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Glossary 
Cellular automaton: A cellular automaton consists of cells arranged on a grid. 
Each cell of the grid can be in a state defined by the automaton. This state 
evolves in time. Indeed, the state of a cell at time t will depend on its state at 
time t-1, but also on the state of its neighboring cells according to certain 
transmission rules. At each iteration of time these same rules are applied, 
creating a new generation of cells. (1) 

 

Infectious disease: An infectious disease is a disease caused by a pathogenic 
agent (virus, bacteria...) and spread directly or indirectly from a person to 
another. (2) 

 

Virus: A virus is a micro-organism that infects a host human organism. (3) 

 

Status variable: A status variable is one of a set of variables that are used to 
describe the mathematical "state" of a dynamic system. (4) 

 

Differential equations: A differential equation of n-order is an equation linking 
a function to its first n deriveds. (5) 

 

Epidemic: An epidemic is the rapid development and spread of a contagious 
disease among a large number of people in a particular area. (6) 

 

Pandemic: A pandemic describes the worldwide or continental spread of a 
disease. (6) 

  



Table of contents 
1 Introduction ..................................................................................... 1 

1.1 Justification of the topic choice ...................................................... 1 
1.2 Presentation of the issue .............................................................. 1 

2 Latest developments ......................................................................... 2 
3 Action put in place .......................................................................... 10 

3.1 Action presentation .................................................................... 10 
3.2 Implemenatation ....................................................................... 11 
3.3 Results and discussion ................................................................ 13 

4 Articles reading ............................................................................... 14 
4.1 Summary of article 1 ................................................................. 14 
4.2 Summary of article 2 ................................................................. 16 
4.3 Summary of article 3 ................................................................. 18 

5 Conclusion ..................................................................................... 20 
6 Bibliography ................................................................................... 21 
7 Appendix ....................................................................................... 23 
 
 
 

Figures list 
Figure 1 : SIR model represented with blocs .............................................. 2 
Figure 2 : SIR model represented with blocs, with taking into account the 
mortality of the disease ........................................................................... 4 
Figure 3 : SIR model represented with blocs, with taking into account a 
treatment of the disease .......................................................................... 5 
Figure 4 : SIR model represented with blocs, with taking into account the three 
changes ................................................................................................ 7 
Figure 5 : SEIR model represented with blocs ............................................. 8 
Figure 6 : SEIQR model represented with blocs ........................................... 9 

 
 
 

Images list 
Image 1 : Application homepage ............................................................ 11 
Image 2 : “Help" page of the application .................................................. 11 
Image 3 : « SIR model» page of the application ....................................... 12 
Image 4 : « Cellular automata » page of the application ............................ 12 
 
 
 

Graphs list 
Graph 1 : Example of a result obtain with a simulation .............................. 13 
Graph 2 : Example of a result obtain with a simulation .............................. 13 
 



 

Réda Jalali – SIR model and cellular automata for disease propagation 1 

 

1 Introduction 

1.1 Justification of the topic choice 
 The world is currently going through a health crisis that will stay in history. 
The outbreak of the new coronavirus SARS-CoV-2, which appeared between late 
2019 and early 2020 in Wuhan, China, has become a pandemic as it has spread 
throughout the world. The disease caused by this virus, called COVID-19 
(COrona VIrus Disease 2019), is a highly infectious disease that can be fatal for 
some people. In addition, some people are asymptomatic to the disease. These 
people can become infected, and thus infect other people, without feeling the 
effects of the disease. The problem with the SARS-CoV-2 virus is that despite all 
the global clinical efforts, there is no treatment available as of the date of writing 
this report. (7) 
 
In response to this pandemic, governments have taken steps to limit the spread 
of the virus. Thus, social distancing measures and even containment measures 
have been put in place. To take such measures, governments are conducting 
mathematical simulations to predict the evolution of the epidemic. One of the 
simple mathematical models used is the SIR model. Therefore, this report will 
focus on the analysis of the simple SIR model. 
This report will also discuss about cellular automata. These provide a more visual 
representation for the spread of disease. 
 

1.2 Presentation of the issue 
 The purpose of a mathematical model is to describe real-life situations with 
variables linked by equations. In this way, predictions can be made to analyse 
the behaviour of real phenomena. 
 
“Mathematics can be defined as a science in which you never know what you're 

talking about, or if what you're saying is true.” 
Bertrand Russell (8) (9) 

 
The SIR model is a very simple simulation model, so it is legitimate to ask if it 
is true to reality. In other words, can the behaviour of an infectious disease in a 
population be correctly simulated using the SIR model? This analysis will focus 
on the SIR model and some modifications that can be made to it. It will also 
present other compartmentalized simulation models. 
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2 Latest developments 

 The SIR model is a basic mathematical model for simulating the spread of 
an infectious disease. This model is called compartmentalized because the 
population to which the simulation is applied is divided into three 
compartments : S for healthy people (who are not infected but susceptible to 
infection), I for the infected population, R for people who are no longer infected, 
recovered (cured or dead). This explains the name of the model, SIR model. 
Each compartment is characterized by a status variable, representing the share 
of the population present in the block at time t. The status variable is S(t) for 
healthy persons, I(t) for infected persons and R(t) for recovered persons. In the 
SIR model two other variables are involved: 𝛽 a ratio that takes into account 
contacts between infected and susceptible persons. He also takes into account 
the probability that the infected person transmits the virus to the healthy person; 
𝜆 (in days) is the average number of days needed for an individual infected to 
get better. It is these variables that characterize the epidemic. 
 
 
 
 
 

Figure 1 : SIR model represented with blocs 

 

The variables can now be linked together by translating the assumptions of the 
SIR model into equations. These assumptions are essential for the model to work 
properly but also to keep the model simple. 
 
• The SIR model considers the population has homogeneous. Each individual 

has the same chances of coming into contact with an infected person and the 
same chances of recovery. 

 
• As shown in the figure below, a recovered individual can no longer be infected 

with the disease, he will be considered immune. 
 

• During the simulation the population P remains constant.  The model is 
considered closed. 

𝑃 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝐶𝑡𝑒 
 

Susceptible 
S(t) 

Infected 
I(t) 

Recovered 
R(t) 𝛽 𝜆 
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• The proportion of newly infected persons (leaving the Susceptible class for 
the Infected class) is proportional to the number of infected and susceptible 
persons multiplied by 𝛽. 

𝑆!(𝑡) = −𝛽𝐼(𝑡)𝑆(𝑡) 
 

• The proportion of people who recover is equal to the ratio between the 
number of infected people and 𝜆. 

𝑅!(𝑡) = 𝐼(𝑡)/𝜆 
 
• From the two previous hypotheses we deduce the differential equation of the 

number of infected persons 

𝐼!(𝑡) = 	𝛽𝐼(𝑡)𝑆(𝑡) −
𝐼(𝑡)
𝜆  

 
In summary, the SIR model is defined by three differential equations: 

⎩
⎨

⎧
𝑆!(𝑡) = −𝛽𝐼(𝑡)𝑆(𝑡)

𝐼!(𝑡) = 𝛽𝐼(𝑡)𝑆(𝑡) −
𝐼(𝑡)
𝜆

𝑅!(𝑡) = 𝐼(𝑡)/𝜆

 

 
To use this system of differential equations, the initial values must first be 
determined. Thus, 𝐼(0) must be found, which represents the number of people 
infected at the beginning of the epidemic. 𝑆(0) (population susceptible to be 
infected at the beginning of the epidemic) must also be identified. 𝑅(0) = 0 is 
usually taken because no one is immune at the beginning of the epidemic. 
 
The SIR model remains a simple model but useful for understanding the 
behaviour of the epidemic and thus understanding the decisions made by health 
authorities in crisis management. To do this, we need to look at the reproduction 
coefficient: 𝑅" = 𝛽𝜆. Indeed, if 𝑅" > 1, it means that an infected individual will 
contaminate more than one person thereafter. The disease will thus cause an 
epidemic. If 𝑅" < 1, an infected individual will infect less than one person. To 
reduce 𝑅", the authorities have two possibilities: 

- Decrease 𝛽, by implementing social distancing measures, 
containment or apply barrier gestures. 

- Decrease λ, by finding a treatment for the disease for example. 
 
As stated above, the SIR model is a simple mathematical model that contains 
various defects. Therefore, some modifications can be made to improve the 
model. (10) (11) (12) 
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 One of the problems with the SIR model is that the disease does not impact 
the population size. Therefore, mortality caused by the disease can be taken into 
account. To do this, we need to add a block to the model, a D block for those 
who die from the disease. This block will therefore involve adding a state variable 
𝐷(𝑡), the number of people who died from the disease. It is also necessary to 
characterize the mortality of the disease with the parameter 	𝜇, which represents 
the mortality rate. Thus, an infected person will be able to recover or die from 
the disease. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 : SIR model represented with blocs, with taking into account the 
mortality of the disease 

 
This implies a change in the differential system equations but also in the 
population equation. So, we need to add the number of people who die at each 
instant t, 𝜇𝐼(𝑡). (11) 
 

⎩
⎪
⎨

⎪
⎧ 𝑆!(𝑡) = −𝛽𝐼(𝑡)𝑆(𝑡)
𝐼!(𝑡) = 𝛽𝐼(𝑡)𝑆(𝑡) − #(%)

'
− 𝜇𝐼(𝑡)

𝑅!(𝑡) = 𝐼(𝑡)/𝜆
𝐷!(𝑡) = 𝜇𝐼(𝑡)

            𝑃(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) 

 
 
 
 
 
 
 
 

Susceptible 
S(t) 

Infected 
I(t) 

Recovered 
R(t) 𝛽 𝜆 

Death 
D(t) 

𝜇 
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 Another way to improve the SIR model is to consider a possible treatment 
for the disease if one exists. As done previously, a block T, with its associated 
status variable 𝑇(𝑡), is added to consider those who are undergoing treatment. 
This treatment must now be described using three parameters. The first one will 
characterize the proportion of infected individuals chosen to follow the treatment 
at each time t, represented by 𝛼. The second will be the rate at which a treated 
individual recover from the disease, a rate noted 𝜂. The individual will be 
considered immune. Finally, the third parameter will be 𝛿. It will represent the 
factor that reduces the rate of infection for a treated individual. In fact, despite 
the fact that the person is undergoing treatment, he may still be infected. 
Furthermore, it is hypothesized that a treated person is also considered 
susceptible.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 : SIR model represented with blocs, with taking into account a 
treatment of the disease 

 

As realized previously, we can easily modify the differential equations by taking 
the different parameters and their role. (13) (14) 
 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑆!(𝑡) = −𝛽𝐼(𝑡)𝑆(𝑡) − 𝛽𝛿𝑇(𝑡)

𝐼!(𝑡) = 𝛽𝐼(𝑡)𝑆(𝑡) + 𝛽𝛿𝑇(𝑡) − 𝛼𝐼(𝑡) −
𝐼(𝑡)
𝜆

𝑇!(𝑡) = 𝛼𝐼(𝑡) − 𝜂𝑇(𝑡)

𝑅!(𝑡) =
𝐼(𝑡)
𝜆

+ 𝜂𝑇(𝑡)

 

 
 
 

𝛽 𝜆 

 

Treated 
T(t) 

 

 𝛽𝛿 𝛼 
𝛿 𝜂 

Susceptible 
S(t) 

Infected 
I(t) 

Recovered 
R(t) 



 

Réda Jalali – SIR model and cellular automata for disease propagation 6 

 

 Another fault of the SIR model is that it does not take into account the 
incubation period of the disease. For an infectious disease, the incubation period 
is the time it takes for the disease to develop (15). A healthy individual who 
catches the virus will therefore only be contagious to other people after this 
incubation period. In the SIR model, this translates into the fact that a healthy 
person from block S who comes into contact with an infected person and catches 
the disease will only be considered infected after the incubation period, which 
will be represented by 𝜏 in the model equations. This variable representing the 
incubation period is usually in days. This obviously implies changes in the 
differential system. As a result, the proportion of infected individuals will no 
longer depend solely on time t but on the time at time 𝑡 − 𝜏. This gives the 
following system: (16) 
 

⎩
⎨

⎧
𝑆!(𝑡) = −𝛽𝐼(𝑡 − 𝜏)𝑆(𝑡 − 𝜏)

𝐼!(𝑡) = 𝛽𝐼(𝑡 − 𝜏)𝑆(𝑡 − 𝜏) −
𝐼(𝑡)
𝜆

𝑅!(𝑡) = 𝐼(𝑡)/𝜆
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 Now that we know how to modify the SIR model, we can improve it by 
combining the three modifications seen above: 

- Consider the mortality of the disease with the parameter 𝜇. 
- Take into account the existence of a potential treatment, 

characterized by the parameters 𝜂, 𝛼 and 𝛿. 
- Add the incubation period 𝜏. 

