A new method for integrating ODE based on monotonicity

Nicolas Delanoue - Luc Jaulin

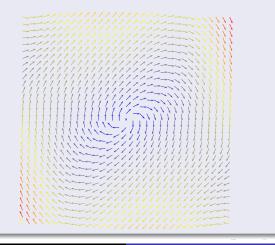
LISA Angers France - Ensieta Brest France

SWIM09 : Workshop on Interval Methods EPFL Lausanne, June 10-11, 2009

- 4 同 6 4 日 6 4 日 6

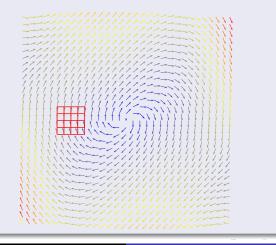
Main goal

Computing the smallest box containing the solution of the initial value problem $\dot{x} = f(x), x(0) \in [x]$



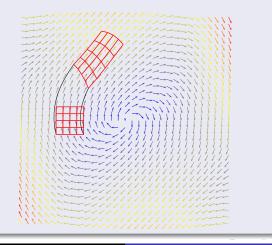
Main goal

Computing the smallest box containing the solution of the initial value problem $\dot{x} = f(x), x(0) \in [x]$



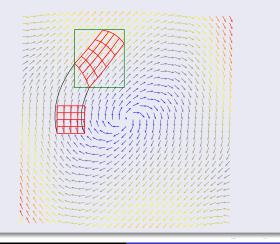
Main goal

Computing the smallest box containing the solution of the initial value problem $\dot{x} = f(x), x(0) \in [x]$



Main goal

Computing the smallest box containing the solution of the initial value problem $\dot{x} = f(x), x(0) \in [x]$



Outline

1 Interval analysis, optimal inclusion function

- Inclusion function
- Optimal inclusion function

2 Computing optimal validated solutions for ODE

- ODE, Dynamical system and flow
- Derivative of the flow with respect to initial condition
- Algorithm

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Let f be a function from \mathbb{R}^n to \mathbb{R}^m . A function $[f] : \mathbb{IR}^n \to \mathbb{IR}^m$ satisfying : $\forall [x] \in \mathbb{IR}^n, f([x]) \subset [f]([x])$ is an inclusion function of f.

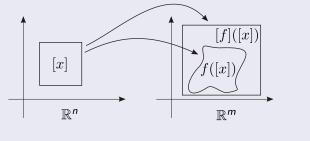


 FIG .: Illustration of inclusion function.

イロン イヨン イヨン イヨン

3

remark

• Interval arithmetic gives a method to compute an inclusion function of a given function defined by an arithmetical expression.

・ロト ・回ト ・ヨト ・ヨト

3

remark

- Interval arithmetic gives a method to compute an inclusion function of a given function defined by an arithmetical expression.
- In general, the smallest inclusion function is not obtained and one only has : f([x]) ⊊ [f]([x]).

ヘロン 人間 とくほど くほとう

Theorem

Let [x] be a box of \mathbb{R}^n and f be a differentiable function $\mathbb{R}^n \to \mathbb{R}$. Let us denote by $f_*(x)$ the jacobian matrix

$$\left(\begin{array}{cc} \frac{\partial f}{\partial x_1}(x) & \dots & \frac{\partial f}{\partial x_n}(x) \end{array}\right)$$

Suppose that all components of $f_*([x])$ are non-negative, then $[f(\underline{x}), f(\overline{x})]$ is the smallest interval containing f([x]).

イロン イヨン イヨン イヨン

Inclusion function Optimal inclusion function

Example

Let us consider the function $f: (x_1, x_2) \mapsto 3x_1^2 - 2x_1x_2 + 3x_2^2$.

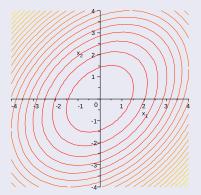


FIG.: Level curves.

Inclusion function Optimal inclusion function

Example

Let us consider the function $f: (x_1, x_2) \mapsto 3x_1^2 - 2x_1x_2 + 3x_2^2$.

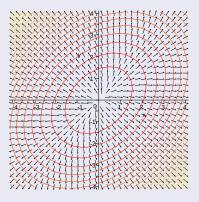


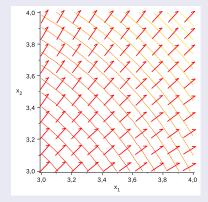
FIG.: Level curves.

Inclusion function Optimal inclusion function

Example $f: (x_1, x_2) \mapsto 3x_1^2 - 2x_1x_2 + 3x_2^2$

Since $f_*(x_1, x_2) = (6x_1 - 2x_2 - 2x_1 + 6x_2)$, one has

 $\{f_*(x_1, x_2) \mid (x_1, x_2) \in [3, 4] \times [3, 4]\} \subset \mathbb{R}^+ \times \mathbb{R}^+.$



Nicolas Delanoue - Luc Jaulin A new method for integrating ODE based on monotonicity

Inclusion function Optimal inclusion function

Example $f: (x_1, x_2) \mapsto 3x_1^2 - 2x_1x_2 + 3x_2^2$

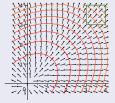


FIG.: Level curves.

• According to the previous theorem, one can conclude that $f([3,4] \times [3,4]) = [f(3,3), f(4,4)] = [36,52].$

Inclusion function Optimal inclusion function

Example $f: (x_1, x_2) \mapsto 3x_1^2 - 2x_1x_2 + 3x_2^2$

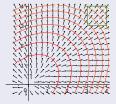


FIG.: Level curves.

- According to the previous theorem, one can conclude that $f([3,4] \times [3,4]) = [f(3,3), f(4,4)] = [36,52].$
- This result can be compare to the one obtained applying interval arithmetic : 3 * [3,4]² - 2 * [3,4] * [3,4] + 3 * [3,4]², *i.e.* [22,78].

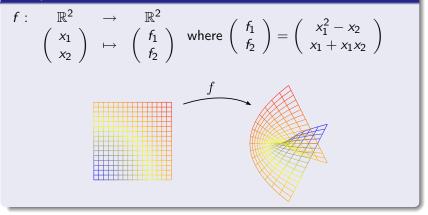
Corollary

Let [x] be a box of \mathbb{R}^n and f be a differentiable function $\mathbb{R}^n \to \mathbb{R}^m$. Let us denote by $f_*(x)$ the jacobian matrix

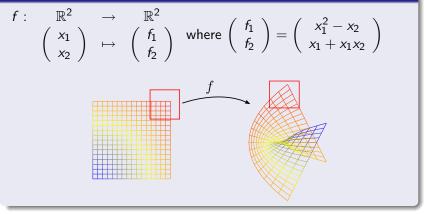
$$\left(\frac{\partial f_j}{\partial x_j}(x)\right)_{1\leq i\leq n, 1\leq j\leq n}$$

Suppose that no component of $f_*([x])$ contains 0, then there exists 2m corners $\underline{\tilde{x}}_j$ and $\overline{\tilde{x}}_j$ of [x] such that $\prod_{1 \le j \le n} [f_j(\underline{\tilde{x}}_j), f_j(\overline{\tilde{x}}_j)]$ is the smallest box containing f([x]).

・ロン ・回と ・ヨン ・ヨン



<ロ> (四) (四) (注) (三) (三)



<ロ> (四) (四) (注) (三) (三)

$$f: \mathbb{R}^{2} \to \mathbb{R}^{2}$$

$$\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \mapsto \begin{pmatrix} f_{1} \\ f_{2} \end{pmatrix} \text{ where } \begin{pmatrix} f_{1} \\ f_{2} \end{pmatrix} = \begin{pmatrix} x_{1}^{2} - x_{2} \\ x_{1} + x_{1}x_{2} \end{pmatrix}$$

$$f$$

$$f$$

$$f_{2}$$

$$f_{1}$$

(ロ) (回) (目) (目) (日) (の)

$$f: \mathbb{R}^{2} \to \mathbb{R}^{2}$$

$$\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \mapsto \begin{pmatrix} f_{1} \\ f_{2} \end{pmatrix} \text{ where } \begin{pmatrix} f_{1} \\ f_{2} \end{pmatrix} = \begin{pmatrix} x_{1}^{2} - x_{2} \\ x_{1} + x_{1}x_{2} \end{pmatrix}$$

$$f$$

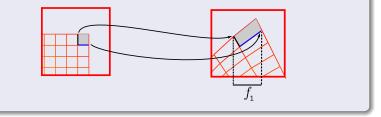
$$f$$

$$f_{2}$$

$$f_{1}$$

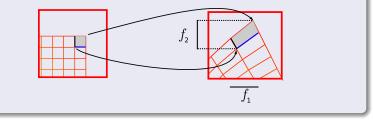
(ロ) (回) (目) (目) (日) (の)

$$f_*(x_1, x_2) = \begin{pmatrix} 2x_1 & -1 \\ 1+x_2 & x_1 \end{pmatrix} = \begin{pmatrix} \partial_{x_1}f_1 & \partial_{x_2}f_1 \\ \partial_{x_1}f_2 & \partial_{x_2}f_2 \end{pmatrix}$$



<ロ> (四) (四) (三) (三) (三)

$$f_*(x_1, x_2) = \begin{pmatrix} 2x_1 & -1 \\ 1+x_2 & x_1 \end{pmatrix} = \begin{pmatrix} \partial_{x_1}f_1 & \partial_{x_2}f_1 \\ \partial_{x_1}f_2 & \partial_{x_2}f_2 \end{pmatrix}$$



<ロ> (四) (四) (三) (三) (三)

Inclusion function Optimal inclusion function

Example

$$f_*(x_1, x_2) = \begin{pmatrix} 2x_1 & -1\\ 1+x_2 & x_1 \end{pmatrix} = \begin{pmatrix} \partial_{x_1}f_1 & \partial_{x_2}f_1\\ \partial_{x_1}f_2 & \partial_{x_2}f_2 \end{pmatrix}$$
$$f_2 \mid \boxed{f_2} \mid \boxed{f_1}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Inclusion function Optimal inclusion function

Example

$$f_*(x_1, x_2) = \begin{pmatrix} 2x_1 & -1 \\ 1+x_2 & x_1 \end{pmatrix} = \begin{pmatrix} \partial_{x_1}f_1 & \partial_{x_2}f_1 \\ \partial_{x_1}f_2 & \partial_{x_2}f_2 \end{pmatrix}$$



 $\begin{pmatrix} [f_1(\underline{x}_1, \overline{x}_2), f_1(\overline{x}_1, \underline{x}_2)] \\ [f_2(\underline{x}_1, \underline{x}_2), f_2(\overline{x}_1, \overline{x}_2)] \end{pmatrix}$ is the smallest box containing $f([\underline{x}_1, \overline{x}_1], [\underline{x}_2, \overline{x}_2])$

イロン イヨン イヨン イヨン

э

ODE, **Dynamical system and flow** Derivative of the flow with respect to initial condition Algorithm

$$\left\{ \begin{array}{l} \dot{x} = f(x) \\ x \in \mathbb{R}^n \end{array}, f \in \mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^n). \end{array} \right.$$

Nicolas Delanoue - Luc Jaulin A new method for integrating ODE based on monotonicity

2

ODE, **Dynamical system and flow** Derivative of the flow with respect to initial condition Algorithm

Let us denote by $\{g^t : \mathbb{R}^n \to \mathbb{R}^n\}_{t \in \mathbb{R}}$ the flow, i.e.

