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Computing an € approximation of the smallest box containing the
solution at t of the initial value problem x = f(x), x(0) € [x]
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Main goal

Computing an € approximation of the smallest box containing the
solution at t of the initial value problem x = f(x), x(0) € [x]
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Outline

© Known results
@ Convergent methods
@ Wrapping effect

© Interval analysis, optimal inclusion function
@ Inclusion function
@ Optimal inclusion function

e Computing optimal validated solutions for ODE
@ ODE, Dynamical system and flow
@ Derivative of the flow with respect to initial condition
@ Algorithm
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Known results Convergent methods

Wrapping effect

There exists guaranteed convergent methods to find x(t) such that

@ Picard-Lindelof operator,

@ Taylor models,

@ Automatic differentiation.
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Known results
Convergent methods

Wrapping effect
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sults
Known re Convergent methods

Wrapping effect
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Inclusion function

Interval analysis, optimal inclusion function 5 q A q
Y P Optimal inclusion function

Definition

Let f : R” — R™.

A function [f] : IR" — IR™ satisfying :

V[x] € IR", f([x]) C [f]([x]) is an inclusion function of f.

[]

\/

\/

Rn Rm

FIGURE: lllustration of inclusion function.
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Inclusion function
Optimal inclusion function

Interval analysis, optimal inclusion function

remark

@ Interval arithmetic gives a method to compute an inclusion
function of a given function defined by an arithmetical
expression.
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Inclusion function
Optimal inclusion function

Interval analysis, optimal inclusion function

remark

@ Interval arithmetic gives a method to compute an inclusion
function of a given function defined by an arithmetical
expression.

@ In general, the smallest inclusion function is not obtained and

one only has : f([x]) & [f]([x])- )
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Inclusion function
Optimal inclusion function

Interval analysis, optimal inclusion function

Definition
Let [x] be a box of R"” and f € C*°(R",R). Let us denote by f,(x)
the jacobian matrix

Suppose that all components of £,.([x]) are non-negative, then
[f(x), f(X)] is the range of [x] under f.

Nicolas Delanoue - Luc Jaulin A new method for integrating ODE based on monotonicity



Inclusion function
Optimal inclusion function

Interval analysis, optimal inclusion function

Example

Let us consider the function f : (x1,x2) — 3x? — 2x3x2 + 3x3.

FIGURE: Level curves.
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Inclusion function
Optimal inclusion function

Let us consider the function f : (x1,x2) — 3x? — 2x3x2 + 3x3.

Interval analysis, optimal inclusion function

FIGURE: Level curves.
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Inclusion function
Optimal inclusion function

Interval analysis, optimal inclusion function

Example f : (x1, %) + 3x2 — 2x1xp + 3x3

Since f.(x1,x2) = ( 6x1 — 2xp —2x1 + 6x0 ) one has

{f(x1, %) | (x1,x) € [3,4] x [3,4]} C RT x RT.

FIGURE: Level curves.
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Inclusion function
Optimal inclusion function

Interval analysis, optimal inclusion function

Example £ : (x1,x2) — 3x12 — 2x1X0 + 3)<22

FIGURE: Level curves.

@ According to the previous theorem, one can conclude that
F([3,4] x [3,4]) = [f(3,3),f(4,4)] = [36,52].

Nicolas Delanoue - Luc Jaulin A new method for integrating ODE based on monotonicity



Inclusion function
Optimal inclusion function

Interval analysis, optimal inclusion function

Example £ : (x1,x2) — 3x12 — 2x1X0 + 3)<22

FIGURE: Level curves.

@ According to the previous theorem, one can conclude that
F([3,4] x [3,4]) = [f(3,3), f(4,4)] = [36,52].
@ This result can be compare to the one obtained applying

interval arithmetic :
3%[3,4]2 — 2% [3,4] * [3,4] + 3 % [3,4]2, i.e. [22,78].
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Inclusion function
Optimal inclusion function

Interval analysis, optimal inclusion function

Corollary

Let [x] be a box of R™ and f € C*°(R",R™). Let us denote by
f.(x) the jacobian matrix

of;
(5%)
J 1<i<n,1<<n

Suppose that no component of £([x]) contains 0, then there exists
2m corners X; and X; of [x] such that [ ], ,[fi(%;), fi(%;)] is the
smallest box contammg f([x]).