It will be assumed that the mortality for treated individuals is decreased with 
the parameter 𝛿. By combining the block representations, the figure below is 
obtained:  
  
 
 
 
 
 
 
 
 
 

 

Figure 4 : SIR model represented with blocs, with taking into account the three 
changes 

 
It is now possible to combine the three systems of differential equations, 
previously seen for the three changes of the SIR model, into a single system: 
(11) (13) (14) (16) 
 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑆!(𝑡) = −𝛽𝐼(𝑡 − 𝜏)𝑆(𝑡 − 𝜏) − 𝛽𝛿𝑇(𝑡)

𝐼!(𝑡) = 𝛽𝐼(𝑡 − 𝜏)𝑆(𝑡 − 𝜏) + 𝛽𝛿𝑇(𝑡) − 𝛼𝐼(𝑡) −
𝐼(𝑡)
𝜆 − 𝜇𝐼(𝑡)

𝑇!(𝑡) = 𝛼𝐼(𝑡) − 𝜂𝑇(𝑡) − 𝜇𝛿𝑇(𝑡)

𝑅!(𝑡) =
𝐼(𝑡)
𝜆

+ 𝜂𝑇(𝑡)

𝐷!(𝑡) = 𝜇𝐼(𝑡) + 𝜇𝛿𝑇(𝑡)

	 

 
 

𝑃(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑇(𝑡) + 𝑅(𝑡) 
 
 

𝛽 𝜇 

 𝜆  

 
𝛼 

 𝜂 

𝜇𝛿 

 𝛽𝛿 

Susceptible 
S(t) 

Infected 
I(t) 

Treated 
T(t) 

Recovered 
R(t) 

Death 
D(t) 
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 Other compartmentalized models are also available. The SEIR model is a 
more complex model than the SIR model but it is still accessible and easy to 
use. As its name suggests, in the SIR model the population is divided into four 
parts. The model retains the S, I and R categories of the SIR model. In addition, 
there is block E for people who have been in contact with the disease and who 
have been caught it, but who are not yet contagious to the rest of the healthy 
population. Block often referred to as "exposed". Another way of taking into 
account the incubation of the disease but with the difference that the person is 
not considered to be contagious. Like the SIR model, the SEIR model retains the 
parameters 𝛽 and 𝜆 and their function.  In addition, a new parameter comes into 
play, 𝛼 will represent the incubation rate. This mathematical model, different 
from the SIR model, corrects assumption of the latter. Indeed, this model takes 
into account the birth rate of the population, noted 𝜐. This new population will 
be considered healthy, in the susceptible bloc. The model also takes into account 
mortality not related to disease. So, any person, regardless of his condition 
(susceptible, exposed, infected or recovered) can be a victim of this mortality. 
This will depend on the mortality rate of the population noted 𝜇. The population 
therefore varies over time. 
 
 
 
 
 
 
 

Figure 5 : SEIR model represented with blocs 

 

The system of differential equations can now be taken from the SIR model and 
modified to include mortality, births and the fourth state variable 𝐸(𝑡). 𝑃(𝑡) will 
represent the total population at time t:  (17) 
 

𝑃(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) 
 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑆!(𝑡) = −𝛽𝐼(𝑡)𝑆(𝑡) + 𝜐𝑃(𝑡) − 𝜇𝑆(𝑡)
𝐸!(𝑡) = 𝛽𝐼(𝑡)𝑆(𝑡) − 𝛼𝐸(𝑡) − 𝜇𝐸(𝑡)

𝐼!(𝑡) = 𝛼𝐸(𝑡) −
𝐼(𝑡)
𝜆

− 𝜇𝐼(𝑡)

𝑅!(𝑡) =
𝐼(𝑡)
𝜆

− 𝜇𝑅(𝑡)

 

Exposed 
E(t) 𝛽 𝛼 𝜆 

𝜇 𝜇 𝜇 𝜇 𝜐 

Susceptible 
S(t) 

Infected 
I(t) 

Recovered 
R(t) 
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 We can also look at another compartmentalized model, the SEIQR model. 
The state variables for the different blocks are as follows: 𝑆(𝑡) for susceptible 
people; 𝐸(𝑡), the exposed people. These are the individuals who have caught the 
disease but are asymptotic, have no symptoms, but are still contagious for 
healthy individuals; 𝐼(𝑡) is the variable for infected individuals with symptoms; 
𝑄(𝑡) is the variable for individuals placed in quarantine once symptoms have 
appeared; 𝑅(𝑡) is the variable for individuals who have recovered. Concerning 
the parameters, the model retains the parameters of the SEIR model: 𝛽, 𝜆, 𝛼, 𝜐 
and 𝜇. They play the same role in the SEIQR model. The only difference is that 
only healthy people are considered to reproduce. Other variables are involved in 
the model: 𝛿 for the proportion of individuals placed in quarantine once 
symptoms appear. 𝜅 which represents the proportion of asymptotic individuals 
who recover. 𝜀 for individuals in quarantine who recover. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 : SEIQR model represented with blocs 

For this model the system of differential equations is the following: (18) 
 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑆!(𝑡) = 𝜐𝑃(𝑡) − 𝛽𝑆(𝑡)[𝐼(𝑡) + 𝐸(𝑡)] − 𝜇𝑆(𝑡)
𝐸!(𝑡) = 𝛽𝑆(𝑡)[𝐼(𝑡) + 𝐸(𝑡)] − 𝐸(𝑡)[𝜇 + 𝛼 + 𝜅]

𝐼!(𝑡) = 𝛼𝐸(𝑡) − 𝐼(𝑡)[𝜇 + 𝛿 +
1
𝜆
]

𝑄!(𝑡) = 𝛿𝐼(𝑡) − 𝑄(𝑡)[𝜇 + 𝜀]

𝑅!(𝑡) = 𝜅𝐸(𝑡) +
𝐼(𝑡)
𝜆 + 𝜀𝑄(𝑡) − 𝜇𝑅(𝑡)

 

 
 

Quarantine 
Q(t)  𝛼 

𝜇 𝜐 𝜇 𝜇 𝜇 

𝜇 

𝛽 𝛿 

 

 𝜆 𝜅 𝜀 

Susceptible 
S(t) 

Exposed 
E(t) 

Infected 
I(t) 

Recovered 
R(t) 
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3 Action put in place 

3.1 Action presentation 
 The subject of this report being "SIR model and cellular automata for 
disease propagation", I decided to develop an application simulating the 
propagation of an infectious disease, at the scale of France, using the SIR model.  
 
The SIR model used is the simple model, with a possible modification, in which 
the disease is characterized by two or three parameters: 

- The probability that an infected individual will transmit the disease when 
in contact with a healthy person. 

- The average number of days for an infected person to recover from the 
disease. 

- It is possible to take in consideration the mortality of the disease with the 
percentage of chance that an infected person die from the disease. 

 
To give a more graphical aspect to the SIR model, usually represented using 
graphics, I decided to integrate cellular automata into the simulation. The 
cellular automaton used to represent the SIR model is a one-dimensional 
automaton, where the grid represents the map of metropolitan France (without 
Corsica). Each cell has eight neighbouring cells (adjacent cells and diagonal cells) 
and can be in three possible states, representing the SIR model states, healthy 
(susceptible), infected and recovered (and dead if you consider the mortality). 
The transmission rules of the automaton will be those of the SIR model. If a 
healthy cell has one or more infected cells in its neighbourhood, then, depending 
on the probability defined in the SIR model, it will in turn be infected for the 
number of days also defined in the model. If disease mortality is taken into 
account, then an infected cell may die. 
 
I also decided to add a part for cellular automata to the application. In this part, 
we can discover the behaviour of cellular automata presented by Nazim Fatès in 
his article "A la Découverte des Automates Cellulaires" (19), article summarized 
in the rest of the report. In this way, the application presents the Game of Life, 
the Parity Counter and the Majority Rule and I invite you to discover how they 
work in the previously cited article. 
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3.2 Implemenatation 
To design this application, I decided to develop it in Python language (20), while 
using the Tkinter interface (21). A graphical interface already seen during 
Modeling and Simulation courses. The Tkinter interfaces remain simple to use 
and manipulate, but they are still complete. The application consists of three 
interfaces. A welcome interface that provides information on how the application 
works. Using the "Help" button. A second interface for the simulation of the SIR 
model on the scale of France. An interface for cellular automata. And finally, an 
interface to discover how to use the two previous ones. This part will only present 
the graphical aspect of the application. The Python code will be available in 
appendix.  
 
The home page is very simple. It simply useful to displays the other interfaces. 

 
 
 

Image 1 : Application homepage 

 
 
 
 
 
 
 
The "Help" section simply explains how to use the "SIR Model" and "Cellular 
automata" sections. 

 
 
 

Image 2 : “Help" page of the 
application 
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For the SIR model, I designed a pixelated image of the map of metropolitan 
France (without Corsica). At the beginning of each simulation, green pixels are 
randomly added to represent the healthy cells of the SIR model. These cells will 
evolve red (infected), grey (recovered) or black (dead) during the simulation. 
Coloured cells can move around the map unless they are in a dead state. The 
changes in cell states will depend on the two or three parameters of the SIR 
model that can be set using the various "+" and "-" buttons. At the end of each 
simulation, a graph appears with the curves to summarize the evolution of the 
simulation and the dotted curves obtained with the SIR model mathematical 
equations. 

 
 
 
 

Image 3 : « SIR model» page of 
the application 

 
 
 
 
 

 
To finish the part "Cellular automata" allows to simulate the operation of three 
cellular automata. I invite you to understand how they work by reading the 
summary of Nazim Fatès' article dedicated to cellular automata. In this interface 
you can choose to place the living cells randomly or manually by clicking in the 
grid represented by the white area. 

 
 

 
 
 

Image 4 : « Cellular automata » 
page of the application 
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3.3 Results and discussion 
In a first time, simulations of the SIR model make it possible to observe the 
different behaviours of the SIR model.  Notably the peak of the epidemic after 
several iterations and the disappearance of the disease. After several simulations 
with different settings for the different parameters of the SIR model, the results 
of these simulations can be compared with the mathematical results of the SIR 
model. It can be noted that for some simulations the SIR model can be 
considered as faithful to the behaviour of the simulation. But for some 
simulations, the SIR model deviates from the simulation. This can be explained 
by some unexpected events during the simulation. These events may be that an 
infected cell does not come into contact with a healthy cell, or that the infected 
cells die quickly due to the random aspect of mortality. 

 
In a second time, the part dedicated to cellular automata allows us to observe 
the phenomena described by Nazim Fatès in his article. Indeed, after several 
simulations of the Game of Life, we observe the phenomena of self-organization, 
emergence of sliders and unpredictable evolution of the system. This is also the 
case with the other automata. The phenomena of self-organization appear in the 
Majority Rule. We can observe the phenomenon of self-reproduction of the Parity 
Counter by initially and manually placing a figure on the grid and then launching 
the simulation. 
 
