Introduction to Optimal transport A lower bound of the optimal value An upper bound of the optimal value Conclusion - Future work

Interval analysis and Optimal Transport

Nicolas Delanoue - Mehdi Lhommeau - Philippe Lucidarme LARIS - Universite d'Angers - France

SWIM 2014

7th Small Workshop on Interval Methods University Main Building, Uppsala, Sweden http://www.math.uu.se/swim2014/

Outline

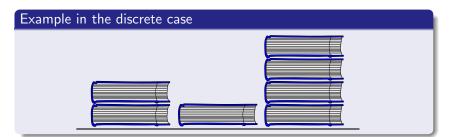
- 1 Introduction to Optimal transport
 - Transportation
 - Optimal transport
 - Some known results
- 2 A lower bound of the optimal value
 - Finite dimensional relaxation
- 3 An upper bound of the optimal value
 - Duality
 - Finite dimensional relaxation
- 4 Conclusion Future work

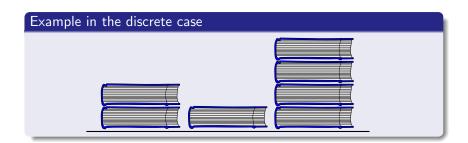
Transportation
Optimal transport
Some known results

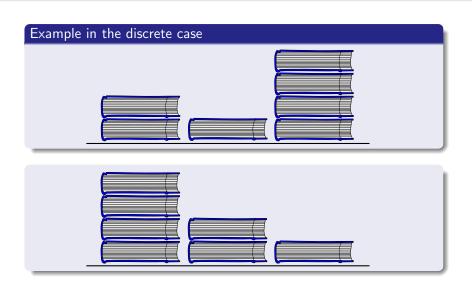
Example with books

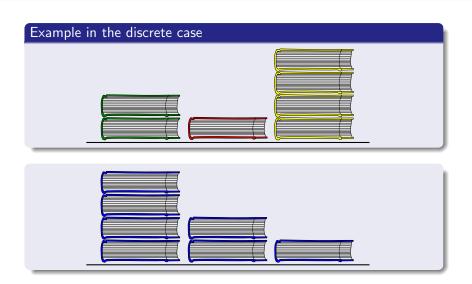
Transportation
Optimal transport
Some known results

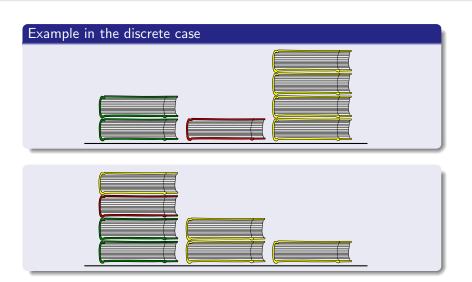
Example with books











Conclusion - Future work

Example in the discrete case

$$\mu=\textbf{(2,1,4)}$$

$$\nu=(\mathbf{4},\mathbf{2},\mathbf{1})$$

Transportation

An upper bound of the optimal value Conclusion - Future work

Example in the discrete case

$$\mu = (2, 1, 4)$$

$$\nu = (4, 2, 1)$$

Transportation

Conclusion - Future work

Example in the discrete case

$$\mu = (2, 1, 4)$$

$$\nu = (4, 2, 1)$$

A plan transference π

$$\pi = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 2 & 1 \end{array}\right)$$

Plan transference problem

	4	2	1
2			
1			
4			

Conclusion - Future work

Plan transference problem

Solutions

Definition - Transference plan

A transference plan (or a transportation) π is a measure on the product space $X\times Y$ such that

$$\begin{cases} \pi(A \times Y) = \mu(A), \\ \pi(X \times B) = \nu(B). \end{cases}$$

all measurable subsets A of X and B of Y.

Definition - Transference plan

A transference plan (or a transportation) π is a measure on the product space $X\times Y$ such that

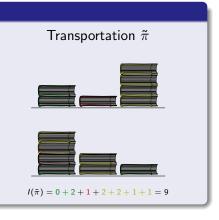
$$\begin{cases} \pi(A \times Y) = \mu(A), \\ \pi(X \times B) = \nu(B). \end{cases}$$

all measurable subsets A of X and B of Y.

