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1. INTRODUCTION

This paper deals with observer synthesis for (max,plus)
linear systems. These linear systems are useful to describe
discrete event systems characterized by synchronization
and delay phenomena. Among these systems we can cite
the manufacturing systems, (see Cohen et al. (1985)), the
transportation networks, (see Heidergott et al. (2006)), the
computer networks (Bouillard et al. (2007)). In the first
setting, the delay can be due to the duration of tasks, or
due to the transportation of parts between machines, the
synchronization phenomena occur when the system has
to perform assembly tasks of many parts or also when the
number of resources (e.g. the machines capacity) is limited,
so some parts are obliged to wait before to be processed.

After a modeling step, all these systems can be described
by a linear model in (max-plus) algebra, the state vari-
ables represent the date of events occurrence. A specific
theory has been developed in order to solve some con-
trol problems very reminiscent to those of the control
theory for linear systems in classical algebra. Among the
problems considered we can mention: the optimal and the
model predictive control (Cohen et al. (1989),Schutter and
van den Boom (2001)), the control in order to optimize a
just in time criterion (Cottenceau et al. (1999),Maia et al.
(2005)), the problems of control with some uncontrollable
inputs which can represent disturbances such as system
breakdowns(Lhommeau et al. (2002)), and also the robust
control of systems involving some uncertain parameters
which are characterized by intervals (e.g. tasks duration
or number of resources imperfectly known but assumed to
be bounded, Lhommeau et al. (2004)). Some developments
about characterization of invariant semimodules (which
play an analogous role to the vector spaces in classical
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algebra) allowed to solve some specific control problems
which involves constraint on the states vector (Gaubert
and Katz (2003), Katz (2007), Houssin (2006), Ouerghi
and Hardouin (2006)). The control can also be computed
in order to optimize the energy consumption of the system,
in (Mao and Cassandras (2008)) the criterion considered is
a decreasing convex function of task duration (see also Li
et al. (2004), for a close problem ). More recently observer
synthesis has been considered (see DiLoreto et al. (2009)),
the authors consider a duality principle which allows to
compute an observer matrix thanks to the characterization
of invariant subsemimodule. The disturbances considered
by the authors are given thanks to an implicit system
which allows to modelize uncertainties on the delay as-
sumed to be in a known interval. The estimated state
can then be computed by using the available measure. In
(Hardouin et al. (2010)), the synthesis of the observer ma-
trix is considered thanks to residuation theory and leads to
an estimation of the state as close as possible, from below,
to the real state. This paper deals with an application of
this observer to the example considered by (DiLoreto et al.
(2009)), but instead of considering that disturbances be-
long to intervals, external uncontrollable inputs are added
in order to model disturbances or unknown initial condi-
tions, and no assumptions on disturbances and delays are
done. The only assumptions are the following, the system
is assumed to be linear in this algebraic setting (only delay
and synchronization phenomena are considered) and the
fastest behavior is assumed to be known (the ideal system
behavior is known, the one where the duration and/or
transportation task are minimal, hence the disturbances
can only decrease the system performance, i.e. delay the
events occurrence). We invite the reader to consult the
web site given in (Hardouin et al. (2010)), to discover a
dynamic illustration of the observer behavior.



2. ALGEBRAIC SETTING

An idempotent semiring S is an algebraic structure with
two internal operations denoted by ⊕ and ⊗. The opera-
tion ⊕ is associative, commutative and idempotent, that
is, a ⊕ a = a. The operation ⊗ is associative (but not
necessarily commutative) and distributive on the left and
on the right with respect to ⊕. The neutral elements of
⊕ and ⊗ are represented by ε and e respectively, and ε is
an absorbing element for the law ⊗ (∀a ∈ S, ε ⊗ a = a ⊗
ε = ε). As in classical algebra, the operator ⊗ will be often
omitted in the equations, moreover, ai = a ⊗ ai−1 and
a0 = e. In this algebraic structure, a partial order relation
is defined by a � b ⇔ a = a ⊕ b ⇔ b = a ∧ b (where
a ∧ b is the greatest lower bound of a and b), therefore
an idempotent semiring S is a partially ordered set (see
Baccelli et al. (1992) for an exhaustive introduction). An
idempotent semiring S is said to be complete if it is closed
for infinite ⊕-sums and if ⊗ distributes over infinite ⊕-
sums. In particular > =

⊕
x∈S x is the greatest element of

S (> is called the top element of S).
Example 1. (Zmax ). Set Zmax = Z∪{−∞,+∞} endowed
with the max operator as sum and the classical sum +
as product is a complete idempotent semiring, usually
denoted Zmax, of which ε = −∞ and e = 0.
Theorem 2. (see Baccelli et al. (1992), th. 4.75). The im-
plicit inequality x � ax⊕b as well as the equation x = ax⊕
b defined over S, admit x = a∗b as the least solution, where
a∗ =

⊕
i∈N

ai and a0 = e, (Kleene star operator).

Properties 3. The Kleene star operator satisfies the follow-
ing well known properties (see Gaubert (1992) for proofs,
and Krob (1991) for more general results):

a∗ = (a∗)∗, a∗a∗ = a∗, (1)

(a⊕ b)∗ = a∗(ba∗)∗ = (a∗b)∗a∗, b(ab)∗ = (ba)∗b. (2)
Thereafter, the operator a+ =

⊕
i∈N+

ai = aa∗ = a∗a is also

considered, it satisfies the following properties:

a+ = (a+)+, a∗ = e⊕ a+, (3)

(a∗)+ = (a+)∗ = a∗, a+ � a∗. (4)
Definition 4. (Residual and residuated mapping). An or-
der preserving mapping f : D → E , where D and E are
partially ordered sets, is a residuated mapping if for all
y ∈ E there exists a greatest solution for the inequality
f(x) � y (hereafter denoted f ](y)). Obviously, if equality
f(x) = y is solvable, f ](y) yields the greatest solution.
The mapping f ] is called the residual of f and f ](y) is the
greatest solution of the inequality and can be seen as the
optimal solution of the following constrained optimization
problem :

xopt =
⊕

{x|f(x)�y}

x (5)

Theorem 5. (see Blyth and Janowitz (1972)). Let f : (D,�
)→ (C,�) be an order preserving mapping. The following
statements are equivalent

(i) f is residuated.
(ii) there exists an unique order preserving mapping f ] :
C → D such that f ◦ f ] � IdC and f ] ◦ f � IdD.

Example 6. Mappings Λa : x 7→ a⊗ x and Ψa : x 7→ x⊗ a
defined over an idempotent semiring S are both residuated
(Baccelli et al. (1992), p. 181). Their residuals are order
preserving mappings denoted respectively by Λ]a(x) = a◦\x
and Ψ]

a(x) = x◦/a. This means that a◦\b (resp. b◦/a) is
the greatest solution of the inequality a ⊗ x � b (resp.
x⊗ a � b).
Definition 7. (Restricted mapping). Let f : D → C be a
mapping and B ⊆ D. We will denote by f|B : B → C the
mapping defined by f|B = f ◦ Id|B where Id|B : B → D, x 7→
x is the canonical injection. Identically, let E ⊆ C be a set
such that Imf ⊆ E . Mapping E|f : D → E is defined by
f = Id|E ◦ E|f , where Id|E : E → C, x 7→ x.
Definition 8. (Closure mapping). A closure mapping is an
order preserving mapping f : D → D defined on an
ordered set D such that f � IdD and f ◦ f = f .
Proposition 9. (see Cottenceau et al. (2001)). Let f : D →
D be a closure mapping. Then, Imf |f is a residuated map-
ping whose residual is the canonical injection Id|Imf .
Example 10. Mapping K : S → S, x 7→ x∗ is a closure
mapping , (indeed by definition a � a∗ and equation
(1) gives a∗ = (a∗)∗). The closure mappings restricted to
their image are residuated (see Blyth and Janowitz (1972)
and Cottenceau et al. (1999) for proof), this means that
(ImK|K) is residuated and its residual is (ImK|K)] = Id|ImK .
Practically this means x = a∗ is the greatest solution of
inequality x∗ � a if a ∈ ImK, that is x � a∗ ⇔ x∗ � a∗.
Example 11. Mapping P : S → S, x 7→ x+ is a closure
mapping (indeed a � a+ and a+ = (a+)+ see equa-
tion (3)). Then (ImP |P ) is residuated and its residual is
(ImP |P )] = Id|ImP . In other words, x = a+ is the great-
est solution of inequality x+ � a if a ∈ ImP , that is
x � a+ ⇔ x+ � a+.
Remark 12. According to equation (4), (a∗)+ = a∗, there-
fore ImK ⊂ ImP .
Properties 13. Some useful results involving these residu-
als are presented below (see Baccelli et al. (1992) for proofs
and more complete results).

