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ABSTRACT

Max-plus linear systems theory was inspired by and origi-
nated from classical linear systems theory more than three
decades ago, with the purpose of dealing with nonlinear syn-
chronization and delay phenomena in timed discrete event
systems in a linear manner. Timed discrete event systems are
driven by discrete events, are equipped with a notion of time,
and their temporal evolution is entirely characterized by
the occurrence of events over time. If their behavior is com-
pletely governed by synchronization and delay phenomena,
timed discrete event systems can be modeled as max-plus
linear systems. On appropriate levels of abstraction, such
systems adequately describe many problems in diverse areas
such as manufacturing, communication, or transportation
networks. The aim of this paper is to provide a thorough
survey of current research work in max-plus linear systems.
It summarizes the main mathematical concepts required
for a theory of max-plus linear systems, including idempo-
tent semirings, residuation theory, fixed point equations in
the max-plus algebra, formal power series, and timed-event
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graphs. The paper reviews some recent major achievements
in control and state estimation of max-plus linear systems.
These include max-plus observer design, max-plus model
matching by output or state feedback and observer-based
control synthesis. Control is required to be optimal with
respect to the so-called just-in-time criterion, which is a
common standard in industrial engineering. It implies that
the time for all input events is delayed as much as possible
while guaranteeing that all output events occur, at the latest,
at pre-specified reference times.



1
Introduction

Discrete event systems (DESs) are typically understood as event-driven
systems whose state evolutions are completely characterized by the
occurrence of discrete events over time. They often provide an adequate
level of abstraction when modeling manufacturing systems (e.g., Cohen
et al., 1983; Cohen et al., 1985), computer networks (e.g., Cruz, 1991;
Boudec and Thiran, 2002) or transportation systems (e.g., Braker, 1993;
Farhi et al., 2005; Heidergott et al., 2006; Lotito et al., 2001; Olsder et al.,
1998). The diversity of phenomena observed in this class of systems led to
the emergence of different modeling frameworks such as finite automata
(e.g., Hopcroft et al., 2006), Markov chains (e.g., Norris, 1997), and
Petri nets (e.g., Reisig, 1985; Murata, 1989). In the context of control of
DESs, Cassandras and Lafortune, 2006 and Seatzu et al., 2012 provide
extensive surveys on different modeling paradigms. Timed Event Graphs
(TEGs) are a subclass of timed Petri nets where the occurrence of events
only depends on delay and synchronization phenomena. The latter,
when described in standard algebra, are highly nonlinear. Motivated
by this, a special algebra, called max-plus algebra, has been suggested,
in which these phenomena are linear. For more than three decades,
researchers (e.g., Baccelli et al., 1992; Cohen et al., 1998) have been

3



4 Introduction

working to establish a linear systems and control theory in this algebra.
Probably the first work on manufacturing systems described in this
algebraic framework is due to R.A. Cuninghame-Green (Cuninghame-
Green, 1962). In 1981 (see Cohen et al., 1999 for a historical review),
the Max-Plus working group of the INRIA started to develop a control
theory for dynamical systems that are linear in the max-plus algebra.
The underlying idea behind these developments is that, by changing the
algebra, the behavior of certain discrete event systems can be described
by linear equations. This, in turn, can then be exploited for analysis
and control synthesis purposes. Hence, metaphorically speaking, by
changing one’s glasses, it is possible to reexamine a nonlinear world in a
linear way. However, there is a price to be paid. Classical control theory
is built on powerful mathematical concepts such as linear algebra and
vector spaces. In contrast, the max-plus algebra is a weaker structure,
namely an idempotent semiring, or dioid. This implies that addition in
this algebra (which corresponds to the standard maximum operation)
is not invertible. Despite this detriment, it has been possible to develop
a rather elegant control theory for dynamical systems that are linear in
the max-plus algebra, and several control strategies have been proposed
for this class of systems. Examples are optimal open loop control (Cohen
et al., 1999; Lhommeau et al., 2005; Menguy et al., 2000) and optimal
state and output feedback control in order to solve the model matching
problem (Cottenceau et al., 2001b; Lhommeau et al., 2003a; Maia et al.,
2003; Maia et al., 2005; Maia et al., 2011), as well as control strategies
forcing the state to stay in a specified set (Amari et al., 2012; Katz,
2007; Maia et al., 2005; Necoara et al., 2009).

This paper provides an overview of the max-plus linear systems
theory elaborated in the past three decades, especially with respect to
the just-in-time criterion, a common standard in industrial engineering.
Optimality, in this criterion, means that all input events are delayed
as much as possible while ensuring that the output events occur at or
before pre-specified reference times.

The paper is organized as follows: in Section 2, a motivational
example is introduced. It represents a simple manufacturing system,
and it will be used throughout this paper to illustrate the main concepts
developed in subsequent sections. Section 3 briefly summarizes timed
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event graphs, the class of discrete event systems that is investigated
in this paper. In this class, the occurrence of discrete events is only
governed by delay and synchronization phenomena. Using the example
introduced in Section 2, it is shown how to derive equations that describe
the temporal evolution of timed event graphs.

In the following sections, the main mathematical foundations for
developing a systems and control theory for max-plus linear systems
are summarized. Section 4 provides the necessary algebraic background.

Section 5 investigates maps between idempotent semirings and their
properties. Section 6 presents useful mathematical results dealing with
fixed point equations in the max-plus algebra. Section 7 reviews residu-
ation theory, which plays an essential role in the process of establishing
a max-plus linear systems and control theory. Section 8 presents idem-
potent semirings of formal power series in the event domain. They
prove particularly useful for deriving compact models for TEGs. This
is discussed in some detail in Section 9.

The main part of this paper reviews some recent major achievements
in control and estimation of max-plus linear systems. Section 10 is
dedicated to the state estimation problem in max-plus linear systems,
and an observer design inspired by Luenberger’s approach (Luenberger,
1971) is presented. Section 11 discusses how to synthesize open-loop
and closed-loop (both output and state feedback) control by solving
an optimization problem with constraints. Optimality is in the sense
of the well-known just-in-time criterion while the constraints reflect
requirements imposed by a model matching, or model reference, problem
(Hardouin et al., 2011; Maia et al., 2003; Maia et al., 2005). Section 12
introduces an observer-based controller for the case when the state of the
plant is not completely measurable or when it is too expensive to measure
all the states. The resulting observer-based controller is compared with
the output feedback and state-feedback controllers described in Section
11. It turns out that the proposed observer-based controller in general
indeed provides better performance than an output feedback controller.
Section 13 discusses how various control problems can be posed as
specific model matching problems by setting up appropriate reference
models. Finally, Section 14 illustrates the main results of this paper for
the running manufacturing system example.



2
Motivational example

To illustrate the main topics, an elementary example borrowed from
a manufacturing setting is used throughout the paper. Consider an
assembly line composed of three machines labelled M1,M2 and M3.
Machine M1 processes parts; for each part the processing time is 2 time
units, and the capacity of the machine is 1, i.e., it can process one part
at a time. Transportation of a raw part to machine M1 requires 1 time
unit, and transporting a processed part from machine M1 to machine
M3 will also take 1 time unit. Machine M2 operates in parallel to M1.
It processes raw parts with a fixed processing time of 5, transportation
of raw parts to machine M2 requires 2 time units, and transporting a
processed part from machine M2 to machine M3 will take 3 time units.
The capacity of machine M2 is also 1. Machine M3 produces final parts
by assembling pre-processed parts from M1 and M2. The processing
time is equal to 2, and the machine capacity is 3, i.e., it is able to
assemble 3 final parts simultaneously. Naturally, processing on machine
M3 can only start when at least one part from machine M1 and one
part from machine M2 are available. The corresponding basic structure
of our small manufacturing system is shown in Fig. 2.1.

This assembly line is a discrete event dynamic system because

6
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MachinelM1
Processingltimel:l2
Capacityl:l1

MachinelM2
Processingltimel:l5
Capacityl:l1

MachinelM3
Processingltimel:l2
Capacityl:l3

Transportationlofl
preprocessedlparts.l
Transportldurationl:1

Transportationlofl
preprocessedlparts.l
Transportldurationl:l3

Transportationlofl
rawlparts.l
Transportldurationl:l1

Transportationlofl
rawlparts.l
Transportldurationl:l2

Outputlofl
finishedlparts.l

Inputloflrawlpartsl
tolsupplylmachinel2l

Inputloflrawlpartsl
tolsupplylmachinel2l

Figure 2.1: Structure of the elementary manufacturing system considered.

its temporal evolution is completely governed by the occurrence of
discrete events (e.g., the arrival of raw parts, the start and finish of
processing parts on machines, etc.). Note that this example includes
synchronization (the processing of parts on machine M3 cannot begin
before parts from the other machines have become available) and delay
phenomena, but it does not include logical choice: when parts enter
the system, their paths through the system are indeed pre-determined.
This precisely characterizes the class of discrete event systems that is
considered in this paper – timed discrete event systems whose temporal
evolution is exclusively determined by synchronization and delay.



3
Timed event graphs

Petri nets represent a popular framework for modeling discrete event
systems. For details and a pedagogical introduction, see, e.g., Cabasino
et al., 2013. We will consider a subclass of timed Petri nets exhibiting
the properties discussed above, called timed event graphs (TEGs). In
this section, we recall the basic properties of TEGs and derive equations
that govern their evolution over time.

A TEG is a directed bi-partite graph. It has two types of vertices,
namely places and transitions, and directed arcs from places to transi-
tions or from transitions to places. Unlike the general Petri net case,
each place has exactly one incoming arc (and therefore one upstream
transition) and one outgoing arc (and therefore one downstream tran-
sition), and the weight of all arcs is 1. In contrast, transitions may
have several (or no) upstream and downstream places. A marking is
associated to each place; it represents the number of tokens which are
assigned to the place. Graphically, places are represented by circles and
transitions by bars. Tokens associated to places are indicated by black
bullets inside the circles representing the respective places. The “rules of
operation” are as follows: a transition can fire if all its upstream places
contain at least one token. If a transition fires, it removes one token

8
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Figure 3.1: Timed event graph with holding times.

from each upstream place and deposits one token in each downstream
place. Timing information can be added in different ways: time can
either be associated with transitions (representing transition delays) or
with places (representing holding times). In the first case, a transition
can only fire, if its logical firing condition is satisfied, i.e., all upstream
places contain at least one token, and the associated delay has passed.
In the second case, a token in a place only contributes to satisfying firing
conditions, if it has resided there for at least the required holding time.
It can easily be shown that TEGs with transition delays can always
be rewritten as equivalent TEGs with holding times, but not the other
way round. In the sequel, we consider the more general case, i.e., timed
event graphs with holding times.

In Fig. 3.1, an elementary TEG with two places and three transitions
is shown. Transitions are labeled x1, x2 and x3. As transitions x1 and
x2 do not have upstream places, they can fire autonomously. When
transition x1 fires, a token is put in the place between x1 and x3, and it
has to spend at least 1 time unit there before being able to contribute to
the firing of transition x3. When transition x2 fires, a token is deposited
in the place between x2 and x3, where it has to spend at least 3 time
units before being able to contribute to the firing of transition x3.
Denoting xi(k) as the time of the kth firing of transition xi, it follows
that the time for the kth firing of transition x3 satisfies the following
inequality:

x3(k) ≥ max(x1(k) + 1, x2(k) + 3). (3.1)

Remark 1 (Earliest firing rule). In the following, we will assume that
TEGs operate under the so-called earliest firing-rule, i.e, each transition
fires as soon as it is enabled. If the TEG in Fig. 3.1 operates under the
earliest firing rule, inequality (3.1) becomes an equality.
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Example 1 (Manufacturing system). Reconsidering the small manufac-
turing process introduced in Section 2, we will show how this system
can be modeled as a TEG. To do this, the user has to decide which
events are important or essential to model the system. Based on Fig. 2.1,
the TEG given in Fig. 3.2 can be obtained. The transitions labeled u1
and u2 represent the arrival of raw parts. The holding times of their
downstream places represent the respective transportation times to
machines M1 and M2. Transition x1 represents the start of a processing
step on machine M1, while x2 represents the end of this processing step;
the holding time of the place between x1 and x2 corresponds to the
processing time of this machine (2 time units). The capacity of machine
M1 is modeled by the number of tokens residing initially in the place
with upstream transition x2 and downstream transition x1. The fact
that this place initially contains one token reflects that the machine
has capacity one: if x1 has fired (and the token in the place has been
removed), i.e., if machine M1 has started processing a workpiece, it
cannot accept the next workpiece before x2 has fired (and a token has
again been deposited in this place), i.e., before the machine has finished
processing its current workpiece. Machines M2 and M3 are modeled
in the same way. M2 has processing time 5 and capacity 1, while M3
requires a processing time of 2 and has capacity 3. The transportation
time from machine M1 to machine M3 is modeled by a holding time
of 1 associated with the place between transition x2 and transition x5.
Similarly, the transportation time from machine M1 to machine M2
is modeled by a holding time of 3 associated with the place between
transition x4 and transition x5. Transition y represents the output of the
system, i.e., y(k) denotes the time when the kth finished part becomes
available.

Assuming the earliest firing rule, we can immeditaley deduce recur-
sive equations for the firing instants of transitions xi, i = 1, . . . 6, from
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Figure 3.2: Timed event graph of a simple manufacturing system.

Fig. 3.2.

x1(k) = max(1 + u1(k), x2(k − 1)) (3.2)
x2(k) = x1(k) + 2 (3.3)
x3(k) = max(u2(k) + 2, x4(k − 1)) (3.4)
x4(k) = x3(k) + 5 (3.5)
x5(k) = max(x2(k) + 1, x4(k) + 3, x6(k − 3)) (3.6)
x6(k) = x5(k) + 2. (3.7)

In the same manner, the firing time instants of the output transition y
can be determined as

y(k) = x6(k).

Events are understood as the firing of transitions, hence the variable
k “counts” events. Note that, by convention, the counting of events is
started at 0. Note furthermore that the shifts in the event domain in
the above equations are being caused by the initial marking of the TEG,
i.e., by the number of tokens residing initially in places. For example,
in Eq. (3.2), the event shift x2(k − 1) is due to the initial marking of
the place between transition x2 and x1. This marking implies that the
kth firing of transition x1 depends on the (k − 1)st firing of transition
x2, i.e., the kth firing of transition x1 can only occur when u1 has fired
k times and 1 time unit has subsequently passed and when x2 has fired
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k − 1 times. Similarly, the event shift x6(k − 3) in Eq. (3.6) is being
caused by the fact that the place between x6 and x5 initially contains
three tokens.

Given a sequence of firing time vectors u(k) = [u1(k)u2(k)]T ,
k = 0, 1, . . ., assuming initial conditions ∀k < 0, xi(k) = −∞, and
using Equations (3.2)–(3.7), the resulting firing time vectors x(k) =
[x1(k)x2(k)x3(k)x4(k)x5(k)x6(k)]T can be determined for k = 0, 1, . . ..
If the input is chosen such that it does not slow down the system, e.g.,
by making an unlimited number of raw parts available at time 0 (which
is equivalent to ∀k ≥ 0, u(k) = [0 0]T ), the resulting series of firing time
vectors x(k) becomes



1
3
2
7
10
12


︸ ︷︷ ︸
x(0)

,



3
5
7
12
17
19


︸ ︷︷ ︸
x(1)

,



5
7
12
17
20
22


︸ ︷︷ ︸
x(2)

,



7
9
17
21
24
26


︸ ︷︷ ︸
x(3)

,



9
11
21
26
29
31


︸ ︷︷ ︸
x(4)

, . . . (3.8)

Note that each entry xi of the vector x is a non-decreasing series, i.e.,
xi(k + 1) ≥ xi(k), k = 0, 1, . . .. This simply reflects the fact that the
k + 1st firing of a transition cannot occur before its kth firing.

Clearly, determining the firing instants using the recursive Equa-
tions (3.2)–(3.7) involves addition and the maximum operation. These
equations are non-linear in conventional algebra. However, there is a
mathematical structure called idempotent semirings (or dioids) in which
the recurrence relations of the firing instants have a linear representation.
It is shown in the sequel that these algebraic structures are extremely
useful to analyze the performance of the system and to establish a
control theory that, to a certain extent, resembles the one developed for
systems that are linear in the standard algebra. Many results would not
appear so evidently, or even not at all, by not considering these algebraic
structures. Switching to such structures is therefore the equivalent of
acquiring a new pair of glasses through which the (same) world reveals
its properties in a much clearer way.



4
Algebraic setting

This section summarizes the algebraic concepts that are required to
obtain a linear representation of the transition firing instants in a timed
event graph. This section is necessarily rather technical and does not
claim to be exhaustive. For a more exhaustive description, the interested
reader is referred to Baccelli et al., 1992.

4.1 Ordered sets

Definition 1 (Order relation). A binary relation � on a set C is an order
relation if the following properties hold for all a, b, c ∈ C:

• reflexivity: a � a,

• anti-symmetry: (a � b and b � a)⇒ a = b,

• transitivity: (a � b and b � c)⇒ a � c.

Definition 2 (Ordered set). A set C endowed with an order relation � is
said to be an ordered set and is denoted (C,�). It is said to be a totally
ordered set if any pair of elements in C can be compared with respect to
�, i.e., ∀a, b ∈ C one can either write a � b or b � a. Otherwise (C,�)
is said to be partially ordered.

13



14 Algebraic setting

Example 2 (Ordered sets). A classical example of an ordered set is
(Z,≤), i.e., the set of (scalar) integers endowed with the classical “less
or equal” order relation. Clearly, (Z,≤) is totally ordered. In contrast,
the ordered set (Z2,�), where vectors x = [x1 x2]T and y = [y1 y2]T are
ordered, i.e., x � y, if x1 ≤ y1 and x2 ≤ y2, is only partially ordered,
as it is not possible to compare all pairs of vectors with integer entries.
For example, the vectors [a, b]T and [b, a]T are not related when a 6= b.

Definition 3 (Bounds on ordered sets). Given a non-empty subset B ⊆ C
of an ordered set (C,�), element a ∈ C is called a lower bound of B if
∀b ∈ B : a � b. If B has a lower bound, its greatest lower bound (glb)
is denoted

∧
B. Similarly, an element c ∈ C is called an upper bound

of B if ∀b ∈ B : b � c. If B has an upper bound, its least upper bound
(lub) is denoted

∨
B.

Definition 4 (Lattices). An ordered set (C,�) is called sup-semi-lattice,
if ∀a, b ∈ C there exists a ∨ b =

∨
{a, b}. It is said to be a complete

sup-semi-lattice, if for every subset B ⊆ C there exists a least upper
bound, i.e.,

∨
B exists ∀B ⊆ C. Analogously, an ordered set (C,�) is

called an inf-semi-lattice, if ∀a, b,∈ C there exists a∧ b =
∧
{a, b}, and it

is said to be a complete inf-semi-lattice, if ∀B ⊆ C, there exists a greatest
lower bound

∧
B. If an ordered set (C,�) forms a sup-semi-lattice as

well as an inf-semi-lattice, it is called a lattice and denoted (C,∨,∧). In
lattices, the following properties hold ∀a, b ∈ C:

a � b⇔ a ∨ b = b⇔ a ∧ b = a.

A lattice is called a complete (or bounded) lattice if it is a complete
sup-semi-lattice as well as a complete inf-semi-lattice. The lub of a
complete lattice is denoted > (top element), the glb is denoted ⊥
(bottom element).

Remark 2. The operations ∨ and ∧ of a lattice (C,∨,∧) are associative,
commutative, idempotent, i.e., ∀a ∈ C, a ∨ a = a and a ∧ a = a, and
the absorption property holds, i.e., a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a,
∀a, b ∈ C.
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4.2 Idempotent semirings

An idempotent semiring, also called a dioid (see Heidergott et al., 2006,
Gondran and Minoux, 2008, Baccelli et al., 1992), is a specific algebraic
structure. Below, the definitions and properties of this structure are
summarized.

Definition 5 (Monoid). A set M equipped with a binary operation
⊕ : M×M → M is a monoid, denoted (M,⊕), if ⊕ is associative,
i.e., ∀a, b, c ∈ M, a⊕ (b⊕ c) = (a⊕ b)⊕ c, and has a neutral element,
denoted ε, i.e., ∀m ∈M,m⊕ ε = ε⊕m = m. If ⊕ is commutative, i.e.,
∀a, b ∈M, a⊕ b = b⊕ a, the monoid is said to be commutative.

Definition 6 (Idempotent semiring, dioid). A set D equipped with two
binary operations ⊕ and ⊗ is an idempotent semiring, or dioid, denoted
(D,⊕,⊗), if the following axioms hold ( Heidergott et al., 2006,Gondran
and Minoux, 1984,Baccelli et al., 1992):

• (D,⊕) is a commutative monoid with neutral element ε (also called
“zero element”), and ⊕ is idempotent, i.e, ∀a ∈ D, a⊕ a = a,

• (D,⊗) is a monoid with neutral element e (also called “one ele-
ment”),

• ⊗ distributes over ⊕, i.e., ∀a, b, c ∈ D, (a⊕b)⊗c = (a⊗c)⊕(b⊗c)
and c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b),

• ε is absorbing for ⊗, i.e., ∀a ∈ D, a⊗ ε = ε⊗ a = ε.

Furthermore, if (D,⊗) is a commutative monoid, the idempotent
semiring (D,⊕,⊗) is said to be commutative.

Remark 3. If all elements of a dioid (except ε) have a multiplicative
inverse, it forms an idempotent semifield.

Remark 4. As in classical algebra, the multiplication sign ⊗ is often
omitted when unambiguous.

