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Abstract

In this document will be presented a control strategy for Max-Plus-Linear (MPL) systems, a
class of discrete-event systems widely used in synchronization and scheduling applications,
such as: production systems (flexible workshops, assembly lines), communication networks
(computer networks) and for transport systems (road, rail and air traffic). This document presents
an observer-based controller with a real system application, located at ISTIA -École d’Ingénieurs
de l’Université d’Angers.

Keywords: Discrete Event Systems, (Max,+) Linear Systems, Control Theory.





Resumo

Neste documento será apresentada uma estratégia de controle para sistemas Max-Plus lineares,
uma classe de sistemas à eventos discretos largamente utilizada em sincronização e aplicações
de escalonamento, tais como: sistemas de produção (oficinas flexíveis, linhas de montagem),
redes de comunicação (redes de computadores) e sistemas de transporte (rodoviário, ferroviário
e aéreo). Este documento apresenta um controlador baseado em observador, com um sistema
real de aplicação, localizado no ISTIA - École d’Ingénieurs de l’Université d’Angers.

Palavras-chave: Sistemas à eventos discretos, Sistemas (Max,+) lineares, Teoria de controle.





Résumé

Dans ce document sera présenté une stratégie de contrôle pour les systèmes linéaires Max-
Plus, une classe de systèmes à événements discrets largement utilisés pour des applications de
synchronisation et d’ordonnancement, tels que les systèmes de production (ateliers flexibles,
lignes d’assemblage), les réseaux de communication (réseaux informatiques) et des systèmes de
transport (routier, ferroviaire et aérien). Ce document présente un contrôleur basé en observateur
avec un système d’application réelle, située dans ISTIA - Ecole d’Ingénieurs de l’Université
d’Angers.

Mots-clés: Systèmes à evénements discrets, Systèmes (Max,+) linéaires, Théorie de contrôle.
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1 Introduction

1.1 Motivation

1.2 LARIS

The Angevin Laboratory for Research in Systems Engineering is a host team of the
University of Angers, consisting of 3 interconnected teams:

• Dynamical Systems and Optimisation (SDP);

• Information, Signal, Image and Life Sciences (ISISV);

• Operational Safety and assistance in Decision (SFD)

1.3 Objectives

The specific objectives of this work are:

• To represent the automated conveyor system, located at ISTIA, using (max,+ algebra);

• To use and test the performance of an Observer-based Controller for (Max,+) Linear
Systems.

1.4 Organization

This document is organized as follows:

• Chapter 1 - Introduction;

• Chapters 2 and 3 - Algebraic Preliminaries/System Modelling and Control Theory: Chap-
ters 3 and 4 were granted by Prof. Dr. Laurent Hardouin, the following chapters are present
in his handout [1]. These chapters present the main algebraic tools useful in the sequence.
In the last section of chapter 3 I will introduce the Modified Observer-based Controller,
my first participation during the work in LARIS.

• Chapter 4 - Automated conveyor system: A TEG model for the automated conveyor system
is proposed in Dr. Vinícius Mariano’s thesis [21] and used to construct a model with the
Two-dimentinal description, the semiring Max

in

[[�, �]].
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• Chapter 5 - Implementation;

• Chapter 6 - Simulation results;

• Chapter 7 - Conclusion.
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2 Algebraic Preliminaries

This chapter presents the main algebraic tools useful in the sequence. It is not an
exhaustive presentation but a survey of definitions, theorems necessary to prove the results
introduced in the next chapters. In a first reading, the engineer could skip this chapter and
pick inside the useful results during the reading of the chapters dedicated to the applications.
The theory of (max,+) linear systems is partially based on the lattice theory and the manner
to invert mappings defined over ordered sets, the following references were also source of
inspiration [2], [3], [4].
The chapter is organized as follows :

• Elementary definitions about lattice theory basic facts are recalled in a first part, they will
be useful to understand the proof of the results given in the sequel. There are usual notions
for computer scientists but not necessary for engineers involved in the automatic control
theory.

• The algebraic structure considered is the idempotent semiring.

2.1 Lattices and order sets

For very detailed presentation about Lattices, the reader is invited to consult the following
references [2–4]. Some recalls are also available in chapter 4 of [5].

Definition 1 (Order relation, ordered set). An order relation is a binary relation which is reflexive,
transitive and anti-symmetric : Let E be a set and a binary relation on this set denoted �, this
relation is an order relation if and only if for all x, y, and z elements of E :

• x � x (reflexivity)

• (x � y et y � x) ) x = y (anti-symmetry)

• (x � y et y � z) ) x � z (transitivity)

An ordered set is a set (E,�) endowed with an order relation.

