A new method for integrating ODE based on monotonicity

Nicolas Delanoue - Luc Jaulin
LISA Angers France - Ensieta Brest France

Main goal

Computing an ϵ approximation of the smallest box containing the solution at t of the initial value problem $\dot{x} = f(x), x(0) \in [x]$
Main goal

Computing an ϵ approximation of the smallest box containing the solution at t of the initial value problem $\dot{x} = f(x), x(0) \in [x]$
Known results
Interval analysis, optimal inclusion function
Computing optimal validated solutions for ODE

Main goal
Computing an \(\epsilon \) approximation of the smallest box containing the solution at \(t \) of the initial value problem \(\dot{x} = f(x), x(0) \in [x] \)
Main goal

Computing an ϵ approximation of the smallest box containing the solution at t of the initial value problem $\dot{x} = f(x), x(0) \in [x]$
Main goal

Computing an ϵ approximation of the smallest box containing the solution at t of the initial value problem $\dot{x} = f(x), x(0) \in [x]$
Main goal

Computing an ϵ approximation of the smallest box containing the solution at t of the initial value problem $\dot{x} = f(x), x(0) \in [x]$
Main goal

Computing an ϵ approximation of the smallest box containing the solution at t of the initial value problem $\dot{x} = f(x), x(0) \in [x]$.
Outline

1 Known results
 - Convergent methods
 - Wrapping effect

2 Interval analysis, optimal inclusion function
 - Inclusion function
 - Optimal inclusion function

3 Computing optimal validated solutions for ODE
 - ODE, Dynamical system and flow
 - Derivative of the flow with respect to initial condition
 - Algorithm
There exists guaranteed *convergent* methods to find $x(t)$ such that

\[
\begin{cases}
\dot{x} = f(x) \\
x(0) = x_0
\end{cases}
\]

- Picard-Lindelöf operator,
- Taylor models,
- Automatic differentiation.
There exists guaranteed *convergent* methods to find $x(t)$ such that

$$
\begin{cases}
\dot{x} &= f(x) \\
x(0) &= x_0
\end{cases}
$$

$\Delta t = 1/6,$
There exists guaranteed *convergent* methods to find $x(t)$ such that

$$\begin{cases}
\dot{x} = f(x) \\
x(0) = x_0
\end{cases}$$

$\Delta t = 1/7$
There exists guaranteed *convergent* methods to find $x(t)$ such that

\[
\begin{align*}
\dot{x} &= f(x) \\
x(0) &= x_0
\end{align*}
\]

$\Delta t = 1/8$
There exists guaranteed *convergent* methods to find $x(t)$ such that

\[
\begin{aligned}
\dot{x} &= f(x) \\
x(0) &= x_0
\end{aligned}
\]

$\Delta t = 1/9$
There exists guaranteed *convergent* methods to find $x(t)$ such that

$$\begin{cases}
\dot{x} &= f(x) \\
x(0) &= x_0
\end{cases}$$

$\Delta t = 1/10$
There exists guaranteed *convergent* methods to find $x(t)$ such that

$$\begin{cases}
\dot{x} &= f(x) \\
x(0) &= x_0
\end{cases}$$

$\Delta t = 1/11$
There exists guaranteed *convergent* methods to find $x(t)$ such that
\[
\begin{aligned}
\dot{x} &= f(x) \\
x(0) &= x_0
\end{aligned}
\]

$\Delta t = 1/12$
There exists guaranteed *convergent* methods to find $x(t)$ such that

\[
\begin{align*}
\dot{x} &= f(x) \\
 x(0) &= x_0
\end{align*}
\]
There exists guaranteed *convergent* methods to find $x(t)$ such that

\[
\begin{cases}
\dot{x} = f(x) \\
x(0) = x_0
\end{cases}
\]
There exists guaranteed *convergent* methods to find \(x(t) \) such that

\[
\begin{align*}
\dot{x} &= f(x) \\
 x(0) &= x_0
\end{align*}
\]

\(\Delta t = 1/15 \)
Known results
Interval analysis, optimal inclusion function
Computing optimal validated solutions for ODE

