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LISA, Université d’Angers, LAAS Toulouse,
GT MEA - Groupe de travail du GDR MACS du CNRS

13 mars 2008

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



Introduction - Motivation
Sufficient condition for set convexity

theorem discussion and other methods
Conclusion

Aims

Prove S =
r⋂

i=1

{x ∈ D ⊂ Rn; fi (x) ≤ 0} is convex

where

D is a compact subset of Rn,

fi ∈ C2(Rn,R), i ∈ {1, . . . , r}.
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Interval analysis is often able to prove that a set defined by
inequalities is empty.
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Example

Let
f : R → R

x 7→ (sin x − x2 + 1) cos x

Let us prove that S = {x ∈ [0; 1
2 ], f (x) = 0} = ∅

One defines

{
[f ] : IR → IR

[x ] 7→ (sin[x ]− [x ]2 + 1) cos[x ]

[f ]([0; 1
2 ]) = (sin[0; 1

2 ]− [0; 1
2 ]2 + 1) cos[0; 1

2 ]

= (sin[0; 1
2 ]− [0; 1

4 ] + 1) cos[0; 1
2 ]
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= (sin[0; 1
2 ] + [−1

4 ; 0] + 1) cos[0; 1
2 ]

= ([0; sin 1
2 ] + [ 3

4 ; 1])[cos 1
2 ; 1]

= [ 3
4 ; 1 + sin 1

2 ]× [cos 1
2 ; 1]

= [ 3
4 cos 1

2 ; 1 + sin 1
2 ]

[f ]([0; 1
2 ]) ⊂ [0.65818; 1.4795]

Conclusion

0 6∈ [f ]([0; 1
2 ]), therefore S = ∅

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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Definition (Convex)

A subset X of Rn is convex if

∀x , y ∈ X ,∀t ∈ [0, 1], tx + (1− t)y ∈ X

Fig.: Convex set
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Definition (Convex)

A subset X of Rn is convex if

∀x , y ∈ X ,∀t ∈ [0, 1], tx + (1− t)y ∈ X

Fig.: Non convex set
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Proposition

A and B convex ⇒ A ∩ B convex.

Fig.: Intersection
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Proposition

A and B convex ⇒ A + B convex.

Fig.: Addition
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Hahn-Banach Theorem

Let A,B, two convex, nonempty and disjoint sets.
A is closed and B is compact.
Then there is a hyperplane H which strictly separates A and B.

Fig.: Häım Brézis, Analyse fonctionnelle - Théorie et applications
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Definition (Convex function)

A real-valued function f : X → R is called convex if

∀x ∈ X , ∀y ∈ X , ∀t ∈ [0, 1], f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y).
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Proposition

1 If f and g are convex functions,
then so are x 7→ max (f (x), g(x)) and x 7→ f (x) + g(x).

2 If f and g are convex functions and if g is increasing,
then h(x) = g ◦ f (x) is convex.

3 Convexity is invariant under affine maps :
if x 7→ f (x) is convex with x ∈ Rn, and g : y 7→ Ay + b
then so is y 7→ f ◦ g(y) = f (Ay + b),
where A ∈ Rn×m, b ∈ Rm.

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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Definition (epigraph)

The epigraph of a function f : Rn 7→ R is the set of points lying on
or above its graph :

epi f = {(x , y) : x ∈ Rn, µ ∈ R, f (x) ≤ y} ⊆ Rn+1.
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Proposition

A function f : Rn → R is convex if and only if its epigraph is
convex.
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Proposition

A function f ∈ C2(Rn,R) is convex if and only if ∀x ,∇2f (x) is
semi definite positive (i.e. ∀x ,∇2f (x) � 0 ).

Example

f : R 3 x 7→ x2 ∈ R is convex since f ′′(x) = 2 ≥ 0.

g : R2 3 (x , y) 7→ x2 + y2 ∈ R is convex since

∇2f (x , y) =

(
∂2f
x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

)
=

(
2 0
0 2

)
is positive definite.

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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min
x∈S⊂Rn

f (x)

theorem - uniqueness

If S is a convex subset of Rn and f ∈ C2(D,R) a convex function,
the following conditions are equivalent

x is a local minimum.

x is a global minimum.

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



Introduction - Motivation
Sufficient condition for set convexity

theorem discussion and other methods
Conclusion

A weak sufficient condition
Not necessary
Sufficient condition
Proof idea, by contradiction
Example

Corollary

Let f ∈ C2(Rn,R).
If ∀x ∈ D,∇2f (x) � 0 then

{x ∈ D ⊂ Rn | f (x) ≤ 0} is a convex set

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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Example

The set {x ∈ R | f (x) = x2 + y2 − 1 ≤ 0} is convex since
∀x ,∇2f (x) � 0.