Apply m times the previous theorem

Nicolas Delanoue - Luc Jaulin A new method for integrating ODE based on monotonicity



Inclusion function
Optimal inclusion function

Interval analysis, optimal inclusion function

f: R — R
X1 f where

— H X1 + x1x2
X2 f

fl X12 — X2
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Inclusion function
Optimal inclusion function

Interval analysis, optimal inclusion function

f: R - R?
X1 . f where
X2 f

fl o X12 — X2
H X1 + x1x2
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Inclusion function
Optimal inclusion function

Interval analysis, optimal inclusion function

Example
f: R - R? >
1 o Xy — X2
X1 f where =
f X1+ X1 X2
X2 f

h
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Inclusion function
Optimal inclusion function

Interval analysis, optimal inclusion function

Example
f: R - R? >
1 o Xy — X2
X1 f where =
f X1+ X1 X2
X2 f

h
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Inclusion function
Optimal inclusion function

Interval analysis, optimal inclusion function

. 2X1 — 1 o 8)(1 f]. aXZ f]-
ﬁk(X15X2) - 1+x x o axlf2 ang2

h
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Inclusion function
Optimal inclusion function

Interval analysis, optimal inclusion function

Example

. 2X1 — 1 o 8)(1 f]. aXZ f]-
ﬁk(X15X2) - 1+x x o axlf2 ang2
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Inclusion function
Optimal inclusion function

Interval analysis, optimal inclusion function

. 2X1 — 1 o 8)(1 f]. aXZ f]-
ﬁk(X15X2) - 1+x x o axlf2 ang2

| f
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Inclusion function
Optimal inclusion function

Interval analysis, optimal inclusion function

| i

h

< [f(x1,X2), (X1, X5)]
[6(51752)7 fé(YleZ)]
f([lhyl]: [527Y2])

> is the smallest box containing
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ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition

Computing optimal validated solutions for ODE Algorithm

x = f(x)

€ R" ,f € C®(R",R").
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ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition
Computing optimal validated solutions for ODE Algorithm

Definition

Let us denote by {g’ : R” — R"};cg the flow associated to the
vector field f :

—g'x = f(x) and g° = Id (1)

Nicolas Delanoue - Luc Jaulin A new method for integrating ODE based on monot:



ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition

Computing optimal validated solutions for ODE Algorithm

Definition
Let us denote by {g’ : R” — R"};cg the flow associated to the
vector field f :

d t

—g'x = f(x) and g° = Id (1)
dt =0

Note that t — gix is the solution of x = f(x) satisfying x(0) = x.

A new method for integrating ODE based on monot:
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ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition

Computing optimal validated solutions for ODE Algorithm

For a fixed t, gt is a function from R"” — R"

e
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ODE, Dynamical system and flow

Derivative of the flow with respect to initial condition
Computing optimal validated solutions for ODE Algorithm

According to the previous theorem, if no component of gf([x])
contains 0, then there exists 2n corners X; and X; of [x] such that

[li<j<nlgf (X)), &f (%))] is the smallest box containing g*([x]).

Nicolas Delanoue - Luc Jaulin A new method for integrating ODE based on monot:



ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition

Computing optimal validated solutions for ODE Algorithm

Let us consider the following ODE :

X1 . 1 1 X1 X
)('2 -1 1 X2 y

Nicolas Delanoue - Luc Ja




ODE, Dynamical system and flow

Derivative of the flow with respect to initial condition
Computing optimal validated solutions for ODE Algorithm

Example

One can obtain an explicit solution :
(25) = e (20
= (e aaiy
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Computing optimal validated solutions for ODE

ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition

Algorithm

Example

One can obtain an explicit solution :

Xl(t)
Xz(t)

(%)

ef cos (t)

(

exp(tA) < 2(0)

—elsin (t)

(0) >
et'sin (t)
ef cos (t)

R2
X1
X2

%

(%) - (

el cos (t) x1 + e'sin (t) x2
—efsin (t) x; + e’ cos (t) x2

R2

)

Nicolas Delanoue - Luc Jaulin

A new method for integrating ODE based on monotonicity



ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition

Computing optimal validated solutions for ODE Algorithm

gt: R - R?
x1 el cos (1) x1 + elsin (1) xo
= 1 1
X2 e*sin(1)x; + e cos (1) x2

Nicolas Delanoue - Luc Jaulin A new method for integrating ODE based on monotonicity



ODE, Dynamical system and flow

Derivative of the flow with respect to initial condition
Computing optimal validated solutions for ODE Algorithm

gl: R = R?
<e1cos(1)x1+elsin(1)x2 >

—elsin(1)x; + el cos (1) xa

8g11 agll
1 _ Ox;  Oxp
& = | od og
Ox1 Oxo

B < el cos (1) elsin(1)>

—elsin(1) elcos(1)

( 1.468693940 2.287355287>

2

—2.287355287 1.468693940
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ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition

Computing optimal validated solutions for ODE Algorithm

1.468693940 2.287355287
—2.287355287 1.468693940

R
l
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ODE, Dynamical system and flow

Derivative of the flow with respect to initial condition
Computing optimal validated solutions for ODE Algorithm

. 1.468693940 2.287355287
& = ~2.287355287 1.468693940

According to the previous theorem :

( [ & (x1,%) © & (x1,%2) })

