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Abstract This paper deals with the model-reference control of timed event graphs using the
dioid algebra and the residuation theory. It proposes a control structure based on a precompensator
and a feedback controller to improve the controlled system performance. It is shown that this
approach always leads to an optimal behavior of the closed-loop system. An example is given

to illustrate the proposed approach.
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I. INTRODUCTION

Discrete Event Systems (DES) appear in many applications in manufacturing, computer and
communication systems and are often described by the Petri Net formalism (see [9]). Timed
Event Graphs (TEG) are Timed Petri Nets in which all places have single upstream and single
downstream transitions and appropriately model DES characterized by delay and synchronization
phenomena. TEG can be described by linear equations in the dioid algebra formulation ([1], [4],

[8]) and this fact has permitted many important achievements on the control of DES modelled by
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TEG, as detailed in [3], [6] , [7], [11] and [12]. TEG control problems are usually stated in a Just-
in-Time context, where the design goal is to minimize stocks while guaranteeing performance
(e.g. throughput). One possible approach for the control of TEG is the model-reference technique
in which a given model (written in dioid formalism) describes the desired performance limits
and the design goal is achieved through the calculation of a precompensator or of a feedback
controller [7], [11]. The techniques based on feedback control, although favoring stability, are
limited in the sense that the reference model must satisfy certain restrictive conditions. Those
based on precompensation can guarantee performance for any reference model, but not stability
(for the concept of stability in TEG, see [5]). The present paper proposes a new technique
for the design of controllers based on the simultaneous calculation of a precompensator and a
feedback controller. The main advantage of the approach is that it achieves optimality regarding
stocks while guaranteeing optimal compliance with any prescribed reference model. In addition
sufficient conditions for stabilization of the system are established.

The paper is organized as follows. Section Il introduces some algebraic tools concerning the
Dioid and Residuation theories and their applications to TEG. Section Ill introduces some control
results and develops the proposed control structure and section IV shows an application to TEG

stabilization with an illustrative example. A conclusion is given in section V.

II. LINEAR SYSTEMS THEORY FORTEG USING DIOID THEORY

A dioid D is an algebraic structure with two internal operations denoteebland® . The
operation® is associative, commutative and idempotent, that i5,a = a. The operation is
associative (but not necessarily commutative) and distributive at left and at right with respect to
@. The neutral elements @b and® are represented hyande respectively, and is absorbing
for @ (Va € D,e ®a=a®e =c¢). In adioid, a partial order relation is defined by- b iff
a=a®bandx Ay denotes the greatest lower bound betweesnd y. A dioid D is said to
be complete if it is closed for infinite>-sums and if® distributes over infinitep-sums. Most
of the time the symbok will be omitted as in conventional algebra, moreovér= a ® a'~*
anda’ = e.

Theorem 1 ( [1], th. 4.75):The implicit equationr = ax ® b defined over a complete dioid

D, admitsz = a*b as least solution, where* = @ o' (Kleene star operator).
€N
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TEG control problems, stated in a just-in-time context, usually involves the inversion of isotone
mappings, that is, one must find such thatf(z) = y (wheref is isotone). Residuation Theory
[2] deals with such problems stated in partially ordered sets and is based on the following
concepts. First, the subsolution set is defined{as (z) < y}. The residuated mapping is
defined as follows.

Definition 1 (Residual and residuated mappindn isotone mappingf : D — &£, whereD
and & are partially ordered sets, israsiduated mapping for all y € £ there exists a greatest
subsolution for the equatiofi(x) = y (hereafter denoted?(y)). The mappingf* is called the
residual of f.
The mappingsl, : ¢ — a® x and R, : * — x ® a defined over a complete dioi® are
both residuated ([1], p. 181). Their residuals are isotone mappings denoted respectively by

Lf(x) = ayz and R (x) = xfa. Some useful dioid formulae involving these residuals are given

below.
a(az) =X w 1)
a(ay(az)) = ax )
aya = (aka)" (3)
(@) = o (4)

A trajectory of a TEG transitiorx is a firing date sequencgr(k)} € Z. For each increasing
sequence{x(k)}, it is possible to define the transformatiotty) = @ x(k)y* where~ is a
backward shift operator in event domain (thatyis)) = vz(v) < {yk(ekz)} = {z(k — 1)}, see
[1], p. 228). This transformation is analogous to thdransform used in discrete-time classical
control theory and the formal serie$y) is a synthetic representation of the trajectof¥). The
set of the formal series iny is denoted byZ,...[y] and constitutes a dioid. For MIMO TEG,
vectorslU € (Zuax[Y])? andY € (Zuax[7])™ will respectively represent the input and output
trajectories of the TEG. These trajectories can be related ([1], p. 243) by the equatioH U,

where H € (Zna[y])™? is called the transfer matrix of the TEG. Entries of matfix are