Convergent methods
Wrapping effect

A new method for integrating ODE based on monotonicity
Known results
Interval analysis, optimal inclusion function
Computing optimal validated solutions for ODE

Convergent methods
Wrapping effect

Nicolas Delanoue - Luc Jaulin
A new method for integrating ODE based on monotonicity
Known results
Interval analysis, optimal inclusion function
Computing optimal validated solutions for ODE

Convergent methods
Wrapping effect

A new method for integrating ODE based on monotonicity
Known results
Interval analysis, optimal inclusion function
Computing optimal validated solutions for ODE

Convergent methods
Wrapping effect

Nicolas Delanoue - Luc Jaulin
A new method for integrating ODE based on monotonicity
Known results
Interval analysis, optimal inclusion function
Computing optimal validated solutions for ODE

Convergent methods
Wrapping effect

Nicolas Delanoue - Luc Jaulin
A new method for integrating ODE based on monotonicity
Known results
Interval analysis, optimal inclusion function
Computing optimal validated solutions for ODE
Convergent methods
Wrapping effect

A new method for integrating ODE based on monotonicity
Known results
- Interval analysis, optimal inclusion function
- Computing optimal validated solutions for ODE

Convergent methods
- Wrapping effect

Nicolas Delaoue - Luc Jaulin
A new method for integrating ODE based on monotonicity
Known results
Interval analysis, optimal inclusion function
Computing optimal validated solutions for ODE

Convergent methods
Wrapping effect

Nicolas Delanoue - Luc Jaulin
A new method for integrating ODE based on monotonicity
Known results
Interval analysis, optimal inclusion function
Computing optimal validated solutions for ODE

Convergent methods
Wrapping effect

Nicolas Delaune - Luc Jaulin
A new method for integrating ODE based on monotonicity
Known results
Interval analysis, optimal inclusion function
Computing optimal validated solutions for ODE

Convergent methods
Wrapping effect

Nicolas Delanoue - Luc Jaulin
A new method for integrating ODE based on monotonicity
Known results
Interval analysis, optimal inclusion function
Computing optimal validated solutions for ODE

Convergent methods
Wrapping effect

Nicolas Delanoue - Luc Jaulin
A new method for integrating ODE based on monotonicity
Known results
Interval analysis, optimal inclusion function
Computing optimal validated solutions for ODE

Convergent methods
Wrapping effect

A new method for integrating ODE based on monotonicity
Known results
Interval analysis, optimal inclusion function
Computing optimal validated solutions for ODE

Convergent methods
Wrapping effect

Nicolas Delanoue - Luc Jaulin
A new method for integrating ODE based on monotonicity
Definition

Let \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \).

A function \([f] : \mathbb{I}\mathbb{R}^n \rightarrow \mathbb{I}\mathbb{R}^m\) satisfying:

\[\forall [x] \in \mathbb{I}\mathbb{R}^n, f([x]) \subset [f]([x]) \]

is an inclusion function of \(f \).

Figure: Illustration of inclusion function.
remark

- Interval arithmetic gives a method to compute an inclusion function of a given function defined by an arithmetical expression.
remark

- Interval arithmetic gives a method to compute an inclusion function of a given function defined by an arithmetical expression.

- In general, the smallest inclusion function is not obtained and one only has: $f([x]) \not\subseteq [f([x])]$.
Definition

Let $[x]$ be a box of \mathbb{R}^n and $f \in C^\infty(\mathbb{R}^n, \mathbb{R})$. Let us denote by $f_*(x)$ the jacobian matrix

$$
\begin{pmatrix}
\frac{\partial f}{\partial x_1}(x) & \cdots & \frac{\partial f}{\partial x_n}(x)
\end{pmatrix}
$$

Theorem

Suppose that all components of $f_*([x])$ are non-negative, then $[f(x), f(\bar{x})]$ is the range of $[x]$ under f.
Example

Let us consider the function $f : (x_1, x_2) \mapsto 3x_1^2 - 2x_1x_2 + 3x_2^2$.

Figure: Level curves.
Example

Let us consider the function $f : (x_1, x_2) \mapsto 3x_1^2 - 2x_1x_2 + 3x_2^2$.

