i (x, y) \mapsto x^2 + y^2 \in \mathbb{R}$  is convex since

$$\nabla^2 f(x,y) = \begin{pmatrix} \frac{\partial^2 f}{x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

is positive definite.

(日) (同) (日) (日) (日)

Introduction - Motivation

Sufficient condition for set convexity theorem discussion and other methods Conclusion

Convex set Hahn-Banach Theorem Convex function Application optimization

$$\min_{x\in S\subset\mathbb{R}^n}f(x)$$

#### theorem - uniqueness

If S is a convex subset of  $\mathbb{R}^n$  and  $f \in C^2(D, \mathbb{R})$  a convex function, the following conditions are equivalent

- $\underline{x}$  is a local minimum.
- $\underline{x}$  is a global minimum.

- 4 同 6 4 日 6 4 日 6

A weak sufficient condition Not necessary Sufficient condition Proof idea, by contradiction Example

# Corollary

Let  $f \in \mathcal{C}^2(\mathbb{R}^n, \mathbb{R})$ . If  $\forall x \in D, \nabla^2 f(x) \succeq 0$  then

 $\{x \in D \subset \mathbb{R}^n \mid f(x) \leq 0\}$  is a convex set



A weak sufficient condition Not necessary Sufficient condition Proof idea, by contradiction Example

#### Example

The set  $\{x \in \mathbb{R} \mid f(x) = x^2 + y^2 - 1 \le 0\}$  is convex since  $\forall x, \nabla^2 f(x) \succeq 0$ .

イロト イポト イヨト イヨト

A weak sufficient condition Not necessary Sufficient condition Proof idea, by contradiction Example

#### Not necessary

There exists function such that

$$\left\{ \begin{array}{l} \{x \in D \subset \mathbb{R}^n \mid f(x) \leq 0\} \text{ is a convex set} \\ \exists x \in D, \nabla^2 f(x) \not\succeq 0 \end{array} \right.$$



イロン イロン イヨン イヨン

æ

A weak sufficient condition Not necessary Sufficient condition Proof idea, by contradiction Example

## Example

$$f(x, y) = \log(x^2 + y^2 + 1) - 3$$



A weak sufficient condition Not necessary Sufficient condition Proof idea, by contradiction Example

Let use denote by *S* the set  $\{x \in D \subset \mathbb{R}^n \mid f(x) \leq 0\}$  and  $\partial S$  the set  $\{x \in D \subset \mathbb{R}^n \mid f(x) = 0\}$ 

#### Theorem

Suppose that

- D is convex,
- S is path-connected,
- $\forall x \in \partial S$ , ker  $\nabla f(x)$  has codimension 1,

If  $\forall x \in \partial S, \nabla^2 f(x)_{|Ker \nabla f(x)} \succ 0$  then S is convex.

A weak sufficient condition Not necessary Sufficient condition **Proof idea, by contradiction** Example

Let use denote by *S* the set  $\{x \in D \subset \mathbb{R}^n \mid f(x) \le 0\}$  and  $\partial S$  the set  $\{x \in D \subset \mathbb{R}^n \mid f(x) = 0\}$ 

#### Theorem

Suppose that

- D is convex,
- S is path-connected,
- $\forall x \in \partial S$ , ker  $\nabla f(x)$  has codimension 1,

If S is non convex then  $\exists x \in \partial S, \nabla^2 f(x)|_{Ker \nabla f(x)} \neq 0$ 

A weak sufficient condition Not necessary Sufficient condition Proof idea, by contradiction Example

If S is non convex then  $\exists x \in \partial S, \nabla^2 f(x)_{|Ker\nabla f(x)} \not\succeq 0$ 

Since D is convex,



< 日 > < 同 > < 三 > < 三 >

A weak sufficient condition Not necessary Sufficient condition **Proof idea, by contradiction** Example

If S is non convex then  $\exists x \in \partial S, \nabla^2 f(x)_{|Ker\nabla f(x)} \not\succ 0$ 

Since S is path-connected,



< 日 > < 同 > < 三 > < 三 >

A weak sufficient condition Not necessary Sufficient condition **Proof idea, by contradiction** Example

# If S is non convex then $\exists x \in \partial S, \nabla^2 f(x)|_{Ker \nabla f(x)} \neq 0$



< 日 > < 同 > < 三 > < 三 >
A weak sufficient condition Not necessary Sufficient condition **Proof idea, by contradiction** Example

If S is non convex then 
$$\exists x \in \partial S, \nabla^2 f(x)_{|Ker\nabla f(x)} \neq 0$$
  
*i.e.*

 $\exists x \in \partial S, \exists h \in \ker \nabla f(x), h^T \nabla^2 f(x) h \leq 0$ 



A weak sufficient condition Not necessary Sufficient condition **Proof idea, by contradiction** Example

If S is non convex then 
$$\exists x \in \partial S, \nabla^2 f(x)_{|Ker \nabla f(x)} \neq 0$$
  
*i.e.*

 $\exists x \in \partial S, \exists h \in \ker \nabla f(x), h^T \nabla^2 f(x) h \leq 0$ 



A weak sufficient condition Not necessary Sufficient condition **Proof idea, by contradiction** Example

If S is non convex then 
$$\exists x \in \partial S, \nabla^2 f(x)_{|Ker \nabla f(x)} \neq 0$$
  
*i.e.*

 $\exists x \in \partial S, \exists h \in \ker \nabla f(x), h^T \nabla^2 f(x) h \leq 0$ 



A weak sufficient condition Not necessary Sufficient condition **Proof idea, by contradiction** Example

## $\exists x \in \partial S, \exists h \in \ker \nabla f(x), h^T \nabla^2 f(x) h \leq 0$



ヘロト 人間 と 人 臣 と 人 臣 とう

A weak sufficient condition Not necessary Sufficient condition **Proof idea, by contradiction** Example

$$\exists x \in \partial S, \exists h \in \ker \nabla f(x), h^T \nabla^2 f(x) h \leq 0$$



・ロン ・部 と ・ ヨ と ・ ヨ と …

A weak sufficient condition Not necessary Sufficient condition **Proof idea, by contradiction** Example

$$\exists x \in \partial S, \exists h \in \ker \nabla f(x), h^T \nabla^2 f(x) h \leq 0$$

 $s(0) = x, \dot{s}(0) = h$  $\frac{d}{dt} \int_{t=0}^{t} \nabla f(s(t)) = \frac{d\nabla f(x)}{dx} (s(0)) \frac{d}{dt} \int_{t=0}^{t} s(t) = \nabla^2 f(x) h$  $\nabla^2 f(x)h$ 

A weak sufficient condition Not necessary Sufficient condition **Proof idea, by contradiction** Example

## $\exists x \in \partial S, \exists h \in \ker \nabla f(x), h^T \nabla^2 f(x) h \leq 0$



(日) (同) (日) (日) (日)

A weak sufficient condition Not necessary Sufficient condition **Proof idea, by contradiction** Example

## $x \in \partial S, h \in \ker \nabla f(x), h^T \nabla^2 f(x) h \ge 0$



イロト イポト イヨト イヨト

A weak sufficient condition Not necessary Sufficient condition Proof idea, by contradiction Example

### Example

## Let f be the function

$$egin{array}{rcl} f:& [-10,10]&
ightarrow&\mathbb{R}\ & (x,y)&\mapsto& \log(x^2+y^2+1)-3 \end{array}$$

To prove that  $S = \{(x, y) \in [-10, 10]^2 \mid f(x, y) \le 0\}$  is convex, one only has to check that :

 $\begin{cases} S \text{ is path-connected} \\ f(x) = 0 \Rightarrow \nabla f(x) \neq 0 \\ f(x) = 0 \Rightarrow \nabla^2 f(x) \succ 0 \end{cases}$ 

(日)

A weak sufficient condition Not necessary Sufficient condition Proof idea, by contradiction Example

$$\begin{cases} f(x) = 0 \Rightarrow \nabla f(x) \neq 0\\ f(x) = 0 \Rightarrow \nabla^2 f(x)_{|\ker \nabla f(x)} \succ 0 \end{cases}$$

 $\begin{cases} f(x) = 0 \land \nabla f(x) = 0 \text{ has no solution} \\ f(x) = 0 \land \nabla^2 f(x)_{|\ker \nabla f(x)} \not\succeq 0 \text{ has no solution} \end{cases}$ 

$$\begin{cases} f(x) = 0 \land \nabla f(x) = 0 \text{ has no solution} \\ f(x) = 0 \land h \in \ker \nabla f(x) \land h^T \nabla^2 f(x) h \le 0 \text{ has no solution} \end{cases}$$

$$\begin{cases} f(x) = 0 \land \nabla f(x) = 0 \text{ has no solution} \\ f(x) = 0 \land \nabla f(x)h = 0 \land h^T \nabla^2 f(x)h \le 0 \text{ has no solution} \end{cases}$$

- 4 同 6 4 日 6 4 日 6

A weak sufficient condition Not necessary Sufficient condition Proof idea, by contradiction Example

$$\begin{cases} f(x) = 0 \land \nabla f(x) = 0 \text{ has no solution} \\ f(x) = 0 \land \nabla f(x)h = 0 \land h^T \nabla^2 f(x)h \le 0 \text{ has no solution} \end{cases}$$

$$\begin{cases} \log(x^2 + y^2 + 1) - 3 = 0\\ \frac{2x}{y^2 + x^2 + 1} = 0 & \text{has no solution}\\ \frac{2y}{y^2 + x^2 + 1} = 0 \end{cases}$$

and

$$\begin{cases} \log(x^2 + y^2 + 1) - 3 = 0\\ \frac{8x^2 + 8y^2}{x^6 + 3x^4 y^2 + 3x^4 + 3x^2 y^4 + 6x^2 y^2 + 3x^2 + y^6 + 3y^4 + 3y^2 + 1} \le 0 \end{cases}$$
 has no solution

< ロ > < 部 > < 注 > < 注 > < </p>

э.

A weak sufficient condition Not necessary Sufficient condition Proof idea, by contradiction Example



Conditions Others methods

### Theorem

## Suppose that

- D is convex,
- S is path-connected,
- $\forall x \in \partial S$ , ker  $\nabla f(x)$  has codimension 1,

If  $\forall x \in \partial S, \nabla^2 f(x)_{|Ker \nabla f(x)} \succ 0$  then S is convex.