In the discrete case

$$\begin{cases} \forall i, \ \sum_{j} \pi_{ij} = \mu_i, \\ \forall j, \ \sum_{i} \pi_{ij} = \nu_j. \end{cases}$$

Comparing two plan transferences Transportation π $I(\pi) = 0 + 0 + 1 + 2 + 1 + 1 + 0 = 5$



In the discrete case

$$\min_{\pi \in \mathbb{R}^n \otimes \mathbb{R}^m} \quad \sum_{i,j} c_{ij} \pi_{ij}$$
subject to $\forall i, \sum_j \pi_{ij} = \mu_i,$

$$\forall j, \sum_j \pi_{ij} = \nu_j.$$

$$(1)$$

where c_{ij} are non negative real numbers which tells how much it costs to transport one unit of mass from location i to location j.

Kantorovich formulation

The optimal transportation cost between μ and ν is the value :

$$\mathcal{T}_{c}(\mu,\nu) = \inf_{\pi \in \mathcal{B}(X \times Y)} \int_{X \times Y} c(x,y) d\pi(x,y)$$
subject to $\pi_{X} = \mu$,
$$\pi_{Y} = \nu$$
(2)

The optimal π 's, i.e. those such that $I(\pi) = \mathcal{T}_c(\mu, \nu)$, if they exist, will be called *optimal transference plans*.

Remark

The *optimal transportation problem* is an infinite dimensional linear programming problem.

i.e. I is a linear cost function, and constraints are linear.

• $c = \|x - y\|^p$, p > 1, the strict convexity of c guarantees that, if μ , ν are absolutely continuous with respect to Lebesgue measure, then there is a unique solution to the Kantorovich problem.

- $c = \|x y\|^p$, p > 1, the strict convexity of c guarantees that, if μ , ν are absolutely continuous with respect to Lebesgue measure, then there is a unique solution to the Kantorovich problem.
- ② $c = ||x y||^2$, optimal transference plans are the (restrictions of) gradients of convex functions.

- $c = \|x y\|^p$, p > 1, the strict convexity of c guarantees that, if μ , ν are absolutely continuous with respect to Lebesgue measure, then there is a unique solution to the Kantorovich problem.
- ② $c = ||x y||^2$, optimal transference plans are the (restrictions of) gradients of convex functions.
- many others in

Topics in Optimal Transportation, Cédric Villani, AMS (2003)

Let μ and ν (with support X and Y) be absolutely continuous measures with respect to Lebesgue measure. If $\{X_i\}_i$ and $\{Y_i\}_i$ be finite pavings of X and Y. Suppose that $\mu(X_i) \in [\underline{\mu}_i, \overline{\mu}_i], \ \nu(Y_j) \in [\underline{\nu}_j, \overline{\nu}_j]$, and $\forall x,y \in X_i \times Y_j, \underline{c}_{ii} \leq c(x,y)$,

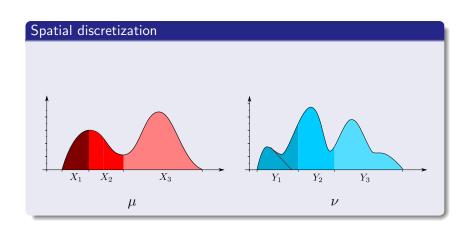
Let μ and ν (with support X and Y) be absolutely continuous measures with respect to Lebesgue measure. If $\{X_i\}_i$ and $\{Y_i\}_i$ be finite pavings of X and Y. Suppose that $\mu(X_i) \in [\underline{\mu}_i, \overline{\mu}_i], \ \nu(Y_j) \in [\underline{\nu}_j, \overline{\nu}_j]$, and $\forall x,y \in X_i \times Y_j, \underline{c}_{ji} \leq c(x,y)$,

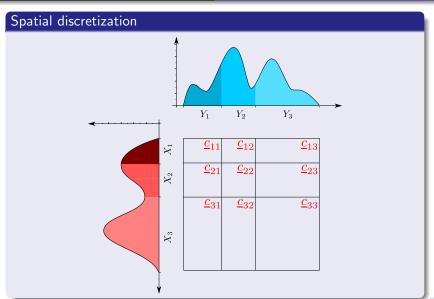
$$\begin{split} \mathcal{I} = & \min_{\pi_{ij} \in \mathbb{R}^n \otimes \mathbb{R}^m} \quad \sum_{i,j} \underline{c}_{ij} \pi_{ij} \\ & \text{subject to} \quad \forall i, \ \underline{\mu}_i \leq \sum_j \pi_{ij} \leq \overline{\mu}_i, \\ & \forall j, \ \underline{\nu}_j \leq \sum_i \pi_{ij} \leq \overline{\nu}_j, \\ & \forall i, \forall i, \ \pi_{ii} \geq 0. \end{split}$$