Figure: Level curves.
Example $f : (x_1, x_2) \mapsto 3x_1^2 - 2x_1x_2 + 3x_2^2$

Since $f_*(x_1, x_2) = (6x_1 - 2x_2, -2x_1 + 6x_2)$, one has

$$\{f_*(x_1, x_2) \mid (x_1, x_2) \in [3, 4] \times [3, 4]\} \subset \mathbb{R}^+ \times \mathbb{R}^+.$$

Figure: Level curves.
Example $f : (x_1, x_2) \mapsto 3x_1^2 - 2x_1x_2 + 3x_2^2$

Since $f_*(x_1, x_2) = (6x_1 - 2x_2, -2x_1 + 6x_2)$, one has

$$\{ f_*(x_1, x_2) \mid (x_1, x_2) \in [3, 4] \times [3, 4] \} \subset \mathbb{R}^+ \times \mathbb{R}^+.$$
Example $f : (x_1, x_2) \mapsto 3x_1^2 - 2x_1x_2 + 3x_2^2$

Since $f_*(x_1, x_2) = (6x_1 - 2x_2, -2x_1 + 6x_2)$, one has

$$\{f_*(x_1, x_2) \mid (x_1, x_2) \in [3, 4] \times [3, 4]\} \subset \mathbb{R}^+ \times \mathbb{R}^+.$$
Example $f : (x_1, x_2) \mapsto 3x_1^2 - 2x_1x_2 + 3x_2^2$

Since $f_\ast(x_1, x_2) = (6x_1 - 2x_2, -2x_1 + 6x_2)$, one has

$$\{f_\ast(x_1, x_2) \mid (x_1, x_2) \in [3, 4] \times [3, 4]\} \subset \mathbb{R}^+ \times \mathbb{R}^+.$$

Figure: Level curves.
Example $f : (x_1, x_2) \mapsto 3x_1^2 - 2x_1x_2 + 3x_2^2$

Since $f_*(x_1, x_2) = (6x_1 - 2x_2, -2x_1 + 6x_2)$, one has

$$\{f_*(x_1, x_2) \mid (x_1, x_2) \in [3, 4] \times [3, 4]\} \subset \mathbb{R}^+ \times \mathbb{R}^+.$$
Example $f : (x_1, x_2) \mapsto 3x_1^2 - 2x_1x_2 + 3x_2^2$

Since $f_*(x_1, x_2) = (6x_1 - 2x_2, -2x_1 + 6x_2)$, one has

$$\left\{ f_*(x_1, x_2) \mid (x_1, x_2) \in [3, 4] \times [3, 4] \right\} \subset \mathbb{R}^+ \times \mathbb{R}^+.$$
Example $f : (x_1, x_2) \mapsto 3x_1^2 - 2x_1x_2 + 3x_2^2$

\textbf{Figure:} Level curves.

According to the previous theorem, one can conclude that $f([3, 4] \times [3, 4]) = [f(3, 3), f(4, 4)] = [36, 52]$.
Example $f : (x_1, x_2) \mapsto 3x_1^2 - 2x_1x_2 + 3x_2^2$

Figure: Level curves.

- According to the previous theorem, one can conclude that $f([3, 4] \times [3, 4]) = [f(3, 3), f(4, 4)] = [36, 52]$.
- This result can be compared to the one obtained applying interval arithmetic: $3 \times [3, 4]^2 - 2 \times [3, 4] \times [3, 4] + 3 \times [3, 4]^2$, i.e. $[22, 78]$.
Corollary

Let $[x]$ be a box of \mathbb{R}^n and $f \in C^\infty(\mathbb{R}^n, \mathbb{R}^m)$. Let us denote by $f_\star(x)$ the jacobian matrix

$$
\left(\frac{\partial f_j}{\partial x_j}(x) \right)_{1 \leq i \leq n, 1 \leq j \leq n}
$$

Suppose that no component of $f_\star([x])$ contains 0, then there exists $2m$ corners \tilde{x}_j and \bar{x}_j of $[x]$ such that $\prod_{1 \leq j \leq n}[f_j(\tilde{x}_j), f_j(\bar{x}_j)]$ is the smallest box containing $f([x])$.

