Introduction - L'arithmétique des intervalles Exemples d'algorithmes utilisant le calcul par intervalles Théorie de Lyapunov Discrétisation Conclusion

Calcul par intervalles et stabilité de systèmes dynamiques non linéaires

N. Delanoue

Rencontres Doctorales de Mathématiques

Jeudi 11 mai 2006

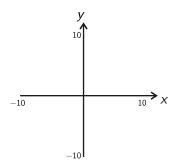
Objectif:

- **1** Montrer l'asymptotique stabilité d'un point x_{∞} .
- 2 Calculer un ensemble qui est contenu dans le bassin d'attraction de x_{∞} .

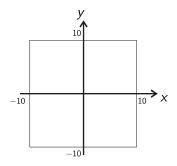
Plan

- 1 Introduction L'arithmétique des intervalles
 - Objectifs
- 2 Exemples d'algorithmes utilisant le calcul par intervalles
 - Système d'inégalités
 - Système 0-dimensionnel
 - Connexité triangulation
 - Positivité
- Théorie de Lyapunov
 - Définitions de la stabilité
 - Fonction de Lyapunov
 - Le cas linéaire
 - Algorithme
 - Exemple
- 4 Discrétisation
 - Intégration garantie d'O.D.E.

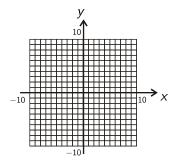
$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$



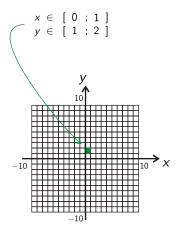
$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$



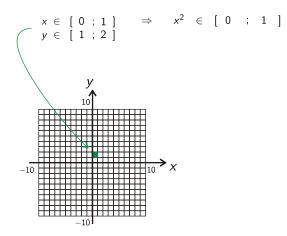
$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$



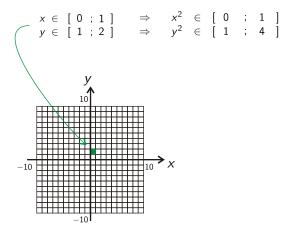
$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$



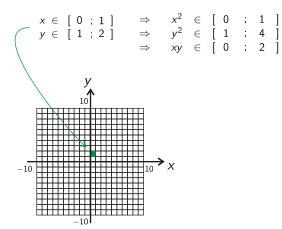
$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$



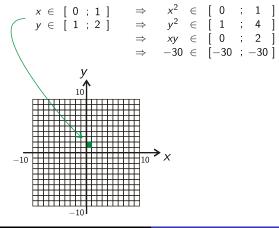
$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$



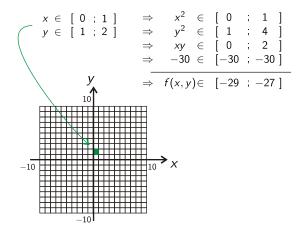
$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$



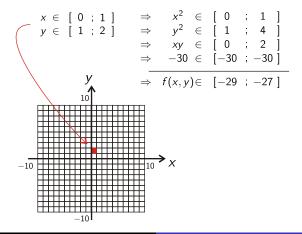
$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$



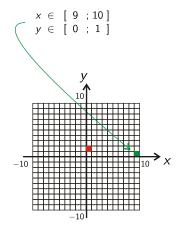
$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$



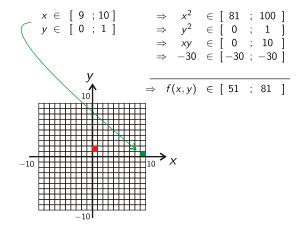
$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$



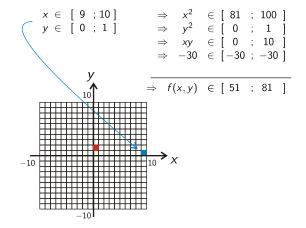
$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$



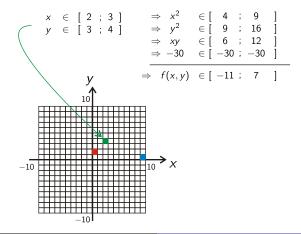
$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$



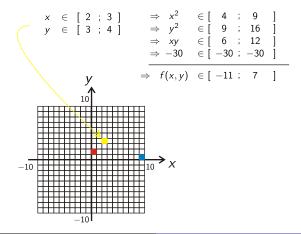
$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$



$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$

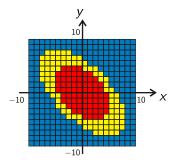


$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$



Exemple 1

$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$



Remplacer les réels par des intervalles

Notation

Soient
$$\underline{x}, \overline{x} \in \mathbb{R}$$
, $[x] = [\underline{x}; \overline{x}] = \{x \in \mathbb{R} : \underline{x} \le x \le \overline{x}\}$,

Définition

On note par \mathbb{IR} l'ensemble des intervalles compacts de \mathbb{R} :

$$\mathbb{IR} = \{ [x] \mid \underline{x}, \overline{x} \in \mathbb{R}, \underline{x} \leq \overline{x} \}$$

- $[1; \pi] \in \mathbb{IR}$
- $[2;1] \notin \mathbb{IR}$
- $[1; \infty[\not\in \mathbb{IR}]$

Relations sur \mathbb{IR}

En tant que parties de \mathbb{R} , les éléments de \mathbb{R} héritent des relations = et \subset

Avec
$$[a], [b], \in \mathbb{IR}$$
, si $\overline{a} < \underline{b}$ alors

$$[\underline{a},\overline{a}]\cup[\underline{b},\overline{c}]\not\in\mathbb{IR}$$

Opérations sur IR

•
$$[a] \sqcup [b] := [\min(\underline{a}, \underline{b}); \max(\overline{a}, \overline{b})]$$

•
$$[a] \cap [b] := \begin{cases} \emptyset & \text{if } \overline{a} < \underline{b} \text{ or } \overline{b} < \underline{a} \\ [\max(\underline{a}, \underline{b}); \min(\overline{a}, \overline{b})] & \text{autrement} \end{cases}$$

Topologie sur \mathbb{IR}

Soient $[a], [b] \in \mathbb{IR}$, la distance de Hausdorff d

Conclusion

$$d([a],[b]) = \max(|\underline{a} - \underline{b}|, |\overline{a} - \overline{b}|)$$

munit IR d'une topologie.

Remplacer les réels par des intervalles

Définition

Si
$$\star \in \{+, -, \times, \div\}$$
 et $[a], [b] \in \mathbb{IR}$ alors :

$$[a] \star [b] = \{a \star b, a \in [a] \text{ et } b \in [b]\}$$

Remarque : si $0 \in [b]$ alors $[a] \div [b]$ n'est pas définie.

$$\begin{array}{lll} [a] + [b] & = & [\underline{a} + \underline{b}; \overline{a} + \overline{b}] \\ [a] - [b] & = & [\underline{a} - \overline{b}; \overline{a} - \underline{b}] \\ [a] \times [b] & = & [\min\{\underline{a}\underline{b}, \underline{a}\overline{b}, \overline{a}\underline{b}, \overline{a}\overline{b}\}; \max\{\underline{a}\underline{b}, \underline{a}\overline{b}, \overline{a}\underline{b}, \overline{a}\overline{b},] \\ [a] \div [b] & = & [a] \times [1/\overline{b}; 1/\underline{b}] \end{array}$$

R. C. Young (1931), M. Warmus (1956), T. Sunaga (1958), R. E.

Propriétés de l'arithmétique des intervalles

- + et × sont deux lois de compositions associatives et commutatives.
- ? × n'est pas distributive par rapport à + : $[-1;1] \times ([-1;0] + [3;4]) = [-1;1] \times [2;4] = [-4,4] = [-1;1] \times [-1;0] + [-1;1] \times [3;4] = [-1;1] + [-4;4] = [-5,5]$

Par contre, on a la sous-distributivité :

$$[a]\times([b]+[c])\subset[a]\times[b]+[a]\times[c]$$

[0;0] et [1;1] sont les éléments neutres de + et de \times . En général,

$$[a] - [a] \neq [0; 0] \text{ et } [a] \div [a] \neq [1; 1]$$

Définition

Soit f une fonction définie de \mathbb{R} à valeur dans \mathbb{R} .

 $[f]: \mathbb{IR} \to \mathbb{IR}$ est une fonction d'inclusion pour f si

$$\forall [x] \in \mathbb{IR}, f([x]) \subset [f]([x])$$

Exemple

Si f est une fonction réelle continue définie sur \mathbb{R} .

L'image directe $\mathbf{f}: \mathbb{IR} \to \mathbb{IR}$ est une fonction d'inclusion pour f.

Exemples

$$\mathbf{3} \ ([x])^2 = \left\{ \begin{array}{ll} [\underline{x}^2; \overline{x}^2] & \text{si} \quad 0 \leq \underline{x} \\ [0; \max\{\underline{x}^2, \overline{x}^2\}] & \text{si} \quad 0 \in [x] \\ [\overline{x}^2; \underline{x}^2] & \text{si} \quad \overline{x} \leq 0 \end{array} \right.$$

Discrétisation

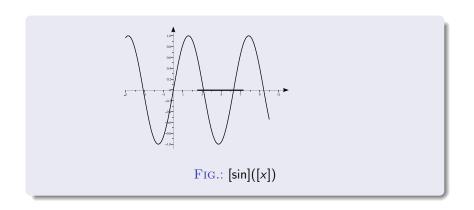
Exemple

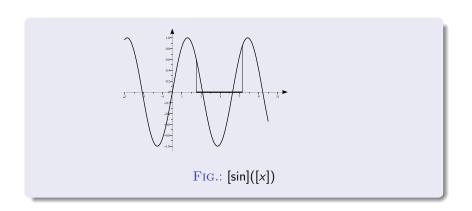
$$\sin: \mathbb{R} \to \mathbb{R}$$
 $x \mapsto \sin(x)$