(日) (同) (三) (三)

3

Conditions Others methods

## If D is non convex,



Conditions Others methods

## If S is not path-connected,



<ロ> <同> <同> < 同> < 同>

Conditions Others methods

## If $\exists x \in \partial S$ , ker $\nabla f(x)$ has not codimension 1,

$$\{(x_1, x_2) \mid (x_2^2 + x_1^2)^2 + \frac{x_1 x_2^2}{2} + \frac{x_1^3}{2} \le 0\}$$



<ロト <部ト < 注ト < 注ト

Conditions Others methods

- CVX : Matlab Software for Disciplined Convex Programming
- Q Cylindrical algebraic decomposition

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Conditions Others methods

# CVX : Matlab Software for Disciplined Convex Programming

- constraint propagation
- symbolic differentiation
- C. Crusius.

A parser/solver for convex optimization problems. PhD thesis, Stanford Univ., USA, 2002.

• M. C. Grant.

Disciplined convex programming. PhD thesis, Stanford Univ., USA, 2004.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Conditions Others methods

# CVX : Matlab Software for Disciplined Convex Programming

$$x \mapsto f(x) = \exp(3x - 2) + x^2$$
 is convex since



▲ 同 ▶ → 三 ▶

Conditions Others methods

# Cylindrical algebraic decomposition

## Tarski's theorem

The solution set of a quantified system of real algebraic equations and inequations is a semialgebraic set (Tarski 1951, Strzebonski 2000).

- Tarski's theorem gives rise to an impractical method (Davenport and Heintz 1988)
- A much more efficient procedure for implementing quantifier elimination is called *cylindrical algebraic decomposition*. It was developed by Collins (1975).

Conditions Others methods

## Proposition

## If P and Q have a common root then Res(P, Q) = 0.

・ロト ・回ト ・ヨト ・ヨト

Conditions Others methods

## Proof

Let P and Q have a common root a with deg P = p and deg Q = q. One has  $P(X) = (X - a)\tilde{P}(X)$  and  $Q(X) = (X - a)\tilde{Q}(X)$ , then :  $P\tilde{Q} - Q\tilde{P} = 0$ where deg  $\tilde{P} = p - 1$  and deg  $\tilde{Q} = q - 1$ .

イロト イポト イヨト イヨト 三日

Conditions Others methods

## Proof

## Note that

$$(b_2X^2+b_1X+b_0)(a_2X^2+a_1X+a_0)=c_4X^4+c_3X^3+c_2X^2+c_1X+c_0$$

is equivalent to

$$\begin{pmatrix} b_2 & b_1 & b_0 \end{pmatrix} \begin{pmatrix} a_2 & a_1 & a_1 & 0 & 0 \\ 0 & a_2 & a_1 & a_0 & 0 \\ 0 & 0 & a_2 & a_1 & a_0 \end{pmatrix} = \begin{pmatrix} c_4 & c_3 & c_2 & c_1 & c_0 \end{pmatrix}$$

Conditions Others methods

### Proof

$$\exists \tilde{P} \neq 0 \exists \tilde{Q} \neq 0, P \tilde{Q} - Q \tilde{P} = 0$$

is equilavent to det Syl = 0 with :



Conditions Others methods

## Example

$$P(X) = (X - 1)(X - 2) = X^{2} - 3X + 2$$
  

$$Q(X) = (X - 1)(X - 3) = X^{2} - 4X + 3$$

have common root,

$$\det \left( \begin{array}{rrrr} 1 & -3 & 2 & 0 \\ 0 & 1 & -3 & 2 \\ 1 & -4 & 3 & 0 \\ 0 & 1 & -4 & 3 \end{array} \right) = 0$$

Conditions Others methods

## Example

$$P(X) = (X - 1)(X - 2) = X^{2} - 3X + 2$$
  

$$Q(X) = (X - 1)(X - 3) = X^{2} - 4X + 3$$

have common root since

$$\begin{pmatrix} 1 & -3 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & -3 & 2 & 0 \\ 0 & 1 & -3 & 2 \\ 1 & -4 & 3 & 0 \\ 0 & 1 & -4 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$$

$$(X-3)P(X) - (X-2)Q(X) = 0$$

<ロ> <同> <同> <同> < 同> < 同> < 同> <

Conditions Others methods

$$\exists y \in \mathbb{R}, x^2 + y^2 - 1 \le 0$$



・ロン ・部 と ・ ヨ と ・ ヨ と …

Conditions Others methods

$$\exists y \in \mathbb{R}, x^2 + y^2 - 1 \le 0$$



・ロン ・部 と ・ ヨ と ・ ヨ と …

Conditions Others methods

$$\exists y \in \mathbb{R}, x^2 + y^2 - 1 \le 0$$



・ロン ・部 と ・ ヨ と ・ ヨ と …

Conditions Others methods

$$\exists y \in \mathbb{R}, x^2 + y^2 - 1 \le 0$$

 $y \mapsto P(x, y)$  and  $y \mapsto \frac{d}{dy}P(x, y)$  has a common root. *i.e.*  $1 * Y^2 + 0 * Y^1 + (X^2 - 1) * Y^0$  and  $2 * Y^1$  has a common root.