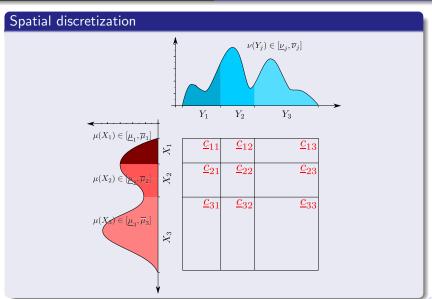
Let μ and ν (with support X and Y) be absolutely continuous measures with respect to Lebesgue measure. If $\{X_i\}_i$ and $\{Y_i\}_i$ be finite pavings of X and Y. Suppose that $\mu(X_i) \in [\underline{\mu}_i, \overline{\mu}_i], \ \nu(Y_j) \in [\underline{\nu}_j, \overline{\nu}_j]$, and $\forall x,y \in X_i \times Y_j, \underline{c}_{ii} \leq c(x,y)$,

$$\begin{split} \mathcal{I} = & \min_{\pi_{ij} \in \mathbb{R}^n \otimes \mathbb{R}^m} \quad \sum_{i,j} \underline{c}_{ij} \pi_{ij} \\ & \text{subject to} \quad \forall i, \ \underline{\mu}_i \leq \sum_j \pi_{ij} \leq \overline{\mu}_i, \\ & \forall j, \ \underline{\nu}_j \leq \sum_i \pi_{ij} \leq \overline{\nu}_j, \\ & \forall i, \forall j, \ \pi_{ii} \geq 0. \end{split}$$

then
$$\underline{\mathcal{T}} \leq \mathcal{T}_c(\mu, \nu)$$
.







Enclosing

If $\mu = f(x)dx$, and [f] an inclusion function for f then

$$\int_{X} f(x) dx \in \sum_{i} [f](X_{i}) \lambda(X_{i})$$

$$\underline{\mu}_{i}$$

$$\mu(X)$$

$$\underline{\mu}_{i}$$

$$\mu(X)$$

$$\overline{\mu}_{i}$$

$$\underline{\mu}_{i}$$

$$\sum_{i} \underline{f}(X_{i}) \lambda(X_{i}) \leq \int_{X} f(x) dx \leq \sum_{i} \overline{f}(X_{i}) \lambda(X_{i})$$

Proof

Let $\{X_i\}$, $\{Y_j\}$ be a pavings, let $\pi_{ij} = \pi(X_i \times Y_j)$ then $\forall \pi, \exists \xi_{ij} \in X_i \times Y_j$,

$$\sum_{i,j} c(\xi_{ij}) \pi_{ij} = \int_{X \times Y} c(x,y) d\pi(x,y)$$
 (3)

Proof

Let $\{X_i\}$, $\{Y_j\}$ be a pavings, let $\pi_{ij} = \pi(X_i \times Y_j)$ then $\forall \pi, \exists \xi_{ij} \in X_i \times Y_j$,

$$\sum_{i,j} c(\xi_{ij}) \pi_{ij} = \int_{X \times Y} c(x,y) d\pi(x,y)$$
 (3)

Since $\underline{c}_{ij} \leq c(\xi_{ij})$ and $\pi_{ij} \geq 0$, then $\forall \pi$,

$$\sum_{i,i} \underline{c}_{ij} \pi_{ij} \le \int_{X \times Y} c(x,y) \mathrm{d}\pi(x,y) \tag{4}$$