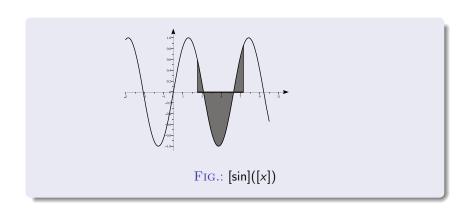
La fonction sin étendue aux intervalles :

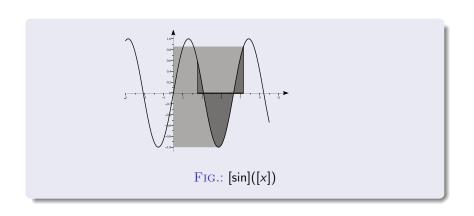
$$\begin{array}{cccc} [\sin_1]: & \mathbb{IR} & \to & \mathbb{IR} \\ & [x] & \mapsto & [-1;1] \end{array}$$

 $[\sin_1]$ est une fonction d'inclusion pour sin.

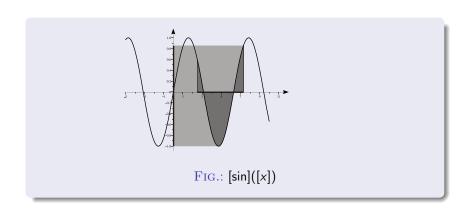








Discrétisation Conclusion



Exemple d'utilisation du calcul par intervalle

Exemple

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = (\sin x - x^2 + 1) \cos x$. Montrons que $\mathbb{S} = \{x \in [0; \frac{1}{2}], f(x) = 0\} = \emptyset$

On définit
$$\left\{ egin{array}{ll} [f]:& \mathbb{IR}& \to& \mathbb{IR} \\ & [x]& \mapsto& (\sin[x]-[x]^2+1)\cos[x] \end{array}
ight.$$

$$[f]([0; \frac{1}{2}]) = (\sin[0; \frac{1}{2}] - [0; \frac{1}{2}]^2 + 1)\cos[0; \frac{1}{2}]$$

$$= (\sin[0; \frac{1}{2}] - [0; \frac{1}{4}] + 1)\cos[0; \frac{1}{2}]$$

$$= \ (\sin[0; \tfrac{1}{2}] + [-\tfrac{1}{4}; 0] + 1) \cos[0; \tfrac{1}{2}]$$

$$= ([0; \sin \frac{1}{2}] + [\frac{3}{4}; 1])[\cos \frac{1}{2}; 1]$$

$$= \left[\frac{3}{4}; 1 + \sin \frac{1}{2}\right] \times \left[\cos \frac{1}{2}; 1\right]$$

$$= \ \left[\frac{3}{4} \cos \frac{1}{2}; 1 + \sin \frac{1}{2} \right]$$

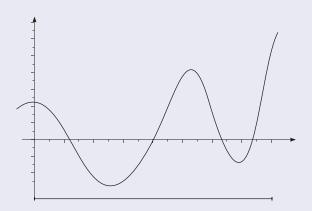
$$[f]([0; \frac{1}{2}]) \subset [0.65818; 1.4795]$$

$$0 \notin [f]([0; \frac{1}{2}]) \text{ or } \forall x \in [0; \frac{1}{2}], \ f(x) \in [f]([0; \frac{1}{2}]) \text{ donc } \mathbb{S} = \emptyset$$

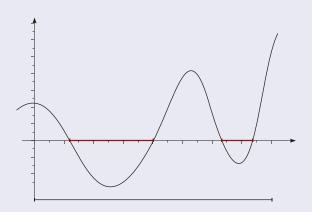
Définition

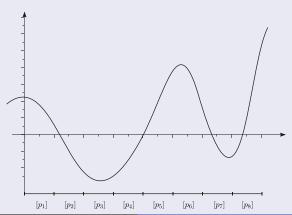
Une collection finie $\{p_i\}_{i\in I}$ d'intervalles est appelée un pavage.

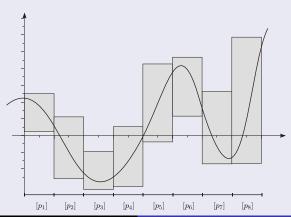
Soit $f: I \to \mathbb{R}$ et [f] une fonction d'inclusion pour f. Soit $\mathbb{S} = \{x \in I, \ f(x) \le 0\}$

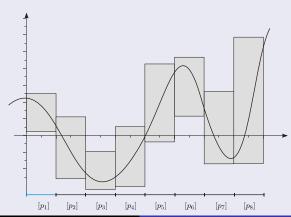


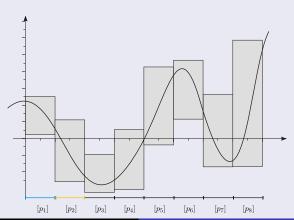
Soit
$$f: I \to \mathbb{R}$$
 et $[f]$ une fonction d'inclusion pour f .
Soit $\mathbb{S} = \{x \in I, \ f(x) \le 0\}$

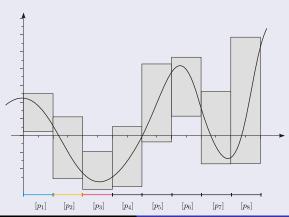


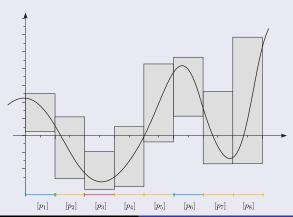


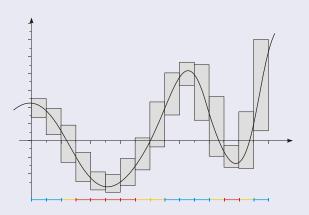


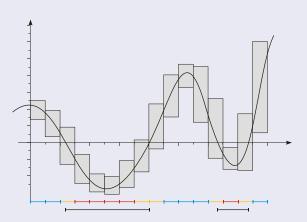


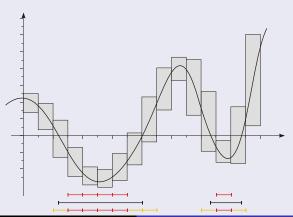








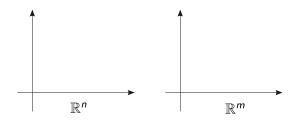




Soit f une fonction définie de \mathbb{R}^n à valeur dans \mathbb{R}^m .

 $[f]: \mathbb{IR}^n \to \mathbb{IR}^m$ est une fonction d'inclusion pour f si

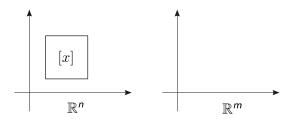
$$\forall [x] \in \mathbb{IR}^n, f([x]) \subset [f]([x])$$



Soit f une fonction définie de \mathbb{R}^n à valeur dans \mathbb{R}^m .

 $[f]: \mathbb{IR}^n \to \mathbb{IR}^m$ est une fonction d'inclusion pour f si

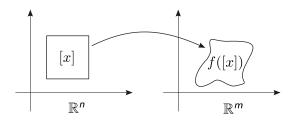
$$\forall [x] \in \mathbb{IR}^n, f([x]) \subset [f]([x])$$



Soit f une fonction définie de \mathbb{R}^n à valeur dans \mathbb{R}^m .

 $[f]: \mathbb{IR}^n \to \mathbb{IR}^m$ est une fonction d'inclusion pour f si

$$\forall [x] \in \mathbb{IR}^n, f([x]) \subset [f]([x])$$

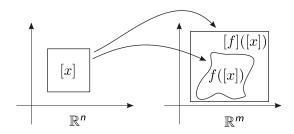


Soit f une fonction définie de \mathbb{R}^n à valeur dans \mathbb{R}^m .

 $[f]: \mathbb{IR}^n \to \mathbb{IR}^m$ est une fonction d'inclusion pour f si

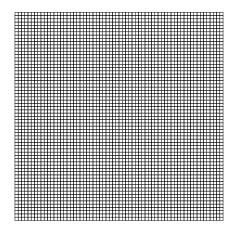
Conclusion

$$\forall [x] \in \mathbb{IR}^n, f([x]) \subset [f]([x])$$



Objectifs Arithmétique des intervalles Calcul par intervalles Généralisation aux dimensions supérieures

$$\mathbb{S} = \{(x, y) \in [-3, 3]^2 | f(x, y) = x^2 + y^2 + xy - 2 \le 0 \}$$

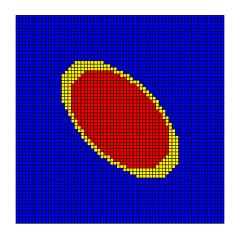


Arithmétique des intervalles
Calcul par intervalles
Généralisation aux dimensions supérieures

$$\mathbb{S} = \{(x,y) \in [-3;3]^2 | f(x,y) = x^2 + y^2 + xy - 2 \le 0 \}$$

Discrétisation

Conclusion



$$\mathbb{S} = \bigcup_{i=1}^s \bigcap_{j=1}^{r_i} \{ x \in D \subset \mathbb{R}^n; f_{i,j}(x) \leq 0 \} \text{ où } f_{i,j} \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$$

où D est un compact de \mathbb{R}^n .

Objectif

- Trouver une approximation garantie de la solution de f(x) = 0 avec $x \in [x]$ où $f \in \mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$.
- Montrer l'unicité de cette solution

Moyen

Créer une suite $([x]_n)_n$ définie de façon récurrente (et décroissante) qui contient cette solution

•
$$[x]_0 = [x]$$

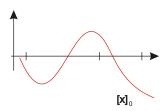
•
$$[x]_{n+1} = [x]_n \cap \rho_{x_1}([x]_n)$$

où
$$\rho_{x_1}: [x] \to \mathbb{R}^n$$
 avec $\rho_{x_1}(x) = x_1 - Df^{-1}(x)f(x_1)$ et $x_1 \in [x]_n$

•
$$[x]_0 = [x]$$

•
$$[x]_{n+1} = [x]_n \cap \rho_{x_1}([x]_n)$$

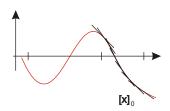
où
$$\rho_{x_1}:[x] \to \mathbb{R}^n$$
 avec $\rho_{x_1}(x)=x_1-Df^{-1}(x)f(x_1)$ et $x_1 \in [x]_n$



•
$$[x]_0 = [x]$$

•
$$[x]_{n+1} = [x]_n \cap \rho_{x_1}([x]_n)$$

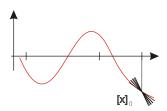
où
$$ho_{x_1}:[x] o\mathbb{R}^n$$
 avec $ho_{x_1}(x)=x_1-Df^{-1}(x)f(x_1)$ et $x_1\in[x]_n$



•
$$[x]_0 = [x]$$

•
$$[x]_{n+1} = [x]_n \cap \rho_{x_1}([x]_n)$$

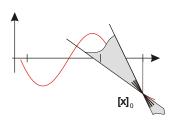
où
$$\rho_{x_1}:[x] \to \mathbb{R}^n$$
 avec $\rho_{x_1}(x)=x_1-Df^{-1}(x)f(x_1)$ et $x_1 \in [x]_n$



•
$$[x]_0 = [x]$$

•
$$[x]_{n+1} = [x]_n \cap \rho_{x_1}([x]_n)$$

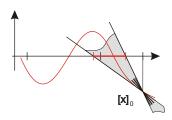
où
$$\rho_{x_1}:[x] \to \mathbb{R}^n$$
 avec $\rho_{x_1}(x)=x_1-Df^{-1}(x)f(x_1)$ et $x_1 \in [x]_n$



•
$$[x]_0 = [x]$$

•
$$[x]_{n+1} = [x]_n \cap \rho_{x_1}([x]_n)$$

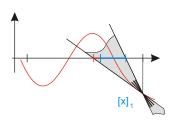
où
$$\rho_{x_1}:[x] \to \mathbb{R}^n$$
 avec $\rho_{x_1}(x)=x_1-Df^{-1}(x)f(x_1)$ et $x_1 \in [x]_n$



•
$$[x]_0 = [x]$$

•
$$[x]_{n+1} = [x]_n \cap \rho_{x_1}([x]_n)$$

où
$$\rho_{x_1}: [x] \to \mathbb{R}^n$$
 avec $\rho_{x_1}(x) = x_1 - Df^{-1}(x)f(x_1)$ et $x_1 \in [x]_n$

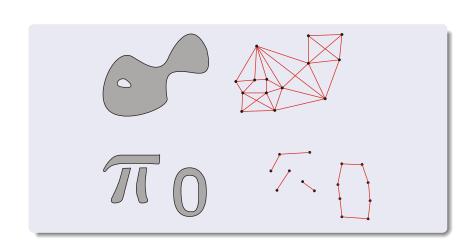


Propriétés

Soit $f \in \mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$, $x_1 \in [x]$. On suppose que $Df([x]) \subset GL(\mathbb{R}^n)$.

$$x^* \in [x], f(x^*) = 0 \Rightarrow x^* \in \rho_{x_1}([x])$$

$$\rho_{X_1}([x]) \subset [x] \Rightarrow \exists ! x^* \in [x], f(x^*) = 0$$

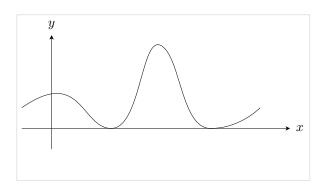


Positivité

Une preuve que $f([x]) \ge 0$.

3 cas :

- $\forall x \in [x], f(x) > 0$: l'analyse par intervalles.
- $\forall x \in [x], f(x) = 0$: le calcul algébrique.
- Dans les autres cas?



Le calcul alébrique ne suffit pas . . .

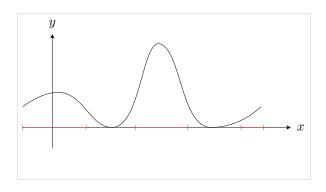
Cas où les fonctions sont non polynomiales.

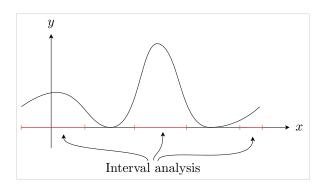
La calcul par intervalle ne suffit pas ...