1 is isotone mapping if it preserves order, thatdsg b = f(a) < f(b).
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periodic series ([1], p. 260) in the dioi@,..[v], usually represented by (v) @ q(7)(m7")*.
The asymptotic slope of a periodic series= p(vy) @ q(y)(77")* denotedo(s) is defined as
the ratid o (s) = £.

Theorem 2 ([8], p. 196):Let s; ands, be two periodic series such that v, # 0 and 7y, 7o #
0, then

Ooo(81® S2) = min(o(81),000(82)),
Oo(81 ® $2) = min(o(81), 00(S2)),
Ooo($1 A S2) = max(0(81),000(S2)).

If 000(51) < 00o(82) theno,,(saks1) = 0o(s1), €lSesoks) = e.

[11. CONTROL METHOD

The control method proposed herein is based on the Just-in-Time strategy and on the model
reference approach [7] and is described as follows. Hett (Z.x[y])™*? be the transfer
matrix of the plant and7,.; € (Zmax[Y])™ be the reference modéle., the desired transfer
matrix for the controlled system. The precompensation problem is solved by finding the greatest

precompensatoP such thatid P < G,.;. The optimal solution, denoted b¥,,, is given by
P,, = HXG, . (5)

This means that, for a given external inbdf € (Z..[7])?, the input variable, given by
U = PV, will be maximal. In fact, for anyP such thatd P < G,.;, P < F,,, therefore the
isotony property assures thét= PV < P, V.

In the feedback control context, the closed-loop transfer matrix betweand V', for a given
feedback controller”, is given by H(F'H)*. Therefore the problem is solved by finding the
greatestt’ such thatd (FH)* < G,.y.

’p(v) = @12, pi¥',pi €N, is a polynomial that represents the transient abg = -] ¢; 7/, ¢: € N, is a polynomial
that represents a pattern which is repeated eatime units and eacl firings of the transition.

3Asymptotic slope in a manufacturing context can be viewed as the production rate of the system. Thg (aliis calculated
in the conventional algebra.

4In a Just-in-Time context}’ represents the available catering of raw material &hcepresents the allowance of the raw

material into the system.
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This problem can be solved via residuation theory if some restrictions are imposed on the
reference model. The following result is due to [7].

Proposition 1: Let H € (Zyax[7])™® be the transfer function of a TEG. For every reference
model G,.; such thatG,.; = R*H or G,.; = HS* (Where R € (Zua[7])™™ and S €
(Zmax[Y])P*?) there exists a greatest feedback contrafles (Z...[y])?*™ such that the transfer
function of the closed-loop system is less than or equal,{g. The greatest feedback controller

is:

F,, = HXG,sfH.

In this strategy the transfer function betwe€rnand V' is (F'H)*.

Property 1: If H(FH)* < G,y, for given H andG,.y, then(FH)* < P,, = HYG,.y.

The proof comes from the fact that: < b < x < akb. This property means that the transfer
function betweerU andV for the optimal open-loop strategy is always greater than or equal to
the one obtained for any feasible feedback strategy.

The model-reference control scheme proposed in this paper is a generalization of the two
strategies described above, that is, it uses a precompensator and a feedback controller together.
The two main advantages of this strategy compared with the simple feedback is that it always
leads to an optimal control signal which is equalRgV" and there is no restriction concerning

the reference model choice. Fig. 1 illustrates the approach.

U Y V 1% Y

G,y

GET Model Reference
Model

Controlled GET

Fig. 1. Proposed Control Structure

By using theorem 1, one can obtain the closed-loop equations which téldteandY":
Y =G,V = (HPF)*HPV = HP(FHP)*V; (6)

U=G,V = P(FHP)'V; (7
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whereG,. = (HPF)*HP andG,, = P(F H P)* represent closed-loop transfer functions between

Y and V' and betweerV and V' respectively. The problem can be stated as follo@sen a

TEG, what are the controller matrice® and F' which assure the greatest transfer function
between andV, i.e. G, such thatG. < G,.;? Again, considering the Just-in-Time context,

one seeks the controller which satisfies the reference specifidatienG,.; while delaying as

much as possible the entrance of products to be processed. Formally, the problem can be stated

as follows:

PEBF Gu(P, F) (8)

st.G, = HP(FHP)* < G,.;.

This statement shows thd&t = [¢],«, iS always a subsolution to the problem independently of
the choice ofF', meaning that the subsolution set is not empty. Furthermore, it is easy to notice
that the strategies using exclusively a precompensator (by séttiage],,,) or exclusively a
feedback controller (by setting = I,.,, wherel,,, is the identity matrix in dioid) are particular
cases of the above problem.

Proposition 2: For the proposed control scheme shown in Fig. 1, the three following inequal-

ities are equivalent:

HP(FHP)*

IA

Gref

HYG ey
HP(FHP)* =< H(HXGey)

P(FHP)*

PN

Proof: The relation HP(FHP)" < G,y = P(FHP)" < HXG,., comes from the
residuation definition.P(FHP)* < HXG,.f = HP(FHP)* < H(HXG,.s) comes from the
isotony of®. Finally HP(FHP)* < H(HXG,.f) = HP(FHP)" < G,.s is due to inequality
(1), concluding the proof. [ |

Lemma 1:Let S, = {z | * < a*} be a subset of the complete didlel wherea € D. Then
S, ={z | x < a*} and as a consequence the greatest eleme§ of a*.
Proof: It is sufficient to show the equivalence < a* < = < a*. If 2* < o* then

r=e®rdr’®.. < a* sox < a*. On the other hand, if < «*, thenx? < za* < a*a* < a*
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because of the isotony of the multiplication and equation (4). By induction, one obtaindg,
' < a*, which leads tar* =e @z P 2> D ... < a*. ]
Lemma 2: A solution to problem 8 must satistiy < G, < H{G,.;.
Proof: Straightforward from the problem definition and from the observation thgt=
P(FHP)* = P& @;°, P(FHP)" which implies thatP < G,,,. ]

Proposition 3: A solution to the optimization problem proposed in (8) is given by:

Pop = HXGhrey. 9)
Fop = (HFoy)Y(HFop)f(HPyp). (10)
Proof: From lemma 2G,, is maximum (it is equal to the upper bound)/f= HXG,.s

andF' = ¢. So the greatedt for this value ofP is given by the greatest subsolution of inequality
P, (FHP,,)* = HYG,.r, Which in turn (by proposition 2) is equivalent 8 P,,(F HP,,)* <
H(H\G,.f) = HP,,. Moreover, from the residuation definition this inequality is equivalent to
(FHFy)" = (HPy)y(HP,). Equation (3) yieldS((H Py )}(H Fop))" = (H o)k (HFyp) then,
thanks to lemma 1£'H P,, < (HP,,)}(HP,,). Finally, by solving this last inequality one obtains
Fop = (HFop)}(H Pop)$ (H Fop). =
One must observe here that unlike the approach depicted in proposition 1, the proposed approach
does not restrict the reference model choice.

Property 2: The solution given by proposition 3 assures gt = HxG,.; andG. = HP,,.
This property follows directly from proposition 3, lemma 2 and from the observation®hat
HG,, given by equations (6) and 7. It means that the proposed solution always assures that
greatest closed-loop transfer functio@ds, and G, are equal to their upper bounds, that i3,
and H F,, respectively.

Property 3: If there exists a matrixD such thatG,.; = HD then the optimal solution for
the proposed control structure leadstp = G.,.; . This condition means that the closed-loop
system effectively matches the reference model.

Proof: According to property 2, it is sufficient to show thatP,, = G,.; under the given
conditions. Equation (9) giveB,, = HY(H D). ThereforeH P,, = H(HY(H D)) which is equal
to HD by equation (2). [ |
If the goal is to preserve the system impulse response, ti@f.is= H, an optimal solution is
achieved ifP,, = HYH and F,, = HYyH¢H. Again one uses the fact thataka) = a, thanks to
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equation (2).

IV. APPLICATION: TEG STABILIZATION

Consider the TEG depicted in Fig. 2 as an illustrative example. It represents a workshop with

3 machines{/; to M3) and its input-output equation is given by

y=1[7(37)" 9(47)"]u. (11)

It is important to observe that this TEG is unstable since production rates of makthiread

M, are different. This means that the number of tokens in the place betWeemd M5 can be
unbounded for some inputs. However it is known that a TEG is stable under certain conditions,
e.g., the TEG is strongly connected [5]. By definition ([1], p. 305) an event graph is structurally
controllable if every internal transition can be reached by a path from at least one input transition.
It is structurally observable if, from every internal transition, there exists a path to at least one
output transition. These concepts allow the following.