[ & (X1,x2) : & (x1,%2)

is the smallest box containing gl [ x fl ]>
&8 < [ xo © X2 |
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ODE, Dynamical system and flow

Derivative of the flow with respect to initial condition
Computing optimal validated solutions for ODE Algorithm

Theorem

Suppose that f : R" — R" js twice continuously differentiable.
Then g! is solution to the initial value problem

D80 = A(eXEl)

g(x) = Id

Nicolas Delanoue - Luc Jaulin A new method for integrating ODE based on monot:
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Suppose that f : R" — R" js twice continuously differentiable.
Then g! is solution to the initial value problem
2 t — A t
S8l = fi(ge!(x)
g(x) = I
0 o 0d
ag* (x) = aag X
_ 29
~ dx 8tg
d
= —f(g*
5. (&%)
= f(g'x)(g:x)
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ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition

Computing optimal validated solutions for ODE Algorithm

Example
X1 = Xp—Xx1
Xo = —Xx1+ XX

Let us denote by (ajj)1<i j<2 the coordinate of gf, i.e.

= < Ox81 Ox8i > _ < a1 an >
* O0x 85 Ox,8% a1 ax

_ -1 1 ail an
S\ -l4xe x a1 ax»

one has :

ail an
a1 ax»
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ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition

Computing optimal validated solutions for ODE Algorithm

Example - n + n? dimensional initial value problem

)'(1 = X2

» = (1 —X12)X2 — X1

ail = —au+an

app = —ap+a»

a1 = (—14x)a1 +x1a2
ap = (—1+x)az +x1a2

with the following initial condition

x1(0) = X
x2(0) = x5

(20 =0) = (o1)

Nicolas Delanoue - Luc Jaulin A new method for integrating ODE based on monotonicity



ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition

Algorithm

Computing optimal validated solutions for ODE

Example - n + n? dimensional initial value problem
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Algorithm

@ Input :
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Algorithm

@ Input :
o X =f(x)
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Algorithm

@ Input :
o X =f(x)
° [X] e IR"
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ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition
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Algorithm

@ Input :
o X =f(x)
° [X] e IR"

e t areal, € a real.
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Algorithm

@ Input :
o X =f(x)
° [X] e IR"

e t areal, € a real.

@ Main steps
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Algorithm

@ Input :
o X =f(x)
° [X] e IR"

e t areal, € a real.
@ Main steps
o Compute rigorously gf([x]) (with non a convergent method),

Nicolas Delanoue - Luc Jaulin A new method for integrating ODE based on monotonicity
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Algorithm

@ Input :
o X =f(x)
° [X] e IR"

e t areal, € a real.
@ Main steps

o Compute rigorously gf([x]) (with non a convergent method),
o if no component of gf([x]) contains 0,
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ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition

Computing optimal validated solutions for ODE Algorithm

Algorithm

@ Input :
o X =f(x)
° [X] e IR"

e t areal, € a real.

@ Main steps
o Compute rigorously gf([x]) (with non a convergent method),
o if no component of gf([x]) contains 0,
e then rigorously integrate the 2n initial value problems

x = f(x),x(0) = x,

Nicolas Delanoue - Luc Jaulin A new method for integrating ODE based on monotonicity



ODE, Dynamical system and flow

Derivative of the flow with respect to initial condition
Computing optimal validated solutions for ODE Algorithm

Algorithm

@ Input :
o X =f(x)
° [X] e IR"

e t areal, € a real.

@ Main steps
o Compute rigorously gf([x]) (with non a convergent method),
o if no component of gf([x]) contains 0,
e then rigorously integrate the 2n initial value problems

x = f(x),x(0) = x,
e return the interval hull of those results.
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ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition

Algorithm

Computing optimal validated solutions for ODE

Convergence
This method is convergent as soon as no component of gf([x])

contains 0.
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ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition

Algorithm

Computing optimal validated solutions for ODE

Convergence

This method is convergent as soon as no component of gf([x])

contains 0.
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ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition

Algorithm

Computing optimal validated solutions for ODE

t

Convergence
This method is convergent as soon as no component of gf([x])

contains 0.
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ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition

Algorithm

Computing optimal validated solutions for ODE

Convergence
t

This method is convergent as soon as no component of gf([x])
contains 0.
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ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition

Computing optimal validated solutions for ODE Algorithm

@ Implementation in C4++ based on the interval library filib,
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@ Implementation in C4++ based on the interval library filib,

@ Adomian decomposition method,
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ODE, Dynamical system and flow
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@ Implementation in C4++ based on the interval library filib,
@ Adomian decomposition method,

@ Merci pour votre attention !
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@ Implementation in C4++ based on the interval library filib,
@ Adomian decomposition method,

@ Merci pour votre attention !

@ Vladimir Arnold.

Nicolas Delanoue - Luc Jaulin A new method for integrating ODE based on monot:



