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Controlled dynamical system{
x(0) = x0

ẋ(τ) = f (x(τ), u(τ)), ∀τ ∈ [0,T ],

where

τ is the time,

x is the state,

f is a vector field (the dynamics),

u is the control.

Nicolas Delanoue, Sébastien Lagrange, Mehdi Lhommeau Optimal Control Via Occupation Measures and Interval Analysis



Introduction to optimal control
Measure Theory - Occupation Measures

Rigorous relaxation
Conclusion

x(0) = 2
ẋ(τ) = u(τ), τ ∈ [0, 1],
u(τ) ∈ [−2, 2].
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Optimal control problem

J∗ = min
u:[0,T ]→U

∫ T

0
h(τ, x(τ), u(τ))dτ + H(x(T ))

subject to x(0) = x0

ẋ(τ) = f (x(τ), u(τ)),∀τ ∈ [0,T ],

x(τ) ∈ X ,∀τ ∈ [0,T ],

x(T ) ∈ K .

where

U is the set of admissible control,

h and H are real valued functions.
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Definition

Let X be a set and Σ a σ−algebra over X .
A function µ : Σ→ R ∪ {∞} is called a measure if :

∀E ∈ Σ, µ(E ) ≥ 0,

µ(∅) = 0,

For all countable collections {Ei}i∈N of pairwise disjoint sets
in Σ, one has :

µ

(⋃
i∈N

Ei

)
=
∑
i∈N

µ (Ei ) .
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Examples

The Lebesgue measure λ on R defined by

λ([a, b]) = b − a.

The Dirac measure δa on R defined by

δa(E ) =

{
1 if a ∈ E ,
0 otherwise.

Let f be a non negative function on R, one can defined a
measure λf on R by

λf (E ) =

∫
E
f (x)dx .
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Occupation measure µγ on X

Let γ : [0,T ] 7→ X be a parametrized curve, let us define µγ by

µγ(E ) =

∫ T

0
1E (γ(τ))dτ where 1E (x) =

{
1 if x ∈ E ,
0 otherwise.
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Proposition

Let h : X 7→ R be a function and γ : [0,T ] 7→ X be a parametrized
curve, then

〈µ, h〉 =

∫
X
h(x)dµγ =

∫ T

0
h(γ(τ))dτ

Nicolas Delanoue, Sébastien Lagrange, Mehdi Lhommeau Optimal Control Via Occupation Measures and Interval Analysis



Introduction to optimal control
Measure Theory - Occupation Measures

Rigorous relaxation
Conclusion

Occupation measure νγ on K at time T

Let γ : [0,T ] 7→ X be a parametrized curve, let us define µγ by

νγ(E ) = δγ(T )(E )
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Theorem

Let

J∗1 = min
u:[0,T ]→U

∫ T

0
h(τ, x(τ), u(τ))dτ + H(x(T ))

subject to x(0) = x0, ẋ = f (x , u), ∀τ ∈ [0,T ],

x(τ) ∈ X ,∀τ ∈ [0,T ], x(T ) ∈ K .

and

J∗2 = min
µ,ν∈M+

〈µ, h〉+ 〈ν,H〉

subject to L∗(µ, ν) = δ(0,x0)

supp(µ) ⊂ [0,T ]× X × U, supp(ν) ⊂ K .

One has
J∗1 = J∗2 .
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Remark

J∗2 = min
µ,ν∈M+

〈µ, h〉+ 〈ν,H〉

subject to L∗(µ, ν) = δ(0,x0)

supp(µ) ⊂ [0,T ]× X × U, supp(ν) ⊂ K .

is an infinite dimensional linear programming problem.

R. Vinter. Convex duality and nonlinear optimal control. SIAM J.
Control Optim. 31, 2 (1993), 518-538
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x(0) = x0, ẋ = f (x , u)⇔ L∗(µ, ν) = δ(0,x0)

Proof

Let ϕ : [0,T ]× X → R be a differentiable function, one has

ϕ(T , xT )− ϕ(0, x0) =

∫ T

0

dϕ

dt
(τ, x(τ))dτ

=

∫ T

0

∂ϕ

∂t
(τ, x) +∇xϕ(τ, x) · f (x , u)dτ

∫ T

0
−∂ϕ
∂t

(τ, x)−∇xϕ(τ, x) · f (x , u)dτ + ϕ(T , xT ) = ϕ(0, x0)
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∫ T