Conditions Others methods

$$\exists y\in\mathbb{R}, x^2+y^2-1\leq 0$$
 
$$1*Y^2+0*Y^1+(X^2-1)*Y^0 \text{ and } 2*Y^1 \text{ has a common root}.$$

$$\det \begin{pmatrix} 1 & 0 & X^2 - 1 \\ 2 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix} = 0$$
$$\Leftrightarrow (-2)(-2)(X^2 - 1) = 0$$
$$\Leftrightarrow (X^2 - 1) = 0$$

< ロ > < 部 > < 注 > < 注 > < </p>

Conditions Others methods

 $\exists y \in \mathbb{R}, x^2 + y^2 - 1 \le 0$ 

| 🗢 nico@lisa-auto31: ~/solver/cad_example/qesource/bin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _ 🗆 X |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <u>Fichier</u> Édition Affichage <u>T</u> erminal <u>O</u> nglets Aide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| nico@lisa-auto31:~/solver/cad_example/qesource/bin\$ ./qepcad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| Quantifier Elimination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Elementary Algebra and Geometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Partial Cylindrical Algebraic Decomposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Version B 1.44, 17 May 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Hoon Hong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| (hhong@math.ncsu.edu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| With contributions by: Christopher W. Brown, George E.<br>Collins, Mark J. Encarnacion, Jeremy R. Johnson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| Werner Krandick, Richard Liska, Scott McCallum,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Nicolas Robidoux, and Stanly Steinberg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| Enter an informal description between '[' and ']':                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| and the second | 25    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *     |

・ロト ・回ト ・ヨト ・ヨト

3

Conditions Others methods

 $\exists y \in \mathbb{R}, x^2 + y^2 - 1 \le 0$ 

| ➡ nico@lisa-auto31: ~/solver/cad_example/qesource/bin                                                     | _ 🗆 X |
|-----------------------------------------------------------------------------------------------------------|-------|
| <u>Fichier</u> É <u>d</u> ition <u>Affichage</u> <u>T</u> erminal <u>O</u> nglets Aid <u>e</u>            |       |
| nico@lisa-auto31:~/solver/cad_example/qesource/bin\$ ./qepcad                                             | -     |
| Quantifier Elimination                                                                                    |       |
| in                                                                                                        |       |
| Elementary Algebra and Geometry                                                                           |       |
| by                                                                                                        |       |
| Partial Cylindrical Algebraic Decomposition                                                               |       |
| Version B 1.44, 17 May 2005                                                                               |       |
| by                                                                                                        |       |
| Hoon Hong                                                                                                 |       |
| (hhong@math.ncsu.edu)                                                                                     |       |
| With contributions by: Christopher W. Brown, George E.<br>Collins, Mark J. Encarnacion, Jeremy R. Johnson |       |
| Werner Krandick, Richard Liska, Scott McCallum,<br>Nicolas Robidoux, and Stanly Steinberg                 |       |
| Enter an informal description, between '[' and ']'.                                                       | *     |
| fi                                                                                                        | *     |
| u<br>Enter a variable lict:                                                                               |       |
| (x y)                                                                                                     |       |
| (x,y)                                                                                                     |       |
|                                                                                                           |       |

・ロト ・回ト ・ヨト ・ヨト

Conditions Others methods

$$\exists y \in \mathbb{R}, x^2 + y^2 - 1 \le 0$$

| 🔻 nico                           | @lisa-at                          | ito31: ~/s                                | olver/cad                            | example                              | e/qesource/bin |   |
|----------------------------------|-----------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|----------------|---|
| Fichier                          | Édition                           | <u>A</u> ffichage                         | <u>T</u> erminal                     | <u>O</u> nglets                      | Aid <u>e</u>   |   |
|                                  | Q<br>Eleme                        | uantifier E<br>in<br>ntary Algeb<br>bv    | limination<br>ra and Geo             | netry                                |                | • |
| Pa                               | rtial Cyl                         | indrical Al                               | gebraic De                           | compositio                           | n              |   |
|                                  | Ve                                | rsion B 1.4                               | 4, 17 May                            | 2005                                 |                |   |
|                                  |                                   | by<br>Hoon I<br>(hhong@mati               | Hong<br>h.ncsu.edu                   | )                                    |                |   |
| With con<br>Collins,<br>Werner K | tribution<br>Mark J.<br>Trandick, | s by: Chris<br>Encarnacion<br>Richard Lis | topher W.<br>, Jeremy R<br>ka, Scott | Brown, Geo<br>. Johnson<br>McCallum, | orge E.        |   |
| Nicolas                          | Robidoux,                         | and Stanly                                | Steinberg                            |                                      |                |   |
| Enter an<br>[]                   | informal                          | descriptio                                | between                              | '[' and '                            | ']':           |   |
| Enter a<br>(x,y)                 | variable                          | list:                                     |                                      |                                      |                | ~ |
| inter th                         | e number                          | ot tree var.                              | Lables:                              |                                      |                | - |