Let μ and ν (with support X and Y) be absolutely continuous measures with respect to Lebesgue measure. If $\{X_i\}_i$ and $\{Y_i\}_i$ be finite pavings of X and Y. Suppose that $\mu(X_i) \in [\underline{\mu}_i, \overline{\mu}_i], \ \nu(Y_j) \in [\underline{\nu}_j, \overline{\nu}_j]$, and $\forall x,y \in X_i \times Y_j, \underline{c}_{ii} \leq c(x,y)$,

$$\begin{split} \mathcal{K} = & \min_{\pi_{ij} \in \mathbb{R}^n \otimes \mathbb{R}^m} \quad \sum_{i,j} \underline{c}_{ij} \pi_{ij} \\ & \text{subject to} \quad \forall i, \ \mu_i = \sum_j \pi_{ij} = \mu_i, \\ & \forall j, \ \nu_j = \sum_i \pi_{ij} = \nu_j, \\ & \forall i, \forall j, \ \pi_{ii} \geq 0. \end{split}$$

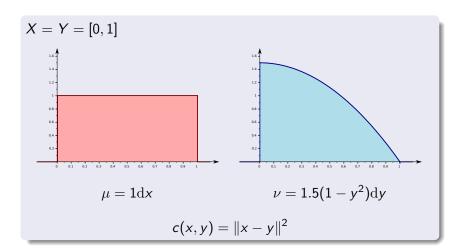
then
$$\mathcal{K} \leq \mathcal{T}_{c}(\mu, \nu)$$
.

Let μ and ν (with support X and Y) be absolutely continuous measures with respect to Lebesgue measure. If $\{X_i\}_i$ and $\{Y_i\}_i$ be finite pavings of X and Y. Suppose that $\mu(X_i) \in [\underline{\mu}_i, \overline{\mu}_i], \ \nu(Y_j) \in [\underline{\nu}_j, \overline{\nu}_j]$, and $\forall x,y \in X_i \times Y_j, \underline{c}_{ii} \leq c(x,y)$,

$$\begin{split} \mathcal{T} = & \min_{\pi_{ij} \in \mathbb{R}^n \otimes \mathbb{R}^m} \quad \sum_{i,j} \underline{c}_{ij} \pi_{ij} \\ & \text{subject to} \quad \forall i, \ \underline{\mu}_i \leq \sum_j \pi_{ij} \leq \overline{\mu}_i, \\ & \forall j, \ \underline{\nu}_j \leq \sum_i \pi_{ij} \leq \overline{\nu}_j, \\ & \forall i, \forall i, \ \pi_{ii} \geq 0. \end{split}$$

then
$$\underline{\mathcal{T}} \leq \mathcal{T}_c(\mu, \nu)$$
.

Example



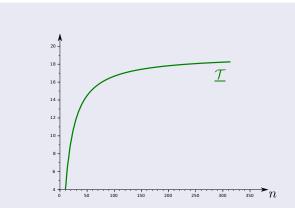


Figure : Guaranteed lower bounds of $\mathcal{T}_c(\mu, \nu)$ where $n = \text{Card}\{X_i\}_i$

Outline

- 1 Introduction to Optimal transport
 - Transportation
 - Optimal transport
 - Some known results
- 2 A lower bound of the optimal value
 - Finite dimensional relaxation
- 3 An upper bound of the optimal value
 - Duality
 - Finite dimensional relaxation
- 4 Conclusion Future work

Linear programming - Duality

Primal problem

$$\min_{x \in \mathbb{R}^n} c^T x$$
subject to $Ax = b$, (5)
$$x \ge 0.$$

Dual problem

$$\max_{y \in \mathbb{R}^m} b^T y
\text{subject to} \quad y_i \in \mathbb{R},
\qquad A^T y \le c.$$
(6)

Duality

$$\inf_{\pi \in \mathcal{B}(X \times Y)} \int_{X \times Y} c(x, y) d\pi(x, y)$$
subject to
$$\pi_X = \mu,$$
$$\pi_Y = \nu$$

$$\sup_{\phi,\psi\in\mathcal{C}_b(X,Y)} \int_X \varphi(x) \,\mathrm{d}\mu(x) + \int_Y \psi(y) \,\mathrm{d}\nu(y)$$
subject to
$$\varphi(x) + \psi(y) \le c(x,y).$$
(7)

Duality

$$\inf_{\pi \in \mathcal{B}(X \times Y)} \int_{X \times Y} c(x, y) d\pi(x, y)$$
subject to
$$\pi_X = \mu,$$

$$\pi_Y = \nu$$

$$\sup_{\phi,\psi\in\mathcal{C}_b(X,Y)} \int_X \varphi(x) \,\mathrm{d}\mu(x) + \int_Y \psi(y) \,\mathrm{d}\nu(y)$$
subject to
$$\varphi(x) + \psi(y) \le c(x,y).$$
(7)

where $C_b(X, Y)$ denotes the set of all pairs of bounded and continuous functions $\phi: X \to \mathbb{R}$ and $\psi: Y \to \mathbb{R}$.