0
−∂ϕ
∂t

(τ, x)−∇xϕ(τ, x) · f (x , u)dτ + ϕ(T , xT ) = ϕ(0, x0)∫
[0,T ]×X×U

−∂ϕ
∂t

(τ, x)−∇xϕ(τ, x) · f (x , u)dµ+

∫
K
ϕdν = ϕ(0, x0)

〈(µ, ν),Lϕ〉 = 〈δ(0,x0), ϕ〉
where

Lϕ =

(
−∂ϕ
∂t

(t, x)−∇xϕ(t, x) · f (x , u) , ϕ(T , x)

)
The operator L is linear, let us denote by L∗ its transpose ,
therefore

〈L∗(µ, ν), ϕ〉 = 〈δ(0,x0), ϕ〉
i.e.

L∗(µ, ν) = δ(0,x0)
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Interval analysis
Finite dimensional relaxation
Example

Definition

An interval is a compact subset of R of the following form :
[x ] = [x , x ] = {x ∈ R | x ≤ x ≤ x}.

Definition

Let f : R→ R be a map, one says that [f ] : IR→ IR is an
inclusion map of f if ∀[x ] ∈ IR, f ([x ]) ⊂ [f ]([x ]).
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Interval Arithmetic

[x ] + [y ] = [x + y , x + y ]

[x ]− [y ] = [x − y , x − y ]

[x ]× [y ] = [min{xy , xy , xy , xy},max{xy , xy , xy , xy}],
[x ]÷ [y ] = [x ]×

[
1
y ,

1
y

]
, if yy > 0.

Proposition

The four basic interval operations are inclusion maps of +, −, ×
and ÷ defined on reals.
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Proposition

If f and g are maps with inclusion maps [f ] and [g ],
then [f ] ◦ [g ] is an inclusion map of f ◦ g .

Example

Let f : R→ R be
f (x) = 1− 2x + x2.

The map [f ] : IR→ IR

[f ]([x , x ]) = [1, 1]− [2, 2]× [x , x ] + [x , x ]2,

is an inclusion map for f .
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Example

ϕ(x) = 1− 2x + x2

x ∈ [2, 3]

⇒ 1 ∈ [ 1 , 1 ],
⇒ −2x ∈ [ −6 , −4 ],
⇒ x2 ∈ [ 4 , 9 ],

x ∈ [2, 3] ⇒ ϕ(x) ∈ [ −1 , 6 ].
[ ϕ , ϕ ].

Nicolas Delanoue, Sébastien Lagrange, Mehdi Lhommeau Optimal Control Via Occupation Measures and Interval Analysis



Introduction to optimal control
Measure Theory - Occupation Measures

Rigorous relaxation
Conclusion

Interval analysis
Finite dimensional relaxation
Example

ϕ(x) = 1− 2x + x2

x ∈ [2, 3]

⇒ 1 ∈ [ 1 , 1 ],
⇒ −2x ∈ [ −6 , −4 ],
⇒ x2 ∈ [ 4 , 9 ],

x ∈ [2, 3] ⇒ ϕ(x) ∈ [ −1 , 6 ].
[ ϕ , ϕ ].
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Main results based on interval analysis

Interval Arithmetic, Ramon E. Moore, 1966,

Global optimization, R. Baker Kearfott, 90’s,

Solution set of systems of equations, Arnold Neumaier,

Reliable solutions to ordinary differential equations, Rudolf
Lohner 1988,

Applied Interval Analysis (to Robotics), Luc Jaulin, 2001,

Kepler conjecture proved by T. Hales in 2003,

The Lorentz equations support a strange attractor proved by
W. Tucker in 1998.

PDE, algebraic topology, . . .
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Lemma - Enclosing

Let Xi be a partition of X , if µ ∈M+ and [ϕ] an inclusion
function for ϕ then

〈µ, ϕ〉 ∈
∑
i

[ϕ](Xi )µ(Xi )

∑
i ϕ(Xi )µ(Xi ) ≤

∫
X ϕ(x)dµ(x) ≤∑i ϕ(Xi )µ(Xi )
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Relaxation - Main result

J∗ = min
µ,ν∈M+

〈µ, h〉+ 〈ν,H〉

subject to L∗(µ, ν) = δ(0,x0)

(1)

Let {Xi} be a partition of [0,T ]× X × U and {Yk} be a partition of K .
Suppose P = {ϕ} is a finite family of functions with indeterminates t, x .