Proof

Apply m times the previous theorem.
Example

\[f : \mathbb{R}^2 \to \mathbb{R}^2 \]

\[
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix}
\mapsto
\begin{pmatrix}
 f_1 \\
 f_2
\end{pmatrix}
\]

where

\[
\begin{pmatrix}
 f_1 \\
 f_2
\end{pmatrix}
= \begin{pmatrix}
 x_1^2 - x_2 \\
 x_1 + x_1 x_2
\end{pmatrix}
\]
Example

\[f : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \]

\[
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix}
\mapsto
\begin{pmatrix}
 f_1 \\
 f_2
\end{pmatrix}
\]

where

\[
\begin{pmatrix}
 f_1 \\
 f_2
\end{pmatrix} =
\begin{pmatrix}
 x_1^2 - x_2 \\
 x_1 + x_1x_2
\end{pmatrix}
\]
Example

\[f : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \]

\[
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix}
\mapsto
\begin{pmatrix}
 f_1 \\
 f_2
\end{pmatrix}
\]

where \[
\begin{pmatrix}
 f_1 \\
 f_2
\end{pmatrix} = \begin{pmatrix}
 x_1^2 - x_2 \\
 x_1 + x_1x_2
\end{pmatrix}
\]
Known results
Interval analysis, optimal inclusion function
Computing optimal validated solutions for ODE

Example

\[f : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \]

\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}
\]

where
\[
\begin{pmatrix} f_1 \\ f_2 \end{pmatrix} = \begin{pmatrix} x_1^2 - x_2 \\ x_1 + x_1x_2 \end{pmatrix}
\]
Example

\[f_\ast(x_1, x_2) = \begin{pmatrix} 2x_1 & -1 \\ 1 + x_2 & x_1 \end{pmatrix} = \begin{pmatrix} \partial_{x_1} f_1 & \partial_{x_2} f_1 \\ \partial_{x_1} f_2 & \partial_{x_2} f_2 \end{pmatrix} \]
Example

\[f_*(x_1, x_2) = \begin{pmatrix} 2x_1 & -1 \\ 1 + x_2 & x_1 \end{pmatrix} = \begin{pmatrix} \partial_{x_1} f_1 & \partial_{x_2} f_1 \\ \partial_{x_1} f_2 & \partial_{x_2} f_2 \end{pmatrix} \]
Example

\[f_*(x_1, x_2) = \begin{pmatrix} 2x_1 & -1 \\ 1 + x_2 & x_1 \end{pmatrix} = \begin{pmatrix} \partial_{x_1} f_1 & \partial_{x_2} f_1 \\ \partial_{x_1} f_2 & \partial_{x_2} f_2 \end{pmatrix} \]
Example

\[f_*(x_1, x_2) = \begin{pmatrix} 2x_1 & -1 \\ 1 + x_2 & x_1 \end{pmatrix} = \begin{pmatrix} \partial_{x_1} f_1 & \partial_{x_2} f_1 \\ \partial_{x_1} f_2 & \partial_{x_2} f_2 \end{pmatrix} \]

\[\left(\begin{array}{c} f_1(x_1, x_2), f_1(x_1, x_2) \\ f_2(x_1, x_2), f_2(x_1, x_2) \end{array} \right) \]

is the smallest box containing

\[f([x_1, x_1], [x_2, x_2]) \]
\[\begin{cases} \dot{x} = f(x) \\ x \in \mathbb{R}^n \end{cases}, f \in C^\infty(\mathbb{R}^n, \mathbb{R}^n). \]
Definition

Let us denote by \(\{g^t : \mathbb{R}^n \rightarrow \mathbb{R}^n \}_{t \in \mathbb{R}} \) the flow associated to the vector field \(f : \)

\[
\frac{d}{dt} g^t \bigg|_{t=0} x = f(x) \text{ and } g^0 = Id
\] (1)

Note that \(t \mapsto g^t x \) is the solution of \(\dot{x} = f(x) \) satisfying \(x(0) = x \).
Definition