Duality

$$\inf_{\pi \in \mathcal{B}(X \times Y)} \int_{X \times Y} c(x, y) d\pi(x, y)$$
subject to
$$\pi_X = \mu,$$
$$\pi_Y = \nu$$

$$\sup_{\phi,\psi\in\mathcal{C}_b(X,Y)} \int_X \varphi(x) \,\mathrm{d}\mu(x) + \int_Y \psi(y) \,\mathrm{d}\nu(y)$$
subject to
$$\varphi(x) + \psi(y) \le c(x,y).$$
(7)

where $C_b(X, Y)$ denotes the set of all pairs of bounded and continuous functions $\phi: X \to \mathbb{R}$ and $\psi: Y \to \mathbb{R}$.

If X is compact and Haussdorff, $C_b(X)^* = \{\text{Radon measure}\}$

Kantorovich Duality

The minimum of the Kantorovich problem is equal to

$$\mathcal{T}_{c}(\mu,\nu) = \sup_{\phi,\psi \in \mathcal{C}_{b}(X,Y)} \int_{X} \varphi(x) \, \mathrm{d}\mu(x) + \int_{Y} \psi(y) \, \mathrm{d}\nu(y)$$
subject to
$$\varphi(x) + \psi(y) \le c(x,y).$$
(8)

Interpretation in the discrete case

$$\sup_{(\phi_i)\in\mathbb{R}^n,(\psi_j)\in\mathbb{R}^m} \quad \sum_i \phi_i \mu_i + \sum_j \psi_j \nu_i \tag{9}$$

subject to
$$\phi_i + \psi_j \leq c_{ij}$$

$$\iota = \blacksquare$$

$$\nu =$$

Interpretation in the discrete case

$$\sup_{(\phi_i) \in \mathbb{R}^n, (\psi_j) \in \mathbb{R}^m} \quad \sum_i \phi_i \mu_i + \sum_j \psi_j \nu_i$$

$$\text{subject to} \quad \phi_i + \psi_i \le c_{ii}$$
(10)

$$\mu = \frac{1}{2} \frac{1}{2\phi_1} \frac{1}{2\phi_2} \frac{1}{2\phi_2} \frac{1}{2\phi_3} \frac{1}{2\phi_3}$$

$$\nu = \frac{4\psi_1}{4\psi_1} \frac{2\psi_2}{4\psi_2} \frac{2\psi_2}{4\psi_3} \frac{2\psi_3}{4\psi_3}$$

Interpretation in the discrete case

$$\sup_{(\phi_i) \in \mathbb{R}^n, (\psi_j) \in \mathbb{R}^m} \sum_i \phi_i \mu_i + \sum_j \psi_j \nu_i$$
subject to
$$\phi_i + \psi_j \le c_{ij}$$

$$\mu = \sum_{j=1}^{n} \frac{1}{2\phi_1} \frac{1}{2\phi_2} \frac{1}{2\phi_3} \frac{1}{2\phi_3}$$

$$\nu = \sum_{j=1}^{n} \frac{1}{2\phi_2} \frac{1}{2\phi_3} \frac{1}{2\phi_3} \frac{1}{2\phi_3}$$

$$\nu = \sum_{j=1}^{n} \frac{1}{2\phi_2} \frac{1}{2\phi_3} \frac{1}{$$

Proposition - Relaxation

Let μ and ν (with support X and Y) be absolutely continuous measures with respect to Lebesgue measure. If $\{X_i\}_i$ and $\{Y_i\}_i$ be finite pavings of X and Y. Suppose that $\mu(X_i) \in [\underline{\mu}_j, \overline{\mu}_i]$, $\nu(Y_j) \in [\underline{\nu}_j, \overline{\nu}_j]$, and $\forall x, y \in X_i \times Y_i, c(x, y) \leq \overline{c}_{ii}$,