Let x, y 2 (E,�), x and y are said comparable (according to the order relation �) if

x � y or y � x.

Conversely, two elements x, y 2 (E,�) such that x 6� y and y 6� x, are said to be not
comparable.
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If 8x, y 2 (E,�), x and y are comparable then the order is said to be a total order, and
(E,�) is said to be totally ordered. Conversely, if it exists a couple x, y 2 (E,�), such that
x 6= y and x and y are not comparable, then the order is said to be partial and (E,�) is said to
be partially ordered.

Remark 2. In ambiguous situation, the order relation of set E will be denoted �
E

.

All subset F of an ordered set (E,�) is an ordered set with an order relation restricted
to the elements of F , and denoted �

F

. This order is simply defined as

x, y 2 F ⇢ E, x � y () x �
F

y.

Remark 3. If (E,�) is partially ordered, a subset F ⇢ E can be such that all the elements of
F be not comparable.

A finite ordered set (E,�) can be represented by a graph called Hasse diagram. Each
element of E is depicted by a vertex(•). An edge lying two vertices of the diagram means that
the elements depicted by these vertices are comparable. By convention, the order is chosen to
increase from the bottom to the top of the diagram.

�
6

t��� t@
@@
t
t

a b

c

d

a � c, b � c, c � d

a � d, b � d (by transitivity of the order �)

Figure 1 – Hasse diagram of an ordered set ({a, b, c, d},�)

On figure 1, set E = {a, b, c, d} is partially ordered according to order relation � despited
by the diagram. Subset F = {a, b} ⇢ E is an ordered set by considering the restriction of � to
F , and all its elements are not comparable.

Remark 4. A totally ordered set is also called a chain according to its Hasse diagram which
looks like a chain.

Example 5 (Ordered sets).

• (R,), (Z,), (N,), (Q,) where  is the natural order, are totally ordered sets.

• Let E be a set, and P(E) be the set of all the subset of E. The latest is an ordered set by
the inclusion relation. This ordered set is denoted (P(E),⇢) and it is a partially ordered
set. Indeed, two disjoints subsets of E are not comparable according to the order ⇢.
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• Let (E,�
E

) be an ordered set. The set of matrices with entries in E, namely En⇥m is
an ordered set. Even if �

E

is total on E, the order obtained on En⇥m is only partial.
Furthermore,

A �
E

n⇥m B , a
ij

�
E

b
ij

8(i, j),

where A and B are matrices of En⇥m.

• Let (E,�
E

) and (F,�
)

F be ordered sets. The set Map(E,F ) of all mappings from E to
F can be ordered by defining the following order relation

f �
Map(E,F )

g , f(x) �
F

g(x)8x 2 E.

Definition 6 (Upper bound, lower bound). Let (E,�) be an ordered set and F ⇢ E a non empty
subset of E. An element z 2 E satisfying 8x 2 F, z ⌫ x (resp. z � x) is called upper bound
(resp. lower bound) of set F .

Remark 7 (Bounds of a set). When it exists, the least upper bound (lub) of set F ⇢ E is denoted
W

F . As well, when it exists, the greatest lower bound (glb) of F is denoted
V

F . When these
bounds are defined, all the upper bounds of F are greater than or equal to

W
F and all lower

bounds of F are lower than or equal to
V

F .

Definition 8. Let E be an ordered set.

• if x _ y exists 8x, y 2 E then E is a sup-semi-lattice.

• if
W

F exists 8F ⇢ E then F is a complete sup-semi-lattice.

Definition 9. Let E be an ordered set.

• if x ^ y exists 8x, y 2 E then E is an inf-semi-lattice.

• if
V

F exists 8F ⇢ E then F is a complete inf-semi-lattice.

Definition 10. Let E be an ordered set.

• if x _ y and x ^ y exist 8x, y 2 E then E is a lattice.

• if
W

F and
V

F exist 8F ⇢ E then F is a complete lattice.

Lemma 11. Let E be a lattice and a, b 2 E, then the following equivalences hold :

a � b , a _ b = b , a ^ b = a.

Theorem 12. Let E be a lattice, 8a, b, c 2 E, _ and ^ the following properties hold:

• associativity : a _ (b _ c) = (a _ b) _ c and a ^ (b ^ c) = (a ^ b) ^ c,
• commutativity : a _ b = b _ a and a ^ b = b ^ a,
• idempotency : a _ a = a and a ^ a = a,
• absorption : a _ (a ^ b) = a and a ^ (a _ b) = a.
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Remark 13 (Duality principle). The inverse of an order relation � is an order relation denoted
�⇤. Consequently, if (E,�) is a sup-semi-lattice, (E,�⇤

) is an inf-semi-lattice, and vice versa.
Furthermore, a relation involving �, _ and ^ is still valid by replacing � by �⇤ and by permuting
_ and ^. This is called the duality principle.