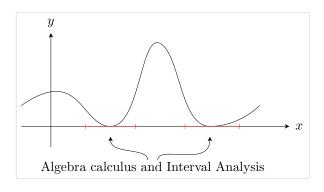
En général, on a seulement :

$$f([x]) \subsetneq [f]([x]).$$

- multiple occurrence des variables.
- arrondi extérieurs.







Théorème

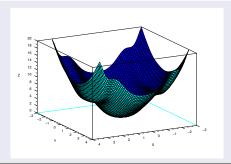
Soit $x_0 \in E$ où E est un convexe de \mathbb{R}^n , et $f \in \mathcal{C}^2(\mathbb{R}^n, \mathbb{R})$. On a l'implication suivante :

- **1** $\exists x_0 \text{ tel que } f(x_0) = 0 \text{ et } Df(x_0) = 0.$
- $\forall x \in E, D^2 f(x) > 0.$

alors $\forall x \in E, f(x) \geq 0$.

Exemple

Pour montrer que $f(x) \ge 0, \forall x \in [-1/2, 1/2]^2$ où $f: \mathbb{R}^2 \to \mathbb{R}$ est définie par $f(x,y) = -\cos(x^2 + \sqrt{2}\sin^2 y) + x^2 + y^2 + 1$.



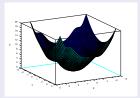
Exemple

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par :

$$f(x,y) = -\cos(x^2 + \sqrt{2}\sin^2 y) + x^2 + y^2 + 1.$$

1 On a : f(0,0) = 0 et $\nabla f(0,0) = 0$

$$\nabla f(x,y) = \begin{pmatrix} 2x(\sin(x^2 + \sqrt{2}\sin^2 y) + 1) \\ 2\sqrt{2}\cos y \sin y \sin(\sqrt{2}\sin^2 y + x^2) + 2y \end{pmatrix}.$$



$$\nabla^2 f = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}$$

$$a_{1,1} = 2 \sin \left(\sqrt{2} \sin^2 y + x^2\right) + 4x^2 \cos \left(\sqrt{2} \sin^2 y + x^2\right) + 2.$$

$$a_{2,2} = -2\sqrt{2} \sin^2 y \sin(\sqrt{2} \sin^2 y + x^2) + 2\sqrt{2} \cos^2 y \sin(\sqrt{2} \sin^2 y + x^2) + 8\cos^2 y \sin^2 y \cos(\sqrt{2} \sin^2 y + x^2) + 2.$$

$$a_{1,2} = a_{2,1} = 4\sqrt{2}x \cos y \sin y \cos(\sqrt{2} \sin y^2 + x^2).$$

Le calcul par intervalle donne : $\forall x \in [-1/2, 1/2]^2$, $\nabla^2 f(x) \subset [A]$

$$[A] = \begin{pmatrix} [1.9, 4.1] & [-1.3, 1.4] \\ [-1.3, 1.4] & [1.9, 5.4] \end{pmatrix}.$$

Reste à vérifier que : $\forall A \in [A]$, A est définie positive.

Définition

Une matrice symétrique A est définie positive si

$$\forall x \in \mathbb{R}^n - \{0\}, x^T A x > 0$$

On note par S^{n+} l'ensemble des matrices $n \times n$ symétriques définie positive.

Definition

Un ensemble de matrices symétriques [A] est un intervalle de matrices symétriques si :

$$[A] = \{(a_{ij})_{ij}, a_{ij} = a_{ji}, a_{ij} \in [a]_{ij}\}$$

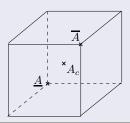
i.e.

$$[\underline{A},\overline{A}] = \left\{ A \text{ symmetric, } \underline{A} \leq A \leq \overline{A} \right\}.$$

Exemple

Dans \mathbb{R}^2 , une matrice symétrique A

$$A = \left(\begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{1,2} & a_{2,2} \end{array}\right)$$



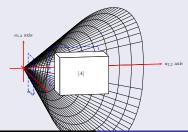
Remarque - Rohn

Soit V([A]) l'ensemble des coins de [A]. S^{n+} et [A] sont des convexes de S^n :

$$[A] \subset S^{n+} \Leftrightarrow V([A]) \subset S^{n+}$$

 S^n est un espace vectortiel de dimension $\frac{n(n+1)}{2}$.

$$\#V([A])=2^{\frac{n(n+1)}{2}}.$$



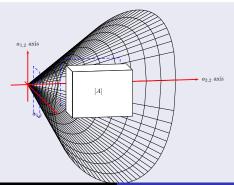
Théorème- Adefeld

Soit [A] une matrice intervalle symétrique.

et $C = \{z \in \mathbb{R}^n \text{ tel que } |z_i| = 1\}$

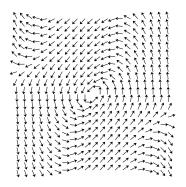
Si $\forall z \in C$, $A_z = A_c + \text{Diag}(z)\Delta \text{Diag}(z)$ est définie positive.

alors [A] est définie positive.