Proposition - Relaxation

Let μ and ν (with support X and Y) be absolutely continuous measures with respect to Lebesgue measure. If $\{X_i\}_i$ and $\{Y_i\}_i$ be finite pavings of X and Y. Suppose that $\mu(X_i) \in [\underline{\mu}_i, \overline{\mu}_i]$, $\nu(Y_j) \in [\underline{\nu}_j, \overline{\nu}_j]$, and $\forall x, y \in X_i \times Y_j, c(x, y) \leq \overline{c}_{ij}$,

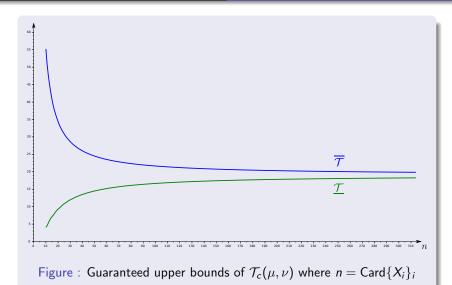
$$\overline{\mathcal{T}} = \sup_{(\phi_i) \in \mathbb{R}^n, (\psi_j) \in \mathbb{R}^m} \quad \sum_i \phi_i \overline{\mu}_i + \sum_j \psi_j \overline{\nu}_i$$
subject to
$$\phi_i + \psi_j \le \overline{c}_{ij}$$
(12)

Proposition - Relaxation

Let μ and ν (with support X and Y) be absolutely continuous measures with respect to Lebesgue measure. If $\{X_i\}_i$ and $\{Y_i\}_i$ be finite pavings of X and Y. Suppose that $\mu(X_i) \in [\underline{\mu}_i, \overline{\mu}_i]$, $\nu(Y_j) \in [\underline{\nu}_j, \overline{\nu}_j]$, and $\forall x, y \in X_i \times Y_j, c(x, y) \leq \overline{c}_{ij}$,

$$\overline{\mathcal{T}} = \sup_{(\phi_i) \in \mathbb{R}^n, (\psi_j) \in \mathbb{R}^m} \quad \sum_i \phi_i \overline{\mu}_i + \sum_j \psi_j \overline{\nu}_i
\text{subject to} \quad \phi_i + \psi_j \leq \overline{c}_{ij}$$
(12)

then
$$\mathcal{T}_c(\mu, \nu) \leq \overline{\mathcal{T}}$$
.



Software

- filib FI_LIB A fast interval library,
 http://www2.math.uni-wuppertal.de/-xsc/software/filib.html
- GLPK GNU Linear Programming Kit (GLPK), http://www.gnu.org/software/glpk/
- GMP GNU Multiple Precision Arithmetic Library, https://gmplib.org/
- Source code is available on my webpage.

• Compute guaranteed enclosures of the solution combining linear programming and constraints propagation.

- Compute guaranteed enclosures of the solution combining linear programming and constraints propagation.
- Generalize this methodology to other problems (D. Henrion & J.B. Lasserre):

- Compute guaranteed enclosures of the solution combining linear programming and constraints propagation.
- Generalize this methodology to other problems (D. Henrion & J.B. Lasserre):
 - Probability and Markov Chains

- Compute guaranteed enclosures of the solution combining linear programming and constraints propagation.
- Generalize this methodology to other problems (D. Henrion & J.B. Lasserre):
 - Probability and Markov Chains
 - Optimal Control with occupation measures (ODE),

- Compute guaranteed enclosures of the solution combining linear programming and constraints propagation.
- Generalize this methodology to other problems (D. Henrion & J.B. Lasserre):
 - Probability and Markov Chains
 - Optimal Control with occupation measures (ODE),
 - Others as in Moments, Positive Polynomials and Their Applications, J.B Lasserre, Imperial College Press Optimization Series (2009)

- Compute guaranteed enclosures of the solution combining linear programming and constraints propagation.
- Generalize this methodology to other problems (D. Henrion & J.B. Lasserre):
 - Probability and Markov Chains
 - Optimal Control with occupation measures (ODE),
 - Others as in Moments, Positive Polynomials and Their Applications, J.B Lasserre, Imperial College Press Optimization Series (2009)

Merci pour votre attention.