a◦\a = (a◦\a)∗ a◦/a = (a◦/a)∗ (6)
a(a◦\(ax)) = ax ((xa)◦/a)a = xa (7)
b◦\a◦\x = (ab)◦\x x◦/a◦/b = x◦/(ba) (8)
a∗◦\(a∗x) = a∗x (a∗x)◦/a∗ = a∗x (9)

(a◦\x) ∧ (a◦\y) = a◦\(x ∧ y) (x◦/a) ∧ (y◦/a) = (x ∧ y)◦/a
(10)

The set of n×n matrices with entries in S is an idempotent
semiring. The sum, the product and the residuation of
matrices are defined after the sum, the product and the
residuation of scalars in S, i.e.,

(A⊗B)ik =
⊕

j=1...n

(Aij ⊗Bjk), (11)

(A⊕B)ij = Aij ⊕Bij , (12)

(A ◦\B)ij =
∧

k=1..n

(Aki ◦\Bkj) , (13)

(B◦/A)ij =
∧

k=1..n

(Bik◦/Ajk). (14)

The identity matrix of Sn×n is the matrix with entries
equal to e on the diagonal and to ε elsewhere. This identity



matrix will also be denoted e, and the matrix with all its
entries equal to ε will also be denoted ε.

3. TEG DESCRIPTION IN IDEMPOTENT SEMIRING

Timed event graphs constitute a subclass of timed Petri
nets i.e. those whose places have one and only one
upstream and downstream transition. A timed event graph
(TEG) description can be transformed into a (max,+) or
a (min,+) linear model and vice versa (see Cohen et al.
(1984), Baccelli et al. (1992), Heidergott et al. (2006)).
To obtain an algebraic model in Zmax, a “dater” function
is associated to each transition. For transition labelled
xi, xi(k) ∈ Zmax represents the date of the kth firing.
By considering suitable transformation (see Baccelli et al.
(1992) for details), it is always possible to obtain an
explicit dynamical system as follows :

x(k) = Āx(k − 1)⊕Bu(k)⊕Rw(k)

y(k) =Cx(k), (15)

where u ∈ (Zmax)p, y ∈ (Zmax)m and x ∈ (Zmax)n
are respectively the controllable input, output and state
vector. Matrices Ā ∈ (Zmax)n×n, B ∈ (Zmax)n×p, C ∈
(Zmax)m×n. Vector w ∈ (Zmax)l represents uncontrollable
inputs (i.e. disturbances 1 ). Each entry of w corresponds
to a transition which can disable the firing of internal
transition of the graph, and so can decrease the perfor-
mance of the system. This vector is bound to the graph
through matrix R ∈ (Zmax)n×l. Afterwards, each input
transition ui (respectively wi) is assumed to be connected
to one and only one internal transition xj , this means
that each column of matrix B (resp. R) has one entry
equal to e and the others equal to ε and at most one
entry equal to e on each row. Furthermore, each output
transition yi is assumed to be linked to one and only one
internal transition xj , i.e each row of matrix C has one
entry equal to e and the others equal to ε and at most one
entry equal to e on each column. These requirements are
satisfied without loss of generality, since it is sufficient to
add extra input and output transition. Note that if R is
equal to the identity matrix, w can represent initial state
of the system x(0) (see Baccelli et al. (1992), p. 245, for a
discussion about compatible initial conditions). In the fol-
lowing we will consider the γ-transform defined as follows
: xi(γ) =

⊕
k∈Z xi(k) ⊗ γk where xi(k) ∈ Zmax and γ is

a backward shift operator 2 in the event domain (formally
γx(k) = x(k−1)). xi(γ) is a formal series representing the
firing date sequence of the transition labelled xi. The set of
formal series in γ is denoted by Zmax[[γ]] and constitutes
a complete idempotent semiring. The previous dynamic
system equation (15) can then be described equivalently
as follows :

x(γ) = γĀx(γ)⊕Bu(γ)⊕Rw(γ)

y(γ) =Cx(γ), (16)
In the sequel, in order to lighten the notation, x(γ) will be
denoted simply x and matrix A = γĀ will be considered.
1 In manufacturing context, w may represent machine breakdowns
or failures in component supply.
2 Operator γ plays a role similar to operator z−1 in the Z−transform
for the conventional linear systems theory.

By considering theorem 2, this system can be rewritten as:

x=A∗Bu⊕A∗Rw (17)

y =CA∗Bu⊕ CA∗Rw, (18)

where (CA∗B) ∈ (Zmax[[γ]])m×p (respectively (CA∗R) ∈
(Zmax[[γ]])m×l) is the input/output (resp. disturbance/output)
transfer matrix. Matrix (CA∗B) represents the earliest
behavior of the system, therefore it must be underlined
that the uncontrollable inputs vector w (initial conditions
or disturbances) is only able to delay the transition firings,
i.e. , according to the order relation of the semiring, to
increase the vectors x and y. According to assumptions
about matrices C, B, and R, the matrices (CA∗B) and
(CA∗R) are composed of some entries of the matrix A∗.
Each entry is a periodic series in the Zmax[[γ]] semiring. A
series s =

⊕
k∈Z s(k)γk, where s(k) is a dater function,

is periodic if it can be written as s = p ⊕ qr∗, where

p =
m⊕
i=1

tiγ
ni (respectively q =

h⊕
j=1

tjγ
nj ) is a polynomial

depicting the transient (resp. the periodic) behavior, and
r = τγν is a monomial depicting the periodicity allowing
to define the asymptotic slope of the series as σ∞(s) = ν/τ
(it is homogenous to the production rate of the series).
Sum, product, and residuation of periodic series are well
defined and algorithms and software toolboxes are avail-
able in order to handle periodic series and compute trans-
fer relations (see (Cottenceau et al. (2000))). In the sequel
counters of event are considered, more precisely a counter
function Cs(t) will be associated to a given series s(γ),
being defined by means of the relation s =

⊕
t∈Z tγ

Cs(t).
In (MaxPlus (1991)) and in (Santos-Mendes et al. (2005)),
it has been shown that the residuation of two series s1◦/s2
can be used to compute bounds for the difference between
the corresponding counter functions. More precisely, by
considering two trajectories x1 = s1u and x2 = s2u where
u is an input and s1 and s2 are transfer functions, the
stock function is defined as Sx1x2(t) = Cx1(t)− Cx2(t) and
it characterizes the difference between the two trajectories
associated to transitions x1 and x2. If s2 � s1, then this
stock function can be bounded as follows:

−Cs2◦/s1(0) ≤ Sx1x2(t) ≤ Cs1◦/s2(0).

In this paper the example introduced in (DiLoreto et al.
(2009)) is considered, and the corresponding TEG is
depicted figure 1, the size of the system are : p = 0, i.e. no
controllable inputs, m = 3, i.e. 3 measured outputs, n = 9
is the state size, and l = 2 is the number of disturbances
acting on the system. Below, due to the lack of place, only
the entries different of ε are given for each matrix of system
(16):

Ā1,3 = 4, Ā1,7 = 2, Ā2,1 = 1, Ā2,8 = 3, Ā3,2 = 5, Ā3,9 = 1,
Ā4,1 = 4, Ā4,6 = 3, Ā5,2 = 3, Ā5,4 = 1, Ā6,3 = 5, Ā6,5 = 4,
Ā7,4 = 4, Ā7,9 = 3, Ā8,7 = 5, Ā8,5 = 3, Ā9,8 = 4, Ā9,6 = 2,

C1,3 = e, C2,6 = e, C3,8 = e,

R2,1 = e, R5,2 = e.

Let us note that matrix B = ε, that means no controllable
inputs are considered. The two entries R2,1 and R5,2
represent the links between vectors w and x. It means that



Fig. 1. Timed event graph, xi internal transitions, yi
measured outputs and wi uncontrollable inputs.

the sojourn time in the upstream places of transitions x5
and x2 can vary between a minimal value, respectively
given by A2,1, A2,8, A5,2 and A5,4, and a maximal value
which can depend of the firing dates of transitions w1
and w2. In (DiLoreto et al. (2009)) the sojourn time in
theses upstream places is assumed to be in an interval,
that means the entries of matrix A are in a semiring of
interval, (see Lhommeau et al. (2005), Lhommeau et al.
(2004), Hardouin et al. (2009) for details about this specific
semiring). Precisely the authors choose, A2,1 = [1, 7],
A2,8 = [3, 3], A5,4 = [1, 3], A5,2 = [3, 5], which means
that the minimal sojourn time of the respective places are
included in the corresponding interval. This can be seen
as a particular case which can be achieved by choosing
the lower bound of each interval for the minimal sojourn
time and by building the particular vector w given below,
rather than a completely free disturbance :(

w1(k)
w2(k)

)
=

(
w1(k − 1)⊕ x1(k − 1)⊗ Ã2,1

w2(k − 1)⊕ x4(k − 1)⊗ Ã5,4 ⊕ x2(k − 1)⊗ Ã5,2

)
where Ã2,1, Ã5,4, Ã5,2 are random values in their corre-
sponding interval A2,1, A2,8, A5,4, A5,2.

In the sequel we will not consider this additive input, but
a completely free vector w, indeed we will show that the
observer synthesis is done whatever be the disturbance.
Actually we will compute the greatest observer matrix (in
the sense of the semiring order) taking into account the
disturbance.

4. MAX-PLUS OBSERVER

The observer structure depicted figure 2 is directly inspired
from the classical linear system theory (see Luenberger
(1971)). The observer matrix L aims at providing informa-
tion from the system output into the simulator, in order to
take the disturbances w acting on the system into account.

R w

w

Fig. 2. Observer structure.

The simulator is described by the model 3 (matrices A, B,
C) which is assumed to represent the fastest behavior of
the real system, furthermore the simulator is initialized by
the canonical initial conditions ( i.e. x̂i(k) = ε,∀k ≤ 0).
These assumptions induce that y � ŷ since disturbances
and initial conditions, depicted by w, are only able to in-
crease the system output. As in the development proposed
in conventional linear systems theory, matrices A, B, C
and R are assumed to be known and the system is assumed
to be structurally observable, then the system transfer is
given by equations (17) and (18). According to figure 2 the
observer equations are given by:

x̂=Ax̂⊕Bu⊕ L(ŷ ⊕ y)

=Ax̂⊕Bu⊕ LCx̂⊕ LCx (19)

ŷ =Cx̂.

By applying Theorem 2 and by considering equation (17),
equation (19) becomes:

x̂= (A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCA∗Bu

⊕(A⊕ LC)∗LCA∗Rw. (20)
By applying equation (2) the following equality is ob-
tained:

(A⊕ LC)∗ = A∗(LCA∗)∗, (21)
by replacing in equation (20) :

x̂=A∗(LCA∗)∗Bu⊕A∗(LCA∗)∗LCA∗Bu
⊕A∗(LCA∗)∗LCA∗Rw,

and by recalling that (LCA∗)∗LCA∗ = (LCA∗)+, this
equation may be written as follows :

x̂=A∗(LCA∗)∗Bu⊕A∗(LCA∗)+Bu
⊕A∗(LCA∗)+Rw. (22)

Equation (4) yields (LCA∗)∗ � (LCA∗)+, then the ob-
server model may be written as follows :

x̂=A∗(LCA∗)∗Bu⊕A∗(LCA∗)+Rw
= (A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCA∗Rw. (23)

As said previously the objective considered is to compute
the greatest observation matrix L such that the estimated
3 Disturbances are uncontrollable and a priori unknown, then the
simulator does not take them into account.



state vector x̂ be as close as possible to state x, under the
constraint x̂ � x which has to hold for all u,w, formally
this can be expressed as the two following inequalities:

(A⊕ LC)∗B �A∗B, (24)

(A⊕ LC)∗LCA∗R�A∗R. (25)
Lemma 14. (Hardouin et al. (2010)). The greatest matrix
L such that (A⊕ LC)∗B = A∗B is given by:

L1 = (A∗B)◦/(CA∗B).
Lemma 15. (Hardouin et al. (2010)). The greatest matrix
L that satisfies (A⊕ LC)∗LCA∗R � A∗R is given by:

L2 = (A∗R)◦/(CA∗R). (26)
Proposition 16. (Hardouin et al. (2010)). Lx = L1 ∧ L2 is
the greatest observer matrix such that:
x̂ = Ax̂⊕Bu⊕ L(ŷ ⊕ y) � x = Ax⊕Bu⊕Rw ∀(u,w).
Corollary 17. By considering matrix B = (B R) ∈
Zmax[[γ]]n×q with q = p + l, matrix Lx may be written
as : Lx = (A∗B)◦/(CA∗B).

Proof. According to the definition of right residuation of
matrices (see equation 14). It is obvious to check :

(A∗B)◦/(CA∗B) = (A∗B A∗R) ◦/ (CA∗B CA∗R)

= (A∗B)◦/(CA∗B) ∧ (A∗R)◦/(CA∗R)

=Lx. (27)
Proposition 18. The matrix Lx ensures the equality be-
tween estimated output ŷ and measured output y, i.e.

C(A⊕ LxC)∗B =CA∗B, (28)

C(A⊕ LxC)∗LxCA∗R=CA∗R. (29)

Proof. Let L̃ = e◦/C be a particular observer matrix.
Definition 4 yields L̃C � e then (A ⊕ L̃C)∗ = A∗. This
equality implies (A ⊕ L̃C)∗B = A∗B, therefore according
to lemma 14 L̃ � L1, since L1 is the greatest solution.
That implies also that L1 is solution of equation (28).
Equality (A ⊕ L̃C)∗ = A∗ and inequality L̃C � e yield
(A ⊕ L̃C)∗L̃CA∗R = A∗L̃CA∗R � A∗R then according
to lemma 15 L̃ � L2 since L2 is the greatest solution.
That implies also that L̃ and L2 are such that C(A ⊕
L̃C)∗L̃CA∗R � C(A ⊕ L2C)∗L2CA

∗R � CA∗R. The
assumption about matrix C (see section 3) yields CCT = e

and L̃ = e◦/C = CT , therefore C(A ⊕ L̃C)∗L̃CA∗R =
CA∗L̃CA∗R = (CL̃ ⊕ CAL̃ ⊕ ...)CA∗R � CL̃CA∗R =
CCTCA∗R = CA∗R. Therefore, since L̃ � L2, we have
C(A⊕L̃C)∗L̃CA∗R = C(A⊕L2C)∗L2CA

∗R = CA∗R and
both L̃ and L2 yield equality (29). To conclude L̃ � L1 ∧
L2 = Lx, hence, Lx � L1 yields the equality (28) and
Lx � L2 yields (29). Therefore equality ŷ = y is ensured.
Remark 19. According to the residuation theory (see def-
inition 4), Lx yields x = x̂ if possible. Nevertheless, two
questions arise, firstly is it possible to ensure equality be-
tween the asymptotic behavior of each state vector entries
? Secondly is it possible to ensure equality between these
vectors ? The answer to the first question is positive and
it is given in (Hardouin et al. (2010)). The key point is

the following, if you are able to get measurement about all
strongly connected components you have information on
all the eigenvalues. The proposition below gives a sufficient
condition related to the second question
Proposition 20. If LxCA∗B = A∗B then the observer of
equation 19 ensures that x̂ = x.

Proof. By recalling that B = (B R), equality LxCA∗B =
A∗B can be written

(LxCA∗B LxCA
∗R) = (A∗B A∗R) .

According to equation (20) and by using equation(21) the
following equalities hold :

(A⊕ LxC)∗LxCA∗R=A∗(LxCA∗)∗LxCA∗R

=A∗(LxCA∗)+R

=A∗(LxCA∗R⊕ (LxCA∗)2R

⊕(LxCA∗)3R⊕ ...).

Since LxCA∗R = A∗R, the following equality is satisfied
(LxCA∗)2R = LxCA

∗A∗R = LxCA
∗R = A∗R and

more generally (LxCA∗)iR = A∗R, therefore Lx ensures
equality (A ⊕ LxC)∗LxCA∗R = A∗(LxCA∗)+R = A∗R.
On the other hand lemma 14 yields the equality (A ⊕
LxC)∗B = A∗B, which concludes the proof.

This sufficient condition gives an interesting test to know
if the number of sensors is sufficient and if they are well
localized to allow an exact estimation. Obviously, this
condition is fulfilled if matrix C is equal to the identity.

By considering example of figure 1, thanks to the software
given in (Cottenceau et al. (2000)) we have computed the
matrix Lx. According to proposition 18 we have ŷ � y,
and since B = ε equation (19) is given by :

x̂ = Ax̂⊕ Ly

by considering d = Ly we can obtain the dynamical
equation in Zmax

x̂(k) = Ax̂(k − 1)⊕ d(k)

where d(k) ∈ (Zmax)n is the dynamical realization of
d ∈ (Zmax[[γ]])n. Below a practical method to get this
realization is given. By recalling that Lx ∈ (Zmax[[γ]])n×m
each entry of vector d can be written as di = di1 ⊕ di2 ⊕
... ⊕ dim where dij = (Lx)ijyj . Furthermore it must be
recalled that each entry of matrix Lx can be expressed as
a periodic series, i.e., (Lx)ij = pij ⊕ qijr∗ij where pij and
qij are polynomial of Zmax[[γ]] and rij is a monomial of
Zmax[[γ]]. Hence, each dij can be expressed as follows :

dij = pijyj ⊕ δij ,
δij = qijr

∗
ijyj = qijyj ⊕ rijδij .

Then by using the definition of the backward shift operator
γ, it is easy to obtain the expression of dij(k) ∈ Zmax.
Practically, the TEG of figure 1 is such that n = 9 and
m = 3. And matrix Lx is given by :



(Lx)11 = 4γ1 ⊕ 14γ4 ⊕ (29γ7 ⊕ 41γ10)(25γ6)∗

(Lx)12 = 9γ3 ⊕ (24γ6 ⊕ 36γ9)(25γ6)∗

(Lx)13 = (12γ3 ⊕ 24γ6)(25γ6)∗

(Lx)21 = 5γ2 ⊕ (20γ5 ⊕ 32γ8)(25γ6)∗

(Lx)22 = γ1 ⊕ (15γ4 ⊕ 27γ7)(25γ6)∗

(Lx)23 = (3γ1 ⊕ 15γ4)(25γ6)∗

(Lx)31 = γ0 ⊕ 10γ3 ⊕ (25γ6 ⊕ 37γ9)[25γ6)∗

(Lx)32 = 5γ2 ⊕ (20γ5 ⊕ 32γ8)(25γ6)∗

(Lx)33 = (8γ2 ⊕ 20γ5)(25γ6)∗

(Lx)41 = 8γ2 ⊕ 18γ5 ⊕ (33γ8 ⊕ 45γ11)(25γ6)∗

(Lx)42 = 3γ1 ⊕ 13γ4 ⊕ (28γ7 ⊕ 40γ10)(25γ6)∗

(Lx)43 = 1γ1 ⊕ (16γ4 ⊕ 28γ7)(25γ6)∗

(Lx)51 = 9γ3 ⊕ (23γ6 ⊕ 35γ9)(25γ6)∗

(Lx)52 = 4γ2 ⊕ (18γ5 ⊕ 30γ8)(γ6d25)∗

(Lx)53 = (6γ2 ⊕ 18γ5)(25γ6)∗

(Lx)61 = 5γ1 ⊕ 15γ4 ⊕ (30γ7 ⊕ 42γ10)(25γ6)∗

(Lx)62 = γ0 ⊕ 10γ3 ⊕ (25γ6 ⊕ 37γ9)(25γ6)∗

(Lx)63 = (13γ3 ⊕ 25γ6d25)(25γ6)∗

(Lx)71 = (12γ3 ⊕ 24γ6)(25γ6)∗

(Lx)72 = (7γ2 ⊕ 19γ5)(25γ6)∗

(Lx)73 = (7γ2 ⊕ 20γ5)(25γ6)∗

(Lx)81 = 1γ1 ⊕ (17γ4 ⊕ 29γ7)(25γ6)∗

(Lx)82 = (12γ3 ⊕ 24γ6)(25γ6)∗

(Lx)83 = (γ0 ⊕ 12γ3)(25γ6)∗

(Lx)91 = 7γ2 ⊕ (21γ5 ⊕ 33γ8)(25γ6)∗

(Lx)92 = 2γ1 ⊕ (16γ4 ⊕ 28γ7)(25γ6)∗

(Lx)93 = (4γ1 ⊕ 16γ4)(25γ6)∗

(30)

Below, the practical realization of the estimation of tran-
sition x̂7 is given which is the same that the one presented
in (DiLoreto et al. (2009)).