Conditions Others methods

 $\exists y \in \mathbb{R}, x^2 + y^2 - 1 \leq 0$ 

| 🔻 nico                                      | @lisa-au                                      | uto31: ~/s                                                                              | olver/cad                                                               | example                                   | e/qesou      | ırce/bin | - 🗆 | ×   |
|---------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------|--------------|----------|-----|-----|
| <u>F</u> ichier                             | Édition                                       | <u>A</u> ffichage                                                                       | <u>T</u> erminal                                                        | <u>O</u> nglets                           | Aid <u>e</u> |          |     |     |
| Pa                                          | Eleme<br>rtial Cyl                            | in<br>entary Algeb<br>by<br>indrical Al                                                 | ra and Geo<br>gebraic De                                                | metry<br>compositic                       | n            |          |     |     |
|                                             | Ve                                            | ersion B 1.4                                                                            | 4, 17 May                                                               | 2005                                      |              |          |     |     |
| With con<br>Collins,<br>Werner K<br>Nicolas | tribution<br>Mark J.<br>randick,<br>Robidoux, | by<br>Hoon I<br>(hhong@matl<br>s by: Chris<br>Encarnacion<br>Richard Lisl<br>and Stanly | Hong<br>h.ncsu.edu<br>topher W.<br>, Jeremy R<br>ka, Scott<br>Steinberg | )<br>Brown, Geo<br>. Johnson<br>McCallum, | rge E.       |          |     |     |
| Enter an                                    | informal                                      | descriptio                                                                              | n between                                                               | '[' and '                                 | ]':          |          |     |     |
| lJ<br>Entera<br>(x,y)                       | variable                                      | list:                                                                                   |                                                                         |                                           |              |          |     | 000 |
| Enter th<br>1                               | e number                                      | of free var.                                                                            | iables:                                                                 |                                           |              |          |     | -   |
| Enter a<br>(Ey)[x <sup>2</sup>              | prenex fo<br>+y^2-1⇔6                         | ormula:<br>)].                                                                          |                                                                         |                                           |              |          |     | *   |

・ロト ・回ト ・ヨト ・ヨト

3

Conditions Others methods

 $\exists y \in \mathbb{R}, x^2 + y^2 - 1 \le 0$ 

| 🔻 nico                                      | @lisa-at                                      | uto31: ~/s                                              | olver/cad                                         | _exampl                                    | e/qesource/b | in | _ / 🗆 | X     |
|---------------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------|--------------------------------------------|--------------|----|-------|-------|
| <u>F</u> ichier                             | É <u>d</u> ition                              | <u>A</u> ffichage                                       | <u>T</u> erminal                                  | <u>O</u> nglets                            | Aid <u>e</u> |    |       |       |
|                                             |                                               | by<br>Hoon<br>(hhong@mat                                | Hong<br>h.ncsu.edu                                | )                                          |              |    |       | -     |
| With con<br>Collins,<br>Werner K<br>Nicolas | tribution<br>Mark J.<br>randick,<br>Robidoux, | s by: Chris<br>Encarnacion<br>Richard Lis<br>and Stanly | topher W.<br>, Jeremy F<br>ka, Scott<br>Steinberg | Brown, Geo<br>L. Johnson<br>McCallum,<br>I | orge E.      |    |       |       |
| Enter an<br>[]<br>Enter a                   | informal<br>variable                          | descriptio                                              | n between                                         | '['and '                                   | ']':         |    |       |       |
| (x,y)<br>Enter th<br>1                      | e number                                      | of free var                                             | iables:                                           |                                            |              |    |       |       |
| Enter a<br>(Ey)[x^2                         | prenex fo<br>+y^2-1⇔0                         | ormula:<br>)].                                          |                                                   |                                            |              |    |       |       |
|                                             |                                               |                                                         |                                                   |                                            |              |    |       | 20102 |
| Before N                                    | ormalizat                                     | ion >                                                   |                                                   |                                            |              |    |       |       |
|                                             |                                               |                                                         |                                                   |                                            |              |    |       | 1.17  |

・ロト ・回ト ・ヨト ・ヨト
Conditions Others methods

 $\exists y \in \mathbb{R}, x^2 + y^2 - 1 \leq 0$ 

|                                             | @lisa-au                                       |                                                         | olver/cad                                         | _example                             | e/qesour     | ce/bin |   |
|---------------------------------------------|------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|--------------------------------------|--------------|--------|---|
| <u>F</u> ichier                             | Édition                                        | <u>A</u> ffichage                                       | <u>T</u> erminal                                  | <u>O</u> nglets                      | Aid <u>e</u> |        |   |
|                                             |                                                | by<br>Hoon<br>(hhong@mat                                | Hong<br>h.ncsu.edu                                | )                                    |              |        |   |
| With con<br>Collins,<br>Werner M<br>Nicolas | tribution<br>Mark J.<br>Trandick,<br>Robidoux, | s by: Chris<br>Encarnacion<br>Richard Lis<br>and Stanly | topher W.<br>, Jeremy R<br>ka, Scott<br>Steinberg | Brown, Geo<br>. Johnson<br>McCallum, | orge E.      |        |   |
| Enter an                                    | informal                                       | descriptio                                              | n between                                         | '[' and '                            | 1':          |        |   |
| LJ<br>Enter a                               | variable                                       | list:                                                   |                                                   |                                      |              |        |   |
| (x,y)<br>Enter th<br>1                      | e number                                       | of free var                                             | iables:                                           |                                      |              |        |   |
| Enter a                                     | prenex fo                                      | ormula:                                                 |                                                   |                                      |              |        | - |
| (Ly)[x 2                                    | +y 2-1-0                                       | ·1·                                                     |                                                   |                                      |              |        |   |
|                                             |                                                |                                                         |                                                   |                                      |              |        |   |
| Before N                                    | ormalizat                                      | ion >                                                   |                                                   |                                      |              |        |   |

