Canal quantique

Optimisation globa

Détecteur optimal 0000000 Conclusion 00

Optimisation globale de l'information mutuelle sur un canal quantique

Nicolas DELANOUE, François CHAPEAU-BLONDEAU

LARIS - Université d'Angers - France

ROADEF, 20-23 février 2023, Rennes

Canal	quantique
000	000000

Détecteur optimal 0000000 Conclusior 00

Optimisation polynomiale sur un ensemble semi-algébrique.

Soient les polynômes $p, g_j \in \mathbb{R}[x]$,

AN BERNARD LASSERRE

Canal	
	000000

Détecteur optimal 0000000 Conclusior 00

Optimisation polynomiale sur un ensemble semi-algébrique.

Soient les polynômes $p, g_i \in \mathbb{R}[x]$,

Canal quantique	Optimisation globale		Conclusion
00000000		0000000	

Optimisation polynomiale sur un ensemble semi-algébrique.

Soient les polynômes $p, g_j \in \mathbb{R}[x]$, $\begin{array}{l} \min_{x \in \mathbb{R}^n} \quad p(x) \\ \text{tel que} \quad g_j(x) \leq 0, \forall j \in 1, \dots, n. \end{array}$ (1)

Ingrédients de cette approche

- Sum of square,
- Théorème de Putinar,
- Dualité de Riesz,
- Théorie de la mesure,
- Hiérarchie de Lasserre.

• . . .

nal quantique 00000000	Optimisation globale 000	Détecteur optimal 0000000	Concl OO
Problème généralis	sé des moments		
Moments, Positive Polynomials and Their Applications and turnerme	$\displaystyle \inf_{\mu\in\mathcal{M}^+(X)}$ tel que	$egin{aligned} &\int_X arphi(x) d\mu \ &\int_X \psi(x) d\mu & \leq \gamma_\psi, orall \psi \in \Gamma. \end{aligned}$	

- trouver le minimum global d'une fonction sur un sous-ensemble de \mathbb{R}^n ,
- évaluer la valeur du transport optimal de Kantorovitch,
- calculer la valeur optimale d'un problème de contrôle optimal,
- calculer la mesure de Lebesgue d'un sous-ensemble de \mathbb{R}^n ,
- concevoir un détecteur quantique optimal,

nal quantique 0000000	Optimisation globale 000	Détecteur optimal 0000000	Concl OO
Problème généralis	é des moments		
Monents, Positive Polynomials and Their Applycations Justiced summ	$\displaystyle \inf_{\mu\in \mathcal{M}^+(X)}$ tel que	$egin{aligned} &\int_X arphi(x) d\mu \ &\int_X \psi(x) d\mu \leqq \gamma_\psi, \forall \psi \in \Gamma. \end{aligned}$	

- trouver le minimum global d'une fonction sur un sous-ensemble de \mathbb{R}^n ,
- évaluer la valeur du transport optimal de Kantorovitch,
 N. Delanoue *et al.*. Numerical enclosures of the optimal cost of the Kantorovitch's mass transportation problem, Computational Optimization and Applications, Springer 2016
- calculer la valeur optimale d'un problème de contrôle optimal,
- calculer la mesure de Lebesgue d'un sous-ensemble de ℝⁿ,
- concevoir un détecteur quantique optimal,

nal quantique 0000000	Optimisation globale 000	Détecteur optimal 0000000	Concl OO
Problème généralis	é des moments		
Monents, Positive Polynomials and Their Applycations Justicent summ	$\displaystyle \inf_{\mu\in \mathcal{M}^+(X)}$ tel que	$egin{aligned} &\int_X arphi(x) d\mu \ &\int_X \psi(x) d\mu \leqq \gamma_\psi, \forall \psi \in \Gamma. \end{aligned}$	