Definition 7 (Canonical order relation). On an idempotent semiring
(D,⊕,⊗), a canonical order can be defined by a � b ⇐⇒ a ⊕ b = b.
Then, (D,�) becomes a sup-semi-lattice, and a ∨ b = a⊕ b.
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Definition 8 (Complete idempotent semiring). An idempotent semiring
is complete if it is closed for infinite sums and if ⊗ distributes over
infinite sums, i.e., if ∀c ∈ D and ∀X ⊆ D

c⊗ (
⊕
x∈X

x) =
⊕
x∈X

c⊗ x.

Remark 5. An idempotent semiring has the structure of a sup-semi-
lattice. Hence, if it is complete, it forms a complete sup-semi-lattice and
therefore has a top (or greatest) element >, which corresponds to the
sum of all elements in the dioid D, i.e. : > =

⊕
x∈D x. Furthermore, an

idempotent semiring always admits ε as bottom (or minimal) element. A
complete idempotent semiring is then a complete sup-semi-lattice with
a minimal element. According to Definition 4, a complete idempotent
semiring has therefore the structure of a complete lattice for the order
�.

Definition 9. If D is a complete idempotent semiring, then the greatest
lower bound of a, b ∈ D is defined as

a ∧ b =
⊕

x�a,x�b
x.

∧ is associative, commutative and idempotent, and the following equiv-
alences hold

a = a⊕ b⇔ a � b⇔ b = a ∧ b. (4.1)

Remark 6. From (4.1), it follows that ⊕, ⊗, ∧ are order preserving,
i.e., ∀a, b, c ∈ D the following implications hold:

a � b ⇒ a⊗ c � b⊗ c,
a � b ⇒ a⊕ c � b⊕ c,
a � b ⇒ a ∧ c � b ∧ c.
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This can be easily seen from the following arguments:

a � b ⇔ a⊕ b = b

⇒ (a⊕ b)⊗ c = a⊗ c⊕ b⊗ c = b⊗ c
⇔ a⊗ c � b⊗ c.

a � b ⇔ a⊕ b = b

⇒ a⊕ b⊕ c = a⊕ b⊕ c⊕ c = (a⊕ c)⊕ (b⊕ c) = b⊕ c
⇔ a⊕ c � b⊕ c.

a � b ⇔ a = a ∧ b
⇒ a ∧ c = (a ∧ b) ∧ c = (a ∧ c) ∧ (b ∧ c)
⇔ a ∧ c � b ∧ c.

Remark 7. Relation (4.1) seems to indicate that the operators ⊕ and ∧
play a symmetric role. This is indeed true from the lattice point of view
since operator ⊕ corresponds to ∨. This is false, however, if we consider
the second operator of the semiring, namely ⊗, since ⊗ distributes over
⊕, but not over ∧. Nevertheless, the following property, often referred
to as subdistributivity, holds :

∀a, b, c ∈ D, c⊗ (a ∧ b) � (c⊗ a) ∧ (c⊗ b).

This follows immediately from a ∧ b � a and a ∧ b � b. As the product
is order preserving (see Remark 6), we have c ⊗ (a ∧ b) � c ⊗ a and
c⊗ (a ∧ b) � c⊗ b and therefore c⊗ (a ∧ b) � (c⊗ a) ∧ (c⊗ b).

Example 3 (max-plus algebra). Zmax = (Z ∪ {−∞,+∞},max,+) is
a complete idempotent semiring. By definition, a ⊕ b = max(a, b),
a ⊗ b = a + b, a ∧ b = min(a, b), with ε = −∞, e = 0, and > = +∞.
The order � is total and corresponds to the natural order ≤.

Example 4 (min-plus algebra). Zmin = (Z ∪ {−∞,+∞},min,+) is a
complete idempotent semiring. By definition, a⊕ b = min(a, b), a⊗ b =
a+ b, a ∧ b = max(a, b), with ε = +∞, e = 0, and > = −∞. The order
� is total and corresponds to the inverse of the natural order (i.e., a � b
iff a ≥ b).
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Definition 10 (Subsemiring). Let (D,⊕,⊗) be a semiring and C ⊆ D.
(C,⊕,⊗) is a subsemiring of D if ε, e ∈ C and if C is closed under the
operations ⊕ and ⊗. A subsemiring is complete if it is closed for infinite
sums too.

Note that, just as in standard algebra, addition and multiplication
can be readily extended to matrices of appropriate dimensions with
elements in a dioid D. Namely, matrix addition is done elementwise,
and matrix multiplication is performed by multiplying the appropriate
rows and columns:

(A⊕B)ij = aij ⊕ bij , A,B ∈ Dm×n (4.2)

(C ⊗D)ik =
n⊕
j=1

(cij ⊗ djk), C ∈ Dm×n, D ∈ Dn×p. (4.3)

Furthermore, the order � on D induces a (partial) order on the set of
matrices with entries in D, i.e., for matrices A,B ∈ Dm×n the following
equivalence holds:

A � B ⇔ aij � bij ∀i ∈ [1,m],∀j ∈ [1, n]. (4.4)

Remark 8. The set of square (n × n) matrices with elements in a
complete dioid D, together with the operations ⊕ and ⊗ defined above,
is a complete idempotent semiring. The one element (or identity matrix)
is the n×n-matrix with entries equal to e on the diagonal and ε elsewhere,
it is denoted In in the sequel. The zero element in this semiring is the
n × n-matrix with all entries equal to ε, it is denoted ε, and the top
element is the n×n-matrix with all entries equal to >, denoted >. Note
that the order defined in (4.4) is consistent with the definition of the
canonical order on this semiring, i.e., A � B ⇔ A⊕B = B.

Example 5. To get a first idea of the usefulness of investigating the
behaviour of TEGs in an appropriate dioid setting, consider the simple
manufacturing example from Section 2. If we interprete equations (3.2)
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– (3.7) in the dioid Zmax, we get the following set of linear equations

x1(k) = x2(k − 1)⊕ 1u1(k) (4.5)
x2(k) = 2x1(k) (4.6)
x3(k) = x4(k − 1)⊕ 2u2(k) (4.7)
x4(k) = 5x3(k) (4.8)
x5(k) = 1x2(k)⊕ 3x4(k)⊕ x6(k − 3) (4.9)
x6(k) = 2x5(k). (4.10)

For initial conditions ∀k < 0, xi(k) = ε and an input sequence that
corresponds to providing an infinite number of raw parts at time 0,
i.e., ∀k ≥ 0, u(k) = [e e]T , we again obtain the series of firing time
vectors (3.8) from (4.5)–(4.10). As the order � in the max-plus algebra
coincides with the natural order ≤, the series of firing times are clearly
non-decreasing in the dioid Zmax, i.e., xi(k) � xi(k + 1), k = 0, 1, . . .



5
Mappings defined over idempotent semirings

In this section, C and D refer to complete idempotent semirings. To
keep notation reasonably simple, addition in both semirings will be
denoted by the same symbol, ⊕, and multiplication in both semirings
will be denoted by ⊗.

Definition 11 (Continuity). A mapping Π from a complete idempotent
semiring D to a complete idempotent semiring C is lower semi-continuous
(denoted l.s.c.) if for all finite or infinite sets X ⊆ D,

Π(
⊕
x∈X

x) =
⊕
x∈X

Π(x),

and it is upper semi-continuous (denoted u.s.c) if for all finite or infinite
sets X ⊆ D

Π(
∧
x∈X

x) =
∧
x∈X

Π(x).

It is continuous if it is both l.s.c. and u.s.c..

Definition 12 (Isotone, antitone, monotone). Let Π : D → C be a
mapping, with D and C two idempotent semirings. Mapping Π is

• isotone if it is order preserving, i.e., ∀x, x′ ∈ D the following
implication holds: x � x′ ⇒ Π(x) � Π(x′),

20
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• antitone if it inverts the order, i.e., ∀x, x′ ∈ D the following
implication holds: x � x′ ⇒ Π(x) � Π(x′),

• monotone if is isotone or antitone.

Remark 9. The composition of two monotone mappings is a monotone
mapping. In particular, it can be easily checked that the composition of

• two isotone mappings is isotone,

• two antitone mappings is isotone,

• an isotone mapping with an antitone mapping is antitone.

Theorem 1. Let Π : D → C be a mapping, with D and C two
idempotent semirings:

1. if Π is l.s.c then it is isotone,

2. if Π is u.s.c then it is isotone.

Proof.
1. Let x, x′ ∈ D. If x � x′, then x ⊕ x′ = x′, then Π(x ⊕ x′) =
Π(x)⊕Π(x′) = Π(x′) since Π is l.s.c., hence Π(x) � Π(x′).
2. Let x, x′ ∈ D. If x � x′, then x∧x′ = x, and Π(x∧x′) = Π(x)∧Π(x′) =
Π(x) since Π is u.s.c., hence Π(x) � Π(x′).

Remark 10. If Π : D → C is an isotone mapping, the following inequality
holds

Π(x⊕ x′) � Π(x)⊕Π(x′) ∀x, x′ ∈ D,
since

x⊕ x′ � x ⇒ Π(x⊕ x′) � Π(x)
x⊕ x′ � x′ ⇒ Π(x⊕ x′) � Π(x′)

}
⇒ Π(x⊕ x′) � Π(x)⊕Π(x′).

Moreover, the following inequality holds

Π(x ∧ x′) � Π(x) ∧Π(x′) ∀x, x′ ∈ D,

as

x ∧ x′ � x ⇒ Π(x ∧ x′) � Π(x)
x ∧ x′ � x′ ⇒ Π(x ∧ x′) � Π(x′)

}
⇒ Π(x ∧ x′) � Π(x) ∧Π(x′).
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Definition 13 (Homomorphism). A mapping Π : D → C is a homomor-
phism if

∀a, b ∈ D Π(a⊕ b) = Π(a)⊕Π(b) and Π(ε) = ε, (5.1)
Π(a⊗ b) = Π(a)⊗Π(b) and Π(e) = e. (5.2)

A mapping satisfying only (5.1) is said to be a ⊕-morphism, i.e., the
image of the sum of elements in D is the sum, in C, of their images.
A mapping satisfying only (5.2) is said to be a ⊗-morphism, i.e., the
image of the product of two elements of D is the product, in C, of their
images.

Definition 14 (Isomorphism). A mapping Π : D → C is an isomorphism
if the inverse of Π is defined and if Π and its inverse mapping are
homomorphisms.

Definition 15 (Equivalence relation). An equivalence relation R on a
set E is a binary relation which is:

• reflexive: ∀ x ∈ E, xRx,

• symmetric: ∀ x, y ∈ E, xRy ⇒ yRx,

• transitive: ∀ x, y, z ∈ E, (xRy and yRz)⇒ xRz.

Definition 16 (Congruence). A congruence on an idempotent semiring
D is an equivalence relation (denoted R) compatible with the semiring
laws, i.e., ∀a, b, c ∈ D,

aR b⇒ (a⊕ c)R (b⊕ c), (c⊗ a)R (c⊗ b), (a⊗ c)R (b⊗ c).

Theorem 2 (Quotient semiring, Baccelli et al., 1992). LetD be an idempo-
tent semiring and R a congruence over D, and let [a] = {x ∈ D |xR a}
denote the equivalence class of a ∈ D. Then, the quotient set of D by
this congruence, denoted D/R, is a semiring with the following sum and
product:

[a]⊕ [b] , [a⊕ b],
[a]⊗ [b] , [a⊗ b]. (5.3)
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Proof. As R is a congruence on D, for all a, a′, b, b′ ∈ D such that
[a] = [a′] and [b] = [b′], the following holds:

[a⊕ b] = [a′ ⊕ b] = [a′ ⊕ b′] and [a⊗ b] = [a′ ⊗ b] = [a′ ⊗ b′],

i.e., the equivalence classes [a ⊕ b] and [a ⊗ b] are exclusively defined
by the equivalence classes [a] and [b], and not by specific elements. The
operations on the quotient set given by (5.3) are then perfectly defined,
hence the quotient D/R inherits the structure of idempotent semiring
from D.

Theorem 3 (Baccelli et al., 1992). Let Π : D → C be a homomorphism.
Relation RΠ defined by

aRΠ b ⇐⇒ Π(a) = Π(b), ∀a, b ∈ D,

is a congruence.

Proof. First, it is clear that RΠ is an equivalence relation. We need to
show that it respects the operations ⊕ and ⊗ in D. This is straightfor-
ward, as, due to Π being a homomorphism, Π(a) = Π(b) implies for all
c ∈ D

• Π(a⊕ c) = Π(a)⊕Π(c) = Π(b)⊕Π(c) = Π(b⊕ c), i.e.,
(a⊕ c)RΠ(b⊕ c),

• Π(c⊗ a) = Π(c)⊗Π(a) = Π(c)⊗Π(b) = Π(c⊗ b), i.e.,
(c⊗ a)RΠ(c⊗ b),

• Π(a⊗ c) = Π(a)⊗Π(c) = Π(b)⊗Π(c) = Π(b⊗ c), i.e.,
(a⊗ c)RΠ(b⊗ c).

Definition 17 (Coimage). The quotient of D by the congruence RΠ,
denoted D/RΠ , is called the coimage of Π.

Definition 18 (Image). The image of mapping Π : D → C is denoted
ImΠ and is defined as follows:

ImΠ = {y ∈ C|y = Π(x) for some x ∈ D}.
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Remark 11. The mapping g : D/RΠ → ImΠ, with g([x]Π) = Π(x), is an
isomorphism.

Definition 19. Let P be the set of mappings from D to C. The order �
defined on C induces an order on P, for simplicity also denoted �, by

(∀Π1,Π2 ∈ P) Π1 � Π2 ⇔ (∀x ∈ D) Π1(x) � Π2(x).



6
Fixed points of monotone mappings

This section collects some useful results in order to deal with fixed point
equations. It will be recalled that iterative algorithms can be used to
compute fixed points of equations involving monotone mappings. The
results are based on the Knaster-Tarski theorem, which states that the
set of fixed points of an isotone mapping Π, defined over a complete
lattice, is also a complete lattice. This theorem guarantees the existence
of at least one fixed point of Π, and it also guarantees the existence of
a least and a greatest fixed point.

In the following, these results are adapted to the setting of semirings
by recalling that a complete idempotent semiring is a complete lattice
(see Remark 5).

Theorem 4. Let Π : D → D be an isotone mapping with D a complete
idempotent semiring. Let Y = {x ∈ D|Π(x) = x} be the set of fixed
points of Π.

1.
∧
y∈Y y is the least fixed point of Π, i.e.,

∧
y∈Y y ∈ Y, and it

satisfies
∧
y∈Y y =

∧
{x ∈ D|Π(x) � x}.

2.
∨
y∈Y y is the greatest fixed point of Π, i.e.,

∨
y∈Y y ∈ Y, and it

satisfies
∨
y∈Y y =

∨
{x ∈ D|x � Π(x)}.

25



26 Fixed points of monotone mappings

Proof. The proof is given for item 1, it is analogous for the second.
Hence, by considering Z = {x ∈ D | Π(x) � x}, it is sufficient to show
that

∧
z∈Z z ∈ Y and that

∧
y∈Y y =

∧
z∈Z z.

First, we prove that the greatest lower bound of Z is a fixed point,
i.e.,

∧
z∈Z z ∈ Y. Due to isotony of Π (see Remark 10), the following

inequality holds: Π(
∧
z∈Z z) �

∧
z∈Z Π(z). From the definition of Z,

it follows that ∀z ∈ Z, Π(z) � z, and therefore
∧
z∈Z Π(z) �

∧
z∈Z z.

This implies
Π(
∧
z∈Z

z) �
∧
z∈Z

z. (6.1)

From (6.1) and isotony of Π, it follows that Π(Π(
∧
z∈Z z)) � Π(

∧
z∈Z z).

Hence, from the definition of Z, it follows that Π(
∧
z∈Z z) ∈ Z and is

therefore greater than or equal to the greatest lower bound of Z, i.e.,∧
z∈Z

z � Π(
∧
z∈Z

z). (6.2)

(6.1) and (6.2) imply that
∧
z∈Z z = Π(

∧
z∈Z z), i.e.,

∧
z∈Z z ∈ Y.

Second, we show that
∧
z∈Z z =

∧
y∈Y y. According to the definition

of Y and Z, it holds that Y ⊆ Z. Therefore,
∧
y∈Y y �

∧
z∈Z z. On the

other hand, we have shown above that
∧
z∈Z z ∈ Y implying

∧
y∈Y y �∧

z∈Z z. Combining both inequalities, we have
∧
z∈Z z =

∧
y∈Y y.

Theorem 4 ensures the existence of both a least and a greatest
fixed point of monotone mappings defined over a complete idempotent
semiring. Below, a constructive algorithm providing the greatest fixed
point is given.
Theorem 5. Let Π : D → D be an isotone mapping and D be a complete
idempotent semiring. The greatest fixed point of Π can be obtained by
considering the following algorithm

Algorithm 1 Yields the greatest xm ∈ D such that xm = Π(xm).
Require: m = 0, x0 =

∨
D = >D and Π an isotone mapping

xm+1 = Π(xm)
while xm+1 6= xm do

m = m+ 1
xm+1 = Π(xm)

end while
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Proof. Theorem 4 ensures the existence of a greatest fixed point of
Π in D. The algorithm terminates when xm = Π(xm). Hence xm is
a fixed point. Furthermore, ∀z ∈ D such that z = Π(z) we have
z � x0 =

∨
D. Then Π being isotone implies z = Π(z) � Π(x0) and

z = Πm(z) � Πm(x0) = xm, hence xm is the greatest fixed point.

Remark 12. If the greatest fixed point is finite, convergence occurs in
a finite numbers of steps. The use of the algorithm is illustrated in
Example 12.

Remark 13. A dual algorithm can be used to find the least fixed point
of an isotone mapping Π. For this, it is sufficient to start Algorithm 1
with x0 =

∧
D = εD.

For semi-continuous mappings Π, the following holds.

Theorem 6 (Baccelli et al., 1992). Let D be a complete idempotent
semiring and Π : D → D be a mapping and Y = {x ∈ D|Π(x) = x} be
the set of fixed points of Π. Then,

1. if Π is lower semi-continuous (l.s.c.) then
∧
y∈Y y = Π∗(

∧
x∈D x),

2. if Π is upper semi-continuous (u.s.c) then
∨
y∈Y y = Π∗(

∨
x∈D x),

where

Π∗(x) =
⊕
i≥0

Πi(x),

Π∗(x) =
∧
i≥0

Πi(x),

Π0 = IdD is the identity mapping, and for all i ≥ 0, Πi+1 = Π ◦Πi.

We now turn to specific implicit inequalities and equations over a
complete dioid D. These will play a central role in the modeling of
TEGs, and finding a least solution will turn out to be essential for
establishing the fastest temporal evolution of TEGs. Note that in the
following theorem, the unknown, x, may both be a scalar or a vector in
D.
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Theorem 7 (see Baccelli et al., 1992, Th. 4.75). The implicit inequality
x � ax ⊕ b and the equality x = ax ⊕ b defined over a complete
idempotent semiring D admit x = a∗b as the least solution, where
a∗ =

⊕
i≥0

ai (Kleene star operator).

Below, we summarize some properties of the Kleene star operator
(∗) and the operator + defined by a+ = a(a)∗ = a ⊕ a2 ⊕ a3 . . .. Note
that these properties hold for any complete dioid, and therefore also for
square matrices with entries in such a dioid (see Remark 8).

(a⊕ b)∗ = (a∗b)∗ a∗ = (b∗a)∗b∗ (6.3)
a∗a∗ = a∗ and a+a+ = aa+ (6.4)
(a∗)∗ = a∗ and (a+)+ = a+ (6.5)
a (ba)∗ = (ab)∗ a (6.6)
(a∗)+ = (a+)∗ = a∗ (6.7)
a+ � a∗ (6.8)
(ab∗)∗ = e⊕ a (a⊕ b)∗ . (6.9)
a∗ � b∗ ⇔ a∗b∗ = b∗. (6.10)
ax � x⇔ a∗x = x. (6.11)

These properties can be shown as follows:
Eq. (6.3): consider the implicit equation x = (a⊕b)x⊕e = ax⊕bx⊕e.

According to Theorem 7, its least solution is (a ⊕ b)∗e = (a ⊕ b)∗.
According to Theorem 7, its least solution also satisfies x = a∗(bx⊕e) =
a∗bx⊕ a∗, which yields the least solution (a∗b)∗a∗. The least solution
of the implicit equation x = ax⊕ bx⊕ e also satisfies x = b∗(ax⊕ e) =
b∗ax⊕ b∗, which yields the least solution (b∗a)∗b∗.

Eq. (6.4): a∗a∗ = (e⊕a⊕a2⊕ ...)(e⊕a⊕a2⊕ ...) = (e⊕a⊕a2⊕ ...)⊕
(a⊕a2⊕a3...)⊕ (a2⊕a3⊕a4...) = e⊕a⊕a2⊕a3⊕a4...) = a∗. Similarly,
a+a+ = (a⊕ a2 ⊕ ...)(a⊕ a2 ⊕ ...) = (a2 ⊕ a3 . . .)⊕ (a3 ⊕ a4 . . .)⊕ . . . =
a2 ⊕ a3 ⊕ . . . = aa+.

Eq. (6.5): (a∗)∗ = e⊕ a∗ ⊕ a∗a∗ ⊕ ... and a∗a∗ = a∗, hence (a∗)∗ =
e ⊕ a∗ = a∗. Similarly, (a+)+ = a+ ⊕ a+a+ ⊕ ... and a+a+ = aa+

hence (a+)+ = a+ ⊕ aa+ ⊕ a2a+... = a+. The last equality holds since
a+ = a⊕ a2 ⊕ ... � aia+ = ai+1 ⊕ ai+2 ⊕ .., i = 0, 1, . . ..
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Eq. (6.6): a(ba)∗ = a(e⊕ ba⊕ baba⊕ ...) = a⊕ aba⊕ ababa⊕ ... =
(e⊕ ab⊕ abab⊕ ...)a = (ab)∗a.

Eq. (6.7): (a∗)+ = a∗ ⊕ a∗a∗ ⊕ ... and a∗a∗ = a∗, hence (a∗)+ =
a∗⊕a∗⊕... = a∗. Similarly, (a+)∗ = e⊕a+⊕a+a+⊕. . . and a+a+ = aa+.
Moreover, since a+ � aia+, i = 0, 1, . . ., (a+)∗ = e⊕ a+ = a∗.

Inequality (6.8): the proof follows directly from the definition of a+.
Eq. (6.9): from Eqs. (6.3) and (6.6), a(a ⊕ b)∗ = a(b∗a)∗b∗ =

ab∗(ab∗)∗ = (ab∗)+, hence e⊕ a(a⊕ b)∗ = e⊕ (ab∗)+ = (ab∗)∗.
Equiv. (6.10): recall that e � a∗, hence due to isotony of the product

law (see Remark 6) b∗ � a∗b∗. Furthermore, a∗ � b∗ implies a∗b∗ �
b∗b∗ = b∗. Hence, the following implication holds a∗ � b∗ ⇒ a∗b∗ = b∗.
On the other hand, b∗ = a∗b∗ = a∗ ⊕ a∗b⊕ a∗b2 ⊕ . . .⇒ a∗ � b∗. This
establishes (6.10).

Equiv. (6.11): first, the definition a∗ =
⊕

i≥0 a
i implies a∗x �

x. Furthermore, if ax � x then anx � ... � a2x � ax � x, then
a∗x =

⊕
i≥0 a

ix � x. Hence, ax � x ⇒ a∗x = x. On the other hand,
a∗x = x⇒ x � ax, hence equivalence (6.11) holds.

Properties (6.3) – (6.11) hold for any complete dioid. If ⊗ is com-
mutative, as, for example, for scalars in the max-plus algebra, (6.3) can
be simplified as follows:

(a⊕ b)∗ = a∗b∗. (6.12)

To show this, observe that from Eq. (6.3), the following equality holds:
(a ⊕ b)∗ = (a∗b)∗a∗ = a∗ ⊕ a∗ba∗ ⊕ a∗ba∗ba∗ ⊕ ... = a∗ ⊕ a∗a∗b ⊕
a∗a∗a∗b2 ⊕ .... The last equality holds because of the commutativity
assumption. Then, since a∗a∗ = a∗, the following equality is obtained:
(a⊕ b)∗ = a∗ ⊕ a∗b⊕ a∗b2 ⊕ ... = a∗(e⊕ b⊕ b2 ⊕ ...) = a∗b∗.

Let A ∈ Dn×n be a matrix, then A∗ =
⊕
i≥0

Ai with A0 = In the

identity matrix, can be computed by an iterative strategy inspired by
Gauss’ elimination for classical linear systems; below, an algorithm
of complexity O(n3) is given. Note that the scalar

(
a

(k−1)
kk

)∗
in the

algorithm is equal to e if a(k−1)
kk � e. An example for the use of this

algorithm can be found at the end of Section 7.



30 Fixed points of monotone mappings

Algorithm 2 Yields A∗ ∈ Dn×n .
Require: A∗ ∈ Dn×n
A(0) = A;
for k=1 to n do

// Computation of A(k)

for i=1 to n do
for j=1 to n do

a
(k)
ij = a

(k−1)
ij ⊕ a(k−1)

ik (a(k−1)
kk )∗a(k−1)

kj

end for
end for

end for
A∗ = In ⊕A(n)
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Residuation theory

In general, mappings defined on ordered sets do not have an inverse.
Nevertheless, under some assumptions regarding continuity, residuation
theory provides an answer to problems such as: what is the greatest
solution of inequality f(x) � b? Or, dually, what is the least solution
of inequality f(x) � b? For historical references about this theory, the
reader may consult Blyth, 2005, Blyth and Janowitz, 1972, Croisot,
1956, Cuninghame-Green, 1979. In this section, we consider residuation
theory in a semiring framework, as in Chapter 4 of Baccelli et al.,
1992 and in Blyth, 2005, Cohen, 1998, Cuninghame-Green, 1979. Note
that this theory, regarding the inversion of the order relation, is very
close to Galois theory (see Dubreil-Jacotin et al., 1953). For details,
the interested reader is invited to consult Birkhoff, 1940, Davey and
Priestley, 1990.

Definition 20 (Residual and residuated mapping). Let D, C be two com-
plete idempotent semirings and f : D → C be an isotone mapping. f
is a residuated mapping if for all y ∈ C there exists a greatest solution
to the inequality f(x) � y (hereafter denoted f ](y)). The mapping
f ] : C → D, y 7→

⊕
{x ∈ D|f(x) � y} is called the residual of f .

Note that, if equality f(x) = y is solvable, f ](y) yields its greatest

31
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solution.

Theorem 8 (see Baccelli et al., 1992 Th. 4.50,Blyth, 2005). Let D, C
be two complete idempotent semirings and f : D → C be an isotone
mapping. The following statements are equivalent:

(i) f is residuated.

(ii) there exists a unique mapping f ] : C → D which is isotone and
u.s.c. such that f ◦ f ] � IdC and f ] ◦ f � IdD, where IdD and
IdC are the identity mappings on D and C, respectively.

(iii) f(εD) = εC and f is l.s.c..

Theorem 9 (Baccelli et al., 1992, Th. 4.56). Let D, C be two complete
idempotent semirings and f : D → C be a residuated mapping. Then,

f ◦ f ] ◦ f = f and f ] ◦ f ◦ f ] = f ]. (7.1)

Proposition 1. Let D, C be two complete idempotent semirings and
f : D → C and g : D → C be two residuated mappings. The greatest
solution of equality f(x) = g(x) is equal to the greatest fixed point of
the isotone mapping Π : D → D,Π(x) = x ∧ g](f(x)) ∧ f ](g(x)).

Proof. The following equivalences hold:

f(x) = g(x) ⇔

f(x) � g(x)
g(x) � f(x)

⇔

x � f ](g(x))
x � g](f(x))

⇔ x � f ](g(x)) ∧ g](f(x))
⇔ x = x ∧ f ](g(x)) ∧ g](f(x)).

Hence the greatest fixed point of Π(x) = x ∧ f ](g(x)) ∧ g](f(x)) is
the greatest solution of equation f(x) = g(x). Furthermore, the law
∧ and the mappings f , f ], g and g] being isotone, the mapping Π is
isotone.
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As an immediate consequence of Proposition 1, the greatest solution
of equation f(x) = g(x) can be obtained using Algorithm 1.

Example 6. Mappings La : x 7→ a⊗ x and Ra : x 7→ x⊗ a defined over
D are both residuated (see Baccelli et al., 1992, Section 4.4.4). Their
residuals are isotone mappings, denoted respectively by L]a(x) = a◦\x
(“left division by a”) and R]a(x) = x◦/a (“right division by a”). This
means that a◦\b is the greatest solution of the inequality a⊗x � b, while
b◦/a is the greatest solution of x⊗a � b. Note that ε◦\> = >◦\> = > and
that ∀b 6= > the following equalities hold: ε◦\b = >, >◦\b = ε. Similarly,
>◦/ε = >◦/> = > and ∀b 6= >, b◦/ε = >, b◦/> = ε.

In the following, we collect some useful properties of left and right
multiplication and their residuals.

a(a◦\x) � x (x◦/a)a � x (7.2)
a◦\(ax) � x (xa)◦/a � x (7.3)
a(a◦\(ax)) = ax ((xa)◦/a)a = xa (7.4)
a◦\(a(a◦\x)) = a◦\x ((x◦/a)a)◦/a = x◦/a (7.5)
a◦\(x ∧ y) = a◦\x ∧ a◦\y (x ∧ y)◦/a = x◦/a ∧ y◦/a (7.6)
(a⊕ b)◦\x = a◦\x ∧ b◦\x x◦/(a⊕ b) = x◦/a ∧ x◦/b (7.7)
(ab)◦\x = b◦\(a◦\x) x◦/(ba) = (x◦/a)◦/b (7.8)
(a◦\x)b � a◦\(xb) b(x◦/a) � (bx)◦/a (7.9)

Proof. The proofs are given for the mapping La (left multiplication by
a) defined over D and its residual (“left division by a”). The proofs for
Ra are similar.
Inequalities (7.2) and (7.3) follow directly from Theorem 8, since La ◦
L]a � IdD and L]a ◦ La � IdD.
Eq. (7.4) and Eq. (7.5) follow directly from Theorem 9, since, La ◦ L]a ◦
La = La and L]a ◦ La ◦ L]a = L]a.
Eq. (7.6) holds as, according to Theorem 8, L]a is u.s.c..
To prove Eq. (7.7), note that (a⊕b)y = ay⊕by � x⇔ (ay � x and by �
x). Therefore, the following equivalence holds: y � (a ⊕ b)◦\x ⇔ (y �
a◦\x and y � b◦\x)⇔ y � (a◦\x) ∧ (b◦\x). Hence, Eq. (7.7) holds.
To prove Eq. (7.8), observe that y � (ab)◦\x⇔ aby � x⇔ by � a◦\x⇔
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y � b◦\(a◦\x). Hence, Eq. (7.8) holds.
To prove Ineq. (7.9), observe that Eq. (7.2) implies a(a◦\x)b � xb ⇔
(a◦\x)b � a◦\(xb).

Recall from Remark 8 that square matrices with entries from a
complete dioid D form a complete dioid, Dn×n, in their own right. Left
and right multiplication in this dioid by a matrix A with entries aij are
then residuated mappings. Hence, for given matrices B and C in Dn×n,
the inequalities

LA(X) = AX � B, LA : Dn×n 7→ Dn×n, (7.10)
RA(X) = XA � C, RA : Dn×n 7→ Dn×n (7.11)

have maximal solutions L]A(B) = A◦\B (“left division by matrix A”),
respectively R]A(C) = C◦/A (“right division by matrix A”). This implies
∀k, j

n⊕
i=1

aki(A◦\B)ij � bkj

and therefore

aki(A◦\B)ij � bkj or, equivalently, (A◦\B)ij � aki◦\bkj , i = 1, . . . n.

As A◦\B is the greatest solution of (7.10), we can deduce that, for
∀i, j ∈ [1, n],

(A◦\B)ij =
n∧
k=1

(aki◦\bkj). (7.12)

Similarly, it can be shown that, ∀i, j ∈ [1, n],

(C◦/A)ij =
n∧
k=1

(cik◦/ajk). (7.13)

Multiplication of non-square matrices can be handled by suitably
padding the involved matrices with ε-rows or columns. Then the greatest
solutions of inequalities

LA(X) = AX � B, LA : Dn×m 7→ Dp×m, (7.14)
RA(X) = XA � C, RA : Dm×p 7→ Dm×n (7.15)
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are obtained as A◦\B, with (A◦\B)ij given by (7.12), ∀i ∈ [1, n], and
∀j ∈ [1,m], respectively as C◦/A, with (C◦/A)ij given by (7.13), ∀i ∈
[1,m], and ∀j ∈ [1, p].

Example 7. (Gonçalves et al., 2017) Consider two p× n-matrices A,B
with entries from a complete idempotent semiring. Then, Proposition 1
implies that the greatest solution of equation AX = BX is obtained
by computing the greatest fixed point of the mapping Π(X) = X ∧
B◦\(AX) ∧A◦\(BX).

Definition 21 (Restricted mappings). Let B, C, D, and E be complete
idempotent semirings. Let f : D → C be a mapping and B ⊆ D. The
restricted mapping f|B : B → C is defined by f|B = f ◦ Id|B, where
Id|B : B → D is the canonical injection, i.e., ∀x ∈ B, Id|B(x) = x.
Similarly, let E ⊆ C be a set such that Imf ⊆ E . The restricted mapping
E|f : D → E is defined by f = Id|E ◦ E|f , where Id|E : E → C is the
canonical injection, i.e., ∀x ∈ E , Id|E(x) = x.

Theorem 10 (Projection into a subsemiring Blyth and Janowitz, 1972).
Let D be a complete semiring and Dsub a complete subsemiring of D.
The canonical injection IDsub : Dsub → D is residuated. The residual
I]Dsub = PrDsub satisfies:

(i) PrDsub ◦ PrDsub = PrDsub ,

(ii) PrDsub � IdD, where IdD is the identity mapping over D,

(iii) x ∈ Dsub ⇔ PrDsub(x) = x.

Definition 22 (Closure mapping). A closure mapping is an order pre-
serving mapping f : D → D such that f � IdD and f ◦ f = f .

Theorem 11 (see Cottenceau et al., 2001b). Let f : D → D be a closure
mapping. Then, Imf |f is a residuated mapping whose residual is the
canonical injection Id|Imf , i.e.,

(Imf |f)] = Id|Imf .

Example 8. Mapping K : D → D with K(x) = x∗ is a closure mapping.
This is easily seen since ∀x ∈ D, K(x) = x∗ � x = IdD(x) and
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(K ◦K)(x) = (x∗)∗ = x∗ = K(x) (see Property (6.5)). Then, according
to Theorem 11, ImK|K is residuated and its residual is (ImK|K)] = Id|ImK .
Hence, if a ∈ ImK, i.e., ∃y ∈ D such that a = K(y) = y∗ and therefore
a∗ = (y∗)∗ = y∗ = a, the greatest solution of inequality x∗ � a is
x = a = a∗. This implies x � a∗ ⇔ x∗ � a∗.

Example 9. Mapping P : D → D with P (x) = x+ = xx∗ = x∗x is
a closure mapping. This is easily seen since ∀x ∈ D, P (x) = x+ �
x = IdD(x) and (P ◦ P )(x) = (x+)+ = x+ = P (x) (see Property (6.5)).
Then, according to Theorem 11, ImP |P is residuated and its residual
is (ImP |P )] = Id|ImP . Hence, if a ∈ ImP , i.e., ∃y ∈ D such that a =
P (y) = y+ and therefore a+ = (y+)+ = y+ = a, the greatest solution
of inequality x+ � a is x = a = a+. This implies x � a+ ⇔ x+ � a+.

Remark 14. According to Eq. (6.7), (a∗)+ = a∗, therefore ImK ⊂ ImP .

Proposition 2. (Hardouin, 2004; MaxPlus, 1991) Below we summarize
some properties involving the left and right residuals and the Kleene
star operator.

a◦\a = (a◦\a)∗ a◦/a = (a◦/a)∗ (7.16)

a∗◦\(a∗x) = a∗x (a∗x)◦/a∗ = a∗x (7.17)

Proof. The proofs are given for the left residual defined over D. The
proofs for the right are similar.

Equalities (7.16) : First, by considering Eq. (7.9) (with x = a and b =
x) the following inequality holds (a◦\a)x � a◦\(ax) . By choosing x = a◦\a,
this yields (a◦\a)(a◦\a) � a◦\(a(a◦\a)) = a◦\a, where the equality follows
from Theorem 9. Hence (a◦\a)2 � a◦\a and consequently (a◦\a)k � a◦\a for
all k ≥ 2, hence (a◦\a)∗ = e⊕

n⊕
k=1

(a◦\a)k = e⊕a◦\a. Furthermore, Eq. (7.3)

implies that e � a◦\a (choose x = e), then (a◦\a)∗ = e⊕ a◦\a = a◦\a.
Equalities (7.17) : From Eq. (6.4) we can write , a∗a∗x = a∗x, which is
equivalent to a∗x � a∗◦\(a∗x) according to the definition of residuation.
From Eq. (7.7), a∗◦\(a∗x) = (e⊕a⊕a2⊕ ...)◦\(a∗x) = e◦\(a∗x)∧a◦\(a∗x)∧
a2◦\(a∗x) ∧ ..., hence a∗◦\(a∗x) � e◦\(a∗x) = (a∗x), therefore Eq. (7.17)
holds.
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Example 10 (Matrix operations in Zmax). Given the following matrices
with entries in Zmax,

A =

 1 4
5 3
ε 2

 , B =

 3 3
2 4
7 1

 , C =
[
e 4
1 3

]
,

G =

 1 2
3 4
5 ε

 , and F =

 6
7
8

 ,
we get

A⊕B =

 a11 ⊕ b11 a12 ⊕ b12
a21 ⊕ b21 a22 ⊕ b22
a31 ⊕ b31 a32 ⊕ b32

 =

 3 4
5 4
7 2


A⊗ C =


⊕2
j=1(a1j ⊕ cj1)

⊕2
j=1(a1j ⊕ cj2)⊕2

j=1(a2j ⊕ cj1)
⊕2
j=1(a2j ⊕ cj2)⊕2

j=1(a3j ⊕ cj1)
⊕2
j=1(a3j ⊕ cj2)

 =

 5 7
5 9
3 5

 .
Now consider the inequality G⊗X � F . As multiplication in the

max-plus algebra corresponds to addition in the standard algebra, its
(scalar) residual corresponds to standard subtraction, i.e., 1 ⊗ x � 4
admits the solution set X = {x|x � 1◦\4} with 1◦\4 = 4−1 = 3 being the
greatest solution. Applying the residuation rule (7.12) in the max-plus
algebra to the inequality G⊗X � F results in:

G◦\F =
[ ∧3

k=1 gk1◦\fk1∧3
k=1 gk2◦\fk1

]
=
[

1◦\6 ∧ 3◦\7 ∧ 5◦\8
2◦\6 ∧ 4◦\7 ∧ ε◦\8

]
=
[

3
3

]
.

The reader is invited to note that the rules given in Example 6 yield
ε◦\8 = >.
Matrix G◦\F = [3 3]T is the greatest solution for X which ensures
E ⊗X � F . Indeed,

G⊗ (G◦\F ) =

 1 2
3 4
5 ε

⊗ [ 3
3

]
=

 5
7
8

 �
 6

7
8

 = F.

Remark 15. Note that residuation achieves equality in the case of scalar
multiplication in the max-plus algebra, while this is in general not true
for the matrix case (see the above example).
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Example 11 (Equation x = Ax⊕ b in Zmax and Zmin). Let

A =

 ε ε ε

2 ε 3
4 ε ε

 , b =

 2
ε

8


be matrices with entries in Zmax. The least solution of the implicit
equation x = Ax ⊕ b is equal to A∗b, and A∗ can be computed using
Algorithm 2. Observe that in Zmax, if aij � e then a∗ij = e, else a∗ij = >.
Applying the steps of Algorithm 2, we obtain:

A(0) = A(1) = A(2) =

 ε ε ε

2 ε 3
4 ε ε


and A(3) =

 ε ε ε

7 ε 3
4 ε ε

 ,
therefore

A∗ = I3 ⊕A(3) =

 e ε ε

ε e ε

ε ε e

⊕
 ε ε ε

7 ε 3
4 ε ε

 =

 e ε ε

7 e 3
4 ε e

 .
Consequently, the least solution of the implicit equation x = Ax⊕ b

is

x = A∗b =

 2
11
8

 .
We now look for the least solution of x = Ax ⊕ b in Zmin. Recall

that the order � defined in Zmin is the opposite of the natural order ≥
in Z, that ε = +∞ and > = −∞. Applying Algorithm 2, we obtain

A(0) = A(1) = A(2) = A(3) =

 ε ε ε

2 ε 3
4 ε ε

 ,
therefore

A∗ = I3 ⊕A(3) =

 e ε ε

ε e ε

ε ε e

⊕
 ε ε ε

2 ε 3
4 ε ε

 =

 e ε ε

2 e 3
4 ε e

 .
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Consequently, the least solution of the implicit equation x = Ax⊕ b
in Zmin is

x = A∗b =

 2
4
6

 .
Example 12 (Equation Cx = Dx in Zmax). In this example, we illustrate
how Proposition 1 can be used to find the greatest solution, in Zmax, of
equation Cx = Dx such that x � x0, where

C =

 2 5 ε

2 7 7
7 9 1

 , D =

 1 4 4
6 3 1
2 5 8

 , x0 =

 15
15
15


are matrices, respectively a vector, with entries in Zmax. First, the
proposition states

Cx = Dx⇔ x = (C◦\(Dx)) ∧ (D◦\(Cx)) ∧ x , Π(x).

Then, Algorithm 1 is applied to compute the greatest fixed point of Π.
Below, the iteration steps of this algorithm are provided in detail.

x1 = Π(x0)

=

 15
15
15

 ∧ (

 1 4 4
6 3 1
2 5 8

 ◦\(
 2 5 ε

2 7 7
7 9 1


 15

15
15

))

∧ (

 2 5 ε

2 7 7
7 9 1

 ◦\(
 1 4 4

6 3 1
2 5 8


 15

15
15

))

=

 15
15
15

 ∧ (

 1 4 4
6 3 1
2 5 8

 ◦\
 20

22
24

) ∧ (

 2 5 ε

2 7 7
7 9 1

 ◦\
 19

21
23

)

=

 15
15
15

 ∧
 16

16
16

 ∧
 16

14
14

 =

 15
14
14

 ,
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x2 = Π(x1)

=

 15
14
14

 ∧ (

 1 4 4
6 3 1
2 5 8

 ◦\(
 2 5 ε

2 7 7
7 9 1


 15

14
14

))

∧ (

 2 5 ε

2 7 7
7 9 1

 ◦\(
 1 4 4

6 3 1
2 5 8


 15

14
14

))

=

 15
14
14

 ∧ (

 1 4 4
6 3 1
2 5 8

 ◦\
 19

21
23

) ∧ (

 2 5 ε

2 7 7
7 9 1

 ◦\
 18

21
22

)

=

 15
14
14

 ∧
 15

15
15

 ∧
 15

13
14

 =

 15
13
14

 ,
x3 = Π(x2)

=

 15
13
14

 ∧ (

 1 4 4
6 3 1
2 5 8

 ◦\(
 2 5 ε

2 7 7
7 9 1


 15

13
14

))

∧ (

 2 5 ε

2 7 7
7 9 1

 ◦\(
 1 4 4

6 3 1
2 5 8


 15

13
14

))

=

 15
13
14

 ∧ (

 1 4 4
6 3 1
2 5 8

 ◦\
 18

21
22

) ∧ (

 2 5 ε

2 7 7
7 9 1

 ◦\
 18

21
22

)

=

 15
13
14

 ∧
 15

14
14

 ∧
 15

13
14

 =

 15
13
14

 .
Hence, the algorithm converges to

[
15 13 14

]T
, which therefore is

the greatest solution of Cx = Dx such that x � x0.

Remark 16. If the greatest fixed point is finite, convergence of Algo-
rithm 1 occurs in a finite number of steps. Moreover, in Butkovič, 2010,
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it is shown that if Cx = Dx possesses a finite solution, the above algo-
rithm is pseudopolynomial, that is the convergence speed is polynomial
according to the finite distance between the value of x0 and the value
of the greatest fixed point xm.



8
Idempotent semirings of formal power series

As indicated in Example 5, the temporal evolution of a TEG is char-
acterised by sequences xi(0), xi(1), . . . ∈ Zmax. We sometimes refer to
such sequences as discrete-event signals, as xi(k) denotes the time of
the kth firing, or occurrence, of transition xi. Recall that in “standard”
systems and control theory, sequences corresponding to the values of
a discrete-time signal are often represented by their z-transforms. For-
mally, the z-transformation “translates” the sequence of signal values
into a formal power series in the indeterminant z−1. This can also be
done for sequences in Zmax. In particular, a sequence in Zmax can be
written as a formal power series in the indeterminant γ with coeffi-
cients in Zmax. This is referred to as the γ-transform of the sequence.
It will turn out that the set of such series forms a complete idempotent
semiring in its own right, denoted by Zmax[[γ]]. As noted in Section
3, the sequences representing the firing times of transitions in timed
event graphs are non-decreasing in the order � defined in Zmax. We
will therefore be particularly interested in non-decreasing power series.
They can be identified with another idempotent semiring, denoted by
Zmax[[γ]]/Rγ∗ . In subsequent sections, we will make intensive use of the
dioid Zmax[[γ]]/Rγ∗ to model timed event graphs and, on the basis of
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these models, perform controller and observer synthesis for TEGs.
In this section, we will first formally define the dioids Zmax[[γ]]

and Zmax[[γ]]/Rγ∗ . We will then go on to discuss causal and ultimately
periodic non-decreasing series, as these play an important role when
modelling TEGs.

Definition 23 (γ-transform). The γ-transform of a sequence s with
s(k) ∈ Zmax is a formal power series in γ with coefficients in Zmax and
exponents in Z = Z ∪ {−∞,+∞} defined by

s =
⊕
k∈Z

s(k)γk.

The valuation of the series s, denoted valγ(s), is the smallest k such
that s(k) 6= ε, and the degree of s, denoted by degγ(s), is the greatest
k such that s(k) 6= ε.

Remark 17. We denote both the sequence and its γ-transform by the
same symbol, as no ambiguity will occur.

Remark 18. Since sγ =
⊕
k∈Z s(k)⊗ γk+1 =

⊕
k∈Z s(k − 1)⊗ γk, mul-

tiplication by γ can be interpreted as a backward shift operation.

Definition 24 (Idempotent semiring Zmax[[γ]]). The set of formal power
series in γ with exponents in Z and coefficients in Zmax, with addition
and multiplication (Cauchy product) defined by

s⊕ s′ =
⊕
k∈Z

(
s(k)⊕ s′(k)

)
γk, (8.1)

s⊗ s′ =
⊕
k∈Z

⊕
k1∈Z

(
s(k1)⊗ s′(k − k1)

) γk, (8.2)

is a complete idempotent semiring, denoted Zmax[[γ]]. The zero element
in this semiring is the series ε(γ) =

⊕
k∈Z−∞γ

k. The unit element is
the formal power series e(γ) =

⊕
k<0−∞γk ⊕ 0γ0 ⊕

⊕
k>0−∞γk. The

top element is >(γ) =
⊕

k∈Z +∞γk. When there is no ambiguity, these
series will be denoted ε, e and >, for short.
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As s � s′ ⇔ s⊕s′ = s′, the order in Zmax[[γ]] is defined coefficientwise,
i.e., s � s′ ⇔ ∀k ∈ Z, s(k) � s′(k). Hence the greatest lower bound of
two formal power series s and s′ is provided by

s ∧ s′ =
⊕
k∈Z

(
s(k) ∧ s′(k)

)
γk, (8.3)

and the greatest solution of inequality s⊗ x � s′ is given by

s◦\s′ =
⊕

x∈Zmax[[γ]]

{
x|s⊗ x � s′

}

=
⊕
k∈Z

 ∧
k1∈Z

(
s(k1 − k)◦\s′(k1)

) γk. (8.4)

Remark 19. It is customary to list only coefficients that are not equal
to −∞. Hence, a monomial, i.e., a series with only one non-(−∞)
coefficient, can be written as tγk instead of

⊕
j<k(−∞)γj ⊕ tγk ⊕⊕

j>k(−∞)γj . Similarly for polynomials, i.e., series with only a finite
number of non-(−∞) coefficients.

8.1 Non-decreasing series

In the sequel we will focus on non-decreasing sequences s, i.e., we require
∀k, s(k− 1) � s(k). The reason for doing this is that we want sequences
to model the firing times of corresponding transitions in TEGs. As the
time of the kth firing of a transition, s(k), can clearly not be less than the
time of its (k − 1)st firing, s(k − 1), this establishes non-decreasingness
of sequences. For the γ-transform of the sequence s, this requirement
translates into (see Remark 18)

∀k, s(k − 1) � s(k)⇔ γs � s⇔ γ∗s = s,

where γ∗s =
⊕
k≥0 γ

ks. We now identify all series s with γ∗s, i.e., we
introduce an equivalence relation Rγ∗ by

sRγ∗s′ ⇐⇒ γ∗s = γ∗s′.

Rγ∗ respects the laws of the semiring Zmax[[γ]] and is therefore a
congruence (see Definition 16). The quotient semiring Zmax[[γ]]/Rγ∗ is a
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semiring where each element is an equivalence class [s]/Rγ∗ , and since
γ∗γ∗ = γ∗, each class [s]/Rγ∗ admits a greatest element (in the order
defined in Zmax[[γ]]), namely γ∗s. We can identify each equivalence class
[s]/Rγ∗ with its greatest element γ∗s. The latter is a non-decreasing
series, hence the quotient semiring Zmax[[γ]]/Rγ∗ can be interpreted as
the semiring of non-decreasing power series in γ.

The relation between a (not necessarily non-decreasing) series s,
the equivalence class [s]/Rγ∗ and its greatest element γ∗s is illustrated
in Fig. 8.1. Clearly, [s]/Rγ∗ is a set of series in Zmax[[γ]], and it can
be visualized as the union of “south-east” cones with apexes (k, s(k)).
Moreover, Fig. 8.1 illustrates that an equivalence class [s]/Rγ∗ can also
be represented by a minimal series in Zmax[[γ]] (where “minimal” is,
again, in the sense of the order defined in Zmax[[γ]]). In the example
shown in Fig. 8.1, this is the polynomial 1γ−1 ⊕ 3γ2, which can be
visualized as the set of “north-west corners” of the gray area.
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−2
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4
5

(a) s = 1γ−1 ⊕−1γ0 ⊕ 0γ ⊕ 3γ2 ⊕
1γ3 ⊕ 2γ4

k

(γ∗s)(k)

−1 1 2 3 4 5

−2
−1

1
2
3
4
5

(b) Equivalence class [s]/Rγ∗ (gray
area) with greatest element (γ∗s)
(black dots) and minimal represen-
tative (1γ−1 ⊕ 3γ2) (black rectan-
gles).

Figure 8.1: Relation between series s ∈ Zmax[[γ]] and the equivalence class [s]Rγ∗ ∈
Zmax[[γ]]/Rγ∗ with greatest element (γ∗s) and minimal representative.

Note that a minimal representative of an equivalence class is a
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series in Zmax[[γ]] with the least number of non-(−∞)-coefficients. For
algorithmic reasons, we are therefore obviously interested to represent
equivalence classes (elements in Zmax[[γ]]/Rγ∗ ), and hence their greatest
elements (which are non-decreasing series in Zmax[[γ]]) by their minimal
representatives (which may not be non-decreasing in Zmax[[γ]]) . Hence,
to avoid confusion, we need to distinguish whether we refer to s as a
series in Zmax[[γ]] (this is denoted by s ∈ Zmax[[γ]]) or as a representation
of the equivalence class [s]/Rγ∗ and therefore the greatest element γ∗s
in this class. The latter is denoted by s ∈ Zmax[[γ]]/Rγ∗ . The following
example illustrates this point.

Example 13. 1γ0 ⊕ 3γ2 ∈ Zmax[[γ]] refers to the power series⊕
j<0

(−∞)γj ⊕ 1γ0 ⊕ (−∞)γ1 ⊕ 3γ2⊕
j>2

(−∞)γj ,

while 1γ0⊕3γ2 ∈ Zmax[[γ]]/Rγ∗ refers to the non-decreasing power series⊕
j<0

(−∞)γj ⊕ 1γ0 ⊕ 1γ1⊕
j≥2

3γj .

In the following, we will only work with non-decreasing power series
s, hence it is always the latter interpretation, i.e., s ∈ Zmax[[γ]]/Rγ∗ ,
that will be used.

In particular, the notation tγk ∈ Zmax[[γ]]/Rγ∗ will refer to the fact
that the monomial tγk is the minimal representative of equivalence class
[tγk]Rγ∗ ∈ Zmax[[γ]]/Rγ∗ and therefore represents the non-decreasing
series γ∗tγk =

⊕
j≥k tγ

j .
As a consequence, the neutral elements of multiplication and ad-

dition, and the top element in the dioid Zmax[[γ]]/Rγ∗ will be written,
respectively, as

e = 0γ0

ε = −∞γ+∞

> = +∞γ−∞.

Using this convention, the following computational rules between
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monomials Zmax[[γ]]/Rγ∗ can be established:

tγk ⊕ tγl = tγmin(k,l), (8.5)
tγk ⊕ τγk = (t⊕ τ)γk = max(t, τ)γk, (8.6)
tγk ⊕ τγl = tγk if t � τ and k ≤ l, (8.7)
tγk ⊗ τγl = (t⊗ τ)γ(k+l) = (t+ τ)γ(k+l), (8.8)
τγl◦\tγk = (τ◦\t)γ(k−l) = (t− τ)γ(k−l), (8.9)

tγk ∧ τγl = (t ∧ τ)γmax(k,l) = min(t, τ)γmax(k,l). (8.10)

Graphically, for monomials in Zmax[[γ]]/Rγ∗ ,

1. addition tγk ⊕ τγl refers to the union of south-east cones with
apexes (k, t) and (l, τ) (see Fig. 8.2(a)),

2. multiplication tγk ⊗ τγl refers to the south-east cone of apex
(k + l, t⊗ τ) (see Fig. 8.2(b))

3. greatest lower bound: tγk∧τγl refers to the intersection of the two
south-east cones with apexes (k, t) and (l, τ), i.e., the south-east
cone with apex (max(k, l), (t ∧ τ)) (see Fig. 8.2(c)).

Definition 25 (Polynomial). A polynomial in p ∈ Zmax[[γ]]/Rγ∗ is defined

as the sum of a finite number of monomials, i.e., p =
m⊕
i=1

tiγ
ni , 0 < m <

∞. According to simplification rules Eq. (8.5) and Eq. (8.6) a polynomial
can always be written in canonical form, with n1 < n2 < . . . < nm and
t1 ≺ t2 ≺ . . . ≺ tm, where “ti ≺ ti+1” means “ti � ti+1 but ti 6= ti+1”.
When a polynomial p is in canonical form, its valuation and degree are
given by valγ(p) = n1 and its degree degγ(p) = nm.

Example 14. The following polynomial p = 3γ1 ⊕ 2γ3 ⊕ 4γ2 admits
the following canonical form p = 3γ1 ⊕ 4γ2 with valγ(p) = 1 and
degγ(p) = 2.

Definition 26 (Operations between polynomials). Operations between

polynomials p =
m⊕
i=1

tiγ
ni and p′ =

m′⊕
j=1

t′jγ
n′j are a straightforward
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(a) 2γ1 ⊕ 3γ3
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(b) 2γ ⊗ 3γ3 = 5γ4
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(c) 3γ1 ∧ 4γ3 = 3γ3

Figure 8.2: Graphical representation of operations in Zmax[[γ]]/Rγ∗ .



8.2. Causal series 49

extension of the corresponding operations between monomials. They
are summarized below, together with the involved computational com-
plexity.

p⊕ p′ =
m⊕
i=1

tiγ
ni ⊕

m′⊕
j=1

tjγ
n′j ,

with complexity O(m+m′),

p⊗ p′ =
m⊕
i=1

m′⊕
j=1

(ti ⊗ t′j)γ
ni+n′j ,

with complexity O(m.m′),

p ∧ p′ =
m⊕
i=1

(tiγni ∧ p′) =
m⊕
i=1

m′⊕
j=1

(ti ∧ t′j)γ
max(ni,n′j),

with complexity O(m.m′),

p′◦\p =
m∧
i=1

m′⊕
j=1

(t′j◦\ti)γ
ni−n′j ,

with complexity O(m.m′).

Example 15. Let p = 3γ1⊕ 7γ3 and p′ = 5γ3⊕ 8γ5 be two polynomials
in canonical form. By applying the formulas given above, the following
results are obtained :

p⊕ p′ = 3γ1 ⊕ 7γ3 ⊕ 8γ5,

p⊗ p′ = 8γ4 ⊕ 11γ6 ⊕ 12γ6 ⊕ 15γ8 = 8γ4 ⊕ 12γ6 ⊕ 15γ8,

p ∧ p′ = 5γ3 ⊕ 7γ5

p′◦\p = (−2γ−2 ⊕ 2γ0) ∧ (−5γ−4 ⊕−1γ−2) = −2γ−2 ⊕−1γ0.

8.2 Causal series

Definition 27 (Causality of a series in Zmax[[γ]]/Rγ∗ ). A series s ∈
Zmax[[γ]]/Rγ∗ is causal if s = ε or if both valγ(s) ≥ 0 and s � 0γvalγ(s),
where valγ(s) refers to the valuation in γ of series s.

Consequently, the coefficients ti of all monomials composing a causal
series s are greater than or equal to 0. If a series encodes the sequence of
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firing times of a transition, causality means that both the event numbers
and the associated firing times are nonnegative. Further justification
for relying on causal series in Zmax[[γ]]/Rγ∗ will be given in Section 9,
where they reflect the transfer behaviour of TEGs.

The set of causal elements of Zmax[[γ]]/Rγ∗ has a complete semiring
structure and is denoted Z+

max[[γ]]/Rγ∗ . Obviously, Z+
max[[γ]]/Rγ∗ is a

complete sub-dioid of Zmax[[γ]]/Rγ∗ .

Theorem 12. The canonical injection Id|Z+
max[[γ]]/Rγ∗

: Z+
max[[γ]]/Rγ∗ →

Zmax[[γ]]/Rγ∗ is residuated and its residual is denoted Pr+ : Zmax[[γ]]/Rγ∗ →
Z+

max[[γ]]/Rγ∗ .

Proof. Direct application of Theorem 10.

Pr+(s) is the greatest causal series less than or equal to series
s ∈ Zmax[[γ]]/Rγ∗ , and it is referred to as the causal projection of s.
From a practical point of view, for all series s ∈ Zmax[[γ]]/Rγ∗ , the causal
projection Pr+(s) is obtained by:

Pr+(s) = Pr+

⊕
k∈Z

s(k)γk
 =

⊕
k∈Z

s+(k)γk (8.11)

where

s+(k) =
{
s(k) if k ≥ 0 and s(k) � e,
ε otherwise.

Example 16 (Causal projection of a series). Given a non-causal series
s = −1γ−4 ⊕ 2γ−2 ⊕ 3γ2 ⊕ 4γ4 ∈ Zmax[[γ]]/Rγ∗ , its causal projection
scaus = Pr+(s) = 2γ0 ⊕ 3γ2 ⊕ 4γ4 ∈ Z+

max[[γ]]/Rγ∗ . Graphically, the
causal projection of a series s can be represented as the series that
covers the same area in the first quadrant as s, but is devoid of any
points in the other quadrants. In Fig. 8.3 the series s and its causal
projection Pr+(s) are shown.
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(a) s = −1γ−4 ⊕ 2γ−2 ⊕ 3γ2 ⊕ 4γ4
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(b) Pr+(s) = 2γ0 ⊕ 3γ2 ⊕ 4γ4

Figure 8.3: Causal projection of a (non-causal) series s ∈ Zmax[[γ]]/Rγ∗ .

Proposition 3. The following properties hold ∀s1, s2 ∈ Zmax[[γ]]/Rγ∗ :

s1 � s2 ⇒ Pr+(s1) � Pr+(s2), (8.12)
Pr+(Pr+(s1)) = Pr+(s1), (8.13)
Pr+(s1) � s1, (8.14)
Pr+(s1)⊗ Pr+(s2) � Pr+(s1 ⊗ s2), (8.15)
Pr+(s1) ∧ Pr+(s2) = Pr+(s1 ∧ s2), (8.16)
Pr+(s1)⊕ Pr+(s2) = Pr+(s1 ⊕ s2), (8.17)



52 Idempotent semirings of formal power series

and ∀s1, s2 ∈ Z+
max[[γ]]/Rγ∗ :

Pr+(s1) = s1, (8.18)
Pr+(s1)⊕ Pr+(s2) = Pr+(s1 ⊕ s2) = s1 ⊕ s2, (8.19)
Pr+(s1)⊗ Pr+(s2) = Pr+(s1 ⊗ s2) = s1 ⊗ s2. (8.20)

Proof.
Eq. (8.12) : Pr+ = (Id|Z+

max[[γ]]/Rγ∗
)] is an isotone mapping according to

Theorem 8.
Eqs. (8.13) and (8.14) : According to Theorem 10, Pr+ is idempotent
and Pr+ � IdZmax[[γ]]/Rγ∗

.
Eq. (8.15) : Eq. (8.14) yields Pr+(s1) � s1 and Pr+(s2) � s2, hence
isotony of the product law yields Pr+(s1) ⊗ Pr+(s2) � s1 ⊗ s2. By
applying causal projection on both sides, Eq. (8.12) yields Pr+(Pr+(s1)⊗
Pr+(s2)) � Pr+(s1 ⊗ s2). The semiring Z+

max[[γ]]/Rγ∗ is a subsemiring of
Zmax[[γ]]/Rγ∗ , hence it is closed under addition and multiplication (see
Definition 10), hence Pr+(Pr+(s1)⊗Pr+(s2)) = Pr+(s1)⊗Pr+(s2), and
therefore Pr+(s1)⊗ Pr+(s2) � Pr+(s1 ⊗ s2).
Eq. (8.16) : Pr+ = (Id|Z+

max[[γ]]/Rγ∗
)], hence according to Theorem 8, Pr+

is u.s.c..
Eq. (8.17) : according to (8.11),

Pr+(s1 ⊕ s2) =

⊕
k∈Z

(s1 ⊕ s2)+(k)γk


=
⊕
k∈Z

((s1)+(k)⊕ (s2)+(k))γk

= Pr+(s1)⊕ Pr+(s2).

Eqs. (8.18), (8.19) and (8.20) : are implied by the fact that Z+
max[[γ]]/Rγ∗

is a subsemiring of Zmax[[γ]]/Rγ∗ and Eq. (8.13).

Remark 20. According to Eqs. (8.17) and (8.16), Pr+ is both a ⊕-
morphism and a ∧-morphism.
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Remark 21. The causal projection Pr+(H) of a matrixH ∈ Zmax[[γ]]p×m/Rγ∗
is the p×m matrix of the projections of its entries Hij , i.e.,

(Pr+(H))ij = Pr+(Hij); i = 1, . . . , p, j = 1, . . . ,m

8.3 Ultimately periodic series

Definition 28 (Ultimately periodic series in Zmax[[γ]]/Rγ∗ ). A series s ∈
Zmax[[γ]]/Rγ∗ is said to be ultimately periodic if it can be written as

s = p ⊕ q ⊗ r∗, where p =
m⊕
i=1

tiγ
ni is a polynomial referring to a

transient phase, e.g., the start-up of the system, q =
n⊕
j=1

Tjγ
Nj is a

polynomial representing the periodical behavior, i.e., the pattern that
will be repeated periodically, and r = τγν is a monomial describing
the periodicity. Then the ratio (in standard algebra) σ(s) = ν

τ is the
asymptotic slope (or throughput) of the series, i.e., once the periodic
regime is reached, an event occurs ν times every τ time units.

In the following, we will always assume that the polynomials p and
q are in canonical form (see Definition 25).

Definition 29 (Proper Representation). An ultimately periodic series

s =
(
m⊕
i=1

tiγ
ni

)
⊕
(

n⊕
j=1

Tjγ
Nj

)
(τγν)∗ in Zmax[[γ]]/Rγ∗ is in proper form

if

ni < ni+1, Nj < Nj+1, nm < N1, tm ≺ T1

and Nn −N1 < ν, t1◦\Tn ≺ τ.

Definition 30. A proper form s = p⊕qr∗ is said to be at least as simple
as another proper form s = p′ ⊕ q′r′∗ if

nm ≤ n′m, tm � t′m and ν ≤ ν ′, τ � τ ′.

Theorem 13. An ultimately periodical series s admits a simplest rep-
resentation. This simplest representation is the canonical form of the
series s.
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Figure 8.4: Graphical representation of ultimately periodic series s = e ⊕ 2γ ⊕
3γ3 ⊕ 5γ4 ⊕ (6γ5 ⊕ 8γ6)(3γ3)∗ .

The canonical form of a series in Zmax[[γ]]/Rγ∗ is defined analogously
to the canonical form of a polynomial (see Definition 25).