・ロト ・回ト ・ヨト ・ヨト

3

Conditions Others methods

$$\exists y \in \mathbb{R}, x^2 + y^2 - 1 \le 0$$

| 🔻 nico@                 | )lisa-au               | to31: ~/so                  | olver/cad                | _example        | e/qesou      | urce/bin   |          | <br>1 X |
|-------------------------|------------------------|-----------------------------|--------------------------|-----------------|--------------|------------|----------|---------|
| Fichier                 | É <u>d</u> ition       | <u>A</u> ffichage           | <u>T</u> erminal         | <u>O</u> nglets | Aid <u>e</u> |            |          |         |
| Enter a p<br>(Ey)[x^2+) | renex for<br>y^2-1≪=0] | mula:<br> .                 |                          |                 |              |            |          | •       |
| Before Nor<br>finish    | rmalizati              | ion >                       |                          |                 |              |            |          |         |
| An equival              | lent quar              | tifier-free                 | e formula:               |                 |              |            |          |         |
| x + 1 >= (              | ⊙/\x-                  | $1 \Leftrightarrow 0$       |                          |                 |              |            |          |         |
|                         |                        | The Er                      | nd                       |                 |              |            |          |         |
|                         |                        |                             |                          |                 |              |            |          |         |
| 0 Garbage<br>490802 Cel | collect:<br>lls in AV  | ions, 0 Cell<br>/AIL, 50000 | ls and 0 A<br>O Cells in | SPACE.          | aimed, :     | in 0 milli | seconds. |         |
| System tir              | ne: 32 mi              | illiseconds                 |                          |                 |              |            |          | 1000    |
| System tir              | me after               | the initial                 | lization:                | 8 millised      | onds.        |            |          | 1       |
| nico@lisa               | -auto31:               | /solver/ca                  | _example/                | qesource/b      | in\$         |            |          |         |

Conditions Others methods

$$\exists y \in \mathbb{R}, x^2 + y^2 - 1 \le 0$$
  
 $\Leftrightarrow (x + 1 \ge 0) \land (x - 1 \le 0)$ 

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.

<ロ> <部> <き> <き> <き> <き> <き</p>

Conditions Others methods

#### Proposition

Convexity is a semi-algebraic property.

Let S be a semi-algebraic set, S is convex if

 $\forall x \forall y \forall t, (t \in [0, 1], x \in S, y \in S \Rightarrow tx + (1 - t)y \in S)$ 

(日) (同) (三) (三)

Conditions Others methods

#### Let S be a semi-algebraic set, S is convex if

 $\forall x \forall y \forall t, (t \in [0, 1], x \in S, y \in S \Rightarrow tx + (1 - t)y \in S)$ 

#### Example

Proving that  $\{x \in \mathbb{R}, x^2 - 1 \le 0\} = [-1, 1]$  is convex remains to prove :

$$\forall x \forall y \forall t, 0 \leq t \leq 1 \land x^2 - 1 \leq 0 \land y^2 - 1 \leq 0 \Rightarrow (tx + (1 - t)y)^2 - 1 \leq 0$$

- 4 同 6 4 日 6 4 日 6

Conditions Others methods

# $\{x \in \mathbb{R}, x^2 - 1 \leq 0\} = [-1, 1]$ is convex.

| <ul> <li>nico@lisa-auto31: ~/solver/cad_example/qesource/bin</li> </ul>                                                                                                                   | _ 🗆 X |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <u>Fichier</u> Édition Affichage <u>T</u> erminal <u>O</u> nglets Aide                                                                                                                    |       |
| nico@lisa-auto31:~/solver/cad_example/qesource/bin\$ ./qepcad                                                                                                                             | -     |
| Quantifier Elimination<br>in<br>Elementary Algebra and Geometry<br>Partial Cylindrical Algebraic Decomposition<br>Version B 1.44, 17 May 2005<br>by<br>Hoon Hong<br>(hhong@math.ncsu.edu) |       |
| Mich Collins, Mark J. Encarnacion, Jerewy R. Johnson<br>Werner Krandick, Richard Liska, Scott McCallum,<br>Nicolas Robidoux, and Stanly Steinberg                                         |       |
| Enter an informal description between '[' and ']':<br>[]<br>Enter a variable list:<br>■                                                                                                   | 2000  |
|                                                                                                                                                                                           | *     |

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.

・ロト ・回ト ・ヨト ・ヨト

3

Conditions Others methods

# $\{x \in \mathbb{R}, x^2 - 1 \leq 0\} = [-1, 1]$ is convex.

| ▼ nico@lisa-auto31: ~/solver/cad_example/qesource/bin                                                                                                                                                  | _ 🗆 X |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <u>Fichier</u> Édition Affichage <u>T</u> erminal <u>O</u> nglets Aide                                                                                                                                 |       |
| nico@lisa-auto31:~/solver/cad_example/qesource/bin\$ ./qepcad                                                                                                                                          |       |
| Quantifier Elimination                                                                                                                                                                                 |       |
| in                                                                                                                                                                                                     |       |
| Elementary Algebra and Geometry                                                                                                                                                                        |       |
| by                                                                                                                                                                                                     |       |
| Partial Cylindrical Algebraic Decomposition                                                                                                                                                            |       |
| Version B 1.44, 17 May 2005                                                                                                                                                                            |       |
| by                                                                                                                                                                                                     |       |
| Hoon Hong                                                                                                                                                                                              |       |
| (hhong@math.ncsu.edu)                                                                                                                                                                                  |       |
| With contributions by: Christopher W. Brown, George E.<br>Collins, Mark J. Encarnacion, Jeremy R. Johnson<br>Werner Krandick, Richard Liska, Scott McCallum,<br>Nicolas Robidoux, and Stanly Steinberg |       |
| Enter an informal description between '[' and ']':                                                                                                                                                     |       |
| 0                                                                                                                                                                                                      |       |
| Enter a variable list:                                                                                                                                                                                 | ~     |
| (x,y,t)                                                                                                                                                                                                |       |
|                                                                                                                                                                                                        |       |
|                                                                                                                                                                                                        | *     |

