Interval analysis and Optimal Transport

Nicolas Delanoue - Mehdi Lhommeau - Philippe Lucidarme LARIS - Universite d'Angers - France

> SWIM 2014 7th Small Workshop on Interval Methods University Main Building, Uppsala, Sweden http://www.math.uu.se/swim2014/

Outline

1 Introduction to Optimal Transport

- Transportation
- Optimal Transport
- Some known results
- 2 A lower bound of the optimal value
 - Finite dimensional relaxation
- 3 An upper bound of the optimal value
 - Duality
 - Finite dimensional relaxation
- 4 Conclusion Future work

Introduction to Optimal Transport

A lower bound of the optimal value An upper bound of the optimal value Conclusion - Future work Transportation Optimal Transport Some known results

Example with books

Transportation Optimal Transport Some known results

Transportation Optimal Transport Some known results

Transportation Optimal Transport Some known results

Transportation Optimal Transport Some known results

Example in the discrete case

Transportation

Transportation Optimal Transport Some known results

Example in the discrete case

Transportation

Transportation Optimal Transport Some known results

Example in the discrete case

A plan transference π

Introduction to Optimal Transport A lower bound of the optimal value

An upper bound of the optimal value Conclusion - Future work Transportation Optimal Transport Some known results

Plan transference problem

Solutions

$$\pi = \frac{\begin{vmatrix} 4 & 2 & 1 \\ 2 & 2 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 4 & 1 & 2 & 1 \end{vmatrix}}{\tilde{\pi} = \frac{\begin{vmatrix} 4 & 2 & 1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 4 & 2 & 2 & 0 \end{vmatrix}}.$$

Transportation Optimal Transport Some known results

Definition - Transference plan

A transference plan (or a transportation) π is a measure on the product space $X \times Y$ such that

$$\begin{cases} \pi(A \times Y) = \mu(A), \\ \pi(X \times B) = \nu(B). \end{cases}$$

all measurable subsets A of X and B of Y.

In the discrete case

$$\begin{cases} \forall i, \ \sum_{j} \pi_{ij} = \mu_i, \\ \forall j, \ \sum_{i} \pi_{ij} = \nu_j. \end{cases}$$

Transportation Optimal Transport Some known results

Introduction to Optimal Transport

A lower bound of the optimal value An upper bound of the optimal value Conclusion - Future work Transportation Optimal Transport Some known results

In the discrete case

$$\min_{\pi \in \mathbb{R}^n \otimes \mathbb{R}^m} \quad \sum_{i,j} c_{ij} \pi_{ij}$$
subject to $\forall i, \sum_j \pi_{ij} = \mu_i,$
 $\forall j, \sum_i \pi_{ij} = \nu_j.$

$$(1)$$

where c_{ij} are non negative real numbers which tells how much it costs to transport one unit of mass from location i to location j.

Transportation Optimal Transport Some known results

Kantorovich formulation

The optimal transportation cost between μ and ν is the value :

$$\mathcal{T}_{c}(\mu,\nu) = \inf_{\pi \in \mathcal{B}(X \times Y)} \int_{X \times Y} c(x,y) d\pi(x,y)$$

subject to $\pi_{X} = \mu,$
 $\pi_{Y} = \nu$ (2)

The optimal π 's, i.e. those such that $I(\pi) = \mathcal{T}_c(\mu, \nu)$, if they exist, will be called *optimal transference plans*.

Introduction to Optimal Transport

A lower bound of the optimal value An upper bound of the optimal value Conclusion - Future work Transportation Optimal Transport Some known results

Remark

The *optimal transportation problem* is an infinite dimensional linear programming problem.

i.e. I is a linear cost function, and constraints are linear.

Transportation Optimal Transport Some known results

- $c = ||x y||^p$, p > 1, the strict convexity of c guarantees that, if μ , ν are absolutely continuous with respect to Lebesgue measure, then there is a unique solution to the Kantorovich problem.
- c = ||x y||², optimal transference plans are the (restrictions of) gradients of convex functions.
- 3 many others in

Topics in Optimal Transportation, Cédric Villani, AMS (2003)