Example 17 (Ultimately periodic series in Zmax[[γ]]/Rγ∗ ). Considering
the series s ∈ Zmax[[γ]]/Rγ∗

s = 0γ0 ⊕ 2γ ⊕ 3γ3 ⊕ 5γ4 ⊕ 6γ5 ⊕ 8γ6

⊕ 9γ8 ⊕ 11γ9 ⊕ 12γ11 ⊕ 14γ12 ⊕ . . .

This series is ultimately periodic and can be rewritten in simplest form
as

s = 0γ0 ⊕ 2γ1 ⊕ 3γ3 ⊕ 5γ4︸ ︷︷ ︸
p

⊕
(
6γ5 ⊕ 8γ6

)
︸ ︷︷ ︸

q

(
3γ3

)∗
︸ ︷︷ ︸

r∗

.

The graphical representation of this series is given in Fig. 8.4. The
reader is invited to check that this series is in proper form accord-
ing to Definition 30 and that it is the simplest, hence the canonical
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form. This can be checked by observing that the polynomials p and
q are in canonical form and that ν, τ , valγ(q) cannot be reduced to
represent this series. Of course this series admits an infinite number of
representations, e.g., it can be written as s = 0γ0 ⊕ 2γ1 ⊕ 3γ3 ⊕ 5γ4 ⊕
6γ5 ⊕

(
8γ6 ⊕ 9γ8 ⊕ 11γ9 ⊕ 12γ11

) (
6γ6)∗. The canonical form, however,

is essential when comparing series.

The operations between ultimately periodic series can be deduced
from the corresponding operations between polynomials, and it can be
checked that the results are ultimately periodic. In particular,

s” ,s⊕ s′ = p⊕ p′ ⊕ qr∗ ⊕ q′r′∗

has asymptotic slopeν”
τ” = min(ν

τ
,
ν ′

τ ′
),

s” ,s⊗ s′ = pp′ ⊕ p′qr∗ ⊕ pq′r′∗ ⊕ qq′r∗r′∗

has asymptotic slope ν”
τ” = min(ν

τ
,
ν ′

τ ′
),

s” ,s ∧ s′ = p ∧ p′ ⊕ (p ∧ q′r′∗)⊕ (qr∗ ∧ p′)⊕ (qr∗ ∧ q′r′∗)

has asymptotic slope ν”
τ” = max(ν

τ
,
ν ′

τ ′
).

Furthermore,

if ν′τ ′ ≥
ν
τ then s” , s′◦\s = (p′◦\(p⊕ qr∗)) ∧ ((q′r′∗)◦\(qr∗))

has asymptotic slope ν”
τ” = ν

τ ,

else s” , s′◦\s = ε.

Note that, by convention, expressions for the asymptotic slope of ulti-
mately periodic series are usually written in the standard algebra.

Example 18 (Operations over ultimately periodic series). Let s = e ⊕
3γ4(3γ5)∗ and s′ = 3γ ⊕ 4γ2(1γ4)∗ be two ultimately periodic series
in Zmax[[γ]]/Rγ∗ . By considering the simplification rules (8.5)–(8.8), we
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obtain the following results:

s⊕ s′ = e⊕ 3γ4(3γ5)∗ ⊕ 3γ1 ⊕ 4γ2(1γ4)∗
= e⊕ 3γ4 ⊕ 6γ9 ⊕ 9γ14 ⊕ 12γ19...

⊕3γ1 ⊕ 4γ2 ⊕ 5γ6 ⊕ 6γ10 ⊕ 7γ14...

= e⊕ 3γ4 ⊕ 6γ9 ⊕ 9γ14 ⊕ ...⊕ 3γ ⊕ 4γ2 ⊕ 5γ6

= e⊕ 3γ1 ⊕ 4γ2 ⊕ 5γ6 ⊕ 6γ9 ⊕ 9γ14 ⊕ ...
= e⊕ 3γ1 ⊕ 4γ2 ⊕ 5γ6 ⊕ 6γ9(3γ5)∗,

s⊗ s′ = (e⊕ 3γ4(3γ5)∗)⊗ (3γ1 ⊕ 4γ2(1γ4)∗)
= (e⊕ 3γ4 ⊕ 6γ9 ⊕ 9γ14 ⊕ 12γ19...)
⊗(3γ1 ⊕ 4γ2 ⊕ 5γ6 ⊕ 6γ10 ⊕ 7γ14...)

= (3γ1 ⊕ 4γ2 ⊕ 5γ6 ⊕ 6γ10 ⊕ 7γ14...)
⊕(6γ5 ⊕ 7γ6 ⊕ 8γ10 ⊕ 9γ14 ⊕ 10γ18...)
⊕(9γ10 ⊕ 10γ11 ⊕ 11γ15 ⊕ 12γ19 ⊕ 13γ23...)⊕ ...

= (3γ1 ⊕ 4γ2)⊕ (6γ5 ⊕ 7γ6)⊕ (9γ10 ⊕ 10γ11)⊕ ...
= (3γ1 ⊕ 4γ2)⊕ (6γ5 ⊕ 7γ6)(3γ5)∗.
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TEG description in an idempotent semiring

TEGs constitute a subclass of timed Petri nets in which each place has
exactly one upstream and one downstream transition and all arcs have
weight 1. A TEG description, as the one obtained in Section 3, can be
transformed into a max-plus or a min-plus linear model and vice versa.
To obtain an algebraic model in Zmax, a “dater” function is associated
to each transition.

In a first step, we partition the set of transitions in the investigated
TEG into

• a set of transitions xi, 1 = 1, . . . , n, with both upstream and
downstream places; these transitions are referred to as internal
transitions,

• a set of transitions yi, i = 1, . . . ,m, with only upstream places;
these transitions are referred to as output transitions;

• a set of transitions with only downstream places; these transitions
are referred to as input transitions; the set of input transitions is
further partitioned into

– controllable input transitions ui, i = 1, . . . p, i.e., transitions
with freely assignable firing times, and
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– uncontrollable input transitions wi, i = 1, . . . , l, i.e., transi-
tions with unknown firing times. These can be interpreted
as disturbances (see below).

We assume the following. The firing times of output transitions are
immediately observable by an outside agent, e.g., a controller. Further-
more, each output transition yi has precisely one upstream place, and
the upstream transition of this place is an internal one. Finally, the
upstream place of each output transition has zero holding time and
initially contains zero tokens. This implies that the firing times of each
output transition immediately indicate the corresponding firing times
of selected internal transitions.

With respect to uncontrollable input transitions, the following as-
sumptions are in place. Each uncontrollable input transition has precisely
one downstream place, and the downstream transition of this place is
an internal one. Moreover, the downstream place of each uncontrol-
lable input transition has zero holding time and initially contains zero
tokens. This implies that each uncontrollable input transition can be
interpreted as a disturbance acting on precisely one internal transition.
More precisely, the kth firing of the affected internal transition may
not occur before the kth firing of the uncontrollable input. Conversely,
if the firings of the uncontrollable input transition occur sufficiently
early such that the firings of the associated internal transition are not
delayed, the disturbance is non-functional.

With each transition, we associate a dater function, which, for
simplicity, is denoted by the same symbol as the transition. Hence, xi :
Z→ Zmax is the dater function associated with the internal transition
xi, and xi(k) represents the time (date) of this transition’s kth firing
(see Baccelli et al., 1992,Heidergott et al., 2006).

By collecting the internal dater functions xi, i = 1, . . . n, in the
vector function x : Z→ Znmax, the controllable input dater functions: ui,
i = 1, . . . p, in u : Z→ Zpmax, the uncontrollable input dater functions
wi, i = 1, . . . l, in w : Z → Zlmax and the output dater functions yi,
i = 1, . . .m, in y : Z→ Zmmax, a TEG satisfying the above assumptions
and operating under the earliest firing rule can be described by the
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following max-plus linear system:

x(k) =
Na⊕
j=0

Ajx(k − j)⊕
Nb⊕
j=0

Bju(k − j)⊕R0w(k), (9.1)

y(k) = C0x(k). (9.2)

The nonnegative integer Na is equal to the maximal number of tokens
initially contained in places between internal transitions, the nonnegative
integer Nb is equal to the maximal number of tokens initially contained
in places between controllable input transitions and internal transitions,
and the entries of matrices Aj ∈ Zn×nmax , Bj ∈ Zn×pmax, R0 ∈ Zn×lmax, and
C0 ∈ Zm×nmax represent the structure of the TEG. More specifically, if
there is a place with upstream transition xq and downstream transition
xi, and if this place initially contains j tokens, then the entry (Aj)iq is
the holding time of this place, otherwise (Aj)iq = ε. Similarly, if there is
a place with upstream transition uq and downstream transition xi, and if
this place initially contains j tokens, then the entry (Bj)iq is the holding
time of this place, otherwise (Bj)iq = ε. Moreover, (R0)iq = e, if there
is a place with upstream transition wq and downstream transition xi,
otherwise (R0)iq = ε, and (C0)iq = e, if there is a place with upstream
transition xq and downstream transition yi, otherwise (C0)iq = ε. The
above assumptions regarding uncontrollable input transitions imply
that each column of matrix R0 has precisely one entry equal to e, each
row has at most one entry equal to e, and all other entries are equal
to ε. Similarly, the assumptions regarding the output transitions imply
that each row of matrix C0 has precisely one entry equal to e, each
column has at most one entry equal to e, and all other entries are equal
to ε.

The following example illustrates how a TEG is modeled as a max-
plus linear system.

Example 19. In Fig. 9.1, a TEG with p = 1 controllable input transition,
l = 2 uncontrollable input transitions, and m = 1 measurable output
transition is depicted. Clearly, Na = 2 and Nb = 0. Hence, the TEG is
represented by the max-plus linear system in Eqns. (9.1),(9.2), where
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4

w
w

Figure 9.1: TEG with 1 controllable transition u1, 2 uncontrollable transitions
(w1, w2), and 1 measurable output transition y1.

the system matrices are

A0 =
[
ε ε

1 ε

]
, A1 =

[
3 ε

ε 4

]
,

A2 =
[
ε e

ε ε

]
, B0 =

[
1
ε

]
,

C0 =
[
ε e

]
, R0 =

[
e ε

ε e

]
.

Note that matrix R0 = I2, where I2 is the identity matrix in Z2
max.

This implies that both internal transitions are directly affected by
independent disturbances. The disturbance w incorporates lower bounds
for x(0). In particular, w(0) � x(0) (see Baccelli et al., 1992, p. 245, for
a discussion about compatible initial conditions).

The sequence of firing times of each transition in a TEG is clearly
non-decreasing and can therefore be written as a formal power series in
Zmax[[γ]]/Rγ∗ (see Definition 24 and Section 8.1).

The TEG model (9.1), (9.2) can therefore be rephrased compactly
as:

x = Ax⊕Bu⊕Rw, (9.3)
y = Cx, (9.4)
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where the entries of u ∈ Zmax[[γ]]p/Rγ∗ , y ∈ Zmax[[γ]]m/Rγ∗ , x ∈ Zmax[[γ]]n/Rγ∗ ,
and w ∈ Zmax[[γ]]l/Rγ∗ represent formal power series associated with the
controllable input transitions, the output transitions, the internal tran-
sitions and the uncontrollable input transitions, respectively. Matrices
A ∈ (Zmax[[γ]]/Rγ∗ )

n×n, B ∈ (Zmax[[γ]]/Rγ∗ )
n×p, R ∈ (Zmax[[γ]]/Rγ∗ )

n×l,
and C ∈ (Zmax[[γ]]/Rγ∗ )

m×n represent the links between transitions,
including the holding time and the number of initial tokens contained in
the place between a pair of transitions, and they are defined as follows:

A =
Na⊕
j=0

γjAj ,

B =
Nb⊕
j=0

γjBl,

R = γ0R0 = R0,

C = γ0C0 = C0.

Clearly, this γ-domain representation carries the same information
with respect to a TEG as the event domain equations (9.1),(9.2), but
in a more compact form.

Remark 22. It has become customary in the max-plus literature to
refer to x as the state of the model (9.3), (9.4) , e.g., Baccelli et al., 1992.
Note that this does not coincide with the standard notion of state. The
latter would correspond to the distribution of tokens over the places in
the considered TEG. In the sequel, we will also refer to x as state, and
the terms “state estimation” and “state feedback” are to be understood
in this sense.

By considering Theorem 7, the least solutions of (9.1),(9.2) are given
by:

x = A∗Bu⊕A∗Rw (9.5)
y = CA∗Bu⊕ CA∗Rw, (9.6)

where CA∗B ∈ (Zmax[[γ]]/Rγ∗ )
m×p and CA∗R ∈ (Zmax[[γ]]/Rγ∗ )

m×l are
the control/output and the disturbance/output transfer matrices. Ma-
trices CA∗B and A∗B represent the earliest behavior of the system,
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and the uncontrollable input vector w is only able to delay the firing
times of internal and output transitions, i.e., to delay the occurrence
of the corresponding events. In a manufacturing scenario, this could,
for example, describe disturbances due to machine breakdown or delays
due to an unexpected failure in component supply.

Example 20. The TEG depicted in Fig. 9.1 can be described in the
form (9.3),(9.4) with system matrices

A =
[

3γ1 eγ2

1γ0 4γ1

]
, B =

[
1γ0

ε

]
,

C =
[
ε e

]
, R =

[
e ε

ε e

]
.

The entry A22 = 4γ1 represents the place linking transition x2 to itself
and denotes that this place has a holding time of four time units and
initially contains one token. Similarly, the entry A12 = eγ2 represents
the place linking transition x2 to transition x1 and denotes that this
place has zero holding time and initially contains two tokens, etc.

To compute the transfer matrices in Eqns. (9.5) and (9.6), we need
to compute A∗. This can be done by applying Algorithm 2.

A(0) = A =
[

3γ1 eγ2

1γ0 4γ

]
,

A(1) =
[

3γ1(3γ1)∗ eγ2(3γ1)∗
1γ0(3γ1)∗ 4γ1 ⊕ 7γ4(3γ1)∗

]
,

A(2) =[
3γ1 ⊕ 6γ2 ⊕ 9γ3 ⊕ 12γ4 ⊕ 15γ5 ⊕ 18γ6 ⊕ 21γ7(4γ4)∗ eγ2(4γ1)∗

1γ0(4γ1)∗ (4γ1)∗

]
.

The reader is invited to compute a(2)
11 by using the computation

rules introduced in Section 8 to provide

a
(2)
11 = a

(1)
11 ⊕ a

(1)
12 (a(1)

22 )∗a(1)
21

= 3γ1(3γ1)∗ ⊕ γ2(3γ1)∗(4γ1 ⊕ 7γ4(3γ1)∗)∗1(3γ1)∗
= 3γ1 ⊕ 6γ2 ⊕ 9γ3 ⊕ 12γ4 ⊕ 15γ5 ⊕ 18γ6 ⊕ 21γ7(4γ4)∗.



63

Therefore,

A∗ = I2 ⊕A(2)

=
[
e⊕ 3γ1 ⊕ 6γ2 ⊕ 9γ3 ⊕ 12γ4 ⊕ 15γ5 ⊕ 18γ6 ⊕ 21γ7(4γ4)∗ γ2(4γ1)∗

1γ0(4γ1)∗ (4γ1)∗

]

This computation can be easily carried out by using the toolbox
MinMaxGD, a C++ library developed in order to handle ultimately
periodic series (see Cottenceau et al., 2000, Hardouin et al., 2016),
which is based on Algorithm 2. From matrix A∗, it is easy to obtain
the control/output and disturbance/output transfer matrices:

CA∗B =
[
ε e

]
A∗
[

1
ε

]
= 2γ0(4γ)∗, (9.7)

CA∗R =
[
ε e

]
A∗
[
e ε

ε e

]
=
[

1γ0(4γ1)∗ (4γ1)∗
]
. (9.8)

Each entry of these matrices is a causal ultimately periodic se-
ries representing a transfer relation. For example, CA∗B = 2γ0(4γ)∗
represents the transfer relation between the controllable input u and
the output y. Given a sequence of firing times of the controllable
input transition, encoded in a (non-decreasing) series u, the series
y = CA∗Bu ∈ Zmax[[γ]]/Rγ∗ encodes the sequence of firing times of the
output transition, if the TEG operates under the earliest firing rule
and if the uncontrollable input does not slow down the system, i.e.,
CA∗Bu � CA∗Rw. Suppose this is the case and the controllable input
transition fires infinitely often at time 0 (this is referred to as applying
an impulse at the input). Hence, the series encoding the sequence of
firing times of the controllable input transition is 0γ0 ⊕ 0γ1 ⊕ 0γ2 ⊕ . . .
or, in canonical form, u = 0γ0, i.e., the neutral element of multiplication
in the dioid Zmax[[γ]]/Rγ∗ . Therefore, y = CA∗B. Hence, as in standard
systems and control theory, transfer relations represent the impulse
response of a system. Clearly, as an impulse applied to the input does
not restrain the evolution of the system, the impulse response represents
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the fastest system behaviour. In our example, y = CA∗B = 2γ0(4γ)∗.
As the polynomial representing the transient part in this series vanishes,
the series is immediately periodic. This is, of course, reflected in the
sequence of firing times of the output transition, namely 2, 6, 10, 14, . . ..

Let us now apply a different control input by letting the control
input transition fire at times 5, 7, 7, 12, 12 (and then no more). The
corresponding series in Zmax[[γ]]/Rγ∗ is (in canonical form) u = 5γ0 ⊕
7γ1 ⊕ 12γ3 ⊕+∞γ5. The term +∞γ5 denotes that after the fifth firing
of the transition at time 12, it will not fire another time. We still
assume that the uncontrollable input does not slow down the system,
i.e., CA∗Bu � CA∗Rw. Then,

y = CA∗Bu = (2γ0)(4γ)∗(5γ0 ⊕ 7γ1 ⊕ 12γ3 ⊕+∞γ5)
= 7γ0 ⊕ 11γ1 ⊕ 15γ2 ⊕ 19γ3 ⊕ 23γ4 ⊕+∞γ5,

where the second line of the above expression is obtained by applying
the simplification rules (8.5)–(8.8). Consequently, in this case the firing
times of the output transition will be 7, 11, 15, 19, 23.

In this paper, we assume that the investigated TEGs are structurally
controllable and structurally observable. This is a standard assumption
for max-plus linear systems, which is not restrictive in practice. We first
explain, what these properties formally mean.

Definition 31. (Structural Controllability Baccelli et al., 1992) A TEG
is said to be structurally controllable if every internal transition can be
reached by a path from at least one controllable input transition.

Definition 32. (Structural Observability Baccelli et al., 1992) A TEG
is said to be structurally observable if, from every internal transition,
there exists a path to at least one output transition.

Not surprisingly, structural controllability (respectively structural
observability) of TEGs can be evaluated from the corresponding transfer
matrices:

Theorem 14. (Hardouin, 2004; Spacek et al., 1995) A TEG is struc-
turally controllable if and only if the transfer matrix A∗B is such that
at least one entry in each row is different from ε.
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Theorem 15. (Hardouin, 2004; Spacek et al., 1995) A TEG is struc-
turally observable if and only if the transfer matrix CA∗ is such that
at least one entry in each column is different from ε.

Let us briefly revisit Example 20. There, all entries of the matrices
A,B,C,R are causal polynomials in Zmax[[γ]]/Rγ∗ , and all entries in
the resulting transfer matrix CA∗B, respectively CA∗R, are causal
ultimately periodic series in Zmax[[γ]]/Rγ∗ . This raises the question
whether system models (9.3),(9.4) with only causal polynomial entries
in the matrices A,B,C,R will always give rise to transfer matrices with
exclusively causal ultimately periodic entries and, reversely, whether,
any such transfer matrix can always be represented by (9.3),(9.4) with
only causal polynomial entries.

Definition 33 (Realizability). A series s ∈ Zmax[[γ]]/Rγ∗ is said to be
realizable if there exist three matrices A, B and C of appropriate
dimension and with entries that are are causal polynomials, such that
s = CA∗B. A matrix is said to be realizable if its entries are realizable.

In other words, a series s is realizable if it corresponds to the transfer
function of a timed event graph.

Theorem 16 (Cohen et al., 1989, Baccelli et al., 1992, Theorem 5.39).
Let H be a matrix in (Zmax[[γ]]/Rγ∗ )

q×p. The matrix H is realizable if
and only if all entries of H are ultimately periodic and causal.

The following remarks show how to obtain a TEG realizing a causal
ultimately periodic series.

Remark 23. Let s = p⊕ qr∗ be an ultimately periodic and causal series
in canonical form, with p =

n⊕
i=1

tiγ
ni , q =

m⊕
j=1

Tjγ
Nj and r = τγν , with

ν,τ ∈ N. This series can be realized as:(
ζ1
ζ2

)
=
(
r ε

e ε

)(
ζ1
ζ2

)
⊕
(
q

p

)
u (9.9)

y =
(
ε e

)(ζ1
ζ2

)

where ζ1, ζ2, y, u ∈ Zmax[[γ]]/Rγ∗ .
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6

5 ζ ζ21

Figure 9.2: Timed Event Graph realization of series s = p⊕ qr∗ = e⊕ 1γ ⊕ 3γ4 ⊕
(5γ5 ⊕ 6γ7)(3γ4)∗.

Remark 24. From the realization (9.9) of the ultimately periodic and
causal series s, it is straightforward to obtain the corresponding timed
event graph. To do this, we introduce transitions ζ1, ζ2, u and y. Further-
more, we introduce a place linking the transition ζ1 to itself, reflecting
the monomial r, i.e., equipped with a holding time of τ and initially
containing ν tokens. Then we introduce m places corresponding to the
monomials of polynomial q. They link the transition u to the transition
ζ1, have holding times Tj and initially hold Nj tokens, j = 1, . . . ,m.
We additionally introduce n places corresponding to the monomials
of polynomial p. They link the transition u to the transition ζ2, have
holding times ti and initially hold ni tokens, i = 1, . . . , n. Finally, we
introduce two places, one linking ζ1 to ζ2 and the other linking ζ2 to
the output transition y, both with holding time 0 and initially without
tokens.