(Lx)71 = (12γ3 ⊕ 24γ6)(25γ6)∗,

i.e., p71 = ε, q71 = 12γ3 ⊕ 24γ6 and r71 = 25γ6, and,

(Lx)72 = (7γ2 ⊕ 19γ5)(25γ6)∗,

(Lx)73 = (7γ2 ⊕ 20γ5)(25γ6)∗.
Hence, the dynamic equation of d7(k) is given by :

d7(k) = d71(k)⊕ d72(k)⊕ d73(k),

d71(k) = 12y1(k − 3)⊕ 24y1(k − 6)⊕ 25d71(k − 6),

d72(k) = 7y2(k − 2)⊕ 19y2(k − 5)⊕ 25d72(k − 6),

d73(k) = 7y3(k − 2)⊕ 20y3(k − 5)⊕ 25d73(k − 6),
then, according to equation (30), the estimation of state
x̂7 is given by :

x̂7(k) = 4x̂4(k − 1)⊕ 3x̂9(k − 1)⊕ d7(k).

We can also easily check that the sufficient condition of
proposition 20 is not achieved, indeed LxCA

∗B 6= A∗B
hence x 6= x̂. By considering the expressions of x (equation
(17)) and x̂ (equation (23)), matrices (A∗R) and (A ⊕
LC)∗LCA∗R = A∗(LCA∗)+R can be computed (let us
recall that B = ε in this example), it appears that the only
difference is on the entries (A∗R)21, (A∗R)51 and (A∗R)52
so, excepted transitions x2 and x5, all transitions will be
perfectly observable in spite of disturbances. This result
is consistent with the illustration proposed in (DiLoreto
et al. (2009)). Below we give the mismatching entries:

(A∗R)21 = e⊕ 10γ3 ⊕ (25γ6 ⊕ 37γ9)(25γ6)∗,

(A∗(LCA∗)+R)21 = 10γ3 ⊕ (25γ6 ⊕ 37γ9)(25γ6)∗,

(A∗R)51 = 3γ ⊕ 14γ4 ⊕ (28γ7 ⊕ 40γ10)(25γ6)∗,

(A∗(LCA∗)+R)51 = 14γ4 ⊕ (28γ7 ⊕ 40γ10)(25γ6)∗,

(A∗R)52 = e⊕ (9γ3 ⊕ 22γ6)(25γ6)∗,

(A∗(LCA∗)+R)52 = (9γ3 ⊕ 22γ6)(25γ6)∗.

In order to evaluate bounds for the difference between the
mismatching trajectories, we can use the results recalled
in section 3 since by assumption xi � x̂i, e.g. for transition
x2 :

(A∗R)21◦/(A∗(LCA∗)+R)21 = −15γ−3 ⊕ (e⊕ 12γ3)(25γ6)∗,

(A∗(LCA∗)+R)21◦/(A∗R)21 = 10γ3 ⊕ (25γ6 ⊕ 37γ9)(25γ6)∗,

hence, the lower bound is obtained from the first equation
and the upper bound is obtained from the second one :

−C(A∗R)21◦/(A∗(LCA∗)+R)21(0) = 0,

C(A∗(LCA∗)+R)21◦/(A∗R)21(0) = 3,

that means the difference of events number occurred
between transitions x2 and x̂2 will be bounded as follows,
whatever be disturbance w :

0 ≤ Sx̂2x2(t) ≤ 3.
For transition x5, 4 residuations have to be done, and yield
the following values :

− C(A∗R)51◦/(A∗(LCA∗)+R)51(0) = 0,

C(A∗(LCA∗)+R)51◦/(A∗R)51(0) = 3,

− C(A∗R)52◦/(A∗(LCA∗)+R)52(0) = 0,

C(A∗(LCA∗)+R)52◦/(A∗R)52(0) = 3,

hence the difference between the state x5 and its estima-
tion x̂5 at each time t will be:

0 = min(0, 0) ≤ Sx̂5x5(t) ≤ max(3, 3) = 3.
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