 
 

  Graph 2 : Example of a result obtain 
with a simulation 

Graph 1 : Example of a result obtain 
with a simulation 
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4 Articles reading 

4.1 Summary of article 1 
• Title : À la Découverte des Automates Cellulaires (19) 

• Authors : Nazim Fatès 

• Journal : Interstices 

• Publisher : Inria 

• Year : 2007 

 Nazim Fatès is a researcher at INRIA, the French National Institute for 
Research in Digital Science and Technology. His article, published in April 2007, 
entitled "A la Découverte des Automates Cellulaires", presents different 
examples of cellular automata. In his article, Nazim Fatès presents one of the 
objectives of cellular automata: to make the analogy between the phenomena 
observed in living beings and the phenomena of machines. 
 
To begin his study, Nazim Fatès explains the origin of cellular automata. In the 
middle of the 20th century, scientists were looking for correlations between the 
world of machines and that of living beings. In this way, they tried to describe 
artificial machines as living beings. Turing proposed a mathematical model of 
morphogenesis (a set of laws that determine the shape and structure of tissues, 
organs and organisms, Wikipedia) and Von Neumann a self-reproducing 
machine. A machine capable of building copies of itself. Later, Nazim Fatès tells 
us that with the help of the mathematician Marcin Ulman, Von Neumann 
proposes a mathematical model for his machine, a model that he will end up 
calling "cellular automaton". His automaton is two-dimensional, and each cell 
has 29 possible states and 5 neighbouring cells. Nazim Fates also explains that 
Von Neumann will demonstrate that cellular automata can simulate the operation 
of any machine or simulate any algorithm (Church's thesis). Unfortunately, we 
learn that Von Neumann's automaton is too complex to simulate but other 
models have been proposed. 
First, Nazim Fatès presents the Game of Life, a model of cellular automaton. In 
this automaton, each cell can be in a state of life or death. This state depends 
on the 8 adjacent neighbouring cells respecting the two following transmission 
rules: the rule of life says that a cell remains alive if, and only if, 2 or 3 
neighbouring cells are alive, otherwise the cell dies, and finally the rule of birth 
says that a cell becomes alive if 3 neighbouring cells are alive. Nazim Fatès 
explains that this automaton, simple to program and simulate, was a real 
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success. After several simulations, three phenomena appeared, phenomena 
explained by Nazim Fatès. First, the phenomenon of self-organization. Starting 
from a random initial state, after several simulations a certain organization can 
be observed. Islets of cells of cells stabilize in the state of life, areas without any 
living cells appear and other cells keep the random aspect of the automaton. 
Secondly, we can observe the emergence of sliders, figures composed of several 
living cells moving diagonally on the grid. More precisely in a sequence of 4 
figures, the first one being identical to the last one but shifted by one cell on the 
grid. Finally, we notice an unpredictable evolution of the system. Nazim Fatès 
explains that it is impossible, for a given initial configuration, to predict its 
evolution. It is impossible to find a logic to predict the evolution of the system. 
Nazim Fatès adds that only a Laplace demon would be able to do so. 
In a second step, Nazim Fatès proposes to look at the majority rule. A cellular 
automaton that remains simple with a rule of transmission: the cell takes the 
majority state present in its surroundings. Nazim Fatès tells us that with this 
model we can observe a self-organization of the system. Starting from a random 
initial situation, the grid stabilizes. Islets of living cells appear and others of dead 
cells. For Nazim Fatès, concerning the emergence for this system, it is difficult 
to answer. But in terms of prediction, Nazim Fatès explains that nowadays, we 
are unable to predict from how many iterations the automaton will stabilize. He 
also says that certain properties can be proven using static physics. 
To finish his article, Nazim Fatès exposes the Parity Counter. Like the previous 
automaton, it is governed by a single transmission rule: if the number of 
neighbouring living cells is even, then the cell dies, otherwise it lives. With this 
transmission rule, Nazim Fatès explains that it is difficult to observe self-
organization. Indeed, from a random initial situation, the system remains 
random. But with this automaton Nazim Fatès presents a new phenomenon. All 
initial figures are self-reproducing with the only limit the size of the grid. Nazim 
Fatès specifies that this is demonstrated with mathematical relations. The parity 
counter keeps the initial state and duplicates it. This explains the absence of 
self-organization for a random initial state. Iterations are superimpositions of 
random states. 
 
In conclusion of his article, Nazim Fatès tells us that by imitating the genesis of 
living organisms we could create machines, electronic or computer systems able 
to organize themselves autonomously, in the image of the Game of Life and 
majority rule, or capable of self-replicating like the Parity Counter or Von 
Neumann's machine. 
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4.2 Summary of article 2 
• Title : SIR Model (10) 

• Authors : Robert Geofroy 

• Year : 2020 

 The SIR Model article was published in May 2020 by Robert Geofroy, 
Professor of Science and Mathematics at the University of the West Indies. His 
article aims to present the SIR model described by the mathematician Tom Rocks 
from the University of Oxford. In addition, Robert Geofroy applies this SIR model 
to the Republic of Trinidad and Tobago for the COVID-19 epidemic. The purpose 
of this study is to understand the decisions made by the government and health 
authorities in terms of managing the health crisis. According to Robert Geofroy's 
study, studying the SIR model helps to understand and determine the number 
of people infected over time and so to understand the management of the 
epidemic. 
 
The SIR model was introduced in 1927 by William Kermach, biochemist, and 
Anderson Mckendrick, physicist and epidemiologist. Robert Geofroy described 
this model as simple to handle and containing all the characteristics of a 
pandemic. Before presenting the model, Robert Geofroy gives us the 
assumptions to be taken into account in the SIR model to facilitate his approach. 
The population remains constant throughout the simulation, the rate of infected 
persons is proportional to the number of contacts between infected and 
susceptible (healthy) persons, the rate of decrease of infected persons is 
proportional to the number of infected persons, the incubation period is not 
taken into account and each individual has the same chances of recovering or 
being infected by the disease. 
To begin, Robert Geofroy presents the variables of the model. 𝑆(𝑡) for healthy, 
potentially contaminated people at time t. 𝐼(𝑡) for infected persons and 𝑅(𝑡) for 
recovered persons (who are no longer infected, cured or dead). 𝛽 for the contact 
coefficient between persons S and I, 𝛾 for the recovery coefficient of the disease 
and finally 𝑅" which represents the reproduction ratio. In a second step, Robert 
Geofroy presents the link between the variables based on the model's 
assumptions.  The model is composed of three differential equations: 

H
S!(t) = −βI(t)S(t)

I!(t) = βI(t)S(t) − γI(t)
R!(t) = γI(t)

 

Finally, differential equations mean initial values. So, Robert Geofroy chooses 
𝑅(0) and 𝐼(0) for his example the republic of Trinidad and Tobago. The total 
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population will be equal to 1 and 𝐼(0) = 1/116 because on March 13, 2020 116 
people were infected in the country. This means that 𝑆(0) = 1 − 𝐼(0) and 𝑅(0) = 0. 
After having seen the basics of the model Robert Geofroy is interested in its 
behaviour. This SIR model is considered closed because the population remains 
constant (𝑑(𝑆 + 𝐼 + 𝑅))/𝑑𝑡 = 0). Robert Geofroy adds that at the beginning of the 
epidemic 𝐼′(𝑡) > 0 (the number of infected people increases) and we can consider 
that the epidemic begins its regression when 𝐼′(𝑡) = 0 (inflection point of 𝐼(𝑡)), 
this also represents the peak of the epidemic. 
In the continuation of his study, Robert Geofroy explains the purpose of the SIR 
model. 
Firstly, it allows us to determine if the disease will spread. For that Robert 
Geofroy tells us to observe  𝑅" = 𝛽/𝛾,, the reproduction coefficient. If 𝑅" > 1 the 
disease will spread while if 𝑅" < 1  the disease will dissipate. To give an example, 
Robert Geoffroy say that for COVID-19 𝑅" ≈ 2. Which explains the pandemic.  
Secondly Robert Geoffroy explains how to determine the maximum number of 
people infected, the peak of the epidemic. By manipulating the equations he 
gets :	𝐼()* = 𝐼" + 𝑆" −

+
,
log 𝑆" −

+
,
+ +

,
log +

,
. In his example, for 𝑅" ≈ 2, 𝐼()*would 

represent 50% of the population. This is an important number for health 
authorities because it should not be higher than the capacity of hospitals.  
Finally, Robert Geofroy is interested in the total number of people infected by 
the disease represented by Rend which is obtained with the equation 𝑅-./ = 𝐼" +
𝑆" − 𝑆-./ where 𝑆-./ is obtained with 𝑆-./ −

0
1!
ln 𝑆-./ = 𝐼" + 𝑆" −

0
1!

. In his example 

Robert Geofroy explains that 𝑅" is too big so 𝑅-./ represents a large part of the 
population. To decrease 𝑅", you have to decrease the contact coefficient 𝛽 
(containment, social distancing...) or increase 𝛾, (treatment, immunity...). 
Finally, Robert Geofroy applies the model to the Republic of Trinidad and Tobago. 
Using data provided by the government, he performs a numerical analysis to 
determine the parameters. He obtains	𝛽 = 1.5 and 𝛾 = 2.16, which gives 𝑅" = 0.69. 
So, as Robert Geofroy explained, there will not be an epidemic, which has been 
the case in the country. Furthermore, in his simulation Robert Geofroy observes 
a peak after the tenth day of simulation, a peak that he also observes in the 
government data. 
 
In conclusion, although the SIR model is a simple model with several faults, it 
allows us to understand the basics of an epidemic and to answer some questions. 
However, we also learn that there are other more or less complex models such 
as the SI, SIS, SEIR, or SEIQR models. Unfortunately, no model is perfect, but 
they are still useful. 
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4.3 Summary of article 3 
• Title : Modified SIR Model Yielding a Logistic Solution (22) 

• Authors : Paul A. Reiser 

• Year : 2020 

 Modified SIR Model Yielding a Logistic Solution, written by Paul A. Reiser, 
was released in June 2020. The author has a background in mathematics and 
medicine, particularly in infectious diseases. In his article, Paul A. Reiser 
presents a modified SIR model because the basic model is flawed due to an 
irrational assumption. Indeed, Paul A. Reiser explains that in the SIR model, the 
rate of individuals leaving the infected class for the recovered class is 
proportional to the number of infected individuals. This is why Paul A. Reiser 
proposes a more logical hypothesis, which is that an individual leaves the 
infected class after a certain period of time. 
 
To begin his study Paul A. Reiser presents the time variables he will use. Variables 
of type 𝑡*will represent a time and variables of type 𝑇* will represent a time 
interval with their associated frequency	𝑓*. 
In addition, Paul A. Reiser also gives us a reminder of the SIR model. He explains 
that in this model the population is separated into three categories: 𝑆(𝑡) the 
number of healthy people, 𝐼(𝑡) the number of infected people, 𝑅(𝑡)		the number 
of recovered people, who are no longer infected. The SIR model is composed of 
three differential equations: 

H
S!(t) = −f2S(t)I(t)

I!(t) = f2S(t)I(t) − f3I(t)
R!(t) = f3I(t)

 

With f2 representing the frequency of contact between healthy and infected 
individuals and f3 the frequency representing the probability of leaving the 
infected class for the recovered class. 
Paul A. Reiser explained that the problem with the SIR model lies in equation 
I!(t) = f2S(t)I(t) − f3I(t). Note that a change in the infection rate f2S(t)I(t)	will 
increase the number of infected persons 𝐼(𝑡), which at the same time implies a 
change in the rate of recovered persons f3I(t).	Paul A. Reiser proposes to take 
into account the time spent in the infected class. He explains that with this 
hypothesis, an individual remains in the infected class for a time 𝑇4. So, a change 
at time t in the number of infected persons will lead to a change at time 𝑡 + 𝑇4 in 
the number of recovered persons. To model this mathematically, Paul A. Reiser 
uses 𝑛(𝑡) = 𝐼(𝑡) + 𝑅(𝑡), representing the cumulative number of people who have 
been infected. He easily derives the following equations from this: 
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!
S(t) = 1 − n(t)

I(t) = n(t) − n(t − T!)
R(t) = n(t − T!)

 

By maintaining the infection rate as a function of frequency of contact, i.e. n!(t) =
f2S(t)I(t), Paul A. Reiser gets: n!(t) = f2[1 − n(t)][n(t − T3]. The epidemic is then 
characterized with the parameters fc (frequency of contact between individuals) 
and Tr (incubation period of the virus). Without detailing his reasoning, Paul A. 
Reiser integrates 𝑛’(𝑡) and obtains: n(t) = n" +

#!$#"
%&'#$%('#'()

 
He explains that n5 = n(−∞) is an initial condition (often equal to 0), 𝑡6 the time 
when n(𝑡) knows its inflection point (peak of the epidemic), n7 = n(∞) and fe are 
dependent parameters of f2 and 𝑇4, also called phenomenological parameters. In 
the continuation of his study Paul A. Reiser expresses the parameters fe and np. 
In the first step, Paul A. Reiser expresses f8 as a function of f2  and 𝑇4. For this, 
he observes the limit lim

(→$*
𝑛′(𝑡). After several mathematical manipulations Paul A. 

Reiser deduces the following equation f' =
+"&,(.,$+"'#*")

1+
. With R" = f2T!(1 − n") =

𝑅.(1 − n"). 𝑅" represents the reproduction ratio of the epidemic and 𝑊(𝑖, 𝑗) the 
Lambert function. In a second step, Paul A. Reiser is focused on n7. Following 
the same reasoning as before and then using his mathematical skills, Paul A. 
Reiser obtains n7 =

9"
9#
− n5. Paul A. Raiser adds that we can now express the 

characteristics of the epidemic (f2, T3) as function of the phenomenological 
parameters (f8, n7): 𝑓: =

;$
.%<.&

	 and 𝑇4 =
0
;$
ln 0<.&

0<.%
. 

Finally, Paul A. Reiser proves that his model is correct with mathematical 
manipulations. He proves that the derivative of 𝑛(𝑡) equals the differential 
equation of the model: 𝑛!(𝑡) = 𝑓:[1 − 𝑛(𝑡)][𝑛(𝑡) − 𝑛(𝑡 − 𝑇4)]. 
 
In conclusion, we could see that in his article, Paul A. Reiser proposes a more 
rational solution to the classical SIR model. Thanks to the hypothesis that an 
individual remains for a certain time in the infected class. With this hypothesis, 
Paul A. Reiser proposes a new SIR model characterized by the following 
equations: 

H
S(t) = 1 − n(t)

I(t) = n(t) − n(t − T3)
R(t) = n(t − T3)

 

Where 𝑛(𝑡) characterizes the number of cumulative infected and recovered 
persons at time t governed by the equation n(t) = n5 +

='<=(
0>8)*"(,),-)

. Although this 

model corrects an error in the SIR model, it remains a mathematical model. 
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5 Conclusion 

 During the management of a sanitary crisis, as it is currently occurring 
with COVID-19, health authorities and governments use very complex 
simulation models using a maximum of parameters characterizing the disease 
and the population. In addition, by virtue of their powers, they have numerical 
data on the population, data that are more or less accessible to the general 
public. This is why simple models, such as the SIR model, exist. It has allowed 
us to understand how health authorities and governments simulate the spread 
of infectious disease in order to make decisions to control a possible epidemic. 
Although the SIR model is a very simple model with assumptions that more or 
less respect reality, it is still useful to observe the different aspects of an 
epidemic and how to combat it (barrier measures, treatment, containment...). 
This simplicity of the SIR model makes it easy to simulate. However, it remains 
a mathematical model and although it contains the basic characteristics of an 
epidemic, it is difficult to simulate the reality with this model. There are other 
more complex simulation models, as we have seen with the compartmentalized 
SEIR and SEIQR models. The family of compartmentalized system models forms 
a very large mathematical model family. Although the purpose of a mathematical 
model is to describe reality with variables and equations, it is difficult to simulate 
the behaviour of the real world, a world where anything can happen. 
 
From a personal point of view, this work has allowed me to acquire and deepen 
skills. Indeed, it allowed me to develop my bibliographical research skills by 
analysing and synthesizing different sources, in particular by summarizing 
scientific articles. In addition, I was also able to discover how to simulate the 
spread of a disease with a simulation model that I had never seen before. My 
eye will take a different look at the management of the COVID-19 disease crisis. 
Finally, developing a Python application allowed me to deepen my knowledge of 
this programming language, particularly in terms of Tkinter graphical interfaces. 
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Appendix 2 : Presentation poster in French 
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Appendix 3 : Choice of topic 

 
NOM Prénom : JALALI Réda 
 
Département : SAGI (3A-TD2) 
 
Sujet (cocher l’option retenue) : 
 

q Option 1 :  
® Proposition du sujet : Modèle SIR (modèle de systèmes compartimentés) et automates cellulaires 

pour la propagation de maladie 
 

o  3 sources bibliographiques dont au moins 1 article scientifique pour justifier le choix du 
sujet : 

§ https://interstices.info/modeliser-la-propagation-dune-epidemie/ 
§ http://automatecellulaire.altervista.org/documents/TPE%20-

%20Automates%20Cellulaires.pdf 
§ https://fr.wikipedia.org/wiki/Modèles_compartimentaux_en_épidémiologie 

 
 
 

q Option 2 :  
® Proposition du sujet : Création de modèle 3D photo-réaliste en utilisant la photogrammétrie 

 
o  3 sources bibliographiques dont au moins 1 article scientifique pour justifier le choix du 

sujet : 
§ https://fr.wikipedia.org/wiki/Photogrammétrie 
§ https://www.sciencedirect.com/topics/earth-and-planetary-

sciences/photogrammetry 
§ https://www.youtube.com/watch?v=POQj3BlH7gc 

 
 
 

q Option 3 : 
® Proposition du sujet : L’informatique durable 

o  3 sources bibliographiques dont au moins 1 article scientifique pour justifier le choix du 
sujet : 

§ https://fr.wikipedia.org/wiki/Informatique_durable 
§ https://www.wwf.fr/sites/default/files/doc-2018-

10/20181003_etude_wegreenit_démarche_green_it_entreprises_francaises_WWF
-min.pdf 