Finite dimensional relaxation

Proposition - Relaxation

Let μ and ν (with support X and Y) be absolutely continuous measures with respect to Lebesgue measure. If $\{X_i\}_i$ and $\{Y_i\}_i$ be finite pavings of X and Y. Suppose that $\mu(X_i) \in [\underline{\mu}_i, \overline{\mu}_i], \nu(Y_j) \in [\underline{\nu}_j, \overline{\nu}_j]$, and $\forall x, y \in X_i \times Y_j, \underline{c}_{ij} \leq c(x, y)$,

$$\begin{split} \mathcal{I} = & \min_{\pi_{ij} \in \mathbb{R}^n \otimes \mathbb{R}^m} \quad \sum_{i,j} \underline{c}_{ij} \pi_{ij} \\ & \text{subject to} \quad \forall i, \ \underline{\mu}_i \leq \sum_j \pi_{ij} \leq \overline{\mu}_i, \\ & \forall j, \ \underline{\nu}_j \leq \sum_i \pi_{ij} \leq \overline{\nu}_j, \\ & \forall i, \forall j, \ \pi_{ij} \geq 0. \end{split}$$

then $\underline{\mathcal{T}} \leq \mathcal{T}_{c}(\mu, \nu).$

Finite dimensional relaxation

Spatial discretization

Finite dimensional relaxation

Spatial discretization

Finite dimensional relaxation

Spatial discretization

Finite dimensional relaxation

Enclosing

If $\mu = f(x)dx$, and [f] an inclusion function for f then

$$\int_X f(x) \mathrm{d} x \in \sum_i [f](X_i) \lambda(X_i)$$

Finite dimensional relaxation

Proof

Let
$$\{X_i\}$$
, $\{Y_j\}$ be a pavings, let $\pi_{ij} = \pi(X_i \times Y_j)$ then $\forall \pi, \exists \xi_{ij} \in X_i \times Y_j$,

$$\sum_{i,j} c(\xi_{ij}) \pi_{ij} = \int_{X \times Y} c(x, y) \mathrm{d}\pi(x, y)$$
(3)

Since
$$\underline{c}_{ij} \leq c(\xi_{ij})$$
 and $\pi_{ij} \geq 0$, then
 $\forall \pi,$

$$\sum_{i,j} \underline{c}_{ij} \pi_{ij} \leq \int_{X \times Y} c(x, y) d\pi(x, y) \qquad (4)$$

Finite dimensional relaxation

Proof

Let μ and ν (with support X and Y) be absolutely continuous measures with respect to Lebesgue measure. If $\{X_i\}_i$ and $\{Y_i\}_i$ be finite pavings of X and Y. Suppose that $\mu(X_i) \in [\underline{\mu}_i, \overline{\mu}_i], \nu(Y_j) \in [\underline{\nu}_j, \overline{\nu}_j]$, and $\forall x, y \in X_i \times Y_j, \underline{c}_{ij} \leq c(x, y)$,

$$\begin{split} \mathcal{K} &= \min_{\pi_{ij} \in \mathbb{R}^n \otimes \mathbb{R}^m} \quad \sum_{i,j} \underline{c}_{ij} \pi_{ij} \\ \text{subject to} \quad \forall i, \ \mu_i = \sum_j \pi_{ij} = \mu_i, \\ \forall j, \ \nu_j = \sum_i \pi_{ij} = \nu_j, \\ \forall i, \forall j, \ \pi_{ij} \geq 0. \end{split}$$

then $\mathcal{K} \leq \mathcal{T}_{c}(\mu, \nu).$

Finite dimensional relaxation

Proof

Let μ and ν (with support X and Y) be absolutely continuous measures with respect to Lebesgue measure. If $\{X_i\}_i$ and $\{Y_i\}_i$ be finite pavings of X and Y. Suppose that $\mu(X_i) \in [\underline{\mu}_i, \overline{\mu}_i], \nu(Y_j) \in [\underline{\nu}_j, \overline{\nu}_j]$, and $\forall x, y \in X_i \times Y_j, \underline{c}_{ij} \leq c(x, y)$,

$$\begin{split} \underline{\mathcal{T}} &= \min_{\pi_{ij} \in \mathbb{R}^n \otimes \mathbb{R}^m} \quad \sum_{i,j} \underline{c}_{ij} \pi_{ij} \\ &\text{subject to} \quad \forall i, \ \underline{\mu}_i \leq \sum_j \pi_{ij} \leq \overline{\mu}_i, \\ &\forall j, \ \underline{\nu}_j \leq \sum_i \pi_{ij} \leq \overline{\nu}_j, \\ &\forall i, \forall j, \ \pi_{ij} \geq 0. \end{split}$$

then $\underline{\mathcal{T}} \leq \mathcal{T}_{c}(\mu, \nu).$

Finite dimensional relaxation

Example

Finite dimensional relaxation

Finite dimensional relaxation

Outline

1 Introduction to Optimal Transport

- Transportation
- Optimal Transport
- Some known results
- 2 A lower bound of the optimal value
 - Finite dimensional relaxation
- 3 An upper bound of the optimal value
 - Duality
 - Finite dimensional relaxation
- 4 Conclusion Future work