Let us denote by \(\{g^t : \mathbb{R}^n \rightarrow \mathbb{R}^n\}_{t \in \mathbb{R}} \) the flow associated to the vector field \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \):

\[
\frac{d}{dt} g^t x \bigg|_{t=0} = f(x) \text{ and } g^0 = I_d
\]

(1)

Note that \(t \mapsto g^t x \) is the solution of \(\dot{x} = f(x) \) satisfying \(x(0) = x \).
Remark

For a fixed t, g^t is a function from $\mathbb{R}^n \rightarrow \mathbb{R}^n$
According to the previous theorem, if no component of $g^t([x])$ contains 0, then there exists $2n$ corners \tilde{x}_j and \bar{x}_j of $[x]$ such that $\prod_{1 \leq j \leq n}[g^t_j(\tilde{x}_j), g^t_j(\bar{x}_j)]$ is the smallest box containing $g^t([x])$.
Example

Let us consider the following ODE:

\[
\begin{pmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}
\]
Example

One can obtain an explicit solution:

\[
\begin{pmatrix}
 x_1(t) \\
 x_2(t)
\end{pmatrix} = \exp(tA) \begin{pmatrix}
 x_1(0) \\
 x_2(0)
\end{pmatrix}
\]

\[
= \begin{pmatrix}
 e^t \cos(t) & e^t \sin(t) \\
 -e^t \sin(t) & e^t \cos(t)
\end{pmatrix} \begin{pmatrix}
 x_1(0) \\
 x_2(0)
\end{pmatrix}
\]
Known results
Interval analysis, optimal inclusion function
Computing optimal validated solutions for ODE

ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition
Algorithm

Example

One can obtain an explicit solution:

\[
\begin{pmatrix}
 x_1(t) \\
 x_2(t)
\end{pmatrix}
= \exp(tA)
\begin{pmatrix}
 x_1(0) \\
 x_2(0)
\end{pmatrix}
=
\begin{pmatrix}
 e^t \cos(t) & e^t \sin(t) \\
 -e^t \sin(t) & e^t \cos(t)
\end{pmatrix}
\begin{pmatrix}
 x_1(0) \\
 x_2(0)
\end{pmatrix}
\]

\[
g^t : \mathbb{R}^2 \rightarrow \mathbb{R}^2
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix}
\mapsto
\begin{pmatrix}
 e^t \cos(t) x_1 + e^t \sin(t) x_2 \\
 -e^t \sin(t) x_1 + e^t \cos(t) x_2
\end{pmatrix}
\]
Known results
Interval analysis, optimal inclusion function
Computing optimal validated solutions for ODE

ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition
Algorithm

Algorithm $g^1 : \mathbb{R}^2 \rightarrow \mathbb{R}^2$

\[
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix}
\mapsto
\begin{pmatrix}
 e^1 \cos(1) x_1 + e^1 \sin(1) x_2 \\
 -e^1 \sin(1) x_1 + e^1 \cos(1) x_2
\end{pmatrix}
\]

Nicolas Delanoue - Luc Jaulin
A new method for integrating ODE based on monotonicity
Known results
Interval analysis, optimal inclusion function
Computing optimal validated solutions for ODE

ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition
Algorithm

$g^1 : \mathbb{R}^2 \rightarrow \mathbb{R}^2$

\[
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix}
\mapsto
\begin{pmatrix}
 e^1 \cos (1) x_1 + e^1 \sin (1) x_2 \\
 -e^1 \sin (1) x_1 + e^1 \cos (1) x_2
\end{pmatrix}
\]

$g^1_* = \left(\begin{array}{cc}
\frac{\partial g^1_1}{\partial x_1} & \frac{\partial g^1_1}{\partial x_2} \\
\frac{\partial g^1_2}{\partial x_1} & \frac{\partial g^1_2}{\partial x_2}
\end{array} \right)$

$\approx \left(\begin{array}{cc}
e^1 \cos (1) & e^1 \sin (1) \\
-e^1 \sin (1) & e^1 \cos (1)
\end{array} \right)$