- trouver le minimum global d'une fonction sur un sous-ensemble de ℝⁿ,
- évaluer la valeur du transport optimal de Kantorovitch,
 N. Delanoue et al., Numerical enclosures of the optimal cost of the Kantorovitch's mass transportation problem, Computational Optimization and Applications, Springer 2016
- calculer la valeur optimale d'un problème de contrôle optimal,
 N. Delanoue et al.. Nonlinear optimal control : A numerical scheme based on occupation measures and interval analysis,
 Computational Optimization and Applications, Springer, 2020
- calculer la mesure de Lebesgue d'un sous-ensemble de \mathbb{R}^n ,
- concevoir un détecteur quantique optimal,

nal quantique DOOOOOOO	Optimisation globale 000	Détecteur optimal 0000000	Concl OO
Problème généralis	é des moments		
Moments, Politive Polynomials and Their Applications Lantaneeum	$\displaystyle \inf_{\mu\in\mathcal{M}^+(X)}$ tel que	$egin{aligned} &\int_X arphi(x) d\mu \ &\int_X \psi(x) d\mu \leqq \gamma_\psi, \forall \psi \in \Gamma. \end{aligned}$	

- trouver le minimum global d'une fonction sur un sous-ensemble de Rⁿ,
 N. Delanoue et al., Version tropicale du théorème de Putinar. Applications à l'optimisation globale, Roadef Lyon 2022.
- évaluer la valeur du transport optimal de Kantorovitch,
 N. Delanoue et al.. Numerical enclosures of the optimal cost of the Kantorovitch's mass transportation problem, Computational Optimization and Applications, Springer 2016
- calculer la valeur optimale d'un problème de contrôle optimal,
 N. Delanoue et al. Nonlinear optimal control : A numerical scheme based on occupation measures and interval analysis,
 Computational Optimization and Applications, Springer, 2020
- calculer la mesure de Lebesgue d'un sous-ensemble de ℝⁿ,
- concevoir un détecteur quantique optimal,

nal quantique 0000000	Optimisation globale 000	Détecteur optimal 0000000	Concl OO
Problème généralis	é des moments		
Monerata, Positive Polynomials and Their Applications Journal and	$\displaystyle \inf_{\mu \in \mathcal{M}^+(X)}$ tel que	$egin{aligned} &\int_X arphi(x) d\mu \ &\int_X \psi(x) d\mu \leqq \gamma_\psi, \forall \psi \in \Gamma. \end{aligned}$	

- trouver le minimum global d'une fonction sur un sous-ensemble de Rⁿ,
 N. Delanoue et al., Version tropicale du théorème de Putinar. Applications à l'optimisation globale, Roadef Lyon 2022.
- évaluer la valeur du transport optimal de Kantorovitch,
 N. Delanoue et al., Numerical enclosures of the optimal cost of the Kantorovitch's mass transportation problem, Computational Optimization and Applications, Springer 2016
- calculer la valeur optimale d'un problème de contrôle optimal,
 N. Delanoue et al. Nonlinear optimal control : A numerical scheme based on occupation measures and interval analysis,
 Computational Optimization and Applications, Springer, 2020
- calculer la mesure de Lebesgue d'un sous-ensemble de ℝⁿ,
- concevoir un détecteur quantique optimal, Maintenant

Table dec m	atiàrac		
		0000000	
Canal quantique	Optimisation globale		Conclusion

Canal quantique

- Canal de transmission
- Entropie et information mutuelle
- Cas quantique

Optimisation globale

- Le calcul par intervalles
- Algorithme de Branch and Bound

3 Détecteur optimal

- Convexité de l'information mutuelle
- Contraintes et condition nécessaire d'optimalité

Conclusion

Canal quantique	Optimisation globale	Détecteur optimal	Conclusion
0000000		0000000	

Canal de transmission

Source
d'information
$$X \rightarrow Codeur \rightarrow \rho \rightarrow Canal \mathcal{N}(\cdot) \rightarrow \rho' \rightarrow Mesure \rightarrow Y$$

- Une source d'information émet un symbole X prenant les valeurs x_j avec les probabilités a priori p_j = Pr{X = x_j}.
- Chaque symbole *x_j* est **encodé** par un état *ρ_j*.
- Le canal réalise une transformation d'une entrée ρ en une sortie $\rho' = \mathcal{N}(\rho)$.
- En sortie du canal, on réalise une **mesure** via un détecteur qui produit un symbole *Y* prenant les valeurs *y*_{*k*}.

Canal quantique	Optimisation globale	Détecteur optimal	Conclusion
•••••		000000	

Canal de transmission

Source
d'information
$$X \rightarrow Codeur \rightarrow \rho \rightarrow Canal \\ \mathcal{N}(\cdot) \rightarrow \rho' \rightarrow Mesure \rightarrow Y$$
1

- Une source d'information émet un symbole X prenant les valeurs x_j avec les probabilités a priori p_j = Pr{X = x_j}.
- Chaque symbole *x_j* est **encodé** par un état *ρ_j*.
- Le canal réalise une transformation d'une entrée ρ en une sortie $\rho' = \mathcal{N}(\rho)$.
- En sortie du canal, on réalise une **mesure** via un détecteur qui produit un symbole *Y* prenant les valeurs *y*_{*k*}.

Canal quantique	Optimisation globale	Détecteur optimal	Conclusion
0000000		000000	

Canal de transmission

- Une source d'information émet un symbole X prenant les valeurs x_j avec les probabilités a priori p_j = Pr{X = x_j}.
- Chaque symbole x_j est encodé par un état ρ_j.
- Le canal réalise une transformation d'une entrée ρ en une sortie $\rho' = \mathcal{N}(\rho)$.
- En sortie du canal, on réalise une **mesure** via un détecteur qui produit un symbole *Y* prenant les valeurs *y*_{*k*}.

Canal quantique	Optimisation globale	Détecteur optimal	Conclusion
0000000		000000	

- Une source d'information émet un symbole X prenant les valeurs x_j avec les probabilités a priori p_j = Pr{X = x_j}.
- Chaque symbole x_j est encodé par un état ρ_j.
- Le canal réalise une transformation d'une entrée ρ en une sortie $\rho' = \mathcal{N}(\rho)$.
- En sortie du canal, on réalise une **mesure** via un détecteur qui produit un symbole *Y* prenant les valeurs *y*_{*k*}.

Canal quantique	Optimisation globale	Détecteur optimal	Conclusion
0000000		000000	

- Une source d'information émet un symbole X prenant les valeurs x_j avec les probabilités a priori p_j = Pr{X = x_j}.
- Chaque symbole x_j est encodé par un état ρ_j.
- Le canal réalise une transformation d'une entrée ρ en une sortie $\rho' = \mathcal{N}(\rho)$.
- En sortie du canal, on réalise une **mesure** via un détecteur qui produit un symbole *Y* prenant les valeurs *y*_{*k*}.

Canal quantique	Optimisation globale	Détecteur optimal	Conclusion
0000000		000000	

Canal quantique	Optimisation globale	Détecteur optimal	Conclusio
0000000	000	000000	00

Canal de transmission Source d'information $X \rightarrow Codeur \rightarrow \rho \rightarrow Canal \\ \mathcal{N}(\cdot) \rightarrow \rho' \rightarrow Mesure \rightarrow Y$

Modèle probabiliste

Pour un signal d'entrée X pouvant prendre les valeurs x_1, \ldots, x_j et un signal de sortie Y prenant les valeurs y_1, \ldots, y_k , la matrice de transition (p_{jk}) est définie par

$$p_{jk} = \Pr\{Y = y_k \mid X = x_j\}$$
(2)

Canal quantique	Optimisation globale		Conclusion
00000	000	000000	00
		·	

Pour une source X, qui est une variable aléatoire discrète, avec $p_i = \Pr{\{X = x_i\}}$, l'*entropie* H de la source X est :

$$H(X) = -\sum_{j=1}^{n} p_j \log p_j.$$
(3)

Canal quantique	Optimisation globale		Conclusion
00000	000	000000	00

Pour une source X, qui est une variable aléatoire discrète, avec $p_j = \Pr{\{X = x_j\}}$, l'*entropie* H de la source X est :

$$H(X) = -\sum_{j=1}^{n} p_j \log p_j.$$
(3)

Exemple 3

Soit X t.q. $Pr{X = 0} = 0$ et $Pr{X = 1} = 1$,

Canal quantique	Optimisation globale		Conclusion
00000	000	0000000	00
		·	

Pour une source X, qui est une variable aléatoire discrète, avec $p_j = \Pr{\{X = x_j\}}$, l'*entropie* H de la source X est :

$$H(X) = -\sum_{j=1}^{n} p_j \log p_j.$$
 (3)

Exemple 3

Soit X t.q. $Pr{X = 0} = 0$ et $Pr{X = 1} = 1$, alors H(X) = 0.

000 00000 000 000 000 000 000	

Pour une source X, qui est une variable aléatoire discrète, avec $p_j = \Pr{\{X = x_j\}}$, l'*entropie* H de la source X est :

$$H(X) = -\sum_{j=1}^{n} p_j \log p_j.$$
(3)

Exemple 3

Soit X t.q.
$$Pr{X = 0} = 0$$
 et $Pr{X = 1} = 1$, alors $H(X) = 0$

Exemple 4

Soit X t.q. $Pr{X = 0} = 0.3$ et $Pr{X = 1} = 0.7$,

000 00000 000 000 000 000 000	

Pour une source X, qui est une variable aléatoire discrète, avec $p_j = \Pr{\{X = x_j\}}$, l'*entropie* H de la source X est :

$$H(X) = -\sum_{j=1}^{n} p_j \log p_j.$$
 (3)

Exemple 3

Soit X t.q.
$$Pr{X = 0} = 0$$
 et $Pr{X = 1} = 1$, alors $H(X) = 0$

Exemple 4

Soit X t.q. $Pr{X = 0} = 0.3$ et $Pr{X = 1} = 0.7$, alors $H(X) \approx 0.88$

000 00000 000 000 000 000 000	

Pour une source X, qui est une variable aléatoire discrète, avec $p_j = \Pr{\{X = x_j\}}$, l'*entropie* H de la source X est :

$$H(X) = -\sum_{j=1}^{n} p_j \log p_j.$$
(3)

Exemple 3

Soit X t.q.
$$Pr{X = 0} = 0$$
 et $Pr{X = 1} = 1$, alors $H(X) = 0$

Exemple 4

Soit X t.q.
$$Pr{X = 0} = 0.3$$
 et $Pr{X = 1} = 0.7$, alors $H(X) \approx 0.88$

Exemple 5

Soit X t.q.
$$Pr{X = 0} = 0.5$$
 et $Pr{X = 1} = 0.5$,

000 00000 000 000 000 000 000	

Pour une source X, qui est une variable aléatoire discrète, avec $p_j = \Pr{\{X = x_j\}}$, l'*entropie* H de la source X est :

$$H(X) = -\sum_{j=1}^{n} p_j \log p_j.$$
(3)

Exemple 3

Soit X t.q.
$$Pr{X = 0} = 0$$
 et $Pr{X = 1} = 1$, alors $H(X) = 0$

Exemple 4

Soit X t.q.
$$Pr{X = 0} = 0.3$$
 et $Pr{X = 1} = 0.7$, alors $H(X) \approx 0.88$

Exemple 5

Soit X t.q.
$$Pr{X = 0} = 0.5$$
 et $Pr{X = 1} = 0.5$, alors $H(X) = 1$.

- *H*(*X*) est la quantité d'information émise,
- *H*(*X*|*Y*) est l'information requise pour supprimer l'ambiguïté sur l'entrée,

La quantité d'information transmise est l'information mutuelle I(X; Y) = H(X) - H(X|Y).

Canal quantique ○○○○○●○○○	Optimisation globale 000	Détecteur optimal 0000000	Conclusio OO
Canal do cor	mmunication quantique		
	minumication quantique		

Source
d'information
classique
$$X \rightarrow Codeur \rightarrow \rho \rightarrow Quantique \rightarrow \rho' \rightarrow Quantique \rightarrow \gamma'$$

 $\mathcal{N}(\cdot)$

• Source : X avec
$$Pr(X = x_j) = p_j$$
,

 Codeur : chaque état quantique ρ_j est un opérateur densité, *i.e.* une matrice Hermitienne telle que tr(ρ_j) = 1 et ρ_j ≥ 0,

$$\rho' = \mathcal{N}(\rho) = \sum_{\ell} \Lambda_{\ell} \rho \Lambda_{\ell}^{\dagger} , \qquad (4)$$

avec $\{\Lambda_\ell\}$ les opérateurs de Kraus dans $\mathcal{L}(\mathcal{H}_N)$.

• Mesure quantique : $\{E_k\}_k$ d'opérateurs positifs tels que $\sum E_k = Id$. On a :

$$\Pr\{Y = y_k | X = x_j\} = \operatorname{tr}(\rho'_j \mathsf{E}_k), \qquad (5)$$

Canal quantique	Optimisation globale	Détecteur optimal	Conclusio
○○○○○○●○○		0000000	OO
Source d'information	→ X → Codeur → ρ -	$\xrightarrow{\text{Canal}} \rho' \text{Mesure}$	$e \rightarrow Y$

Objectif de cet exposé

Étant donnés une source, un codeur, et un canal *quantique* $\mathcal{N}(\cdot)$, trouver un détecteur *quantique* $\{E_k\}_k$ qui maximise $I(X; Y(\{E_k\}_k))$.

Formellement			
	$\max_{\{E_k\}_k \subset \mathcal{L}(\mathcal{H}_N)}$	$I(X;Y(\{E_k\}_k))$	
	tel que	$\sum_k E_k = \mathrm{Id} \ et \ E_k \succeq 0.$	(6)

Remarque

Le problème (6) est un problème de programmation non linéaire.

Canal quantique	Optimisation globale		Conclusion
000000000	000	000000	00

Une instance Entrée • X génère x_1 et x_2 avec les probabilités a priori $p_1 = 0.3, p_2 = 0.7.$ • Les symboles x₁ et x₂ sont codés respectivement $\rho_1 = \frac{1}{16} \begin{pmatrix} 1 & \sqrt{15} \\ \sqrt{15} & 15 \end{pmatrix}$ et $\rho_2 = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ • On considère le canal sans bruit, *i.e.* $\mathcal{N}(\rho) = \rho$. Variables $E_1, E_2 \in \mathcal{L}(\mathcal{H}_2)$ Contraintes $E_1 + E_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et $E_k \succeq 0$. Objectif $\max_{E_1,E_2} I(X; Y(E_1, E_2))$

Canal	quantique
	•••••

Détecteur optimal 0000000 Conclusion

Une instance concrète

Variables
$$a, b, d$$
, en effet $E_1 = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$, $E_2 = Id - E_1$,

Contraintes Critères de Sylvester pour $\mathsf{E}_1 \succeq 0$ et $\mathsf{E}_2 \succeq 0,$

Canal	quantique
	000000

Détecteur optimal 0000000 Conclusion 00

Une instance concrète

Variables
$$a, b, d$$
, en effet $E_1 = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$, $E_2 = Id - E_1$,
Contraintes Critères de Sylvester pour $E_1 \succeq 0$ et $E_2 \succeq 0$,
 $a \ge 0$,
 $ad - b^2 \ge 0$,

Canal	quantique
	000000

Détecteur optimal

Conclusion 00

Une instance concrète

Variables
$$a, b, d$$
, en effet $E_1 = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$, $E_2 = Id - E_1$,

Contraintes Critères de Sylvester pour $\mathsf{E}_1 \succeq 0$ et $\mathsf{E}_2 \succeq 0,$

