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Abstract—The trade-off between energy consumption and execution
time (i.e., for a given task, the faster it is achieved, the Igher its
energy consumption is) is investigated for systems modetleby timed
event graphs. In this paper, we aim to increase execution ties (and,
consequently, lower energy consumption) while preservingnput-output
and perturbation-output behaviors. Under this condition, the optimal
solution is independent of the considered cost functions ahis obtained
using residuation theory.

Index Terms—Dioid, discrete event systems, manufacturing process,
Petri nets.

. INTRODUCTION

obtain an integer linear programming problem leading to rthiei-
mization of the number of resources and/or the maximizatibthe
holding times. It yields a new system with a throughput abthe
specification.

In this paper, a structural approach is also considered, thad
specification is to preserve the input-output and pertishatutput
behavior of the system, not only to maintain the system tinput
above a certain value as ifl[7]. Therefore, in our approabhb, t
transient of the input-output behavior is not modified, vihiis
relevant for systems prone to repetitive start-up procesiuBesides,
as the perturbation-output behavior is preserved, theesysifter
holding time maximization and the initial system have thensa
behavior in case of additive perturbations on the state.

The paper is organized as follows. Necessary algebrais @
given in section]l. In sectiofi_lll, TEG modeling over the idio
M7y, 0] is recalled. A first contribution, namely theprojection
onto a series, is introduced in sectlod 1V. In secfidn V, édwetion-
based approach to solve the problem is presented.

For some systems (e.g., in the field of manufacturing presess

or transport networks), the occurrence of an event nevablis the
occurrence of other events. Such systems are called dedisie: the
interesting question is not what the next event is, but wihennext
events happen. A possible model for such systems is an exagpi,g
a particular Petri net, where each place has exactly onaeapst
transition and one downstream transition and all arcs hasighw

Il. ALGEBRAIC PRELIMINARIES

The following is a short summary of basic results from dididdry
and residuation theory. The reader is invited to consult [&] [9]
for more details.

1 [1]. To capture time in event graphs, timed event graphs (TEG pigig Theory

are built by equipping each place with a holding time (i.euation

a token must spend in a place before enabling the firing of theA dioid D is a set endowed with two internal operations denoted

next transition). It is a well known fact that, over some dmi(or
idempotent semirings), the time/event behavior of TEG,eurithie

@ (addition) and® (multiplication, often denoted by juxtaposition),
both associative and both having a neutral element denotaad

earliest functioning rule (i.e., transitions with inpuaipes fire as soon € respectively. Moreovergd is commutative and idempotentd e

as they are enabled), is expressed by linear state-spaeseapations
[2]. This last property leads to the development, by analeggh
classical control theory, of control methods for TEG (eaptimal
control [3], linear feedback [4], model predictive cont{l).

In the following, the problem of holding time maximizatiorhike
maintaining acceptable performance is addressed (ergndaufac-

D,a®a = a), ® is distributive with respect t@®, ande is absorbing
for@ (VaeD,eQa=aQ¢e =e¢).

The operation® induces an order relatiox on D, defined by
Ya,b€ D,a >b< a®b = a. According to this order relatiorn,®b
is the least upper bound ¢f:, b}. A dioid D is said to be complete
if it is closed for infinite sums and if multiplication distutes over

turing process, it could mean reducing the rate of some mashi infinite sums.

without decreasing the overall production rate). This feob is

By analogy with linear algebr& and® are defined for matrices

relevant to reduce energy consumption. Indeed, for a latgesc With entries in a dioid. Consider matrices, B € D"*™ andC' €
of systems, there is a trade-off between energy consumptish D™, (A® B),;; = Ai; ® Bij and (AQ O),; = @Dy, AnCi;-
execution time: the energy consumption associated with sk teEndowed with these operations, the set of square matridbsewiries

(modelled by a place in the TEG) decreases, when its exectitice
(i.e., the holding time of the place) increases.

Some work has already been done on this problem.[In [6(]

assuming that input dates and deadlines are known, holdimgst
are adjusted at each cycle to minimize a convex energy icritethe
algorithm proposed by the authors is very efficient: the demity

is linear with the number of tasks. Ihl[7], a structural agmto is
considered. The optimization is done for all inputs, thiade to
a modification of the holding times once for all. The perfonta
criterion is on the system throughput (periodicity of thansfer
function matrix), which must remain greater than a certaifue
(specification). After some transformations, the authonagas to

X. David-Henriet and J. Raisch are with Fachgebiet Regaisysfeme,
Technische Universitat Berlin, Einsteinufer 17, 10587rliBe Germany,
and with Control Systems Group, Max Planck Institute for Brycs
of Complex Technical Systems (e-mail: david-henriet@ainu-berlin.de,
raisch@control.tu-berlin.de)

L. Hardouin and B. Cottenceau are with Laboratoire d'lIngée des
Systemes Automatisés, ISTIA, Universiteé d’Angers, &2enue Notre Dame
du Lac, 49000, Angers, France (e-mail: laurent.hardouini@angers.fr,
bertrand.cottenceau@univ-angers.fr).

in a complete dioid is also a complete dioid.

Definition 1. A closure (resp. dual closure) mappirfgis an isotone
‘e., order-preserving) projection (i.ef, o f = f) from a dioid D

into itself, greater than or equal to (resp. less than or doiod the
identity mappingld, i.e.,Vz € D, f (z) > = (resp. f (z) < z).

The following theorem gives the least solution to some inipli
equations in complete dioids. It plays a fundamental role tfe
study of TEG behavior under the earliest functioning rule.

Theorem 1 (Kleene star theorem)The implicit equationt = ax @b
defined over a complete dioid admits= a*b as the least solution
with a* = @,., a’ (Kleene star), where” = e anda’ = a®a’""
fori>1.

Remark 1 ([4]). = — z*, defined over a complete dioid, is a closure.

Proposition 1 ([4]). In a complete dioidD, the greatest solution to
inequalityz™® < a* is z = a*.

Proposition 2 ([10]). Leta,b be two elements in a complete dioid
D. a* > b* is equivalent taz*b* = b*a™* = a*.



B. Residuation Theory thats = @, 7*0%*. A simple interpretation of the variables

In ordered sets, like dioids, equatiofiér) = b may have either no @ndd for daters is available:
solution, one solution, or multiple solutions. In order twegalways  « multiplying a series by + is equivalent to shifting the argument

a unique answer to the problem of mapping inversion, resiclua of the associated dater function byl

theory [11], [12] provides, under some assumptions, theatgst . multiplying a seriess by § is equivalent to shifting the values
solution (in accordance with the considered order) to thegumlity of the associated dater function hy

flz) b Example 1. Consider the series = vd ®v°5* @ v*6° represented

Definition 2 (Residuation) Let f : £ — F, with (£, <) and (F,<) by dotsin Fig[l. The south-east conesa$ colored in grey in Fig 1.
ordered sets. An isotone mappirigs said to be residuated if for all The minimum representative sfin Mg [y, 8] is 76 @ v°6*. This
y € F, the least upper bound of the subgete £|f(x) < y} exists result could be obtained using the simplification rules(df.

and lies in this subset. It is denotgd(y), and mappingf* is called

the residual off. 64{\

If the considered ordered sets are complete didids,  — a®x
(left-product bya), respectivelyR, : z — x®a (right-product bya), 31
is residuated. Its residual is denoted by(z) = akz (left-division
by a), resp.R? (x) = xfa (right-division bya). Thereforea \z (resp. 21
zfa) denotes the greatest solutigrof the inequalitya®y < x (resp.
y®a < x). As left- and right-products are extended to matrices with
entries in a complete dioid, left- and right-divisions alsoeextended
to matrices with entries in a complete dioid. N

The following theorem gives a fundamental link between Kke
star and left-division (or right-division).

Fig. 1. s and its south-east cone (grey)

Theorem 2 ([4]). Let D be a complete dioid andl € D?*". Then,
AXA € D™ and AfA € DP*P. Moreover, ApJA = (AfA)* and  Besides,

_ %
ARA = (ARA)™. S=®7k5—1‘® (_kaa@@,yk#
k<0 k=1,2 k>3

1. TEG DESCRIPTION Therefore, the datetl; associated withs is given by

The behavior of a TEG may be represented by transfer refation

in some particular dioids. Hereafter, such a dioid is bripfigsented, d (k) — ;Tfok'jf_k fzo
namely M2 [, 6] (see [[2], [9] for more details), and TEG descrip- s (k) = Ltk ; 3’

tion in this dioid is recalled.

B. Linear state-space representation of TEGAtS [, J]

From now on, we only consider TEG with at most one place from
a transition to another transition. This assumption is estrictive,
as it is always possible to transform any TEG in an equivaldt®
with at most one place from a transition to another transitio

The dynamics of a TEG may be captured by associating each
transition with a series € M$;[v,d], whered, (k) is defined as
the time of firingk of the transition. Therefore, for TEG, is a shift
operator in the event domain, where an event is interpresetha
firing of the transition, and is a shift operator in the time domain.

The transitions of a TEG are divided into three categories:

A. Dioid M$7[v,d]

Dioid M§7 [, 8] is formally the quotient dioid oB[~, ¢] (the set
of formal power series in two commutative variablesand §, with
Boolean coefficients and with exponentsZi, by the equivalence
relation 2Ry < v*(6™H*x = y*(61)*y. Dioid M2 [y, 4] is
complete.

As M7 [, d] is a quotient dioid, an element @17 [, ] may
admit several representativeslify, 5. The representative which is
minimal with respect to the number of terms is called the minin
representative.

A simple geometrical interpretation of the previous eqi@mae

relation is available in théy, §)-plane. Consider a monomiaf§* € * ST:L?;?%SEL?Q?&‘ ut ' :Ic;(zétransmons with at least one input
B[v,4], its south-east cone is defined 4¢k’,t') |k’ >k and P e put plac . ,
, . . ) « input transitions4, ..., up): transitions with at least one output
t' < t}. The south-east cone of a seriesBiy,d] is defined as .
; . . . place, but no input places
the union of the south-east cones associated with the mam®mi - o .
« output transitions i, ..., ym): transitions with at least one

composing the considered series. For two element@nd sz in
B[~, ], siRs2 (i.e.,s1 andsz are equal inM§7 [, d]) is equivalent

to the equality of their south-east cones. Direct consetgnf the Under the earliest functioning rule (i.e., state and outpautsitions
previous geometrical interpretation are: fire as soon as they are enabled), with respect to a place nitiiddly

m tokens and holding time, the influence of its upstream transition
on its downstream transition is a positive shift in the tinoengin of

input place, but no output places

« simplification rules inM$; [, ]

V@At =4mnED and st @ st = gmaxD (1) ttime units and a negative shift in the event domainnofevents.
) ) ) ) The complete shift operator is coded by the monomi&ls® in
+ a simple formulation of the order relation for monomials — yqaz [ §]. Therefore, consider the place upstream from transition

t; and downstream from transitiay, the influence of transition;
on transitiont; is coded by the monomiaf;; in Mg [y, 6] defined

The dater canonically associated with the sesi@s M{7[v, ] is by fi; = 4™ §™ wherem;; is the initial number of tokens in the
the unigue non-decreasing functidg : Z — Z v {—w, 400} such place andr;; is the holding time of the place.

A5t <48 e n=n' andt <t



Consequently, a TEG admits a linear state-space repréisenia
My, 6]

where z € M7 [v,d]" is the stateu € M§3[v,d]” the input,
y € M7[v,d]™ the output, andg € M7 [vy,d]™ the additive
perturbation on the state. The perturbatipmodels, for example,
unexpected failure, delays or uncertain parameters suchass
duration (see[[13])A € M7 [, 8] ", B € M§Z[y,d]" ", and

r=Ar@®Bu®q

y=Cxzx )

The asymptotic slope dff is 0.2, i.e., the average production rate
of the system is at mostpiece eveny time units.

IV. v-PROJECTIONONTO A SERIES
In this section, a new mapping frooM{; [, 5] to M7, d]
is introduced to combine the event behavior of a series with
time behavior of another series. Its aim is to formalize tiWwing
condition: only holding times should differ between theialisystem
and the system after holding time maximization. First, dipieary

—

C € M%[v,5]™*" are matrices with monomial entries describing'otion is definedxy-discontinuity.

the influence of transitions on each other.

According to Th[L, under the earliest functioning rule, thput-
output (resp. perturbation-output) transfer function nmaf (resp.
G) of the system is equal t6A* B (resp.C A*).

y=CA*Bu@®CA*q= Hu®Gq 3)

Therefore, the condition for holding time maximizationgperving
the input-output and perturbation-output behaviors) hrased in
terms of transfer function matrices. The condition is nowpteserve
the input-output and perturbation-output transfer functmatrices.

When an elemens of M{7[v,d] is used to code information
concerning a transition of a TEG, then a monom/i’aﬁt withk,t >0
may be interpreted aat mostk events occur strictly before time

Definition 3. Given a seriess € M{7[v, d] and d, its canonically
associated dater. Ay-discontinuity ofs is an eventk such that
ds(k) # ds(k — 1). The set ofy-discontinuities associated with
(e, {k € Z|ds (k) # ds (k —1)}) is denotediC,.

As ds is a non-decreasing functionls (k) > ds(k—1) for
k € Ks. Thus, in TEG, ay-discontinuity is an event which occurs
strictly later than the previous event. It represents aepigicinfor-
mation not given by the previous values of the dater (thehseast
cone ofy*§% (%) is not included in the south-east cone generated by
the previous events). Therefore, considering hdiscontinuities is
necessary and sufficient to completely define the series.adsertion
is formally shown in the following proposition.

(i.e.,ds (k) = t). An elements of M%7 [, §], used to code a transfer Proposition 3. Given a seriess € M5, [v,d] and d; its associated

relation between two transitions of a TEG (e.g., an entnyHof is

causal (i.e., no anticipation in the time/event domain:ealbonents
are non-negative) and periodic (i.8.= p @ qr* with polynomials
p,q and a monomiat # e). For a periodic series with r» = "7,

its asymptotic slope (s) is defined ast.

Example 2. A manufacturing system,composed of three maChinE)%finition 4. Given a series, € M

M, (with transitionsze and x3), M2 (with transitionszs and zs)

and M5 (with transitionszs and z7), is considered. The system is

modelled by the TEG represented in Higj. 2.

Fig. 2.

Manufacturing system

The matrices of the state-space representation are

€ € € € ¢ € € e
2 & 48 e € € € €
e 0% e e ¢ € € €
A= 2 e e e A% ¢ € B=] ¢
e € € 6§ ¢ € € €
e € 6 € ¢ e 762 €
e € e e 5 8% = €
C = ( € € € € € € e )

The input-output transfer function matrix, which is congultvith
the C++ library described in[[14], is equal to

H= CA*B _ 55@(7514®’72518) (72510)*

dater, @, .. 7% is the minimum representative sf

Proof: This result is a direct consequence of Th. 5.20[ih [2,
§5.4.2.4]. [ |
Second, the new mapping itself is defined: thprojection onto a
series.

1, 8] The~-projection onto
of a seriess € M{,7[~, d] is defined as

(s) (_B ”yk §ds (k)

kelsq

denotedPr?

S0

Pr

S0

seriessy,

with ICs, the set ofy-discontinuities of serieso and ds the dater
canonically associated with series

The ~-projection of series onto seriessy is a series combining
the event behavior of, represented by its set of-discontinuities
with the time behavior ok represented by its associated dater

A direct extension of they-projection to the matrix case is
possible: considefy € Mg [y, 8] ™, Prgo is defined as, for all

S € ME [y, 0], (PP, (), = Prls,,  (Sis).

Proposition 4. Considers and so in M§3 [, d]

le

VEEZ, dpy (s (k) = ds <m’g>§ {il < k:}>

_Proof: Let us denoted the non-decreasing mapping, defined
by d (k) = ds (maxiex,, {I|l <k}), and ki, ki+1 two successive
elements offC,, with k; < k;11. Then, asd (k) = ds (ks) for k; <
k < kit1,

D" =P, (5)
keZ
As the dater canonically associated with a seres the unique
non-decreasing function such that= @, ., 6% ", the dater
canonically associated witAr}, (s) is d. [ |
In the following proposition, the behavior of theprojection with
respect to causality and periodicity is investigated.

Proposition 5. Considers and so two causal and periodic series
with



e s=p@qr* andr =~"46"
e S0 =po®qory andrg = Y057

Prl, (s) is causal and periodic and, i is not a polynomial, then

g (PI’ZO (8)) =0 (s).

Proof: For causality, the previous result is obvious. Therefore,

only periodicity is considered in the following. 1§ or sy are
polynomials (i.e.,v = 0, 7 = 0, o = 0, or 70 = 0), Pr] (s)
is also a polynomial and the proposition holds. Thus, onéy ribn-

degenerated case is considered:r, 1o, and 7o are greater than

0.

On the one hand, the periodicity ef determines the structure of

Kso:
Ksy = Kpy L U Kao. with Kao.j = {CL +.jl/0|a € Icqo}

j=0

Ky, (resp.Kq,) denotes the set of-discontinuities ofpg (resp.qo).

On the other hand, the periodicity efimplies the periodicity of

ds:
IK > 0,Vk > K,ds (k +v) =7 + ds (k)

Next, considerj’ € N such thatK’ = minK,, ; > K and
k = K', according to Prof.]4,

dpry, (o) (k +v10) = ds (K') with & = e {Jl <k + v} (4)
Furthermorek > K’ = k+vwvo = K’ +v1g and sinceK” € K,
K’ + vy € Ky, 100, i.e.,
dprzo(s) (K" +vw) =ds (K + vig) (5)
k = K' combined with[(#) and{5) leads to
dpy, (s) (k +v10) = ds (K') = dprv () (K +v0)
> ds (K’ + 1/1/0)
It implies & > K" + vvp = min Ky ;1. Then

K = max {Il < k+vwo}
16Uz 41 Kao.i

= max {{ + vo|l + vvo < k + vio}
1eU;j» 1 Kag i
= v + k with k = max  {l|l <k}

€Uz Kag.i

Hencek > K’ > K andk € K, and by using periodicity of:
dprgo(s) (k +vro) =ds (k") =ds (l/l/o + I~c> =ds (l%) + 7119

According to Prop[H4, sincé = maxex,, {I|l <k}, ds (7@) =
dpr;}’o (‘5) (kf), then,

dPrzO(s) (k + VVO) = dPrzO(s) (k) + 7o

ConsequentlyPr}  (s) is periodic and
124
7 (Pl () = 0 = (9)
[

Example 3. Let so = 70" @ 7%5" (1%6°)" and s = & (v26°)*.
Then, ICs, is equal to {1,3k with k > 0} and Pr], (s) is equal
to 76 @ (736 ®~°5") (v96'°)*. In Fig. @, the seriess, so

and Pr], (s) are represented in th¢y,d)-plane. As expected (see

Prop.[[), the throughputs of and Pr}, (s) are both equal td0.4,
however the periodicities are differenty?s° for s but ~°5'° for
Pra, (s).

The aim of the following propositions is to characterize fegies

Fig. 3. Representation ofy (dashed line),s (continuous line),PrY; (s)
(dots), andCs,, (dotted line)

~-discontinuities ofso. First, some important properties Bt} are

proven.
Proposition 6. Given a seriessg in Mg [v,4], Prl, is a dual
closure.

Proof: Obviously, Pr}, is isotone (i.e.s1 > sa = Pr] (s1) >
Pr2, (s2)). Besides, due to the idempotency ®f

Vs € M?:[[’Y,(S]],S@ Przo (S) _ (_D’ykdds(k) ® (_D ’Yk(SdS(k)
keZ keKSO
=s

Therefore Vs € M7 [, 0], Pri, (s) < s or equivalentlyPr], < Id.
It remains to show thékr]  is a projection (i.e.Pr) oPrl, = Prl).
According to Prop[4, fol € Ks,, we havedp,, () (k) = ds (k).
Thus,

d k
D +*5 Py (o) (R
kE)CSO

(‘D ,yk(;ds(k)
kels

=Prl, (s)

Pri, (PrZO (s)) =

[ |
Second, an interpretation, in terms ¢fdiscontinuities, of the
image of they-projection ontoso, Im (PrY,), is presented.

Proposition 7. Given a seriesso in M7 [v,6], Im (Pr,) is the
set of all seriess e M7 [, ] having a set ofy-discontinuities/C,
included inkCs,.

Proof: On the one hand, consider such that, < K.
Then, asks € Ks, € Z, s = @keK% ~F§4s(k) (see Prop[l3).
Consequentlys = Pr], (s) ands € Im (PrJ, ).

On the other hand, consider Im (Pr, ), then there exists’ such
thats = Pr, (s'). Thus,s = @y, "0 and, according to
Prop.[3,Ks € Ks,. ]

The following proposition presents an interesting resatt dual
closures.

Proposition 8. Consider a dual closures) on a dioid D and an
elements € D. ¢ (s) is the greatest solution of

r<s
z €1m (@)
Proof: As ¢ < Id, ¢ (s) is a solution of[(B). Consider a solution
z of (@), asz € Im (), z = ¢ (z) < s. Besides, a® is isotone,

(6)

Prl, (s) as the optimal solution of a problem conserving the set af = ¢ () < ¢ (s). [ |



Finally, combining the previous propositions (Proli][6) Teds to place upstream from transition; and downstream from transition
the interpretation oPr}, (s) as the greatest solution of a problemz;, A;; is the monomiaky™# 577 wherem,; is the initial number
preserving the set of-discontinuities ofsg. of tokens in the place and; is the holding time of the place, hence,
Ka,;; = {m;}. Furthermore, conserving the places and their initial
markings (i.e., constraint of the considered problem) isivadent to
maintaining the set ofy-discontinuities in comparison to the one
of the initial system. Consequently, the problem of holdinge
maximization is to find the greatest solutiol € M7 [, 5] "

Proposition 9. Consider two series and so in M7 [, 0], Prl, (s)
is the greatest series less than or equalstand having a set of-
discontinuities included in the set efdiscontinuities ofsg, ICs,,
i.e., Pr], (s) is the greatest solution of

{ r<s of W< A
Ke € Ks < Aym
’ { Vi.j Ka, =Ka, ®
Proof: Consider a series € M [, §]. According to Prop(]7, ”
z € Im (Pr1,) is equivalent tok, < K, . Therefore, Next, we show that, wittd ,; = C A*{C A*, the previous problem
comes down to finding the greatest solutidhe M{7 [y, d]" ™ of
r<s - r<s ) ,
K. € Ky, z€lm(Prl) A< Aum ©
. . . VZ,] ]CA’” = ICA»;]'
As Pr7  is a dual closure (see Prdpl @)r}, (s) is, according to 7
Prop.[8, the greatest solution @ (7). ] According to Prop[ 1 and Prop.J1Q] (9) admits,; = Pr), (Axr)
The previous proposition is extended to matrices. as the greatest solution. We check th&s,: is a solution of [(B).

iy . . . mxn o . Indeed, as the entries of are monomials/C4,; is either empty or
Proposition 10. ConsiderS and Sy in M [, 4] Prg (S)is 5 singleton. Itk 4, = &, thenKa,, . = Ka.,. Otherwise K,

1 axr mxXn 3 o 52 1, .
the greatest element iV;;; [y, 9] less than or equal t& such s 5 singleton. As they-projection onto a series is a dual closure,

that the set ofy-discontinuities of an entry dPr (S) is included Ay > A leads t0A,, > Pr} (A) = A. Therefore,A;; # e

in the set ofy-discontinuities of the corresponding entry $if. implies Aopt.i; # €. In term_s ofy-discontinuitiesk 4, # ¢ implies
Proof: As (Pry (5)).. = Pr],
ij

(Si;), the result is an Ka,,,;; # . Then,

) (So)iy; N7

obvious consequence of Prap. 9. [ ] & <Ka,,.; SKa,
Furthermore, a& 4, ; is a singleton4,,, ,; = Ka,;. Consequently,
as a solution of[{8) is a solution dfl(.,: is the greatest solution

V. HOLDING TIME MAXIMIZATION

In this section, a method to obtain the greatest holding tirhide
presgrving the input-outpqt and perturbation-outputsﬁanfunctiqn Thérefore, the greatest state-matrix modifying only théding
matrices is introduced. First, we look for the greatestesaatrix (imes ang preserving the perturbation-output transfectian matrix
Aur greater than or equal td and preserving the input-output andig 4 pesides, the initial system and the system after holding

pert.urbation-output transfer fu.nction matrices. Formaﬂhis*means time maximization have the same input-output behavior Aadsame
finding the greatest state-matrik,, such thatd,; > A, CAY,B = response in case of perturbations.
CA*B, andCA%, = CA*.