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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Not necessary

There exists function such that{
{x ∈ D ⊂ Rn | f (x) ≤ 0} is a convex set
∃x ∈ D,∇2f (x) 6� 0

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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Example

f (x , y) = log(x2 + y2 + 1)− 3
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Example

Let use denote by
S the set {x ∈ D ⊂ Rn | f (x) ≤ 0} and
∂S the set {x ∈ D ⊂ Rn | f (x) = 0}

Theorem

Suppose that

D is convex,

S is path-connected,

∀x ∈ ∂S , ker∇f (x) has codimension 1,

If ∀x ∈ ∂S ,∇2f (x)|Ker∇f (x) � 0 then S is convex.

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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Let use denote by
S the set {x ∈ D ⊂ Rn | f (x) ≤ 0} and
∂S the set {x ∈ D ⊂ Rn | f (x) = 0}

Theorem

Suppose that

D is convex,

S is path-connected,

∀x ∈ ∂S , ker∇f (x) has codimension 1,

If S is non convex then ∃x ∈ ∂S ,∇2f (x)|Ker∇f (x) 6� 0
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If S is non convex then ∃x ∈ ∂S ,∇2f (x)|Ker∇f (x) 6� 0

Since D is convex,
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If S is non convex then ∃x ∈ ∂S ,∇2f (x)|Ker∇f (x) 6� 0
i.e.

∃x ∈ ∂S ,∃h ∈ ker∇f (x), hT∇2f (x)h ≤ 0
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Example

∃x ∈ ∂S ,∃h ∈ ker∇f (x), hT∇2f (x)h ≤ 0

s(0) = x , ṡ(0) = h
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∃x ∈ ∂S ,∃h ∈ ker∇f (x), hT∇2f (x)h ≤ 0

s(0) = x , ṡ(0) = h

d

dt |t=0
∇f (s(t)) =

d∇f (x)

dx
(s(0))

d

dt t=0
s(t) = ∇2f (x)h

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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x ∈ ∂S , h ∈ ker∇f (x), hT∇2f (x)h ≥ 0
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Example

Let f be the function

f : [−10, 10] → R
(x , y) 7→ log(x2 + y2 + 1)− 3

To prove that S = {(x , y) ∈ [−10, 10]2 | f (x , y) ≤ 0} is convex,
one only has to check that :

S is path-connected
f (x) = 0⇒ ∇f (x) 6= 0
f (x) = 0⇒ ∇2f (x) � 0

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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A weak sufficient condition
Not necessary
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{
f (x) = 0⇒ ∇f (x) 6= 0
f (x) = 0⇒ ∇2f (x)| ker∇f (x) � 0{

f (x) = 0 ∧∇f (x) = 0 has no solution
f (x) = 0 ∧∇2f (x)| ker∇f (x) 6� 0 has no solution

{
f (x) = 0 ∧∇f (x) = 0 has no solution
f (x) = 0 ∧ h ∈ ker∇f (x) ∧ hT∇2f (x)h ≤ 0 has no solution

{
f (x) = 0 ∧∇f (x) = 0 has no solution
f (x) = 0 ∧∇f (x)h = 0 ∧ hT∇2f (x)h ≤ 0 has no solution

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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A weak sufficient condition
Not necessary
Sufficient condition
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{
f (x) = 0 ∧∇f (x) = 0 has no solution
f (x) = 0 ∧∇f (x)h = 0 ∧ hT∇2f (x)h ≤ 0 has no solution


log(x2 + y2 + 1)− 3 = 0

2x
y2+x2+1

= 0
2y

y2+x2+1
= 0

has no solution

and{
log(x2 + y2 + 1)− 3 = 0

8x2+8y2

x6+3x4y2+3x4+3x2y4+6x2y2+3x2+y6+3y4+3y2+1
≤ 0

has no solution

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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Theorem

Suppose that

D is convex,

S is path-connected,

∀x ∈ ∂S , ker∇f (x) has codimension 1,

If ∀x ∈ ∂S ,∇2f (x)|Ker∇f (x) � 0 then S is convex.
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If D is non convex,
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Conditions
Others methods

If S is not path-connected,
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Conditions
Others methods

If ∃x ∈ ∂S , ker∇f (x) has not codimension 1,

{(x1, x2) | (x2
2 + x2

1 )2 +
x1x

2
2

2
+

x3
1

2
≤ 0}

0.1

0.1

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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Conditions
Others methods

1 CVX : Matlab Software for Disciplined Convex Programming

2 Cylindrical algebraic decomposition
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CVX : Matlab Software for Disciplined Convex
Programming

constraint propagation

symbolic differentiation

C. Crusius.
A parser/solver for convex optimization problems.
PhD thesis, Stanford Univ., USA, 2002.
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CVX : Matlab Software for Disciplined Convex
Programming

x 7→ f (x) = exp(3x − 2) + x2 is convex since
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Cylindrical algebraic decomposition

Tarski’s theorem

The solution set of a quantified system of real algebraic equations
and inequations is a semialgebraic set (Tarski 1951, Strzebonski
2000).