Example 14. The ordered set depicted by the Hasse diagram of figure 1 is a sup-semi-lattice.
But it is not an inf-semi-lattice since a ^ b does not exist.

Example 15. Let E = {a, b, c} and P(E) the set of subset of E. Then (P(E),[,\) has a lattice
structure if the empty set is considered as the lowest subset of E. The Hasse diagram of this
lattice is given in figure 2.

s ?
s{a} s{b} s{c}

s{a, b} s{a, c} s{b, c}

sE = {a, b, c}

�
�
�
�

@
@

@
@
�

�
�
�

@
@

@
@

�
�
�
�

@
@

@
@

�
�
�
�

�
�
�
�

@
@

@
@

Figure 2 – Hasse diagram of the lattice (P(E),[,\) with E = {a, b, c}.

Example 16. Let (N⇤,�
div

) be the set of positive integers, where the order on N⇤ is defined as

a �
div

b () a divides b, (2.1)

is a lattice. The lattice laws of (N⇤,�
div

) are defined as a_b = ppcm(a, b) and a^b = pgcd(a, b).
In figure 3 the Hasse diagram corresponding to the set E = {1, 2, 3, 4, 5, 6} according to the
order relation �

div

is given. Set (E,�
div

) ⇢ N⇤ is an inf-semi-lattice.

Example 17. By adding element +1 to Z, set (Z [ {+1},) is _-complete totally ordered
set. On the other hand, (Q [ {+1},) is a totally ordered set which is not _-complete and not
^-complete. For instance, subset {x 2 Q|x 

p
2} of Q has no least upper bound (lub) in Q.

Definition 18 (Distributive lattice). Lattice (E,_,^) is distributive if laws _ and ^ distribute
on each other, i.e.

a _ (b ^ c) = (a _ b) ^ (a _ c), (2.2)

a ^ (b _ c) = (a ^ b) _ (a ^ c). (2.3)
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s1

s2 s3 s5

s4 s6

A
A

A
A

�
�
�
�

⌘
⌘
⌘
⌘

⌘⌘
�
�
�
�

Figure 3 – Hasse diagram of semi-lattice ({1, 2, 3, 4, 5, 6},�
div

).

Definition 19 (sub-semi-lattice, semi-lattice). Let (E,_,^) a lattice. F is said sub-_-semi-
lattice of (E,_) if F ⇢ E and if F is closed for the law _. Furthermore, F is said to be a
sub-lattice of E if F ⇢ E and if F is closed for the laws _ and ^.

Remark 20. A subset F of lattice (E,�) can be a lattice (for the restricted order � to F ), even
if the law of lattice (F,�) is not the one of lattice (E,�), i.e., F is not a sub-lattice of E. Let
(F,[,\) and (E,_,^) be lattices such that F ⇢ E and such that the order of F is the restricted
order of E to F , i.e.

8x, y 2 F ⇢ E, x � y () y = y _ x () y = y [ x.

Then the following inequalities hold

8x, y 2 F, x \ y � x ^ y � x _ y � x [ y.

To illustrate this point, let us consider the Hasse diagram of a finite lattice (E,�) with 6
elements (fig. 4). Elements a and b are not comparable according to the order � but have a _ b

as least upper bound and a ^ b as greatest lower bound (in E). Set E has a minimal element 0
E

(with a ^ b � 0

E

) and a maximal element ⇡
E

(with ⇡
E

� a _ b).

If subset F of E is assumed equal to F = E \ {a _ b, a ^ b} (\ corresponds to the
ensemblist substraction), then, set F is still a lattice (the dotted edge have to be considered).
Nevertheless, it can be remarked that neither a _ b, nor a ^ b are defined in F . Conversely, set
{a, b} ⇢ F admits element 0

E

as unique lower bound and element ⇡
E

as unique upper bound
(in F ). Hence, set F has a structure of lattice, according to the restricted order of E to F , but is
not a sub-lattice of E since it is not closed for _ and ^.

2.2 Idempotent semiring

Idempotent semiring, also called dioid (see [5]), is an algebraic structure. Boolean algebra
and max-plus algebra are certainly the most popular. Below the definitions and properties of
these algebraic structures are recalled.
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sf
s
s
sf

sfa sfb
a ^ b
a _ b

0

E

= a \ b

⇡
E

= a [ b

HHHH
����

����
HHHH

JJ

JJ

JJ

⌦⌦

⌦⌦

⌦⌦
⌦⌦

⌦⌦

⌦⌦

JJ

JJ

JJ

Figure 4 – F : � and E: • with F = E\{a _ b, a ^ b}

Definition 21 (Monoid). (M,�, ") is a monoid if � is a closed law, associative, and having
a neutral element denoted " (8m 2 M,m � " = " � m = m). If law � is commutative, the
monoid is said to be commutative.

Definition 22 (Semiring, dioid). (D,�,⌦) is an idempotent semiring, also called dioid in
literature ( [?], [5]), if the following axioms hold

• (D,�, ") is an idempotent commutative monoid , 8a 2 D, a� a = a,
• (D,⌦, e) is a monoid,
• law ⌦ distributes over law �,
• " is absorbing for law ⌦, 8a 2 D, a⌦ " = "⌦ a = ".

Furthermore, if (D,⌦, e) is a commutative monoid, the idempotent semiring (D,�,⌦) is said to
be commutative.

Definition 23 (Order relation). Since an idempotent semiring D has a structure of commutative
idempotent monoid (D,�), D has a structure of sup-semi-lattice for the order defined as follows
:

a ⌫ b () a = a� b.

Definition 24 (Complete idempotent semiring). An idempotent semiring is complete if it is
closed for infinite sum and if the law ⌦ distributes over infinite sum, i.e. if 8c 2 D and 8X ⇢ D

c⌦ (

M

x2X

x) =
M

x2X

c⌦ x.

Remark 25. Since a semiring has a structure of sup-semi-lattice (D,�), if it is complete, it
admits a greatest element. This greatest element will be denoted >. Element > corresponds to the
sum of all the elements of D, i.e. : > =

L
x2D x. Furthermore, an idempotent semiring admits

always " as bottom element. A complete idempotent semiring is then a complete sup-semi-lattice
with a minimal element. According to definition 10, a complete idempotent semiring has then a
structure of complete lattice for the order �.
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Definition 26. If D is a complete idempotent semiring, then the law ^ defined as

a ^ b =
M

x�a,x�b

x,

is associative, commutative and idempotent, furthermore (D,�,^) is a complete lattice and the
following equivalences hold

a = a� b , a ⌫ b , b = a ^ b. (2.4)

Remark 27. According to definition 24, laws �, ⌦, ^ are order preserving, i.e, 8a, b, c 2 D the
following implication hold :

a � b ) a⌦ c � b⌦ c,

a � b ) a� c � b� c,

a � b ) a ^ c � b ^ c.

Remark 28. Relation (2.4) looks like operators � and ^ play a symmetric role. That is true
from the lattice point of view since operator � corresponds to _ and thanks to the duality
principle. But that is false if we consider the second operator of the semiring ⌦, since there is no
distributivity of ^ over ⌦ in a general manner. Nevertheless, the product being order preserving
(see Remark 27, the following sub distributivity holds :

c⌦ (a ^ b) � (c⌦ a) ^ (c⌦ b) 8a, b, c 2 D.

Example 29 ((max,plus) algebra). Z
max

= (Z[{�1,+1},max,+) is a complete idempotent
semiring such that a� b = max(a, b), a⌦ b = a+ b, a ^ b = min(a, b) with " = �1, e = 0,
and > = +1. The order � is total and corresponds to the natural order . By extension Zn⇥m

max

is a semiring of matrices with entries in Z
max

. Matrix " 2 Zn⇥m

max

will be such that all its entries
are equal to " 2 Z

max

, matrix " 2 Zn⇥n

max

will be such that all the entries are equal to " 2 Z
max

except the diagonal entries which are equal to e 2 Z
max

. This semiring will be of main interest
in the sequel and section 2.6 will be devoted to present some of its properties.

Example 30 ((min,plus) algebra). Z
min

= (Z [ {�1,+1},min,+) is a complete idempotent
semiring such that a� b = min(a, b), a⌦ b = a+ b, a ^ b = max(a, b) with " = +1, e = 0,
and > = �1. The order � is total and corresponds to the inverse of the natural order (i.e.,
2 � 1). Semiring of matrices Zn⇥m

min

is a semiring of matrices with the entries in Z
min

.

Example 31 ((max,min) algebra). The set (Z [ {�1,+1},max,min) is a complete idempo-
tent semiring such that a � b = max(a, b), a ⌦ b = min(a, b) with " = �1, e = +1, and
> = +1, in this semiring a ^ b = min(a, b).