$$\left. \frac{d}{dt} g^t x \right|_{t=0} = f(x) \text{ and } g^0 = Id$$
(1)

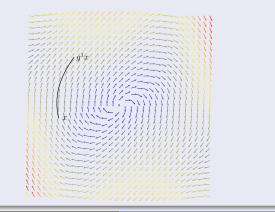
・ロト ・回 ト ・ヨト ・ヨー

ODE, Dynamical system and flow Derivative of the flow with respect to initial condition Algorithm

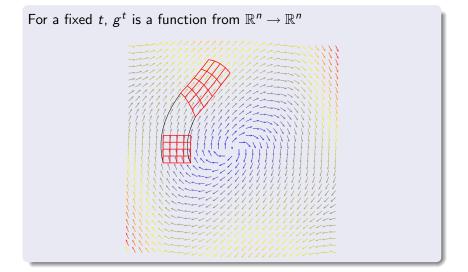
Let us denote by $\{g^t : \mathbb{R}^n \to \mathbb{R}^n\}_{t \in \mathbb{R}}$ the flow, i.e.

$$\left. \frac{d}{dt} g^t x \right|_{t=0} = f(x) \text{ and } g^0 = Id$$
(1)

Note that $t \mapsto g^t x$ is the solution of $\dot{x} = f(x)$ satisfying x(0) = x.



ODE, **Dynamical system and flow** Derivative of the flow with respect to initial condition Algorithm



イロト イヨト イヨト イヨト

æ

ODE, **Dynamical system and flow** Derivative of the flow with respect to initial condition Algorithm

According to the previous theorem, if no component of $g_*^t([x])$ contains 0, then there exists 2n corners $\underline{\tilde{x}}_j$ and $\overline{\tilde{x}}_j$ of [x] such that $\prod_{1 \leq j \leq n} [g_j^t(\underline{\tilde{x}}_j), g_j^t(\overline{\tilde{x}}_j)]$ is the smallest box containing $g^t([x])$.

イロン イヨン イヨン イヨン

ODE, **Dynamical system and flow** Derivative of the flow with respect to initial condition Algorithm

Example

Let us consider the following ODE :

$$\left(\begin{array}{c} \dot{x_1} \\ \dot{x_2} \end{array}\right) = \left(\begin{array}{c} 1 & 1 \\ -1 & 1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = A \left(\begin{array}{c} x \\ y \end{array}\right)$$

ODE, **Dynamical system and flow** Derivative of the flow with respect to initial condition Algorithm

Example

One can obtain an explicit solution :

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \exp(tA) \begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix}$$

$$= \begin{pmatrix} e^t \cos(t) & e^t \sin(t) \\ -e^t \sin(t) & e^t \cos(t) \end{pmatrix} \begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix}$$

・ロン ・回 と ・ヨン ・ヨン

æ

ODE, **Dynamical system and flow** Derivative of the flow with respect to initial condition Algorithm

Example

One can obtain an explicit solution :

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \exp(tA) \begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix}$$

$$= \begin{pmatrix} e^t \cos(t) & e^t \sin(t) \\ -e^t \sin(t) & e^t \cos(t) \end{pmatrix} \begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix}$$

$$g^{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$$

$$\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \mapsto \begin{pmatrix} e^{t}\cos(t)x_{1} + e^{t}\sin(t)x_{2} \\ -e^{t}\sin(t)x_{1} + e^{t}\cos(t)x_{2} \end{pmatrix}$$

・ロン ・回と ・ヨン ・ヨン

æ

ODE, **Dynamical system and flow** Derivative of the flow with respect to initial condition Algorithm

$$g^{1}: \quad \mathbb{R}^{2} \quad \rightarrow \quad \mathbb{R}^{2} \\ \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \quad \mapsto \quad \begin{pmatrix} e^{1}\cos(1)x_{1} + e^{1}\sin(1)x_{2} \\ -e^{1}\sin(1)x_{1} + e^{1}\cos(1)x_{2} \end{pmatrix}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