Proposition 4 (TEG Stabilization)Let H be a transfer function of a TEG structurally con-
trollable and observable and denetg (H) = Mini<i<m, 1<j<p(0oo(Hij)). If G,es is such that
Ooo([Greflij) = A < 0o(H) Vi € [1, m] andVy € [1, p], then equations (9) and (10) lead to
optimal controllers,F,, and F;,, which assure stability of the closed-loop system.

Proof: If a TEG is structurally controllable and observable, in every row and in every
column of H there exists a non null entry. According to matrix residuation([1], p.198));; =
Ny HiR(Greflki, Vi,7 € [1, pl. Since oo ([Greflri) = A < 0x(H) then by theorem 2,
0oo([Poplij) = A, Vi, j € [1, p]. This result means that matrik,, is full and all its entries
have the same asymptotic slope. Furthermetd[H P,,|;;) = A < o.(H) Vi € [1, m| and
Vj € [1, p|. Therefore the TEG resulting from a composition Bfand H is also structurally
controllable and observable. Similarly from equation (10), one get§£,,);;) = A Vi € [1, p]
andVj € [1, m]. So every entryF,,|;; # ¢ have the same asymptotic slope which implies that
each output of the system is connected to each input. As a result, since the system is structurally
controllable and observable, the closed-loop system is strongly connected. Therefore, as remarked

before [5], it is stable. [ |
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For the example modelled by equation (1&),(H) = i If the reference model is chosen

as G,.; = [10(4y)* 10(4v)*] all the conditions required in the theorem 4 are fulfilled . The
optimal solutions given by equations (9) and (10) are respectivEly = (4v)* <f f) and

Fo, = (47v)* (jg) This feedback is not causal because there are negative coefficients in matrix
entries meaning a negative date for the transition firings (see [1], p.259, for a strict definition of
causality in dioid). However the canonical injectidnom the set of causal elements Bf,..[7]
(denotedZIlaX[h]]) iN Zmax[7] is also residuated (see [6] for details). Its residual is denBted

and its computation for alé € Z,,..[7] is given by

e (07 ) - @t

kEZ

s(k) it (k,s(k)) = (0,0),

¢ otherwise
In practice, this result means that the negative coefficients of the series can be simply eliminated.

wheres, (k) =

In [6] it is demonstrated, in a slightly different context, that the application of opeFPatoto the
solution of the proposed problem preserves optimality. This result can be extended to the problem
stated in this paper, that i$Pr(P,,), Pr(F,,)) is an optimal solution to the problem stated

in equation (8) when” and F are restricted to the causal set. Actually, sid¢g < H{G,.;

a causal upper bound fa¥,, is Pri(HYG,.r). As a result, ifP = Pr (HYG,.f) and F' = ¢

then G, is maximum. By using an argument similar to that presented in proposition 3, one
can demonstrate that the maximal causal feedback is giveRrb{( H P,,)x(H P,,)¢(H F,y)).
Therefore the greatest causal feedback for the examglg,is= Pr(F,,) = 2v*(47)* () Fig.

2 shows one realization of the controlled workshop system.
5This reference does not satisfy the conditions of the proposition 1. Indegd+# R*H andG,.; # HS".

®Softwares to handle dioid algebra using Scilab language can be downloaded from the sites [13].

T-V—=WwithV cW, z— x.

23rd May 2005 DRAFT



10

Fig. 2. Controlled Workshop System

V. CONCLUSION

This paper presents a new method for the TEG model-reference control in the context of dioid
theory. A structure based on precompensation as well as on feedback assures an optimal solution
to the just-in-time control problem together with optimal compliance with any model reference.
The results herein presented generalize the results found in the literature based exclusively on
precompensation or exclusively on feedback control. A main result is the absolute absence of
restrictions concerning the choice of the reference mage}. Moreover, sufficient conditions
are derived to guarantee the closed-loop system stabilization and an example illustrates the
applicability of the results. The proposed conditions are not necessary and a complete solution
for the TEG stabilization problem is yet a concern in the context of TEG control theory. As

well, robustness analysis issues remain to be explored in future works, as indicated by [10].
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