Considérons le système dynamique suivant :

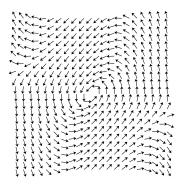
$$\begin{cases} \dot{x} = f(x) \\ x \in \mathbb{R}^n \end{cases} \text{ où } f \in \mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^n). \tag{1}$$



Définition

Soit $x \in \mathbb{R}$, x est un *point d'équilibre* si :

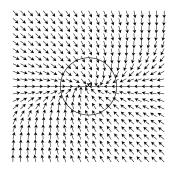
$$f(x) = 0$$



Définition

Un ensemble D est stable si :

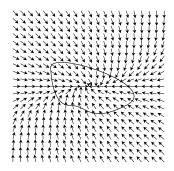
$$\phi^{\mathbb{R}^+}(D) \subset D$$

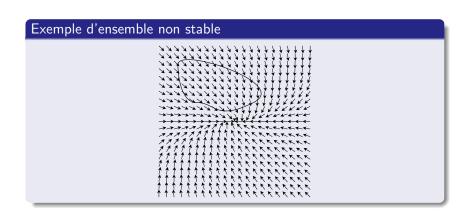


Définition

Un ensemble D est stable si :

$$\phi^{\mathbb{R}^+}(D) \subset D$$

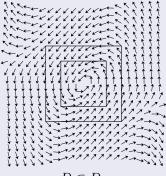




Définition

Un point d'équilibre x_{∞} est asymptotiquement (D, D_0) -stable si

$$ullet$$
 $\phi^{\mathbb{R}^+}(D)\subset D_0$



$$D \subset D_0$$

Definition

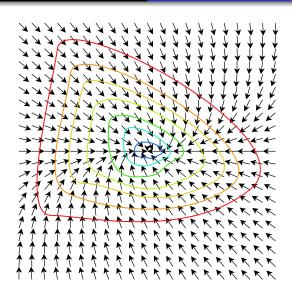
On dit que la fonction $L: \mathbb{R}^n \to \mathbb{R}$ est de Lyapunov pour (??) si :

$$L(x) = 0 \Leftrightarrow x = x_{\infty}$$

$$2 x \in D - \{x_{\infty}\} \Rightarrow L(x) > 0$$

Avec $V: t \mapsto L(x(t))$, on a :

$$\begin{array}{rcl} \frac{d}{dt}V(t) & = & \frac{d}{dt}(L(x(t))) \\ & = & \frac{d}{dx}L \cdot \frac{d}{dt}x(t) \\ & = & \langle \nabla L(x), f(x(t)) \rangle < 0 \end{array}$$



Théorème de Lyapunov

Soit D' un sous ensemble compact de \mathbb{R}^n et x_∞ à l'intérieur de D'. Si $L:D'\to\mathbb{R}$ est de Lyapunov pour (??) alors il existe un sous ensemble $D(\neq \{x_\infty\})$ de D' tel que le point d'équilibre x_∞ soit asymptotiquement D,D'-stable.



Pour les systèmes linéaires :

$$\dot{x} = Ax \tag{2}$$

On pose $L = x^T Wx$ avec $W \in S^n$. donc $\langle \nabla L(x), f(x) \rangle = x^T (A^T W + WA)x$.

Dans ce cas, les conditions Lyapunov se réécrivent :

Dans le cas linéaire, pour trouver une fonction de Lyapunov pour $\ref{eq:constraint}$, on résoud le système d'équations d'inconnues W

$$A^TW + WA = -I$$

et on vérifie que $W \in S^{n+}$.

Théorème

Le système $\dot{x}=Ax$ est asymptotiquement stable si et seulement si pour tout $Q\in S^{n+}$, la matrice W solution de

$$A^TW + WA = -Q$$

est définie positive.

Exemple

Le système

$$\left(\begin{array}{c} \dot{x} \\ \dot{y} \end{array}\right) = \left(\begin{array}{cc} -1 & 0 \\ 1 & -1 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right)$$

Conclusion

Algorithme

- **1** Montrer que $[x_0]$ contient un unique point d'équilibre x_{∞} .
- ② Trouver $[x_{\infty}] \subset [x_0]$ qui contient x_{∞} .
- **1** Linéariser le système autour d'une approximation \tilde{x}_{∞} .
- **1** Trouver une fonction de Lyapunov $L_{x_{\infty}}$ pour le système linéarisé.
- **5** Vérifier que $L_{x_{\infty}}$ est aussi de Lyapunov pour $\dot{x} = f(x)$.