Tarski’s theorem gives rise to an impractical method
(Davenport and Heintz 1988)

A much more efficient procedure for implementing quantifier
elimination is called cylindrical algebraic decomposition. It was
developed by Collins (1975).

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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Proposition

If P and Q have a common root then Res(P,Q) = 0.

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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Proof

Let P and Q have a common root a with deg P = p and
deg Q = q.
One has P(X ) = (X − a)P̃(X ) and Q(X ) = (X − a)Q̃(X ), then :

PQ̃ − QP̃ = 0

where deg P̃ = p − 1 and deg Q̃ = q − 1.

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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Proof

Note that

(b2X
2+b1X +b0)(a2X

2+a1X +a0) = c4X
4+c3X

3+c2X
2+c1X +c0

is equivalent to

(
b2 b1 b0

) a2 a1 a1 0 0
0 a2 a1 a0 0
0 0 a2 a1 a0

 =
(

c4 c3 c2 c1 c0

)

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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Proof

∃P̃ 6= 0∃Q̃ 6= 0,PQ̃ − QP̃ = 0

is equilavent to det Syl = 0 with :

Syl =



ap . . . . . . . . . . . . a0 0 . . . 0

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 0

0 . . . 0 ap . . . . . . . . . . . . a0

bq . . . . . . . . . . . . b0 0 . . . 0

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 0

0 . . . 0 bq . . . . . . . . . . . . b0


Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.



Introduction - Motivation
Sufficient condition for set convexity

theorem discussion and other methods
Conclusion

Conditions
Others methods

Example

P(X ) = (X − 1)(X − 2) = X 2 − 3X + 2
Q(X ) = (X − 1)(X − 3) = X 2 − 4X + 3
have common root,

det


1 −3 2 0
0 1 −3 2
1 −4 3 0
0 1 −4 3

 = 0

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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Example

P(X ) = (X − 1)(X − 2) = X 2 − 3X + 2
Q(X ) = (X − 1)(X − 3) = X 2 − 4X + 3
have common root since

(
1 −3 −1 2

)
1 −3 2 0
0 1 −3 2
1 −4 3 0
0 1 −4 3

 =
(

0 0 0 0
)

(X − 3)P(X )− (X − 2)Q(X ) = 0

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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∃y ∈ R, x2 + y2 − 1 ≤ 0
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∃y ∈ R, x2 + y2 − 1 ≤ 0

y 7→ P(x , y) and y 7→ d
dy P(x , y) has a common root.

i.e. 1 ∗Y 2 + 0 ∗Y 1 + (X 2− 1) ∗Y 0 and 2 ∗Y 1 has a common root.

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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∃y ∈ R, x2 + y2 − 1 ≤ 0

1 ∗ Y 2 + 0 ∗ Y 1 + (X 2 − 1) ∗ Y 0 and 2 ∗ Y 1 has a common root.

det

 1 0 X 2 − 1
2 0 0
0 2 0

 = 0

⇔ (−2)(−2)(X 2 − 1) = 0

⇔ (X 2 − 1) = 0

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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∃y ∈ R, x2 + y2 − 1 ≤ 0

⇔ (x + 1 ≥ 0) ∧ (x − 1 ≤ 0)
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Proposition

Convexity is a semi-algebraic property.

Let S be a semi-algebraic set, S is convex if

∀x∀y∀t, (t ∈ [0, 1], x ∈ S , y ∈ S ⇒ tx + (1− t)y ∈ S)

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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Let S be a semi-algebraic set, S is convex if

∀x∀y∀t, (t ∈ [0, 1], x ∈ S , y ∈ S ⇒ tx + (1− t)y ∈ S)

Example

Proving that {x ∈ R, x2 − 1 ≤ 0} = [−1, 1] is convex remains to
prove :

∀x∀y∀t, 0 ≤ t ≤ 1∧x2−1 ≤ 0∧y2−1 ≤ 0⇒ (tx+(1−t)y)2−1 ≤ 0

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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{x ∈ R, x2 − 1 ≤ 0} = [−1, 1] is convex.
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Conclusion

Let use denote by
S the set {x ∈ D ⊂ Rn | f (x) ≤ 0} and
∂S the set {x ∈ D ⊂ Rn | f (x) = 0}

Theorem

Suppose that

D is convex,

S is path-connected,

∀x ∈ ∂S , ker∇f (x) has codimension 1,

If ∀x ∈ ∂S ,∇2f (x)|Ker∇f (x) � 0 then S is convex.

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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Future works

Prove that the proposed algorithm terminates in the generic
case.

Expand this method to cases where fi depends of unknown
parameters.

Nicolas Delanoue, Didier Henrion Set convexity analysis with Interval Analysis.
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