ODE, **Dynamical system and flow** Derivative of the flow with respect to initial condition Algorithm

$$g^{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$$

$$\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \mapsto \begin{pmatrix} e^{1}\cos(1)x_{1} + e^{1}\sin(1)x_{2} \\ -e^{1}\sin(1)x_{1} + e^{1}\cos(1)x_{2} \end{pmatrix}$$

$$g_*^1 = \begin{pmatrix} \frac{\partial g_1^1}{\partial x_1} & \frac{\partial g_1^1}{\partial x_2} \\ \frac{\partial g_2^1}{\partial x_1} & \frac{\partial g_2^1}{\partial x_2} \end{pmatrix}$$
$$= \begin{pmatrix} e^1 \cos(1) & e^1 \sin(1) \\ -e^1 \sin(1) & e^1 \cos(1) \end{pmatrix}$$
$$\simeq \begin{pmatrix} 1.468693940 & 2.287355287 \\ -2.287355287 & 1.468693940 \end{pmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ODE, **Dynamical system and flow** Derivative of the flow with respect to initial condition Algorithm

$$g_*^1 \simeq \left(egin{array}{cccc} 1.468693940 & 2.287355287\ -2.287355287 & 1.468693940 \end{array}
ight)$$

・ロト ・回 ト ・ヨト ・ヨー

ODE, Dynamical system and flow Derivative of the flow with respect to initial condition Algorithm

$$g_*^1 \simeq \left(egin{array}{cccc} 1.468693940 & 2.287355287 \ -2.287355287 & 1.468693940 \end{array}
ight)$$

According to the previous theorem :

$$\begin{pmatrix} \left[\begin{array}{c} g_1^1 \left(\begin{array}{c} \underline{x}_1 \\ \underline{x}_2 \end{array} \right) & ; & g_1^1 \left(\begin{array}{c} \overline{x}_1 \\ \overline{x}_2 \end{array} \right) \end{array} \right] \\ \left[\begin{array}{c} g_2^1 \left(\begin{array}{c} \overline{x}_1 \\ \underline{x}_2 \end{array} \right) & ; & g_2^1 \left(\begin{array}{c} \underline{x}_1 \\ \overline{x}_2 \end{array} \right) \end{array} \right] \end{pmatrix}$$
 is the smallest box containing $g^1 \left(\begin{array}{c} \left[\begin{array}{c} \underline{x}_1 & ; & \overline{x}_1 \\ \underline{x}_2 & ; & \overline{x}_2 \end{array} \right] \right)$

・ロン ・回と ・ヨン・

æ

ODE, **Dynamical system and flow** Derivative of the flow with respect to initial condition Algorithm

 $\left[g_1^1\left(\begin{array}{c}\underline{x}_1\\\underline{x}_2\end{array}\right);g_1^1\left(\begin{array}{c}\overline{x}_1\\\overline{x}_2\end{array}\right)\right]\times\left[g_2^1\left(\begin{array}{c}\overline{x}_1\\\underline{x}_2\end{array}\right);g_2^1\left(\begin{array}{c}\underline{x}_1\\\overline{x}_2\end{array}\right)\right]$ (I) (I) (I) (I)

Nicolas Delanoue - Luc Jaulin A new method for integrating ODE based on monotonicity

ODE, **Dynamical system and flow** Derivative of the flow with respect to initial condition Algorithm

 $\left[g_1^1\left(\begin{array}{c}\underline{x}_1\\\underline{x}_2\end{array}\right);g_1^1\left(\begin{array}{c}\overline{x}_1\\\overline{x}_2\end{array}\right)\right]\times\left[g_2^1\left(\begin{array}{c}\overline{x}_1\\\underline{x}_2\end{array}\right);g_2^1\left(\begin{array}{c}\underline{x}_1\\\overline{x}_2\end{array}\right)\right]$