Explications

Etape 4 : $L_{X_{\infty}}(x) = (x - x_{\infty})^T W_{\tilde{X}_{\infty}}(x - x_{\infty})$

Etape 5 : Il reste à vérifier :

$$g_{\mathsf{x}_{\infty}}(x) = -\langle \nabla L_{\mathsf{x}_{\infty}}(x), f(x) \rangle \geq 0$$

On a:

•
$$g(x_{\infty})=0$$

•
$$\nabla g_{x_{\infty}}(x_{\infty}) = 0$$

En accord avec le théorème de positivité, on a seulement à vérifier :

$$\nabla^2 g_{\mathsf{x}_{\infty}}([\mathsf{x}_0]) \subset S^{n+}$$

$$\begin{pmatrix} \dot{x_1} \\ \dot{x_2} \end{pmatrix} = \begin{pmatrix} x * (x^2 + y^2 - 1) \\ (x^2 + y^2 - 1)y + x \end{pmatrix}$$

Conclusion

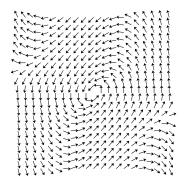
où
$$[x_0] = [-0.6, 0.6]^2$$
.

Intégration garantie d'O.D.E.

Mise en relation des éléments du recouvrement Algorithme - Approximation du bassin d'attraction

Considérons le système dynamique suivant :

$$\begin{cases} \dot{x} = f(x) \\ x \in \mathbb{R}^n \end{cases} \text{ où } f \in \mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^n).$$
 (3)



Soit $\{\varphi^t : \mathbb{R}^n \to \mathbb{R}^n\}_t$ le flot associé à cette équation différentielle. Il existe une méthode donnant une fonction d'inclusion de φ^t .

Proposition

Si [x] et $[\tilde{x}]$ sont deux éléments de \mathbb{IR}^n et $h \in \mathbb{R}$ telles que

$$[x] + [0, h]f([\tilde{x}]) \subset [\tilde{x}]$$

alors

$$\forall t \in [0, h], \varphi^t([x]) \subset [\tilde{x}]$$

Preuve : théorème du point fixe de Banach et l'opérateur de Picard-Linderlöf.

Intégration garantie d'O.D.E.

Mise en relation des éléments du recouvrement Algorithme - Approximation du bassin d'attraction

Soit $\{\varphi^t : \mathbb{R}^n \to \mathbb{R}^n\}_t$ le flot associé à cette équation différentielle. Il existe une méthode donnant une fonction d'inclusion pour φ^t .

Proposition

Si [x] et $[\tilde{x}]$ sont deux éléments de \mathbb{IR}^n telles que

$$[x] + [0, h]f([\tilde{x}]) \subset [\tilde{x}]$$

alors

$$\varphi^t([x]) \subset [x] + tf([\tilde{x}])$$

Remarque

En pratique, on utilise des méthodes beaucoup plus sophitiquées.

Soit t un réel.

- **1** Créer un recouvrement $\{S_i\}_{i\in I}$ de S.
- Mettre en relation les éléments de / avec :

$$i_1 \mathcal{R} i_2 \Leftrightarrow \varphi^t(\mathbb{S}_{i_1}) \cap \mathbb{S}_{i_2} \neq \emptyset.$$

Algorithme

- **1** Montrer que $[x_0]$ contient un unique point d'équilibre x_{∞} .
- ② Créer un recouvrement $\{S_i\}_{i\in I}$ de $[x_0]$.
- **3** Calculer un ensemble A qui est inclu dans le bassin d'attraction de x_{∞} (méthode de Lyapunov).
- **1** Mettre en relation les élements de ce recouvrement avec \mathcal{R} .
- **9** Pour chaque élémént \mathbb{S}_{i_0} de $\{\mathbb{S}_i\}_{i\in I}$, si

$$i_0 \mathcal{R} i_1 \Rightarrow \mathbb{S}_{i_1} \subset A$$

alors
$$A := A \cup \mathbb{S}_{i_1}$$
.

Exemple

$$\begin{pmatrix} \dot{x_1} \\ \dot{x_2} \end{pmatrix} = \begin{pmatrix} x * (x^2 + y^2 - 1) \\ (x^2 + y^2 - 1)y + x \end{pmatrix}$$

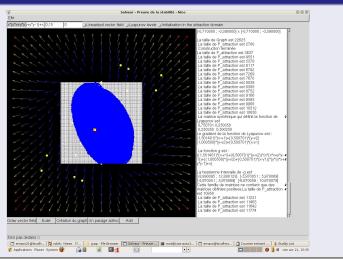
Conclusion

où
$$[x_0] = [-0.6, 0.6]^2$$
.

Mise en relation des éléments du recouvrement

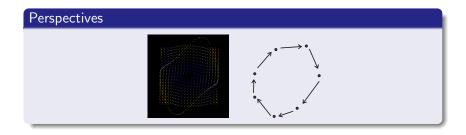
Algorithme - Approximation du bassin d'attraction

Exemple 1



Conclusion

Introduction - L'arithmétique des intervalles Exemples d'algorithmes utilisant le calcul par intervalles Théorie de Lyapunov Discrétisation Conclusion



Introduction - L'arithmétique des intervalles Exemples d'algorithmes utilisant le calcul par intervalles Théorie de Lyapunov Discrétisation Conclusion

Merci pour votre attention!