Example 21. Let s = p⊕ qr∗ = e⊕ 1γ ⊕ 3γ4 ⊕ (5γ5 ⊕ 6γ7)(3γ4)∗ be a
series. The realization (9.9) then becomes

ζ1 = (3γ4)ζ1 ⊕ (5γ5 ⊕ 6γ7)u
ζ2 = ζ1 ⊕ (e⊕ 1γ ⊕ 3γ4)u
y = ζ2.
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The corresponding TEG is shown in Fig. 9.2. When operated under
an earliest firing policy, the firing times of transitions ζ1, ζ2, u and y
are related by the following set of difference equations.

ζ1(k) = 3ζ1(k − 4)⊕ 5u(k − 5)⊕ 6u(k − 7)
ζ2(k) = ζ1(k)⊕ u(k)⊕ 1u(k − 1)⊕ 3u(k − 4)
y(k) = ζ2(k).
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Max-plus observer

This section deals with the estimation of the firing times of internal
transitions of a TEG, if they are not directly observable. They are
estimated on the basis of the TEG model, the measured firing times of
the output transitions and the known controllable input transitions. Ac-
cording to Remark 22, this is usually referred to as the state estimation
problem for TEGs. This problem has been addressed in different ways
(see Spacek et al., 1995; Gazarik and Kamen, 1997; Markele Ferreira
Candido et al., 2013; Lotito et al., 2001). In the following, an observer
structure directly inspired by the Luenberger observer in classical linear
systems theory (e.g., Luenberger, 1971) is considered (Hardouin et al.,
2010b; Hardouin et al., 2010a). This observer structure, depicted in Fig.
10.1, is composed of two parts:
(i) the simulator is, except for the disturbance term Rw, a copy of the
system model (9.3), (9.4), and is therefore characterized by the matrices
A ∈ (Zmax[[γ]]/Rγ∗ )

n×n, B ∈ (Zmax[[γ]]/Rγ∗ )
n×p, C ∈ (Zmax[[γ]]/Rγ∗ )

m×n.
As the simulator is initialized by x̂i(k) = ε, ∀k ≤ 0, and as the dis-
turbance term can only slow down the system behavior, the simulator
represents the fastest possible behavior of the system (9.3), (9.4).
(ii) The observer matrix L ∈ (Zmax[[γ]]/Rγ∗ )

n×m is used to feed back

68
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information from the measurable system output into the simulator in
order to take the effect of the disturbance w into account. L is chosen to

R w

w

Figure 10.1: The observer structure of max-plus linear systems.

be the greatest matrix (in the order defined in the dioid Zmax[[γ]]/Rγ∗ )
such that x̂ � x. This will make the firing times of the internal tran-
sitions x̂i in the observer, which can be interpreted as estimates of
the corresponding firing times of the internal system transitions xi,
i = 1, . . . , n, as large as possible, but without ever being later than the
latter.

With the matrices A, B, C and R characterizing the system model
assumed to be known, x and y are provided by Eqns. (9.5),(9.6). Accord-
ing to Fig. 10.1, the observer equations, in analogy to the Luenberger
observer, are given by:

x̂ = Ax̂⊕Bu⊕ L(ŷ ⊕ y) = Ax̂⊕Bu⊕ LCx̂⊕ LCx
= (A⊕ LC)x̂⊕Bu⊕ LCx.

Because of Theorem 7,

x̂ = (A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCx
= (A⊕ LC)∗Bu⊕ (A⊕ LC)∗LC(A∗Bu⊕A∗Rw), (10.1)

where the latter follows from Eq. (9.5).
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By using Eqns. (6.3),(6.6), the following equality is obtained:

(A⊕ LC)∗ = A∗(LCA∗)∗. (10.2)

Inserting (10.2) into (10.1), we get

x̂ = A∗(LCA∗)∗Bu⊕A∗(LCA∗)∗LCA∗Bu⊕A∗(LCA∗)∗LCA∗Rw.

Recalling that (LCA∗)∗LCA∗ = (LCA∗)+ (see Example 9), this equa-
tion may be written as

x̂ = A∗(LCA∗)∗Bu⊕A∗(LCA∗)+Bu⊕A∗(LCA∗)+Rw.

Since (LCA∗)∗ � (LCA∗)+ = (LCA∗)∗LCA∗ and multiplication is
isotone, the observer equation can be simplified to

x̂ = A∗(LCA∗)∗Bu⊕A∗(LCA∗)+Rw

= (A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCA∗Rw, (10.3)

where the latter equality follows from Eq. (10.2).
As indicated above, the objective is to compute the greatest observer

matrix L, denoted by Lopt, such that x̂ � x. Hence, we require the
greatest L satisfying the following inequality ∀u,w:

(A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCA∗Rw � A∗Bu⊕A∗Rw. (10.4)

Equivalently, we require

(A⊕ LC)∗B � A∗B and (10.5)
(A⊕ LC)∗LCA∗R � A∗R. (10.6)

The following Lemmas yield conditions for the observer matrix L such
that (10.5) and (10.6) hold. They also provide the greatest observer
matrices satisfying (10.5) and (10.6).

Lemma 1 (Hardouin et al., 2010a). The following equivalence holds:

(A⊕ LC)∗B = A∗B ⇔ L � L1 = (A∗B)◦/(CA∗B)

Proof. Note that if all entries of L are ε, inequality (A⊕LC)∗B � A∗B is
trivially satisfied with equality. As matrix multiplication and the Kleene
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star operation are isotone, any other solution of (A ⊕ LC)∗B � A∗B

will also achieve equality. Furthermore,

(A⊕ LC)∗B � A∗B
⇔ (A∗LC)∗A∗B � A∗B because of (6.3)
⇔ (A∗LC)∗ � (A∗B)◦/(A∗B) as multiplication is residuated
⇔ (A∗LC)∗ � ((A∗B)◦/(A∗B))∗ because of (7.16)
⇔ A∗LC � (A∗B)◦/(A∗B) see Example 8
⇔ L � A∗◦\(A∗B)◦/(A∗B)◦/C as multiplication is residuated
⇔ L � A∗◦\(A∗B)◦/(CA∗B) because of (7.8)
⇔ L � (A∗B)◦/(CA∗B) because of (7.17)

Lemma 2 (Hardouin et al., 2010a). The following equivalence holds:

(A⊕ LC)∗LCA∗R � A∗R⇔ L � L2 = (A∗R)◦/(CA∗R).

Proof.

(A⊕ LC)∗LCA∗R � A∗R
⇔ A∗(LCA∗)∗LCA∗R � A∗R because of (10.2)
⇔ (LCA∗)∗LCA∗R � A∗◦\(A∗R) as multiplication is residuated
⇔ (LCA∗)∗LCA∗R � A∗R because of (7.17)
⇔ (LCA∗)∗LCA∗A∗R

= (LCA∗)+A∗R � A∗R because of (6.4) and the def. of a+

⇔ (LCA∗)+ � (A∗R)◦/(A∗R) as multiplication is residuated
= ((A∗R)◦/(A∗R))∗ because of (7.16).

According to Remark 14, ((A∗R)◦/(A∗R))∗ is in ImP , where P : x→ x+.
Therefore, by applying the result presented in Example 9, this inequality
may be written as follows :

LCA∗ � (A∗R)◦/(A∗R)
⇔ L � ((A∗R)◦/(A∗R))◦/(CA∗) as multiplication is residuated
⇔ L � (A∗R)◦/(CA∗A∗R) because of (7.8)
⇔ L � (A∗R)◦/(CA∗R) = L2 because of (6.5).
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An immediate consequence of Lemma 1 and Lemma 2 is that the
greatest L that satisfies requirements (10.5) and (10.6) is L1 ∧ L2.
Therefore, the following proposition holds.

Proposition 4 (Hardouin et al., 2010a). Lopt = L1 ∧ L2 is the greatest
observer matrix L such that ∀(u,w):

x̂ = Ax̂⊕Bu⊕ Ly � x = Ax⊕Bu⊕Rw.

Note that Lemma 1, Lemma 2 and Proposition 4 can be restricted to
the respective causal projections. Hence, L1+ = Pr+(L1) is the greatest
causal solution of requirement (10.5), L2+ = Pr+(L2) is the greatest
causal solution of requirement (10.6), and Lopt+ = Pr+(Lopt) represents
the greatest causal solution that guarantees x̂ � x for all u, w.

Below we show that the greatest causal solution Lopt+ achieves
equality between estimated output ŷ and measured output y (see Propo-
sition 5). As a preliminary step, we show in the following lemma that
the causal observer matrix L̃ = CT also achieves equality between ŷ and
y. However, by construction, L̃ � Lopt+ , therefore the state estimate
x̃ generated by an observer with matrix L̃ will in general not be as
good as the estimate x̂ generated by an observer with matrix Lopt+ ,
i.e., x̃ � x̂ � x.

Lemma 3. The observer matrix L̃ = CT , where (·)T denotes the matrix
transpose, ensures equality between estimated output ŷ = Cx̂ and
measured output y.

Proof. From Eq. (10.3), equality of ŷ and y for all u, w is equivalent to

C(A⊕ L̃C)∗B = CA∗B, (10.7)
and C(A⊕ L̃C)∗L̃CA∗R = CA∗R. (10.8)

By assumption, the entries of matrix C ∈ Zmax[[γ]]m×n/Rγ∗
are in {ε, e}

and precisely one is equal to e in each row (see Section 9). Hence,
L̃C = CTC � In, where In is the n×n identity matrix in Zmax[[γ]]/Rγ∗ ,
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and CL̃ = CCT = Im. This implies that A⊕ L̃C � A⊕ In and, because
the Kleene star operation is isotone,

(A⊕ L̃C)∗ � (A⊕ In)∗

= (A∗In)∗A∗ because of (6.3)
= A∗ because of (6.4) and (6.5)
� (A⊕ L̃C)∗,

where the latter inequality follows from A � A⊕L̃C and the fact that the
Kleene star operation is isotone. Hence, equality (A⊕ L̃C)∗ = A∗ holds,
and Eq. (10.7) is proven. To prove Eq. (10.8), we insert the equality
(A ⊕ L̃C)∗ = A∗ into the left hand side of (10.8) to get CA∗L̃CA∗R.
Because of L̃C � In, order preservingness of matrix multiplication and
(6.4), we get

CA∗L̃CA∗R � CA∗InA∗R = CA∗R.

Since A∗ � In and because of order preservingness of matrix multipli-
cation, we also get

CA∗L̃CA∗R � CL̃CA∗R = CA∗R,

where the latter equality follows from CL̃ = Im. Consequently
CA∗L̃CA∗R = CA∗R, and Eq. (10.8) has also been proven.

Proposition 5. Matrix Lopt+ = Pr+(Lopt) ensures equality between the
estimated output ŷ and the measured output y.

Proof. In order to prove equality between the estimated output ŷ and
the measured output y, we recall that

y = CA∗Bu⊕ CA∗Rw,
ŷ = C(A⊕ Lopt+C)∗Bu⊕ C(A⊕ Lopt+C)∗Lopt+CA∗Rw.

Hence, we need to show

CA∗B = C(A⊕ Lopt+C)∗B and (10.9)
CA∗R = C(A⊕ Lopt+C)∗Lopt+CA∗R, (10.10)

respectively. Note first that L̃ = CT is causal, since C is causal,
and recall from the proof of Lemma 3 that (A ⊕ L̃C)∗ = A∗, hence
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(A ⊕ L̃C)∗B = A∗B and C(A ⊕ L̃C)∗B = CA∗B. Second, (A ⊕
L̃C)∗L̃CA∗R = A∗L̃CA∗R � A∗R as L̃C � In. According to The-
orem 12, Lopt+ is the greatest causal matrix such that Lopt+ � Lopt,
hence, according to Lemma 1 and Lemma 2, matrix Lopt+ is the greatest
causal matrix such that (A⊕ LC)∗B = A∗B and (A⊕ LC)∗LCA∗R �
A∗R. Therefore, L̃ � Lopt+ . Since matrix Lopt+ is such that C(A ⊕
Lopt+C)∗Lopt+CA∗R � CA∗R, and since L̃ � Lopt+ the following in-
equality holds:

C(A⊕ L̃C)∗L̃CA∗R � C(A⊕ Lopt+C)∗Lopt+CA∗R � CA∗R.

According to the proof of Lemma 3, the left hand side term is equal
to CA∗R. Therefore, we conclude that C(A⊕ Lopt+C)∗Lopt+CA∗R =
CA∗R, and y = ŷ for all u, w when the observer matrix Lopt+ is
used.



11
Control of max-plus linear systems

In Section 9, it was shown how a TEG can be modelled as a max-plus
linear system. In particular, we introduced the system (9.3), (9.4) as
a compact model, where all entities are in the diod Zmax[[γ]]/Rγ∗ . In
Section 10, we discussed how, on the basis of this model and measured
firing times of all output transitions, an optimal state estimate can
be obtained. More precisely, the observer introduced in that section
provides the closest estimates of the firing times of all internal transitions
while guaranteeing that the estimates are never greater than the actual
firing times.

In this Section, we will discuss how to control a TEG on the basis
of the model (9.3), (9.4). We will investigate both open-loop and closed-
loop control. In either case, the aim is to compute the controllable input
of the system in order to achieve a desired performance. In the context
of TEGs, this means to determine the firing times of the controllable
input transitions. For example, in a transportion network or a computer
network, the dispatch times of vehicles or data packets need to be
computed. In a manufacturing context, it has to be decided when
processing of different raw workpieces should be started. In all cases,
one wants to ensure that the firing times of the output transition are “in

75



76 Control of max-plus linear systems

time”, i.e., not later than at pre-specified dates. Under this restriction,
we typically aim at maximising the firing times of the controllable input
transitions. This is referred to as a “just-in-time” policy, and it has
been popular in industrial applications because it avoids unnecessary
internal stocks. This, in turn, reduces the use of resources and therefore
financial cost. For example, in a manufacturing scenario where products
have to be finished and delivered to the customer at pre-specified times,
it is advantageous to feed raw material and unprocessed workpieces into
the system as late as possible since this minimizes the need for internal
storage.

In Section 11.1, we discuss two open-loop control strategies, while
output feedback and state feedback control will be investigated in Sec-
tions 11.2 and 11.3. Later, in Section 12, we will combine the results on
state estimation from Section 10 and on state feedback from Section 11.3
to provide an observer-based optimal feedback control policy.

11.1 Optimal open-loop control

11.1.1 Restricting the plant output

As an open-loop policy only makes sense if there are no disturbances act-
ing on the system, the uncontrollable input w in (9.3), (9.4) is neglected,
i.e., w = ε, to give the following plant model (in Zmax[[γ]]/Rγ∗ ):

x = Ax⊕Bu,
y = Cx.

Hence, y = Hyuu, where them×p plant transfer matrix is Hyu , CA∗B.
Following results given in Cohen et al., 1989, we assume that a desired
sequence of firing times for the output transitions are given. This
reference sequence is encoded in the power series z ∈ Zmax[[γ]]m/Rγ∗ .
Adopting a just-in-time policy, we seek the maximal control input
u ∈ Zmax[[γ]]p/Rγ∗ such that y � z. In other words, we aim at firing all
input transitions as late as possible while making sure that the output
transitions fire no later than specified by z. As multiplication is isotone,
this implies that applying the resulting control input will give rise to
the largest output y respecting the specification.
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Hence we aim at solving the optimization problem

uopt =
⊕

u∈Zmax[[γ]]/Rγ∗

u

subject to y = CA∗Bu � z.

As multiplication is residuated (see Example 6), the solution is directly
obtained by

uopt = (CA∗B)◦\z. (11.1)

Example 22. Let us consider the TEG given in Fig. 9.1, with transfer
relation Hyu = CA∗B = 2γ0(4γ)∗ (see Eq. (9.7)), and the following
desired firing times of the output transition: z(k) = {8, 11, 14, 19, 20}
for k ∈ [0, 4] and z(k) = +∞ for k ≥ 5. Recall that It is straightforward
to write this sequence in a polynomial form in Zmax[[γ]]/Rγ∗ , namely
z = 8γ0 ⊕ 11γ1 ⊕ 14γ2 ⊕ 19γ3 ⊕ 20γ4 ⊕ +∞γ5. Then, by using the
algorithm and computational rules introduced in Section 8.1, we obtain

uopt = (CA∗B)◦\z
= (2γ0(4γ)∗)◦\(8γ0 ⊕ 11γ1 ⊕ 14γ2 ⊕ 19γ3 ⊕ 20γ4 ⊕+∞γ5)
= 2γ0 ⊕ 6γ1 ⊕ 10γ2 ⊕ 14γ3 ⊕ 18γ4 ⊕+∞γ5

as the optimal (in the sense of the just-in-time criterion) control input .
The corresponding optimal output is given by:

yopt = Hyuuopt

= (2γ0(4γ)∗)(2γ0 ⊕ 6γ1 ⊕ 10γ2 ⊕ 14γ3 ⊕ 18γ4 ⊕+∞γ5)
= 4γ0 ⊕ 8γ1 ⊕ 12γ2 ⊕ 16γ3 ⊕ 20γ4 ⊕+∞γ5

Fig. 11.1 depicts the series uopt and yopt. It illustrates that optimal
control implies firing the input transition at times 2, 6, 10, 14, 18 (and
then no more). The resulting output series yopt is the greatest one
ensuring that yopt � z. Graphically, the reader is invited to note that
this optimal control minimizes the area between the graphs representing
y and z. Furthermore, there always exists at least one index i such that
yopt(i) = z(i), in this example i = 4.
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gray)

Figure 11.1: Optimal control input and corresponding output for Example 22.

11.1.2 Restricting the transfer matrix

We now take a different view on open-loop control, advocated initially
in Hardouin et al., 1997. Instead of assuming a reference series that
the plant output needs to match from below as closely as possible,
we now investigate the scenario shown in Fig. 11.2. Recall that the

 Rw

w

 P
Filter

Figure 11.2: System with filter P .

plant transfer matrix from u to y is Hyu , CA∗B ∈ Zmax[[γ]]m×p/Rγ∗
. We

aim at computing the maximal causal open-loop controller, or prefilter,
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P ∈ Zmax[[γ]]p×p/Rγ∗
such that the resulting transfer matrix from v to y,

Hyv = HyuP , is bounded from above by a reference transfer matrix
Gref , i.e., we require that

Hyv(P ) , (CA∗B)P � Gref .

Hence, as in the previous case, we want all controllable input transitions
to fire as late as possible, but now under the restriction of an upper
bound for the open-loop transfer matrix, i.e., this transfer matrix may
not be slower than Gref . As multiplication is isotone, using the greatest
possible prefilter P will lead to the maximal transfer matrix Hyv(P )
respecting this restriction. As Hyv(P ) will therefore match the reference
transfer matrix as closely as possible, the described approach can be
understood as a specific model matching procedure. Formally, this leads
to the following optimization problem:

Popt =
⊕

P∈Zmax[[γ]]p×p
/Rγ∗

P

subject to (CA∗B)P � Gref .

As multiplication is residuated (see Example 6), the solution is
directly obtained by

Popt = (CA∗B)◦\Gref . (11.2)

We require a causal prefilter, therefore we subsequently determine the
causal projection Popt+ , Pr+(Popt), i.e., the largest causal prefilter in
Zmax[[γ]]p×p/Rγ∗

that is less than or equal to Popt.
As will be discussed in Section 13, a variety of objectives can be

considered and translated into an appropriate reference model Gref .
An elementary and popular choice is to consider a strategy called
“neutral control”. It aims to keep the input/output transfer relation
unchanged while delaying the firing of control input transitions as much
as possible. Hence, this strategy minimizes the number of tokens in
the system while preserving input/output performance. To achieve this,
the reference model is chosen as Gref = CA∗B, which leads to the
prefilter Popt = (CA∗B)◦\(CA∗B). As we require a causal prefilter, we
take the causal projection Popt+ = Pr+(Popt). The resulting open-loop
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transfer matrix is then Hyv = CA∗BPopt+ . Intuitively, causal control
can only delay the firing of input transitions, hence Hyv � CA∗B. On
the other hand, solution of the addressed optimisation problem gives
Hyv � CA∗B. Hence, Hyv = CA∗B = Gref , i.e., the reference model is
perfectly matched in this case. This is formally shown in Section 13.1.

Example 23. Consider again the TEG in Fig. 9.1, with the transfer
relation from the controllable input u to the output y given by (9.7),
i.e., .CA∗B = 2γ0(4γ)∗ . Suppose the reference model is Gref = CA∗B,
i.e., we aim at solving the neutral control problem described above.
According to Eq. (11.2), the optimal prefilter is

Popt = (CA∗B)◦\Gref = (2γ0(4γ)∗)◦\(2γ0(4γ)∗) = (4γ)∗,

which is clearly causal and ultimately periodic and therefore, because
of Theorem 16, realizable. As expected, in this case, the reference
model is perfectly matched. Indeed, CA∗BPopt = (2γ0(4γ)∗)(4γ)∗ =
2γ0(4γ)∗ = Gref . To realize the optimal prefilter Popt = (4γ)∗, we follow
the procedure given in Example 23 (for p = ε, q = e, and r = 4γ). This
provides

ζ1 = 4γζ1 ⊕ v
ζ2 = ζ1

u = ζ2

or, equivalently,
u = 4γu⊕ v.

As γ is the backward shift operator, the latter can be written as

u(k) = 4u(k − 1)⊕ v(k).

The corresponding TEG realizing the optimal prefilter is shown in
Fig. 11.3. Its effect clearly is that the transition u can fire only once
every 4 time units.