Nicolas Delanoue - Luc Jaulin A new method for integrating ODE based on monotonicity

ODE, Dynamical system and flow Derivative of the flow with respect to initial condition Algorithm

Theorem

Suppose that $f : \mathbb{R}^n \to \mathbb{R}^n$ is twice continuously differentiable. Then g_*^t is solution to the initial value problem

$$\frac{\partial}{\partial t} g_*^t(x) = f_*(g^t x) g_*^t(x),$$

$$g_*^0(x) = Id$$

・ロト ・回ト ・ヨト ・ヨト

ODE, Dynamical system and flow Derivative of the flow with respect to initial condition Algorithm

Theorem

Suppose that $f : \mathbb{R}^n \to \mathbb{R}^n$ is twice continuously differentiable. Then g_*^t is solution to the initial value problem

$$\begin{array}{rcl} \frac{\partial}{\partial t}g_*^t(x) &=& f_*(g^tx)g_*^t(x), \\ g_*^0(x) &=& Id \end{array}$$

Proof

$$\frac{\partial}{\partial t}g_*^t(x) = \frac{d}{dt}\frac{d}{dx}g^t x$$
$$= \frac{d}{dx}\frac{d}{dt}g^t x$$
$$= \frac{d}{dx}f(g^t x)$$
$$= f_*(g^t x)(g_*^t x)$$

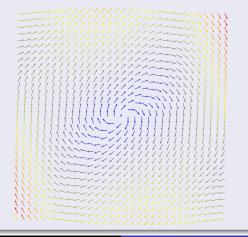
Nicolas Delanoue - Luc Jaulin A ne

A new method for integrating ODE based on monotonicity

ODE, Dynamical system and flow Derivative of the flow with respect to initial condition Algorithm

Example - Van der Pol oscillator

$$\left(\begin{array}{ccc} \dot{x}_1 &=& x_2 \ \dot{x}_2 &=& (1-x_1^2)x_2-x_1 \end{array}
ight)$$



ODE, Dynamical system and flow Derivative of the flow with respect to initial condition Algorithm

Example - Van der Pol oscillator

$$\begin{cases} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= (1 - x_1^2)x_2 - x_1 \end{cases}$$

Let us denote by $(a_{i,j})_{1\leq i,j\leq 2}$ the coordinate of g^t_* , *i.e.*

$$g_*^t = \begin{pmatrix} \partial_{x_1}g_1^t & \partial_{x_2}g_1^t \\ \partial_{x_1}g_2^t & \partial_{x_2}g_2^t \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

one has :

$$\frac{\partial}{\partial t} \left(g_*^t \right) = \left(\begin{array}{cc} \dot{a}_{11} & \dot{a}_{12} \\ \dot{a}_{21} & \dot{a}_{22} \end{array} \right) = \left(\begin{array}{cc} 0 & 1 \\ -1 - 2x_1x_2 & 1 - x_1^2 \end{array} \right) \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right)$$

・ロン ・回と ・ヨン ・ヨン

ODE, Dynamical system and flow Derivative of the flow with respect to initial condition Algorithm

Example - Van der Pol oscillator

$$\begin{array}{rcl} \dot{x}_1 &=& x_2 \\ \dot{x}_2 &=& (1-x_1^2)x_2 - x_1 \\ \dot{a}_{11} &=& a_{21} \\ \dot{a}_{12} &=& a_{22} \\ \dot{a}_{21} &=& -a_{11} - 2x_1x_2a_{11} + a_{21} - x_1^2a_{21} \\ \dot{a}_{22} &=& -a_{12} - 2x_1x_2a_{12} + a_{22} - x_1^2a_{22} \end{array}$$

with the following initial condition

$$\begin{array}{rcrr} x_1(0) &=& x_1^0\\ x_2(0) &=& x_2^0\\ a_{11}(0) &=& 1\\ a_{12}(0) &=& 0\\ a_{21}(0) &=& 0\\ a_{22}(0) &=& 1. \end{array}$$

Interval	analysis,	optimal	inclusion	function
Computing of	optimal v	alidated	solutions	for ODE

ODE, Dynamical system and flow Derivative of the flow with respect to initial condition Algorithm

Solver

Nicolas Delanoue - Luc Jaulin A new method for integrating ODE based on monotonicity

Э.