$\approx \left(\begin{array}{cc}
1.468693940 & 2.287355287 \\
-2.287355287 & 1.468693940
\end{array} \right)$
Known results

Interval analysis, optimal inclusion function
Computing optimal validated solutions for ODE

ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition
Algorithm

\[g_1^1 \simeq \begin{pmatrix} 1.468693940 & 2.287355287 \\ -2.287355287 & 1.468693940 \end{pmatrix} \]

According to the previous theorem:

\[\left[g_1^1 \left(x_1, x_2 \right) ; g_1^2 \left(x_1, x_2 \right) \right] = \text{the smallest box containing} \]

Nicolas Delanoue - Luc Jaulin
A new method for integrating ODE based on monotonicity
\[g^1_\ast \simeq \begin{pmatrix}
1.468693940 & 2.287355287 \\
-2.287355287 & 1.468693940
\end{pmatrix} \]

According to the previous theorem:

\[
\begin{pmatrix}
\begin{bmatrix}
g_1^1(x_1, x_2) & g_1^1(\overline{x}_1, \overline{x}_2)
\end{bmatrix} \\
\begin{bmatrix}
g_2^1(\overline{x}_1, \overline{x}_2) & g_2^1(x_1, \overline{x}_2)
\end{bmatrix}
\end{pmatrix}
\]

is the smallest box containing \(g^1\left(\begin{bmatrix}x_1 & \overline{x}_1 \\ x_2 & \overline{x}_2\end{bmatrix}\right)\)
(\[
\begin{bmatrix}
g_{11}(x_1, x_2) & g_{11}(\bar{x}_1, \bar{x}_2) \\
g_{21}(\bar{x}_1, x_2) & g_{21}(x_1, \bar{x}_2)
\end{bmatrix}
\])
Known results
Interval analysis, optimal inclusion function
Computing optimal validated solutions for ODE

ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition
Algorithm

\[
\begin{pmatrix}
g_1^1(x_1, x_2) & g_1^1(\bar{x}_1, \bar{x}_2) \\
g_2^1(\bar{x}_1, \bar{x}_2) & g_2^1(x_1, \bar{x}_2)
\end{pmatrix}
\]

Nicolas Delanoue - Luc Jaulin
A new method for integrating ODE based on monotonicity
Theorem

Suppose that \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \) is twice continuously differentiable. Then \(g^t_* \) is solution to the initial value problem

\[
\frac{\partial}{\partial t} g^t_*(x) = f_*(g^t_*)g^t_*(x), \\
g^0_*(x) = Id
\]
Theorem

Suppose that $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is twice continuously differentiable. Then g^t_\ast is solution to the initial value problem

$$\frac{\partial}{\partial t} g^t_\ast(x) = f_\ast(g^t x) g^t_\ast(x),$$

$$g^0_\ast(x) = Id$$

Proof

$$\frac{\partial}{\partial t} g^t_\ast(x) = \frac{\partial}{\partial t} \frac{d}{dx} g^t x$$

$$= \frac{d}{dx} \frac{\partial}{\partial t} g^t x$$

$$= \frac{d}{dx} f(g^t x)$$

$$= f_\ast(g^t x)(g^t x)$$
Example

\[
\begin{align*}
\dot{x}_1 &= x_2 - x_1 \\
\dot{x}_2 &= -x_1 + x_1x_2
\end{align*}
\]

Let us denote by \((a_{i,j})_{1 \leq i,j \leq 2}\) the coordinate of \(g^t_*, \) i.e.

\[
g^t_* = \begin{pmatrix}
\partial_{x_1} g_1^t & \partial_{x_2} g_1^t \\
\partial_{x_1} g_2^t & \partial_{x_2} g_2^t
\end{pmatrix} = \begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\]

one has:

\[
\begin{pmatrix}
\dot{a}_{11} & \dot{a}_{12} \\
\dot{a}_{21} & \dot{a}_{22}
\end{pmatrix} = \begin{pmatrix}
-1 & 1 \\
-1 + x_2 & x_1
\end{pmatrix} \begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\]
Example - $n + n^2$ dimensional initial value problem