Canal	quantique
	000000

Détecteur optimal

Une instance concrète

Variables
$$a, b, d$$
, en effet $E_1 = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$, $E_2 = Id - E_1$,

Contraintes Critères de Sylvester pour $\mathsf{E}_1 \succeq 0$ et $\mathsf{E}_2 \succeq 0,$

$$egin{array}{ll} a\geq 0,\ ad-b^2\geq 0,\ (1-a)\geq 0,\ (1-a)(1-d)-b^2\geq 0, \end{array}$$

Objectif Maximiser

$$\begin{aligned} &-\operatorname{xlogx}\left(\frac{101d}{160} + \frac{3\sqrt{15b}}{80} + \frac{7b}{10} + \frac{59a}{160}\right) + \operatorname{xlogx}\left(\frac{7d}{20} + \frac{7b}{10} + \frac{7a}{20}\right) \\ &+\operatorname{xlogx}\left(\frac{9d}{32} + \frac{3\sqrt{15b}}{80} + \frac{3a}{160}\right) - \operatorname{xlogx}\left(\frac{101(1-d)}{160} - \frac{3\sqrt{15b}}{80} - \frac{7b}{10} + \frac{59(1-a)}{160}\right) \\ &+\operatorname{xlogx}\left(\frac{7(1-d)}{20} - \frac{7b}{10} + \frac{7(1-a)}{20}\right) + \operatorname{xlogx}\left(\frac{9(1-d)}{32} - \frac{3\sqrt{15b}}{80} + \frac{3(1-a)}{160}\right) \\ &-\operatorname{xlogx}\left(\frac{7}{10}\right) - \operatorname{xlogx}\left(\frac{3}{10}\right) \end{aligned}$$

Canal quantique	Optimisation globale		Conclusion
00000000	000	000000	00

Soit $\varphi: \mathbb{R} \to \mathbb{R}$ une fonction, la fonction $[\varphi]: \mathbb{IR} \to \mathbb{IR}$ est une fonction d'inclusion pour φ si

 $\forall [\underline{x}, \overline{x}] \in \mathbb{IR}, \ \varphi([\underline{x}, \overline{x}]) \subset [\varphi]([\underline{x}, \overline{x}]).$

Canal quantique	Optimisation globale	Détecteur optimal	Conclusion
00000000	00	000000	00

Soit $\varphi: \mathbb{R} \to \mathbb{R}$ une fonction, la fonction $[\varphi]: \mathbb{IR} \to \mathbb{IR}$ est une fonction d'inclusion pour φ si

 $\forall [\underline{x}, \overline{x}] \in \mathbb{IR}, \ \varphi([\underline{x}, \overline{x}]) \subset [\varphi]([\underline{x}, \overline{x}]).$

Canal quantique	Optimisation globale		Conclusion
00000000	000	000000	00

Soit $\varphi: \mathbb{R} \to \mathbb{R}$ une fonction, la fonction $[\varphi]: \mathbb{IR} \to \mathbb{IR}$ est une fonction d'inclusion pour φ si

 $\forall [\underline{x}, \overline{x}] \in \mathbb{IR}, \ \varphi([\underline{x}, \overline{x}]) \subset [\varphi]([\underline{x}, \overline{x}]).$

Canal quantique	Optimisation globale	Détecteur optimal	Conclusion
		000000	

$$\max_{\{\mathsf{E}_k\}_k \subset \mathcal{L}(\mathcal{H}_N)} \quad I(X; Y(\{E_k\}_k))$$

tel que
$$\sum_k \mathsf{E}_k = \mathrm{Id} \text{ et } \mathsf{E}_k \succeq 0.$$
 (8)

Proposition

Le critère du problème (8) est convexe.

L'ensemble admissible de (8) est convexe.

Proof : T. M. Cover, J. A. Thomas, "Elements of Information Theory", Wiley, 2012.

Corollaire

- La maximum est atteint sur la frontière de l'espace admissible.
- Borner supérieurement la fonction coût sur un convexe polyhédral en l'évaluant uniquement sur les sommets du convexe.