11.2 Output feedback control

To deal with unknown disturbances, one needs to incorporate feedback
into the control law. In this subsection, we consider linear output
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Figure 11.3: TEG with precompensator Popt.

feedback of the form u = P (v ⊕ Fy), where P ∈ (Zmax[[γ]]/Rγ∗ )
p×p

and F ∈ (Zmax[[γ]]/Rγ∗ )
p×m. According to Eq. (9.6), the output of the

controlled system is

y = CA∗Bu⊕ CA∗Rw = CA∗BP (v ⊕ Fy)⊕ CA∗Rw.

Hence, the control input to the system is

u = P (v ⊕ Fy) = Pv ⊕ PF (CA∗Bu⊕ CA∗Rw),

which yields, by applying Theorem 7, the following control input and
output:

u = (PFCA∗B)∗Pv ⊕ (PFCA∗B)∗PFCA∗Rw,
, Huv(P, F )v ⊕Huw(P, F )w, (11.3)

y = (CA∗BPF )∗CA∗BPv ⊕ (CA∗BPF )∗CA∗Rw,
, Hyv(P, F )v ⊕Hyw(P, F )w. (11.4)

We now pose the following optimal control problem: find controller
matrices P and F such that the transfer matrix Huv(P, F ) from v to u
is maximal (in the sense of the order in Zmax[[γ]]/Rγ∗ ), while the transfer
matrix Hyv(P, F ) from the external input v to the output y is less than
or equal to (in the same order) a reference transfer matrix, denoted
Gref . This implies that the closed loop input/output behavior will not
be slower than the reference model, but, under this constraint, the effect
of v on the firings of all control input transitions will be delayed as
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much as possible. This, as discussed earlier, is often referred to as a
“just-in-time” policy.

Formally, this optimization problem is stated as follows:⊕
P,F

Huv(P, F ) (11.5)

subject to Hyv(P, F ) � Gref .

We first address the bound imposed by the reference model and
reformulate the constraint on Hyv(P, F ) by a constraint on Huv(P, F ).

Lemma 4. The following equivalence holds:

Hyv(P, F ) � Gref ⇔ Huv(P, F ) � (CA∗B)◦\Gref . (11.6)

Proof. According to Eq. (6.6), Hyv(P, F ) can be rewritten as

Hyv(P, F ) = (CA∗BPF )∗CA∗BP
= CA∗B(PFCA∗B)∗P
= CA∗BHuv(P, F ).

As matrix right multiplication is a residuated mapping, the constraint
CA∗BHuv(P, F ) � Gref is equivalent to Huv(P, F ) � (CA∗B)◦\Gref .

As multiplication is isotone, an immediate consequence of the above
Lemma is that the maximal transfer matrix Huv satisfying the con-
straints imposed by the reference model will also lead to the maximal
Hyv. Hence, the transfer matrix Hyv will match the reference model
Gref as closely as possible from below. In this sense, the optimal control
problem addressed in this subsection can also be interpreted as a model
matching problem.

We next provide an upper bound for the matrix P .

Lemma 5. Controller P is bounded from above as follows:

P � (CA∗B)◦\Gref = Popt. (11.7)

Proof. The Kleene star operator definition implies that Ip � (PFCA∗B)∗,
hence P � (PFCA∗B)∗P = Huv(P, F ) � (CA∗B)◦\Gref .
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Lemma 6. The output feedback control u = Popt(v ⊕ Fy), with Popt =
(CA∗B)◦\Gref and F = ε, solves the optimization problem (11.5).

Proof. It is obvious that

Huv(Popt, ε) = (PoptεCA∗B)∗Popt = Popt = (CA∗B)◦\Gref ,

which, according to Lemma 4, is the maximal solution to the optimiza-
tion problem (11.5).

Proposition 6. The output feedback control u = Popt(v ⊕ Fy), with
Popt = (CA∗B)◦\Gref and

F � Fopt = Popt◦\Popt◦/(CA∗BPopt), (11.8)

solves the optimization problem (11.5).

Proof. By considering Popt and Huv(Popt, F ) = (PoptFCA∗B)∗Popt, the
following equivalences hold:

(PoptFCA∗B)∗Popt � (CA∗B)◦\Gref︸ ︷︷ ︸
Popt

⇔ Popt(FCA∗BPopt)∗ � Popt because of (6.6)
⇔ (FCA∗BPopt)∗ � Popt◦\Popt as multipl. is residuated
⇔ (FCA∗BPopt)∗ � (Popt◦\Popt)∗ because of Eq. (7.16)
⇔ FCA∗BPopt � (Popt◦\Popt)∗ see Example 8
⇔ FCA∗BPopt � Popt◦\Popt because of Eq. (7.16)
⇔ F � Popt◦\Popt◦/(CA∗BPopt) as multipl. is residuated.

As Huv(Popt, ε) = (CA∗B)◦\Gref (Lemma 6) and

Huv(Popt, ε) � Huv(Popt, F ) = (PoptFCA∗B)∗Popt, � (CA∗B)◦\Gref ,
∀ F satisfying (11.8),

we conclude that Huv(Popt, F ) = (CA∗B)◦\Gref for all F satifying
(11.8).

Remark 25. The controller matrices Popt, Fopt are not necessarily causal,
hence they may not be realizable according to Theorem 16. To make
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them realizable (see Example 23), each entry must be projected into the
causal subsemiring Z+

max[[γ]]/Rγ∗ using the projector given in Theorem
12. We will then consider Popt+ = Pr+(Popt) and Fopt+ = Pr+(Fopt).
The resulting matrices Popt+ and Fopt+ are the greatest causal controller
matrices satisfying Lemma 5 and Proposition 6, respectively.

Remark 26. Note that for P = Popt+ , any causal controller matrix
F � Fopt+ solves the optimization problem (11.5). This feedback matrix
F � Fopt+ injects the output y into the control input u and therefore
makes it possible to react to disturbances. Furthermore, the sum and
product being order preserving, F1 � F2 implies that

Huv(P, F1)v ⊕Huw(P, F1)w � Huv(P, F2)v ⊕Huw(P, F2)w ∀v, w,
(11.9)

hence the pair (Popt+ , Fopt+) will lead to the greatest causal control
u = P (v ⊕ Fy), i.e., it delays the firing dates of all control input
transitions as much as possible. In the sense of this stricter notion of
the just-in-time criterion, (Popt+ , Fopt+) is therefore indeed the optimal
causal output feedback controller. The resulting closed loop transfer
matrix is Huv(Popt+ , Fopt+) = Pr+((CA∗B)◦\Gref ) = Popt+ .

11.3 State feedback control

In this subsection, we allow the feedback controller to access more
information. Namely, instead of the firing times of the output transitions,
it now “sees” the firing times of all internal transitions of the TEG to
be controlled, i.e., information that is encoded in the series x. This, in
the following, will be referred to as state feedback control. Inserting the
feedback control equation

u = P (v ⊕Kx), (11.10)

where P ∈ (Zmax[[γ]]/Rγ∗ )
p×p, K ∈ (Zmax[[γ]]/Rγ∗ )

p×n, into Eq. (9.5),
we get

u = P (v ⊕K(A∗Bu⊕A∗Rw)).
By applying Theorem 7, this yields the following transfer relations:

u = (PKA∗B)∗Pv ⊕ (PKA∗B)∗PKA∗Rw
, Nuv(P,K)v ⊕Nuw(P,K)w.
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Inserting this into Eqns. (9.5) and (9.6) results in

x = A∗B(PKA∗B)∗Pv ⊕A∗B(PKA∗B)∗PKA∗Rw ⊕A∗Rw
= A∗B(PKA∗B)∗Pv ⊕ (A∗BPK)∗A∗Rw,

y = CA∗BP (KA∗BP )∗v ⊕ C(A∗BPK)∗A∗Rw
, Nyv(P,K)v ⊕Nyw(P,K)w.

We now pose a model matching problem in total analogy to sub-
section 11.2. We aim at maximising the closed loop transfer matrix
Nuv(P,K) under the constraint that the closed loop transfer matrix
Nyv(P,K) is bounded from above by a given reference model Gref . This
will lead to the maximal Nyv(P,K), hence Nyv(P,K) will match the
reference model Gref as closely as possible from below. Formally, this
model matching problem can be written as⊕

P,K

Nuv(P,K) (11.11)

subject to Nyv(P,K) � Gref .

Proposition 7. The state feedback control u = Popt(v ⊕Kx), with

Popt = (CA∗B)◦\Gref (11.12)
K � Popt◦\Popt◦/(A∗BPopt) = Kopt, (11.13)

solves the optimization problem (11.11) and achieves Nuv(Popt,K) =
(CA∗B)◦\Gref .

Proof. The proof uses the same steps as the one of Proposition 6, but
replaces CA∗BPopt by A∗BPopt.

As in the output feedback case, in order to obtain realizable con-
trollers, we need to consider the causal projection introduced in Theorem
12, i.e., Popt+ = Pr+(Popt) and Kopt+ = Pr+(Kopt).

As in the output feedback case, for P = Popt+ any causal controller
matrix K � Kopt+ will lead to the maximal closed loop transfer matrix
from v to u. However, because of the influence of the disturbance w,
the actual control input u, i.e., the firing times of the control input
transitions, will in general be different for different K. Using the same
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argument as in Subsection 11.2, it is straightforward to show that
K1 � K2 implies that ∀v, w

Nuv(Popt+ ,K1)v⊕Nuw(Popt+ ,K1)w �
Nuv(Popt+ ,K2)v ⊕Nuw(Popt+ ,K2)w, (11.14)

hence the pair (Popt+ ,Kopt+) will lead to the greatest u, i.e., delay the
firing times of all control input transitions as much as possible. In the
sense of this stricter notion of the just-in-time criterion, (Popt+ ,Kopt+)
is therefore indeed the optimal causal state feedback controller.



12
Observer-based control

As in standard control theory, internal variables are often not measurable
or too expensive to measure. Hence, in this section, we propose an
observer-based feedback structure. In this structure, instead of the
unknown firing times of the plant’s internal transitions, collected in the
vector x, their estimates provided by the observer proposed in Section
10, represented by the vector x̂, are fed back to the plant control input.
This observer-based control structure is depicted in Fig. 12.1. We will
also compare the resulting feedback strategy with the output feedback
discussed in the previous section .

Formally, the observer-based control scheme is characterized by

uM = P (v ⊕Mx̂),

where, according to Eq. (10.3),

x̂ = (A⊕ LoptC)∗BuM ⊕ (A⊕ LoptC)∗LoptCA∗Rw.

Inserting the observer equation into the feedback equation results in

uM = Pv ⊕ PM(A⊕ LoptC)∗BuM ⊕ PM(A⊕ LoptC)∗LoptCA∗Rw.

87
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Figure 12.1: Observer-based control scheme for max-plus linear systems.

Using Theorem 7 and Eq. (6.6), we get

uM = (PM(A⊕ LoptC)∗B)∗Pv
⊕(PM(A⊕ LoptC)∗B)∗PM(A⊕ LoptC)∗LoptCA∗Rw

= P (M(A⊕ LoptC)∗BP )∗v (12.1)
⊕PM((A⊕ LoptC)∗BPM)∗(A⊕ LoptC)∗LoptCA∗Rw

, Tuv(P,M)v ⊕ Tuw(P,M)w. (12.2)

Inserting (12.1) into the plant equation (9.5) results in

x = A∗BP (M(A⊕ LoptC)∗BP )∗v ⊕A∗Rw ⊕
A∗BPM((A⊕ LoptC)∗BPM)∗(A⊕ LoptC)∗LoptCA∗Rw

= A∗BP (M(A⊕ LoptC)∗BP )∗v ⊕A∗Rw ⊕
A∗BPM((A∗LoptC)∗A∗BPM)∗(A∗LoptC)∗A∗LoptCA∗Rw

= A∗BP (M(A⊕ LoptC)∗BP )∗v ⊕A∗Rw ⊕
(A∗BPM(A∗LoptC)∗)∗A∗BPM(A∗LoptC)∗A∗LoptCA∗Rw

= A∗BP (M(A⊕ LoptC)∗BP )∗v ⊕
((A∗BPM(A∗LoptC)∗)+A∗LoptCA

∗R⊕A∗R)w,

where the reformulation of the right hand side makes use of Eq. (6.3)
for step 1, Eq. (6.6) for step 2, and the definition of the + operator for
step 3. Finally, inserting this into the plant output equation y = Cx
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gives

y = CA∗BP (M(A⊕ LoptC)∗BP )∗v (12.3)
⊕(C(A∗BPM(A∗LoptC)∗)+A∗LoptCA

∗R⊕ CA∗R)w
, Tyv(P,M)v ⊕ Tyw(P,M)w. (12.4)

As in Section 11, the aim of model matching is to find controller
matrices P and M such that the transfer matrix Tuv(P,M) is maximal
while respecting the constraint Tyv(P,M) � Gref . This can be formally
stated as: ⊕

P,M

Tuv(P,M) (12.5)

subject to Tyv(P,M) � Gref .

Lemma 4 and Lemma 5 carry over from the output feedback case in a
straightforward way. The resulting Lemma 7 restates the constraints for
the transfer matrix Tyv(P,M) in terms of the transfer matrix Tuv(P,M),
while Lemma 8 provides an upper bound for the controller matrix P .

Lemma 7. The following equivalence holds:

Tyv(P,M) � Gref ⇔ Tuv(P,M) � (CA∗B)◦\Gref . (12.6)

Lemma 8. Controller P is upper-bounded as follows:

P � (CA∗B)◦\Gref = Popt. (12.7)

Proposition 8. The control uM = Popt(v ⊕Mx̂) with

Popt = (CA∗B)◦\Gref (12.8)
M � Popt◦\Popt◦/(A∗BPopt) = Mopt = Kopt, (12.9)

solves the optimization problem (12.5) and achieves Tuv(Popt,M) =
(CA∗B)◦\Gref .

Proof. Lemma 1 and Proposition 4 imply that (A⊕ LoptC)∗B = A∗B.
Therefore the following equivalences hold:

CA∗BPopt(M(A⊕ LoptC)∗BPopt)∗ � Gref
⇔ CA∗BPopt(MA∗BPopt)∗ � Gref
⇔ M � Popt◦\Popt◦/(A∗BPopt),
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where the latter follows from Proposition 7.

As in the output and state feedback cases, in order to obtain re-
alizable controllers we need to consider the causal projections intro-
duced in Theorem 12. The overall observer-based control scheme is
therefore given by the causal controller matrices Popt+ = Pr+(Popt)
and Mopt+ = Pr+(Mopt), together with the causal observer matrix
Lopt+ = Pr+(Lopt).

As in the output feedback case, for P = Popt+ any controller matrix
M �Mopt+ will lead to the maximal closed loop transfer matrix from
v to u. However, because of the inflence of the disturbance w, the
actual control input u will in general be different for different controller
matrices M . Taking into account that (A ⊕ Lopt+C)∗B = A∗B and
using the same argument as in Subsection 11.2, it is straightforward to
show that M1 �M2 implies that ∀v, w

Tuv(Popt+ ,M1)v ⊕ Tuw(Popt+ ,M1)w �
Tuv(Popt+ ,M2)v ⊕ Tuw(Popt+ ,M2)w, (12.10)

hence the pair (Popt+ ,Mopt+) will lead to the greatest u, i.e., delay the
firing times of all control input transitions as much as possible. In the
sense of this stricter notion of the just-in-time criterion, (Popt+ ,Mopt+),
together with the observer matrix Lopt+ , therefore constitutes the opti-
mal causal observer-based feedback scheme.

An obvious implication from the above discussion is that controller
synthesis and observer synthesis are independent – this is an analogon
to the well-known separation principle in standard linear systems theory.
In other words, we can first determine the greatest causal observer
matrix Lopt+ to ensure that the estimated plant output is the same as
the original output. Second, we can find the greatest causal feedback
matrices Popt+ , Mopt+ to maximize the closed-loop transfer matrix from
v to u while guaranteeing that the resulting closed-loop transfer matrix
from v to y is less than or equal to a desired transfer matrix Gref .

Proposition 9. Denote the control inputs generated by optimal causal
output feedback, optimal causal state feedback, and optimal causal
observer-based feedback by uFopt+ , uKopt+ , and uMopt+

, respectively. For
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all v, w, they are ordered as follows:

uFopt+ � uMopt+
� uKopt+ .

Proof. We recall that

uFopt+ = Popt+(v ⊕ Fopt+y),
uKopt+ = Popt+(v ⊕Kopt+x),
uMopt+

= Popt+(v ⊕Mopt+ x̂).

Note first that from Eqns. (11.8), (12.9) and (7.8), it follows that
Fopt = Mopt◦/C, then by considering Eq. (7.2) the following inequality
holds FoptC � Mopt. Since Pr+ is an isotone mapping and accord-
ing to Eq. (8.15), the following inequality holds : Pr+(Fopt)Pr+(C) �
Pr+(FoptC) � Pr+(Mopt) = Mopt+ . By assumption, the entries of matrix
C ∈ Zmax[[γ]]m×n/Rγ∗

are in {ε, e} and precisely one is equal to e in each row
(see Section 9), so the entries of this matrix are causal and Pr+(C) = C.
Hence Fopt+C = Pr+(F )C � Mopt+ and Fopt+Cx̂ � Mopt+ x̂ . Accord-
ing to Corollary 5, the proposed observer ensures Cx̂ = ŷ = y, hence
Fopt+y �Mopt+ x̂. By recalling that the addition and product laws are
order preserving, we get:

uFopt+ = Popt+(v ⊕ Fopt+y) � uMopt+ = Popt+(v ⊕Mopt+ x̂).

Furthermore, according to Proposition 4, the proposed observer guar-
antees that x̂ � x, and, according to Proposition 8, Mopt+ = Kopt+ .
Hence,

uMopt+
= Popt+(v ⊕Mopt+ x̂) � uKopt+ = Popt+(v ⊕Kopt+x).

Proposition 9 states that the optimal observer-based controller will
delay the firings of the control input transitions at least as much as the
optimal output feedback controller. In the sense of this stricter notion of
the just-in-time criterion, the former will therefore perform at least as
well as the latter. For instance, in a manufacturing setting, the optimal
observer-based controller would never start individual processes earlier
than the optimal output feedback controller, but nevertheless guarantee
that the same temporal deadlines are met.



13
Reference model design

In the previous sections, we discussed control strategies aiming at
matching a reference model Gref . In those approaches, the reference
model imposes a bound that control needs to guarantee. In this sense,
it depicts an essential aspect of the desired behavior of the controlled
system. In this section, we will discuss how to choose reference models
that reflect common objectives encountered in control theory, namely,
neutral control, stabilization and decoupling. As the reference model
provides an upper bound for the closed loop transfer matrix, and as
control in the investigated framework can only delay the firing of input
transitions, the reference model, irrespective of the considered objective,
always needs to be greater than or equal to the open loop system
transfer matrix.

13.1 Neutral control

In this case, the reference model is chosen as

Gref = CA∗B. (13.1)

This means that the closed loop behavior of the system, reflected by
the transfer matrix from the external input v to the output y, may not
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be slower than the open loop behavior, given by the transfer matrix
CA∗B. Hence the purpose of control is to delay control inputs as much
as possible, but without slowing down the system. Note that, as control
can only delay the system, choosing the reference model (13.1) and
solving the resulting control problem will necessarily lead to exact model
matching. Indeed, in the output feedback case, by considering Eqns:
(11.7), (11.8) and (13.1), the optimal controller matrices are

Popt = (CA∗B)◦\(CA∗B),
Fopt = Popt◦\Popt◦/(CA∗BPopt).

Note that, because of (7.16), Popt = P ∗opt. Therfore, using (7.17),
Popt◦\Popt = Popt. Furthermore, according to (7.4), we can rewrite
CA∗BPopt = CA∗B((CA∗B)◦\(CA∗B)) = CA∗B. Inserting these ex-
pressions into the equation for Fopt provides

Fopt = (CA∗B)◦\(CA∗B)◦/(CA∗B).

The control law is obtained by taking the causal projections, u =
Popt+(v ⊕ Fopt+y). This leads to the following transfer functions Huv =
Popt+ = Pr+((CA∗B)◦\(CA∗B)) and Hyv = CA∗BPopt+ . By recalling
that Popt+ = Pr+(Popt) � Popt = (CA∗B)◦\(CA∗B), the following in-
equality holds :

Hyv = CA∗BPopt+ � CA∗BPopt,

where CA∗BPopt = CA∗B((CA∗B)◦\(CA∗B)) = CA∗B, and the latter
equality comes from (7.4). Hence the following inequality holds

Hyv � CA∗B. (13.2)

Furthermore, note that Popt = ((CA∗B)◦\(CA∗B))∗ (because of Eq.
(7.16)), hence Popt � Ip (see Theorem 7 for the Kleene star definition)
Moreover, the identity matrix Ip is causal, therefore Eq. (8.13) yields the
following equality Pr+(Ip) = Ip. The causal projection of the controller
is then such that Pr+(Popt) = Popt+ � Pr+(Ip) = Ip since the mapping
Pr+ is isotone. Hence Ip � Popt+ , and therefore: CA∗B = CA∗BIp �
CA∗BPopt+ = Hyv, which, together with Inequality (13.2), yields Hyv =
CA∗B, that is the input/output behavior is unchanged.
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13.2 Stabilization

For a timed event graph, the property of stability means that tokens do
not accumulate indefinitely inside the graph or, equivalently, that the
marking remains bounded for all inputs. This property is obtained when
all transitions of the TEG fire with the same average frequency. It has
been shown that a structurally controllable and observable TEG can be
made stable by using output feedback, (see Cohen et al., 1984; MaxPlus,
1991; Cottenceau et al., 2001a; Cottenceau et al., 2003). Moreover,
stability may be obtained without changing the system throughput,
where the throughput of a system with multiple inputs or outputs is
defined as the minimum of all the throughputs of the entries in the
corresponding transfer matrix. The following theorem formalizes this
result.