・ロト ・回ト ・ヨト ・ヨト

Conditions Others methods

# $\{x \in \mathbb{R}, x^2 - 1 \leq 0\} = [-1, 1]$ is convex.

| 🗢 nico@lisa-auto31: ~/solver/cad_example/qesource/bin                                                                                                                                                  | _ 🗆 × |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <u>F</u> ichier É <u>d</u> ition <u>A</u> ffichage <u>T</u> erminal <u>O</u> nglets Aid <u>e</u>                                                                                                       |       |
| nico@lisa-auto31:~/solver/cad_example/qesource/bin\$ ./qepcad                                                                                                                                          | -     |
| Quantifier Elimination                                                                                                                                                                                 |       |
| in                                                                                                                                                                                                     |       |
| Elementary Algebra and Geometry                                                                                                                                                                        |       |
| by                                                                                                                                                                                                     |       |
| Partial Cylindrical Algebraic Decomposition                                                                                                                                                            |       |
| Version B 1.44, 17 May 2005                                                                                                                                                                            |       |
| by                                                                                                                                                                                                     |       |
| Hoon Hong                                                                                                                                                                                              |       |
| (hhong@math.ncsu.edu)                                                                                                                                                                                  |       |
| With contributions by: Christopher W. Brown, George E.<br>Collins, Mark J. Encarnacion, Jeremy R. Johnson<br>Merner Krandick, Richard Liska, Scott McCallum,<br>Nicolas Robidoux, and Stanly Steinberg |       |
| Enter an informal description between '[' and ']':                                                                                                                                                     |       |
| []                                                                                                                                                                                                     |       |
| Enter a variable list:                                                                                                                                                                                 | ~     |
| (x,y,t)                                                                                                                                                                                                |       |
| Enter the number of free variables:                                                                                                                                                                    |       |
| Y <b>T</b>                                                                                                                                                                                             | *     |

・ロト ・回ト ・ヨト ・ヨト

Conditions Others methods

# $\{x \in \mathbb{R}, x^2 - 1 \leq 0\} = [-1, 1]$ is convex.

| 🔻 nico                                      | @lisa-au                                       | uto31: ~/s                                              | olver/cad                                         | _example                             | e/qesource,  | /bin _ | . 🗆 X   |
|---------------------------------------------|------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|--------------------------------------|--------------|--------|---------|
| Fichier                                     | É <u>d</u> ition                               | Affichage                                               | Terminal                                          | <u>O</u> nglets                      | Aid <u>e</u> |        |         |
|                                             | Q                                              | uantifier E                                             | limination                                        |                                      |              |        |         |
|                                             | <b>F1</b>                                      | in                                                      |                                                   |                                      |              |        |         |
|                                             | Eteme                                          | ntary Algeb                                             | ra and Geo                                        | metry                                |              |        |         |
| Pa                                          | rtial Cyl                                      | indrical Al                                             | gebraic De                                        | compositio                           | n            |        |         |
|                                             | Ve                                             | rsion B 1.4                                             | 4, 17 May                                         | 2005                                 |              |        |         |
|                                             |                                                | by                                                      |                                                   |                                      |              |        |         |
|                                             |                                                | Hoon                                                    | Hong                                              |                                      |              |        |         |
|                                             |                                                | (hhong@mat                                              | h.ncsu.edu                                        | )                                    |              |        |         |
| With con<br>Collins,<br>Werner K<br>Nicolas | tribution<br>Mark J.<br>Trandick,<br>Robidoux, | s by: Chris<br>Encarnacion<br>Richard Lis<br>and Stanly | topher W.<br>, Jeremy R<br>ka, Scott<br>Steinberg | Brown, Geo<br>. Johnson<br>McCallum, | orge E.      |        |         |
| Enter an                                    | informal                                       | descriptio                                              | n between                                         | '[' and '                            | 1':          |        |         |
| Enter a                                     | variable                                       | list:                                                   |                                                   |                                      |              |        |         |
| (x,y,t)                                     |                                                |                                                         |                                                   |                                      |              |        |         |
| Enter th                                    | e number                                       | of free var                                             | iables:                                           |                                      |              |        | ~       |
| 0                                           |                                                |                                                         |                                                   |                                      |              |        | 3       |
| Enter a                                     | (At) (It >                                     | -0 () +                                                 | 1 (1                                              | 1 ~ 0 0                              | uco 101      |        | 1 +1    |
| v)^2 -1                                     | <=0]].                                         | -0/(1 -                                                 | 1///2-                                            | 1 ~ 0 /1                             | y 2 -1 4=0j  |        | (1·c) - |

・ロト ・回ト ・ヨト ・ヨト

Conditions Others methods

 $\{x \in \mathbb{R}, x^2 - 1 \le 0\} = [-1, 1]$  is convex.