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= (1 - x_1^2)x_2 - x_1 \\
\dot{a}_{11} &= -a_{11} + a_{21} \\
\dot{a}_{12} &= -a_{12} + a_{22} \\
\dot{a}_{21} &= (-1 + x_2)a_{11} + x_1a_{21} \\
\dot{a}_{22} &= (-1 + x_2)a_{12} + x_1a_{22}
\end{align*}
\]

with the following initial condition

\[
\begin{align*}
x_1(0) &= x_1^0 \\
x_2(0) &= x_2^0 \\
\begin{pmatrix}
a_{11}(0) & a_{12}(0) \\
a_{21}(0) & a_{22}(0)
\end{pmatrix} &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\end{align*}
\]
Example - $n + n^2$ dimensional initial value problem
Algorithm

- **Input:**

$$\dot{x} = f(x)$$

$$x \in \mathbb{R}^n$$

t a real, ϵ a real.
Known results
Interval analysis, optimal inclusion function
Computing optimal validated solutions for ODE

ODE, Dynamical system and flow
Derivative of the flow with respect to initial condition
Algorithm

Algorithm

- **Input**:
 - \(\dot{x} = f(x) \)
Algorithm

- **Input:**
 - $\dot{x} = f(x)$
 - $[x] \in \mathbb{IR}^n$
Algorithm

- **Input:**
 - $\dot{x} = f(x)$
 - $[x] \in \mathbb{IR}^n$
 - t a real, ϵ a real.
Algorithm

- **Input:**
 - $\dot{x} = f(x)$
 - $[x] \in \mathbb{IR}^n$
 - t a real, ϵ a real.

- **Main steps**
Algorithm

Input:
- $\dot{x} = f(x)$
- $[x] \in \mathbb{R}^n$
- t a real, ϵ a real.

Main steps
- Compute rigorously $g^t([x])$ (with non a convergent method),
Algorithm

- **Input**:
 - \(\dot{x} = f(x) \)
 - \([x] \in \mathbb{IR}^n\)
 - \(t\) a real, \(\epsilon\) a real.

- **Main steps**
 - Compute rigorously \(g^t_*(\{x\})\) (with non a convergent method),
 - if no component of \(g^t_*(\{x\})\) contains 0,
Algorithm

- **Input:**
 - $\dot{x} = f(x)$
 - $[x] \in \mathbb{IR}^n$
 - t a real, ϵ a real.

- **Main steps**
 - Compute rigorously $g^t_\ast([x])$ (with non a convergent method),
 - if no component of $g^t_\ast([x])$ contains 0,
 - then rigorously integrate the $2n$ initial value problems
 $\dot{x} = f(x), x(0) = \tilde{x},$
Algorithm

- **Input:**
 - $\dot{x} = f(x)$
 - $[x] \in \mathbb{IR}^n$
 - t a real, ϵ a real.

- **Main steps**
 - Compute rigorously $g^t([x])$ (with non a convergent method),
 - if no component of $g^t([x])$ contains 0,
 - then rigorously integrate the $2n$ initial value problems $\dot{x} = f(x)$, $x(0) = \tilde{x}$,
 - return the interval hull of those results.
Convergence

This method is convergent as soon as no component of \(g_t([x]) \) contains 0.
Convergence

This method is convergent as soon as no component of $g^*(x)$ contains 0.

Figure: $a_{11}, a_{12}, a_{21}, a_{22}$ as function of t.
Convergence

This method is convergent as soon as no component of $g^t([x])$ contains 0.

\[a_{11}, a_{12}, a_{21}, a_{22} \text{ as function of } t. \]
Convergence

This method is convergent as soon as no component of $g^*_t([x])$ contains 0.

Figure: $a_{11}, a_{12}, a_{21}, a_{22}$ as function of t.
Implementation in C++ based on the interval library filib,
- Implementation in C++ based on the interval library filib,
- Adomian decomposition method,
- Implementation in C++ based on the interval library filib,
- Adomian decomposition method,
- Merci pour votre attention!
• Implementation in C++ based on the interval library filib,
• Adomian decomposition method,
• Merci pour votre attention!
• Vladimir Arnold.