§ https://www.lemondeinformatique.fr/publi_info/lire-les-bases-de-donnees-
automanagees-une-innovation-majeure-pour-les-entreprises-389.html 
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Appendix 4 : List of bibliographical sources consulted 

 

NOM Prénom : JALALI Réda 
 
Département : SAGI (3A-TD2) 
 
Liste des sources bibliographiques consultées (au moins 3 types de sources 
différentes) : 
 

Type de 
source* 

Titre Auteurs Anné
e 

Lien 
internet** 

Intérêt*
** 

Article 
scientifique 

 

Modéliser la 
propagation d’une 

épidémie 

 
F. Rechenmann 

 

 
2011 

https://interstices.info/
modeliser-la-

propagation-dune-
epidemie/ 

 
++ 

 
E-book 

Mathematics for 
Life Science and 

Medicine 

Y. Takeuchi 
Y. Iwasa 
K. Sato 

 
2007 

http://bu.univ-
angers.fr/rechercher/de
scription?notice=0010
39848&champ=tout&r
echerche=modele+sir

&start=&end= 

 
++ 

Article 
scientifique SIR Model R. Geofroy 

 
2020 https://www.researchg

ate.net/publication/341
726299_SIR_Model 

+++ 
(1) 

 
 

Vidéos 
x3 

Oxford 
Mathematician 
explains SIR 

Disease Model 
for COVID-19 
(Coronavirus) 

 
 

T. Crawford 

 
 

2020 
 
 
 

 
https://www.youtube.c
om/watch?v=NKMHh
m2Zbkw&list=PLMC
RxGutHqfmBoC2YyF
radH8NqpvbovMt&in

dex=2 

 
++ 

Article 
scientifique 

 

Modified SIR 
Model Yielding a 
Logistic Solution 

 
P. Reiser 

 

 
2020 

https://www.researchg
ate.net/publication/341
851268_Modified_SIR
_Model_Yielding_a_L

ogistic_Solution 

 
+++ 
(2) 

Article 
scientifique 

 

A la découverte 
des automates 

cellulaires 

 
N. Fatès 

 

 
2007 

https://interstices.info/
a-la-decouverte-des-

automates-cellulaires/ 

 
+++ 
(3) 

Mémoire Les automates 
cellulaires : vers 

une nouvelle 
épistémologie ? 

 
N. Fatès 

 

 
2001 

  
+ 

 
 
* Peut être : article scientifique, rapport, site internet, livre, film, reportage, etc. 
** Le cas échéant 
*** Il est possible de mettre une note type --/-/+/++ 
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Résumé des 3 sources les plus intéressantes parmi les articles scientifiques : 
 

Ø Source 1 : SIR Model de R. Geofroy est un article au l’auteur présente les bases 
du modèle de simulation. Ainsi on découvre les variables, les équations et l’utilité 
du modèle SIR. Dans son étude, R. Geofroy applique un modèle de simulation SIR 
à la population de Trinité-et-Tobago pour l’épidémie du corona virus. 
 

Ø Source 2 : Dans cet article l’auteur, P. Reiser, propose une solution à l’un des 
problèmes du modèle SIR. En effet dans celui-ci, le taux de personnes rétablies 
est proportionnel aux personnes infectées ce qui, dans le cas d’un changement de 
taux d’infection implique un changement du taux des personnes rétablies. En 
contrepartie, l’auteur établit l’hypothèse qu’un individu passe de la case 
« Infecté » à la case « Rétabli » après un intervalle de temps, ce qui change les 
équations du modèle.  

 
Ø Source 3 : A la découverte des automates cellulaires est, comme son titre l’indique, 

un article présentant l’origine des automates cellulaires. On y découvre le Jeu de 
la vie, un modèle mettant en œuvre l’auto-organisation, l’émergence et l’évolution 
imprévisible. De plus, on peut également découvrir d’autres modèles d’automates 
cellulaires comme le Compteur de parité et la Règle de majorité. 
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Appendix 5 : Definition of an issue 

 

NOM Prénom : JALALI Réda 
 
Département : SAGI (3A-TD2) 
 
Formulation d’une problématique en lien avec le sujet de recherche : 
 

Ä Peut-on simuler correctement l’évolution d’une maladie infectieuse à l’aide du 
modèle SIR ? 

 
 
Axes de réponses à la problématique : 
 
Ä  Modèle SIR 
 
Ä  Modification du système SIR 

 
Ä  Autres modèles de simulation 
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Abstract 
This report is based on the abstracts of three scientific papers on the SIR model 
and cellular automata for disease propagation.  
This research work presents an analysis of the SIR model to understand how it 
works. As the SIR model is a simple mathematical model with several flaws, 
the report also presents modifications that can be made to the basic SIR 
model. 
In addition to the SIR model, this report also provides a brief presentation of 
other compartmentalized simulation models. These include the SEIR and 
SEIQR models. 
This report also presents an application to simulate the spread of an infectious 
disease by combining the principle of cellular automata and the SIR model. The 
application also simulates some popular cellular automata. 
 
Keywords : SIR model, cellular automata, disease propagation, mathematical 
model, modifications, SEIR and SEIQR models, application, simulate 

 

 

Résumé 
Ce rapport s’appuie sur les résumés de trois articles scientifiques portant sur le 
modèle SIR et les automates cellulaires pour la propagation de maladie.  
Ce travail de recherche présente une analyse du modèle SIR qui permet de 
comprendre son fonctionnement. Le modèle SIR étant un modèle 
mathématique simple avec plusieurs défauts, le rapport présente également 
des modifications que l’on peut apporter au modèle SIR basique. 
En plus du modèle SIR, ce compte rendu propose également une présentation 
rapide d’autres modèles compartimentés de simulation. On retrouve ainsi les 
modèles SEIR et SEIQR. 
Ce rapport présente également une application qui permet de simuler la 
propagation d’une maladie infectieuse en combinant le principe des automates 
cellulaire et du modèle SIR. L’application permet également de simuler certains 
automates cellulaires populaires. 
 
Mots-clé : modèle SIR, automates cellulaire, modèles mathématiques, 
modifications, modèles compartimentés, modèles SEIR et SEIQR, application, 
simuler 