Duality Finite dimensional relaxation

Linear programming - Duality

Primal problem

$$\min_{x \in \mathbb{R}^n} c^T x$$

subject to $Ax = b$,
 $x \ge 0$

Dual problem

$$\begin{array}{ll}
\max_{y \in \mathbb{R}^m} & \boldsymbol{b}^T y \\
\text{subject to} & y_i \in \mathbb{R}, \\
& \boldsymbol{A}^T y \leq c.
\end{array}$$
(5)

Duality Finite dimensional relaxation

Duality

$$\inf_{\pi \in \mathcal{B}(X \times Y)} \quad \int_{X \times Y} c(x, y) d\pi(x, y)$$

subject to $\pi_X = \mu,$
 $\pi_Y = \nu$

$$\sup_{\substack{\phi,\psi\in\mathcal{C}_b(X,Y)\\ \text{subject to}}} \int_X \varphi(x) \, \mathrm{d}\mu(x) + \int_Y \psi(y) \, \mathrm{d}\nu(y)$$
(6)

where $\mathcal{C}_b(X, Y)$ denotes the set of all pairs of bounded and continuous functions $\phi : X \to \mathbb{R}$ and $\psi : Y \to \mathbb{R}$.

If X is compact and Haussdorff, $C_b(X)^* = \{ \text{Radon measure} \}$

Duality Finite dimensional relaxation

Kantorovich Duality

The minimum of the Kantorovich problem is equal to

$$\mathcal{T}_{c}(\mu,\nu) = \sup_{\substack{\phi,\psi\in\mathcal{C}_{b}(X,Y)\\\text{subject to}}} \int_{X} \varphi(x) \, \mathrm{d}\mu(x) + \int_{Y} \psi(y) \, \mathrm{d}\nu(y) \tag{7}$$

Duality Finite dimensional relaxation

Interpretation in the discrete case

Duality Finite dimensional relaxation

Interpretation in the discrete case

Duality Finite dimensional relaxation

Interpretation in the discrete case

Duality Finite dimensional relaxation

Proposition - Relaxation

Let μ and ν (with support X and Y) be absolutely continuous measures with respect to Lebesgue measure. If $\{X_i\}_i$ and $\{Y_i\}_i$ be finite pavings of X and Y. Suppose that $\mu(X_i) \in [\underline{\mu}_i, \overline{\mu}_i], \nu(Y_j) \in [\underline{\nu}_j, \overline{\nu}_j]$, and $\forall x, y \in X_i \times Y_j, c(x, y) \leq \overline{c}_{ij}$,

$$\overline{\mathcal{T}} = \sup_{(\phi_i) \in \mathbb{R}^n, (\psi_j) \in \mathbb{R}^m} \sum_i \phi_i \overline{\mu}_i + \sum_j \psi_j \overline{\nu}_i$$
subject to
$$\phi_i + \psi_j \leq \overline{c}_{ij}$$
then
$$\mathcal{T}_c(\mu, \nu) \leq \overline{\mathcal{T}}.$$
(11)

Duality Finite dimensional relaxation

Software

• filib - FI_LIB - A fast interval library,

http://www2.math.uni-wuppertal.de/~xsc/software/filib.html

• GLPK - GNU Linear Programming Kit (GLPK),

http://www.gnu.org/software/glpk/

• GMP - GNU Multiple Precision Arithmetic Library,

https://gmplib.org/

• Source code is available on my webpage.

Future work

- Compute guaranteed enclosures of the solution combining linear programming and constraint propagation.
- Generalize this methodology to other problems (D. Henrion & J.B. Lasserre):
 - Probability and Markov Chains
 - Optimal Control with occupation measures (ODE),
 - Others as in *Moments, Positive Polynomials and Their Applications*, J.B Lasserre, Imperial College Press Optimization Series (2009)

Tack för din uppmärksamhet !