J = min
µi ,νi∈R+

∑
i∈I

µihi +
∑
k∈K

νkHk

s.t. ∀ϕ ∈ P
∑
i∈I

µiψi
+
∑
i∈K

νiϕi
≤ ϕ(0, x0) ≤

∑
i∈I

µiψi +
∑
i∈K

νiϕi ,

where ψ = −∂ϕ
∂t
− ∂ϕ

∂x
f (t, x , u),

(2)
then

J ≤ J∗. (3)
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Example

J∗ = min
u:[0,T ]→[−1,1]

∫ 1

0
x2(τ)dτ + x2(T )

subject to x(0) = 2.82, ẋ = u,

x(τ) ∈ [−3, 3],

u(τ) ∈ [−1, 1],

x(T ) ∈ [−3, 3].

becomes

J∗ = min
µ,ν∈M+

〈µ, x2〉+ 〈ν, x2〉

subject to L∗(µ, ν) = δ(0,x0)

supp(µ) ⊂ [0, 1]× [−3, 3]× [−1, 1], supp(ν) ⊂ [−3, 3].
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In practice, this infinite LP is relaxed to the following finite dimensional
LP :

J = min
µi ,νi∈R+

∑
i∈I

µihi +
∑
k∈K

νkHk

s.t. ∀ϕ ∈ P
∑
i∈I

µiψi
+
∑
i∈K

νiϕi
≤ ϕ(0, x0) ≤

∑
i∈I

µiψi +
∑
i∈K

νiϕi ,

where ψ = −∂ϕ
∂t
− ∂ϕ

∂x
f (t, x , u),

where

P is chosen to be a finite subset of :

P = {1, t, x , t2, tx , x2, t3, . . . },

hi , H i , ϕi
, ϕi , and ψ

i
, ψi are obtained with interval arithmetic.
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[0, 1]× [−3, 3]× [−1, 1].
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n = 10, n3 + n = 1 010 variables and #(P) = 10 constraints.
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n = 10, n3 + n = 1 010 variables and #(P) = 10 constraints.
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n = 50, n3 + n = 125 050 variables and #(P) = 10 constraints.
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n = 60, n3 + n = 216 060 variables and #(P) = 10 constraints.
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n = 70, n3 + n = 343 070 variables and #(P) = 10 constraints.
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n = 80, n3 + n = 512 080 variables and #(P) = 10 constraints.
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n = 90, n3 + n = 729 090 variables and #(P) = 10 constraints.
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Figure : Guaranteed lower bounds of J∗ where #({Xi}i ) = n3 + n.
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Software

filib - FI LIB - A fast interval library,
http://www2.math.uni-wuppertal.de/~xsc/software/filib.html

GLPK - GNU Linear Programming Kit (GLPK),
http://www.gnu.org/software/glpk/

GMP - GNU Multiple Precision Arithmetic Library,
https://gmplib.org/

Source code is available on my webpage.

J. B. Lasserre, D. Henrion, C. Prieur, E. Trélat. Nonlinear optimal
control via occupation measures and LMI relaxations. SIAM J.
Control Opt. 47(4):1643-1666, 2008

Nicolas Delanoue, Sébastien Lagrange, Mehdi Lhommeau Optimal Control Via Occupation Measures and Interval Analysis

http://www2.math.uni-wuppertal.de/~xsc/software/filib.html
http://www.gnu.org/software/glpk/
https://gmplib.org/


Introduction to optimal control
Measure Theory - Occupation Measures

Rigorous relaxation
Conclusion

Software

filib - FI LIB - A fast interval library,
http://www2.math.uni-wuppertal.de/~xsc/software/filib.html

GLPK - GNU Linear Programming Kit (GLPK),
http://www.gnu.org/software/glpk/

GMP - GNU Multiple Precision Arithmetic Library,
https://gmplib.org/

Source code is available on my webpage.

J. B. Lasserre, D. Henrion, C. Prieur, E. Trélat. Nonlinear optimal
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Future work

Solve the dual problem to compute a guaranteed upper bound.
D. Hernandez-Hernandez, O. Hernandez-Lerma, M. Taksar. The linear programming approach to
deterministic optimal control problems. Appl. Math. 24, 1996, pp. 17-33.

Use an “ad hoc” lp solver.

Obtain guaranteed bounds on the solution of HJB using the
min-plus superposition principle.

Thank you for your attention.
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