Theorem 17 (Cohen et al., 1984). Any structurally controllable and
observable timed event graph can be made stable by causal output
feedback without altering its original throughput.

In order to achieve stability, it is then sufficient to choose (and to
achieve) a reference model Gref ∈ Zmax[[γ]]m×p/Rγ∗

such that all its entries
exhibit the same throughput, i.e., σ(Gref ij ) = νref

τref
, i = 1, . . .m, j =

1, . . . p. From the constraint that Gref � CA∗B, it follows immediately
that we require

νref
τref

≤ min
i,j

(σ((CA∗B)ij)) = σ(CA∗B). (13.3)

A straightforward way of obtaining such a reference model is to choose

Gref = (CA∗B)⊗ (τrefγνref )∗. (13.4)

Because of the definition of the Kleene star operator, it is immediately
clear that indeed CA∗B � Gref . Furthermore, from (13.3) and the
operational rules for periodic series in Section 9, we can deduce that the
throughput of each entry of (13.4) is the required value νref

τref
. Possible

refinements in the definition of the reference model have been suggested
in Cottenceau et al., 2003; Gaubert, 1995.
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By considering Eqns. (11.7), (11.8) and (13.4), the optimal controller
matrices are:

Popt = (CA∗B)◦\(CA∗B(τrefγνref )∗),
Fopt = Popt◦\Popt◦/(CA∗BPopt).

By taking their causal projections, we get the control law u = Popt+(v⊕
Fopt+y). As discussed in Section 11.2, this control leads to the following
transfer matrices

Huv = Popt+ = Pr+((CA∗B)◦\((CA∗B)(τrefγνref )∗))
Hyv = CA∗BHuv = CA∗BPopt+ � Gref . (13.5)

According to (7.3), the following inequality holds :

(CA∗B)◦\(CA∗B(τrefγνref )∗) � (τrefγνref )∗,

and, since Pr+ is isotone, the following holds too

Pr+((CA∗B)◦\(CA∗B(τrefγνref )∗)) � Pr+((τrefγνref )∗).

Furthermore, since (τrefγνref )∗ is in Z+
max[[γ]]/Rγ∗ , we have Pr+((τrefγνref )∗) =

(τrefγνref )∗, then the latter inequality becomes

Pr+((CA∗B)◦\(CA∗B(τrefγνref )∗)) � (τrefγνref )∗.

Then, as multiplication is isotone,

Hyv = CA∗BPr+((CA∗B)◦\(CA∗B(τrefγνref )∗))
� CA∗B(τrefγνref )∗

= Gref .

This, together with (13.5), yields the equality Hyv = Gref . Hence, the
desired reference model is indeed achieved, and the closed loop system
is therefore stable.

13.3 Decoupling problem

As pointed out in Section 9, uncontrollable input transitions can
be interpreted as disturbances acting on a TEG. The vector of the
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corresponding daters, w, influences the output as in Eq. (9.6),i.e.,
y = CA∗Bu ⊕ CA∗Rw. From this, it is obvious that a lower bound
for the output is given by CA∗Rw. It then makes sense to choose the
maximal u, i.e., to fire all control input transitions as late as possible,
without further slowing down the system. Using output feedback of the
form u = P (v⊕Fy), we obtain the closed loop equations (see Eq. (11.3)
and Eq.((11.4))

u = (PFCA∗B)∗Pv ⊕ (PFCA∗B)∗PFCA∗Rw,
, Huv(P, F )v ⊕Huw(P, F )w,

y = (CA∗BPF )∗CA∗BPv ⊕ (CA∗BPF )∗CA∗Rw,
, Hyv(P, F )v ⊕Hyw(P, F )w.

Formally, our control objective is therefore to maximize Huw(P, F )
while restricting the closed loop transfer matrix from w to y to be less
than or equal to Gref = CA∗R, i.e.,

⊕
P,F

Huw(P, F ) (13.6)

subject to Hyw(P, F ) � CA∗R.
Lemma 9. The constraint in the optimization problem (13.6) is satisfied
if

PF � (CA∗B)◦\(CA∗R)◦/(CA∗R). (13.7)
Proof. The following equivalences hold

Hyw(P, F ) = (CA∗BPF )∗CA∗R � CA∗R
⇔ (CA∗BPF )∗ � (CA∗R)◦/(CA∗R)

as multiplication is residuated
⇔ (CA∗BPF )∗ � ((CA∗R)◦/(CA∗R))∗

because of Eq. (7.16)
⇔ CA∗BPF � (CA∗R)◦/(CA∗R)

see Example 8
⇔ PF � (CA∗B)◦\(CA∗R)◦/(CA∗R)

as multiplication is residuated.
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Furthermore, as multiplication and the Kleene star operation are
order preserving, we have that

P1F1 � P2F2 ⇒ Huw(P1, F1) � Huw(P2, F2),

hence
(PF )opt = (CA∗B)◦\(CA∗R)◦/(CA∗R) (13.8)

holds for any solution of the optimization problem (13.6).

As the optimal solution is specified as the product of the two
controller matrices, there is a degree of freedom. First we choose P = Ip,
providing the following bound for the feedback controller.

Proposition 10. If P = Ip, the constraint in the optimization problem
(13.6) is satisfied for all F such that

F � (CA∗B)◦\(CA∗R)◦/(CA∗R) = FDPopt . (13.9)

Proof. Direct application of Lemma 9 for P = Ip.

Proposition 11. If F = FDPopt , the constraint in the optimization prob-
lem (13.6) is satisfied for all P such that

P � ((CA∗B)◦\(CA∗R)◦/(CA∗R))◦/((CA∗B)◦\(CA∗R)◦/(CA∗R))
= FDPopt ◦/F

DP
opt = PDPopt . (13.10)

Proof. Direct application of Lemma 9 for F = FDPopt .

Because of (13.8) and (7.4),

PDPopt F
DP
opt = (FDPopt ◦/F

DP
opt )FDPopt = FDPopt = (CA∗B)◦\(CA∗R)◦/(CA∗R).

(13.11)
Therefore, according to Lemma 9, the controller matrices (PDPopt , F

DP
opt )

indeed solve the optimization problem (13.6).

Remark 27. To be realizable these controller matrices need to be pro-
jected into Z+

max[[γ]]/Rγ∗ . The resulting causal controller matrices are
then PDPopt+ = Pr+(FDPopt ◦/F

DP
opt ) and FDPopt+ = Pr+(FDPopt ). Because multi-

plication is order preserving, PDPopt+ � P
DP
opt , FDPopt+ � F

DP
opt and because

of (13.11), we get

PDPopt+F
DP
opt+ � (CA∗B)◦\(CA∗R)◦/(CA∗R),
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i.e., the causal controller matrices (PDPopt+ , F
DP
opt+) indeed satisfy the

constraint in the optimization problem (13.6). As, furthermore, they
are the maximal controller matrices doing so, they constitute a causal
solution to the optimization problem (13.6).

Remark 28. Problem (13.6) is sometimes called the Modified Distur-
bance Decoupling Problem, see Lhommeau et al., 2002; Lhommeau
et al., 2003a; Lhommeau et al., 2003b; Shang et al., 2013; Shang et al.,
2016; Shang et al., 2014. Note, however, that “disturbance decoupling”
in the standard control literature refers to a scenario where the output
of the closed loop system is totally unaffected by, i.e., decoupled from,
the disturbance input. In our case, we look for the maximal controllers,
and therefore the maximal control input that does not affect the closed
loop output.



14
Application to a manufacturing system

In this section, we will discuss controller synthesis for the simple manu-
facturing system introduced in Example 1 and depicted in Fig. 3.2. In
addition, we now introduce six uncontrollable input transitions w1, . . . w6
to independently model disturbances acting on the firing of all internal
transitions xi. This is shown in Fig. 14.1. Hence, a delay in (or failure
of) the firing of transition wi will lead to delay in (or failure of) the
firing of transtion xi, i = 1, . . . 6.

Denoting the vector of dater functions associated with the uncontrol-
lable input transitions, the control input transitions, the internal transi-
tions, and the output transition by w ∈ Zmax[[γ]]6/Rγ∗ , u ∈ Zmax[[γ]]2/Rγ∗ ,
x ∈ Zmax[[γ]]6/Rγ∗ , and y ∈ Zmax[[γ]]/Rγ∗ , respectively, and using the
results from Section 9, the TEG model representing our modified man-
ufacturing systems is decribed by

x = Ax⊕Bu⊕Rw
y = Cx,
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u1

2

x1

w1

x5
x6

w5

u2
x3

w2

3

1

2

y

1

w3

x2

x4

w4

5

w6

2

Figure 14.1: TEG model representing simple manufacturing system with distur-
bances.

where

A =



ε γ1 ε ε ε ε

2γ0 ε ε ε ε ε

ε ε ε γ1 ε ε

ε ε 5γ0 ε ε ε

ε 1γ0 ε 3γ0 ε γ3

ε ε ε ε 2γ0 ε


, B =



1γ0 ε

ε ε

ε 2γ0

ε ε

ε ε

ε ε


,

R =



e ε ε ε ε ε

ε e ε ε ε ε

ε ε e ε ε ε

ε ε ε e ε ε

ε ε ε ε e ε

ε ε ε ε ε e


, C =

[
ε ε ε ε ε e

]
.

Using Theorem 7, we obtain the following transfer matrix between
u and y:

CA∗B =
[

6γ0(2γ)∗ 12γ0(5γ)∗
]
.
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The throughput of this transfer matrix is

σ(CA∗B) = min(σ(CA∗B)11, σ(CA∗B)12) = min(1/2, 1/5) = 1/5,

implying that the system, in the disturbance-free case, can finish one
workpiece every 5 time units. Following the discussion in Section 13.2,
we proceed to stabilize the system by using output feedback to match
the reference model

Gref = (5γ)∗CA∗B =
[

6γ0(5γ)∗ 12γ0(5γ)∗
]
.

By Proposition 6, we obtain the optimal output feedback controller
as u = Popt(v ⊕ Fopty), where

Popt = (CA∗B)◦\Gref =
[

(5γ)∗ 6γ0(5γ)∗
−6γ0(5γ)∗ (5γ)∗

]
,

Fopt = Popt◦\Popt◦/(CA∗BPopt) =
[
−6γ0(5γ)∗
−12γ0(5γ)∗

]
.

According to Definition 27, neither the prefilter matrix Popt nor the
output feedback matrix Fopt are causal. Consequently, according to
Theorem 16, neither of them is realizable. We therefore compute their
causal projections Popt+ = Pr+(Popt) and Fopt+ = Pr+(Fopt), i.e., the
greatest causal matrices in Zmax[[γ]]2×2

/Rγ∗
, respectively Zmax[[γ]]2×1

/Rγ∗
, such

that Popt+ � Popt, respectively Fopt+ � Fopt. Using Theorem 12, we
obtain:

Popt+ = Pr+(Popt) =
[

(5γ)∗ 6γ0(5γ)∗
4γ2(5γ)∗ (5γ)∗

]
,

Fopt+ = Pr+(Fopt) =
[

4γ2(5γ)∗
3γ3(5γ)∗

]
.

To realize the resulting output feedback law u = Popt+(v ⊕ Fopt+y),
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we rewrite this as

ξ′ = Fopt+y

=
[

(5γ)∗ ε

ε (5γ)∗

] [
4γ2

3γ3

]
y,

ξ = Popt+(v ⊕ ξ′)

=
[

(5γ)∗ ε

ε (5γ)∗

] [
e 6γ0

4γ2 e

]
(v ⊕ ξ′) and

u = ξ.

The former two expressions are the solutions of the implicit equations

ξ′ =
[

5γ ε

ε 5γ

]
ξ′ ⊕

[
4γ2

3γ3

]
y and (14.1)

ξ =
[

5γ ε

ε 5γ

]
ξ ⊕

[
e 6γ0

4γ2 e

]
(v ⊕ ξ′). (14.2)

With ξ = (ξ1, ξ2)T , ξ′ = (ξ3, ξ4)T , and v = (v1, v2)T , and by recalling
that γ represents the backward shift operator, the overall control law
can be restated as a set of difference equations in the max-plus algebra:

ξ3(k) = 5ξ3(k − 1)⊕ 4y(k − 2),
ξ4(k) = 5ξ4(k − 1)⊕ 3y(k − 3),
ξ1(k) = 5ξ1(k − 1)⊕ ξ3(k)⊕ v1(k)⊕ 6ξ4(k)⊕ 6v2(k),
ξ2(k) = 5ξ2(k − 1)⊕ 4ξ3(k − 2)⊕ 4v1(k − 2)⊕ ξ4(k)⊕ v2(k),
u1(k) = ξ1(k),
u2(k) = ξ2(k).

The overall control scheme can now be implemented as a “control
TEG”, as indicated in Fig. 14.2, where the the pre-filter part (consisting
of transitions ξ1 and ξ2) and the output feedback part (consisting of
transitions ξ3 and ξ4) appear in the shown gray areas. For example, the
first line in the above set of equations means that transition ξ3 has two
upstream places with holding times 5 and 4 and containing initially one,
respectively two tokens. The upstream transitions of these places are
ξ3, respectively y. The other equations are similarly mapped into TEG
elements to result in Fig. 14.2.
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As a side remark, note that the control part shown in Fig. 14.2 can
also be written in terms of min-plus equations. To do this, one associates
a counter function to each transition. For example, ξ3 : Z → Zmin is
the counter function associated with transition ξ3, and ξ3(t) denotes
the number of firings of this transition up to time t. The respective
part of the TEG in Fig. 14.2 implies that the number of firings of
transition ξ3, up to time t, is the minimum of the number of firings
of this transition up to time t − 5 plus 1 and the number of firings
of transition y up to time t− 4 plus 2. Interpreting the other control
transitions in the same way, we get the following set of equations in
the min-plus algebra. Recall that, in the min-plus algebra, addition ⊕
corresponds to the standard minimum-operation while multiplication
corresponds to standard addition (see Example 4).
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Figure 14.2: TEG implementation of causal output feedback control u = Popt+ (v⊕
Fopt+y).

ξ3(t) = 1ξ3(t− 5)⊕ 2y(t− 4),
ξ4(t) = 1ξ4(t− 5)⊕ 3y(t− 3),
ξ1(t) = 1ξ1(t− 5)⊕ ξ3(t)⊕ ξ4(t− 6)⊕ v1(t)⊕ v2(t− 6),
ξ2(t) = 1ξ2(t− 5)⊕ 2ξ3(t− 4)⊕ 2v1(t− 4)⊕ ξ4(t)⊕ v2(t),
u1(t) = ξ1(t),
u2(t) = ξ2(t).
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Next, we construct observer and observer-based control as discussed
in Sections 10 and 12. According to Lemma 1, Lemma 2, and Proposi-
tion 4, the optimal observer matrix is obtained as

Lopt = L1 ∧ L2 = (A∗B)◦/(CA∗B) ∧ (A∗R)◦/(CA∗R)

=
[
ε ε ε ε 0γ3(2γ3)∗ (2γ3)∗

]T
,

According to Proposition 8, the matrices Popt and Mopt for optimal
observer-based control u = Popt(v ⊕Moptx̂) are computed as

Popt = (CA∗B)◦\Gref

=
[

(5γ)∗ 6γ0(5γ)∗
−6γ0(5γ)∗ (5γ)∗

]
and

Mopt = Popt◦\Popt◦/(A∗BPopt)

=
[
−1γ0(5γ)∗ −3γ0(5γ)∗ 4γ0(5γ)∗ −1γ0(5γ)∗
−7γ0(5γ)∗ −9γ0(5γ)∗ −2γ0(5γ)∗ −7γ0(5γ)∗

−4γ0(5γ)∗ −6γ0(5γ)∗
−10γ0(5γ)∗ −12γ0(5γ)∗

]
.

While Lopt is causal, i.e., Lopt+ = Pr(Lopt) = Lopt, this is clearly not
true for the matrices Popt and Mopt. For the latter, we therefore need
to compute their causal projections Popt+ = Pr+(Popt) and Mopt+ =
Pr+(Mopt). Using Theorem 12, we obtain:

Popt+ =
[

(5γ)∗ 6γ0(5γ)∗
4γ2(5γ)∗ (5γ)∗

]
,

Mopt+ =
[

4γ1(5γ)∗ 2γ1(5γ)∗ 4γ0(5γ)∗ 4γ1(5γ)∗
3γ2(5γ)∗ 1γ2(5γ)∗ 3γ1(5γ)∗ 3γ2(5γ)∗

1γ1(5γ)∗ 4γ2(5γ)∗
0γ2(5γ)∗ 3γ3(5γ)∗

]
.

To realize the observer equations, we rewrite them as

x̂ = Ax̂⊕Bu⊕
[
ε ε ε ε ξ5 ξ6

]T
,[

ξ5
ξ6

]
=

[
0γ3(2γ3)∗

(2γ3)∗

]
y.
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The latter equation is a solution of[
ξ5
ξ6

]
=
[

2γ3 ε

ε 2γ3

] [
ξ5
ξ6

]
⊕
[

0γ3

e

]
y.

Taking into account that γ is the backward shift operator, the observer
can be written as the following set of difference equations in the max-plus
algebra:

ξ5(k) = 2ξ5(k − 3)⊕ y(k − 3),
ξ6(k) = 2ξ6(k − 3)⊕ y(k),
x̂1(k) = x̂2(k − 1)⊕ 1u1(k),
x̂2(k) = 2x̂1(k),
x̂3(k) = x̂4(k − 1)⊕ 2u2(k),
x̂4(k) = 5x̂3(k),
x̂5(k) = 1x̂2(k)⊕ 3x̂4(k)⊕ x̂6(k − 3)⊕ ξ5(k),
x̂6(k) = 2x̂5(k)⊕ ξ6(k).

These equations are easily implemented as a TEG, as shown in Fig. 14.3.
Realization and implementation of the prefilter Popt+ is identical as

in the output feedback case. It can be written as the following set of
difference equations in the max-plus algebra and implemented by the
TEG shown in the gray box on the top left of Fig. 14.3.

ξ1(k) = 5ξ1(k − 1)⊕ ξ7(k)⊕ v1(k)⊕ 6ξ8(k)⊕ 6v2(k),
ξ2(k) = 5ξ2(k − 1)⊕ 4ξ7(k − 2)⊕ 4v1(k − 2)⊕ ξ8(k)⊕ v2(k),
u1(k) = ξ1(k),
u2(k) = ξ2(k).

It only remains to show how to realize and implement the feedback
matrix Mopt+. To do this, recall that[

ξ7
ξ8

]
= Mopt+x̂

=
[

(5γ)∗ ε

ε (5γ)∗

] [
4γ1 2γ1 4γ0 4γ1 1γ1 4γ2

3γ2 1γ2 3γ1 3γ2 0γ2 3γ3

]
x̂
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Figure 14.3: TEG implementation of causal observer-based controller u = Popt+ (v⊕
Mopt+ x̂).

is a solution of

[
ξ7
ξ8

]
=

[
5γ ε

ε 5γ

] [
ξ7
ξ8

]

⊕
[

(5γ)∗ ε

ε (5γ)∗

] [
4γ1 2γ1 4γ0 4γ1 1γ1 4γ2

3γ2 1γ2 3γ1 3γ2 0γ2 3γ3

]
x̂.

This can be written as a set of two difference equations in the max-plus
algebra, which can be readily implemented by the TEG shown in the
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lower left gray box in Fig. 14.3.

ξ7(k) = 5ξ7(k − 1)⊕ 4x̂1(k − 1)⊕ 2x̂2(k − 1)⊕ 4x̂3(k)
⊕4x̂4(k − 1)⊕ 1x̂5(k − 1)⊕ 4x̂6(k − 2)

ξ8(k) = 5ξ8(k − 1)⊕ 3x̂1(k − 2)⊕ 1x̂2(k − 2)⊕ 3x̂3(k − 1)
⊕3x̂4(k − 2)⊕ x̂5(k − 2)⊕ 3x̂6(k − 3).

Recall that by Proposition 9, the control input generated by the
observer-based scheme is, for all v and w, greater than or equal to the
control input generated by the output feedback scheme



15
Conclusions

This paper provides a survey on recent work on control and state esti-
mation for max-plus linear systems based on the just-in-time criterion.
It aims to be self-contained and therefore summarizes the main mathe-
matical concepts that are needed for developing a systems and control
theory for max-plus linear systems. It provides an in-depth discussion of
observer design and addresses the model matching problem, both in an
open-loop and a closed-loop scenario. In the latter case, it distinguishes
between output feedback and feedback of the real, respectively, esti-
mated state. It also discusses how different application objectives can
be translated into appropriate reference models to be used in the model
matching problem. We have tried to make the required theoretical con-
cepts palatable by including a large number of small examples. We have
additionally provided a running example from the area of manufacturing
systems to explain and visualize max-plus linear modeling and control
concepts. We emphasize that this area remains an active field of research.
In particular, there are a number of attempts to broaden the class of
systems that can be addressed using dioid-based methods. Examples are
systems which allow asymmetric interactions between subsystems, with
primary subsystems providing time window constraints for secondary
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ones without being affected by the latter ones, e.g., David-Henriet et al.,
2015; David-Henriet et al., 2016. This phenomenon, which is also called
partial synchronization, is common in transportation systems, where,
e.g., the departures of buses would be synchronized by the arrival of
trains, but not the other way round. Another extension addresses a
class of timed discrete event systems that operate under resource shar-
ing constraints, e.g., Moradi et al., 2017. Clearly, resource sharing is
an important phenomenon in many application areas, but cannot be
modeled (or treated) in the standard TEG framework. Another gen-
eralization is the control of weight-balanced timed event graphs (e.g.,
Cottenceau et al., 2014; Trunk et al., 2017b; Trunk et al., 2017a), a
class of timed discrete event systems that allows to model practically
important phenomena such as splitting and batching of processes. With
these and other extensions of the currently available theory, it will be
possible to address more “real-life” application problems.
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