| 🔻 nico@                                         | ຼີອlisa-aເ                                 | uto31: ~/s                                              | olver/cad                                         | _exampl                                    | e/qesou      | rce/bin  |          |         | ×     |
|-------------------------------------------------|--------------------------------------------|---------------------------------------------------------|---------------------------------------------------|--------------------------------------------|--------------|----------|----------|---------|-------|
| Fichier                                         | É <u>d</u> ition                           | <u>A</u> ffichage                                       | Terminal                                          | Onglets                                    | Aid <u>e</u> |          |          |         |       |
|                                                 | Ve                                         | rsion B 1.4                                             | 4, 17 May                                         | 2005                                       |              |          |          |         | -     |
|                                                 |                                            | by                                                      |                                                   |                                            |              |          |          |         |       |
|                                                 |                                            | Hoon                                                    | Hong                                              |                                            |              |          |          |         |       |
|                                                 |                                            | (hhong@mat                                              | h.ncsu.edu                                        | )                                          |              |          |          |         |       |
| With cont<br>Collins,<br>Werner Kr<br>Nicolas R | ribution<br>Mark J.<br>andick,<br>obidoux, | s by: Chris<br>Encarnacion<br>Richard Lis<br>and Stanly | topher W.<br>, Jeremy F<br>ka, Scott<br>Steinberg | Brown, Geu<br>L. Johnson<br>McCallum,<br>J | orge E.      |          |          |         |       |
| Enter an                                        | informal                                   | descriptio                                              | n between                                         | '[' and                                    | ']':         |          |          |         |       |
| []<br>Enter a v                                 | ariable                                    | list.                                                   |                                                   |                                            |              |          |          |         |       |
| (x.v.t)                                         | arzabie                                    |                                                         |                                                   |                                            |              |          |          |         |       |
| Enter the                                       | number                                     | of free var                                             | iables:                                           |                                            |              |          |          |         |       |
| 0                                               |                                            |                                                         |                                                   |                                            |              |          |          |         |       |
| Enter a p                                       | renex fo                                   | rmula:                                                  | 8 8 182                                           | st 45 A                                    | 1000000      | 1933     | MARKED.  | 28 322  |       |
| (Ax)(Ay)(<br>y)^2 -1 <                          | At)[[t ><br>≍0]].                          | =0 /\t <=                                               | 1 /\ x^2 -                                        | 1 <= 0 /                                   | y^2 -1       | <=0] ==> | [ (t x - | + (1-t) |       |
|                                                 |                                            |                                                         |                                                   |                                            |              |          |          |         |       |
| ******                                          | *******                                    |                                                         |                                                   |                                            |              |          |          |         | 10001 |
| Before No                                       | rmalizat                                   | ion >                                                   |                                                   |                                            |              |          |          |         |       |
| finish                                          |                                            |                                                         |                                                   |                                            |              |          |          |         | *     |

・ロト ・回ト ・ヨト ・ヨト

Conditions Others methods

# $\{x \in \mathbb{R}, x^2 - 1 \leq 0\} = [-1, 1]$ is convex.

| 🔻 nico                              | @lisa-au                        | uto31: ~/s                 | olver/cad                | _example             | e/qesou      | urce/bin  |          | _ 🗆 :   | × |
|-------------------------------------|---------------------------------|----------------------------|--------------------------|----------------------|--------------|-----------|----------|---------|---|
| Fichier                             | É <u>d</u> ition                | Affichage                  | Terminal                 | <u>O</u> nglets      | Aid <u>e</u> |           |          |         |   |
| 0<br>Enter a<br>(Ax)(Ay)<br>y)^2 -1 | prenex fo<br>(At)[[t ><br>⇔0]]. | ormula:<br>∈0 /\ t ⇐       | 1 /\ x^2 -               | 1 ← 0 /\             | y^2 -1       | <0] ==>   | •[(t x   | + (1-t) | • |
| Before N<br>finish<br>An equiv      | ormalizat<br>alent qua          | ion ><br>ntifier-fre       | e formula:               |                      |              |           |          |         |   |
| TRUE                                |                                 |                            |                          |                      |              |           |          |         |   |
|                                     |                                 | The E                      | nd ======                |                      |              |           |          |         |   |
| 0 Garbag<br>472816 C                | e collect<br>ells in A          | ions, 0 Cel<br>VAIL, 50006 | ls and 0 A<br>0 Cells in | rrays recl<br>SPACE. | aimed, :     | in 0 mill | iseconds |         |   |
| System t<br>System t                | ime: 40 m<br>ime after          | illiseconds<br>the initia  | lization:                | 8 millisec           | onds .       |           |          |         |   |
| nico@lis                            | a-auto31:                       | ~/solver/ca                | d_example/               | qesource/b           | in\$         |           |          |         | v |

・ロト ・回ト ・ヨト ・ヨト

Conclusion Future works

# Conclusion

Let use denote by *S* the set  $\{x \in D \subset \mathbb{R}^n \mid f(x) \leq 0\}$  and  $\partial S$  the set  $\{x \in D \subset \mathbb{R}^n \mid f(x) = 0\}$ 

#### Theorem

Suppose that

- D is convex,
- S is path-connected,
- $\forall x \in \partial S$ , ker  $\nabla f(x)$  has codimension 1,

If  $\forall x \in \partial S, \nabla^2 f(x)|_{Ker\nabla f(x)} \succ 0$  then S is convex.

・ロト ・同ト ・ヨト ・ヨト

Conclusion Future works

#### Future works

- Prove that the proposed algorithm terminates in the generic case.
- Expand this method to cases where *f<sub>i</sub>* depends of unknown parameters.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