Proposition 11. Consider a TEG represented by matri€s A, B),
the greatest state-matrita; such thatdy, > A, CA%,B = CA*B,
and CA}Y, = CA* is

Remark 3. The complexity of the calculation of.,: is in O (n?)
elementary operations on periodic series witlthe number of state
transitions in the considered TEG. 1h![7], holding time optzation
is solved with an integer linear programming problem witt
Ay = CA*NCA* constraints. However, the problems are not comparable esitie
maintained characteristics of the system are differentvben the
Proof: Preserving the perturbation-output transfer function mawo approaches. Therefore, the most suitable method migheértt
trix implies preserving the input-output transfer funetioatrix: on the considered application.
CA} = CA* = CA}B = CA*B. Therefore, the problem is . _ o
to find the greatest state-matriky > A such thatCA*, = CA*. Exampl_e 4. Con5|de_r the systerr_l pres_ented in[Bx. 2, the calcula_tlon is
As Ay > A implies CA%, > CA*, it is equivalent to find the dong Wlth. thg C++ library .des.crlbed in [.].4], an.d the soirceda:s
greatest state-matrid; such thatdy > A and CA%, < CA*, |f available in [13]. Ihefy-grOJectlorlgntgAll(;s 2ppl|ed toCA Q&CA '
Ay > A, then A%, > A*. Thus, A%, = A*A¥%, (see Prop[12) M example(CA*YCA™) - =46"" (v%6"")" and Ass = 774 leads
and CA*, < CA* o CA*A* < CA*. Using residuation ©
theory, CA* A}, < CA* o A}, < CA*YCA¥. Finally, ac- (Pry (CA*NCA¥)), =Pr). ((CA*\CA*), ) =~%5°
cording to ThIRCA*XCA* is a star, then, according to Prdg. 1, " * 4
A%, < CA*NCA* & Ay < CA*NCA*. Clearly, CA*\CA* is ~ The complete solution is

a solution. Therefored,s = CA*{C A*. [ ] Aot = Py (CA*\CA¥)
Remark 2. This problem can be rephrased as an optimal feedback e € € ¢ € € €
control problem: find the greatest feedbaék from state to state 2 e A5 ¢ € € €
preserving the perturbation-output transfer function matFormally, e 6 e ¢ € € €
this is equivalent to finding the greatest feedbakk such that =| &% & e € 4% ¢ €
C(A® F)* < CA* (see [4)). e € € 6 € €
Pro . . . _— . . e € 6 ¢ e 782

p[I1 is combined with the-projection onto matrices to obtain s

€ e e € v 6 €

a TEG differing from the original TEG only for the holding tes.
For the state-matrix4, a coefficient4;; represents the influence of In this very simple example, the maximal admissible holdinge
transitionz; on transitionz,. According to sectiofi 1ll, consider the modifications are



« increase of the holding time of the place from transitionto [14] B. Cottenceau, L. Hardouin, M. Lhommeau, and J.-L.
transition z4 by 10 time units Boimond, “Data processing tool for calculation in dioid,n i
Proceedings of the 5th International Workshop on Discrete

. increase of the holding time of the place from transitionto
transition z4 by 8 time units

The input-output transfer function matrix is indeed preser

CA:)FptB — CA*B — 55 (‘D (’Y514 (‘D’Y2518) (72510)*

VI. CONCLUSION

In this paper, we have addressed the problem of holding time

maximization, while preserving input-output and perttidoaoutput
behaviors. Using residuation theory, it turns out that glsinoptimal
solution exists with such a strict constraint. Furthermthnes solution
does not depend on the considered cost functions. Therefoder
the considered constraint, holding time maximization ik/esd by
maximizing independently the holding times. To take intecamt
the physical structure of the system, a new projectioMt; [, 9]

is introduced: they-projection onto a series.

Time/event duality in TEG leads to an approach to solve tiod-pr
lem of resource optimization (i.e., deleting useless rees) under
the same constraint, usingrprojection onto series. An interesting
starting point for an extension of this work is to find an omim
state-matrix conserving a reference model> H, i.e., to find the
maximal holding times when a predefined relaxed performasce
required.
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