Note : ouvre le navigateur.

Canal	quantique
000	000000

Détecteur optimal

$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$

Canal	quantique
000	000000

Détecteur optimal

$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$

Canal	quantique
000	000000

Détecteur optimal

$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$

Canal	quantique
000	000000

Détecteur optimal

$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$

Canal	quantique
000	000000

Détecteur optimal

$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$

Canal	quantique
000	000000

Détecteur optimal

Conclusion

$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$

Canal	quantique
000	000000

Détecteur optimal

$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$

Canal	quantique
000	000000

Détecteur optimal

Conclusion

$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$

Canal	quantique
000	000000

Détecteur optimal

Conclusion

$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$

Canal	quantique
000	000000

Détecteur optimal

Conclusion

$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$

Canal	quantique
000	000000

Détecteur optimal

$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$

Canal	quantique
000	000000

Détecteur optimal

Conclusion

$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$

Canal	quantique
000	000000

Détecteur optimal

Conclusion

$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$

Canal	quantique
000	000000

Détecteur optimal

$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$

Canal	quantique
000	000000

Détecteur optimal

$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$

Canal	quantique
000	000000

Détecteur optimal

Conclusion

$$\mathbb{S} = \{(x, y) \in [-10; 10]^2 \mid f(x, y) = x^2 + y^2 + xy - 30 \le 0\}$$

Canal	
	000000

$$\max_{x \in \mathbb{R}^n} \quad f(x) \text{ tel que } g(x) = 0. \tag{9}$$

Théorème - Condition nécessaire d'optimalité

Si x^* est une solution optimale de (9) alors $\nabla g(x^*) \parallel \nabla f(x^*)$.

Canal quantique	Optimisation globale	Détecteur optimal	Conclusion
00000000	000	0000000	00

Illustration avec d = 0.7

Canal quantique	Optimisation globale	Détecteur optimal	Conclusion
00000000	000	0000000	00

Illustration avec d = 0.7

Canal quantique	Optimisation globale	Détecteur optimal	Conclusion
00000000	000	0000000	00

Illustration avec d = 0.7

Canal quantique	Optimisation globale	Détecteur optimal	Conclusion
00000000		000000	

Résultat de l'optimisation

- Solution optimale (globale) $E_1 = \begin{bmatrix} 0.446 & -0.497 \\ -0.497 & 0.554 \end{bmatrix}$ et $E_2 = \operatorname{Id} E_1$.
- La valeur de l'information mutuelle est de 0,0957 Sh pour cette solution.
- De plus, on certifie que le gap est inférieur à 10⁻⁴ (en 20 secondes de temps CPU).
| Canal quantique | Optimisation globale | Détecteur optimal | Conclusion |
|-----------------|----------------------|-------------------|------------|
| 00000000 | 000 | 000000 | •0 |

Contribution

Optimisation globale pour la conception d'un détecteur quantique maximisant l'information mutuelle.

Comparaison avec l'existant

- Minimiser l'erreur quadratique de mesure, Eldar, Y., On Quantum Detection and the Square-Root Measurement", *IEEE Transaction on Information Theory* 47 (2001), 858-872.
- Maximiser la probabilité de détection correcte (linéaire), Eldar, Y., Designing Optimal Quantum Detectors Via Semidefinite Programming, *IEEE Transaction on Information Theory 49 (2003)*, 1012-1017.

Canal quantique	Optimisation globale	Détecteur optimal	Conclusion
00000000	000	0000000	00

Source
d'information
classique
$$\Rightarrow X \rightarrow Codeur \rightarrow \rho \rightarrow quantique \rightarrow \rho' \rightarrow quantique \rightarrow \gamma'$$

Perspectives

- Optimiser le codeur avec de la décohérence quantique, ou bien l'utilisation d'états quantiques intriqués optimalement.
- Ajouter la présence de bruit.
- Modifier le nombre k de mesures.

Merci pour votre attention !