Interval analysis, optimal inclusion function Computing optimal validated solutions for ODE	ODE, Dynamical system and flow Derivative of the flow with respect to initial condition Algorithm
--	---

• Input :

Nicolas Delanoue - Luc Jaulin A new method for integrating ODE based on monotonicity

Interval analysis, optimal inclusion function Computing optimal validated solutions for ODE	ODE, Dynamical system and flow Derivative of the flow with respect to initial condition Algorithm
--	---

• Input :

•
$$\dot{x} = f(x)$$

Nicolas Delanoue - Luc Jaulin A new method for integrating ODE based on monotonicity

Interval analysis, optimal inclusion function Computing optimal validated solutions for ODE	ODE, Dynamical system and flow Derivative of the flow with respect to initial condition Algorithm
--	---

• Input :

Nicolas Delanoue - Luc Jaulin A new method for integrating ODE based on monotonicity

<ロ> (四) (四) (注) (注) (三)

Interval analysis, optimal inclusion function Computing optimal validated solutions for ODE	ODE, Dynamical system and flow Derivative of the flow with respect to initial condition Algorithm
--	---

• Input :

•
$$\dot{x} = f(x)$$

- $[x] \in \mathbb{IR}^n$
- t a non-negative real
- Algorithm

◆□ → ◆圖 → ◆ 圖 → ◆ 圖 →

ODE, Dynamical system and flow Derivative of the flow with respect to initial condition Algorithm

• Input :

•
$$\dot{x} = f(x)$$

- $[x] \in \mathbb{IR}^n$
- t a non-negative real
- Algorithm
 - Compute rigorously $g_*^t([x])$,

イロン イヨン イヨン イヨン

æ

ODE, Dynamical system and flow Derivative of the flow with respect to initial condition Algorithm

• Input :

•
$$\dot{x} = f(x)$$

- $[x] \in \mathbb{IR}^n$
- t a non-negative real
- Algorithm
 - Compute rigorously $g_*^t([x])$,
 - if no component of $g_*^t([x])$ contains 0,

▲□→ ▲ □→ ▲ □→

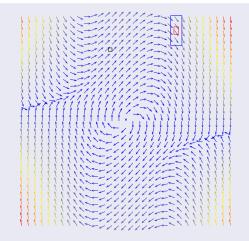
æ

ODE, Dynamical system and flow Derivative of the flow with respect to initial condition Algorithm

- Input :
 - $\dot{x} = f(x)$
 - $[x] \in \mathbb{IR}^n$
 - t a non-negative real
- Algorithm
 - Compute rigorously $g_*^t([x])$,
 - if no component of $g_*^t([x])$ contains 0,
 - then compute rigorously the set $\{g^t_*(\tilde{x})\}$ and return the interval hull of this set.

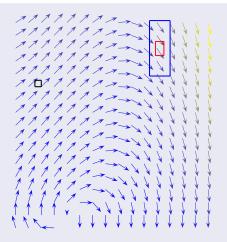
・回 ・ ・ ヨ ・ ・ ヨ ・

ODE, Dynamical system and flow Derivative of the flow with respect to initial condition Algorithm



black : initial conditions, red : our method, blue : taylor method.

ODE, Dynamical system and flow Derivative of the flow with respect to initial condition Algorithm



black : initial conditions, red : our method, blue : taylor method.

Interval analysis, optimal inclusion function Computing optimal validated solutions for ODE	ODE, Dynamical system and flow Derivative of the flow with respect to initial condition Algorithm
--	---

• Thank you for your attention !

< 4 ₽ > < 2 >

< E