Definition 32 (Distributive semiring). A semiring D is distributive if it is complete and if the
lattice (D,�,^) is distributive (cf. Definition 18).
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Remark 33. Laws � and ^ are order preserving (see property 27), hence if the semiring is not
distributive, the following inequalities hold :

a� (b ^ c) � (a� b) ^ (a� c),

a ^ (b� c) ⌫ (a ^ b)� (a ^ c).

Definition 34 (Subsemiring). Let (D,�,⌦) be a semiring and C ⇢ D. (C,�,⌦) is a subsemir-
ing of D if ", e 2 C and if C is closed for laws � and ⌦. A subsemiring is complete if it is closed
for infinite sums too.

2.3 Mappings defined over idempotent semirings

Definition 35 (Continuity). A mapping ⇧ defined from a complete idempotent semiring D to a
complete idempotent semiring C is lower semi-continuous (denoted l.s.c.), respectively upper
semi-continuous (denoted u.s.c), if for all finite or infinite set X of D,

⇧(

M

x2X

x) =
M

x2X

⇧(x),

respectively,
⇧(

^

x2X

x) =
^

x2X

⇧(x).

Mapping ⇧ is continuous if it is both l.s.c. and u.s.c..

Definition 36 (Isotone, antitone, monotone). Let ⇧ : D ! C be a mapping, with D and C two
idempotent semirings :

• mapping ⇧ is isotone if it is order preserving, i.e., 8x, x0 2 D x � x0 ) ⇧(x) � ⇧(x0
),

• mapping ⇧ is antitone if it inverts the order, i.e., 8x, x0 2 D x � x0 ) ⇧(x) ⌫ ⇧(x0
),

• mapping ⇧ is monotone, i.e., ⇧ isotone or ⇧ antitone.

Remark 37. The composition of monotone functions is a monotone function and it can easily be
checked that :

• The composition of isotone functions is an isotone function.

• The composition of two antitone functions is isotone.

• The composition of an isotone function with an antitone function is antitone.

Theorem 38. Let ⇧ : D ! C be a mapping with D and C two semirings :
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1. if ⇧ is l.s.c then it is isotone.

2. if ⇧ is u.s.c then it is isotone.

Remark 39. If ⇧ : D ! C is an isotone mapping, the following inequality holds

⇧(x� x0
) ⌫ ⇧(x)� ⇧(x0

) 8x, x0 2 D,

since
x� x0 ⌫ x ) ⇧(x� x0

) ⌫ ⇧(x)
x� x0 ⌫ x0 ) ⇧(x� x0

) ⌫ ⇧(x0
)

)
) ⇧(x� x0

) ⌫ ⇧(x)� ⇧(x0
).

and dually :
⇧(x ^ x0

) � ⇧(x) ^ ⇧(x0
) , 8x, x0 2 D.

Definition 40 (Homomorphism). Mapping ⇧ : D ! C defined over idempotent semiring is an
homomorphism if

8a, b 2 D ⇧(a� b) = ⇧(a)� ⇧(b) and ⇧(") = " (2.5)

⇧(a⌦ b) = ⇧(a)⌦ ⇧(b) and ⇧(e) = e (2.6)

A mapping satisfying only (2.5) is said to be �-morphism, i.e., the image of the sum of elements
in D is the sum, in C, of their image. A mapping satisfying only (2.6) is said to be ⌦-morphism,
i.e., the image of the product of two elements of D is the product, in C, of their image.

Definition 41 (Isomorphism). Mapping ⇧ defined from an idempotent semiring D to another
one C is an isomorphism if the inverse of ⇧ is defined and if ⇧ and its inverse mapping are
homomorphisms.

Definition 42 (Equivalence relation). An equivalence relation R, in set E, is a binary relation
which is:

• reflexive : 8 x 2 E, xRx,

• symmetric : 8 x, y 2 E, xRy ) yRx,

• transitive : 8 x, y, z 2 E, (xRy and yRz) ) xRz.

Definition 43 (Congruence). A congruence in a semiring D is an equivalence relation (denoted
R) compatible with the semiring laws , i.e.

aR b ) (a� c)R (b� c), (a⌦ c)R (b⌦ c), 8a, b, c 2 D.

Theorem 44 (Semiring quotient, [5]). Let D be an idempotent semiring and R a congruence
over D. By denoting [a] = {x 2 D | xR a} the equivalence class of a 2 D, the semiring quotient
of D by this congruence is a semiring denoted D

/R with the following sum and product

[a]� [b] , [a� b]

[a]⌦ [b] , [a⌦ b].
(2.7)
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Theorem 45 ( [5]). Let ⇧ be an homomorphism from D in C. Relation R
⇧

defined by

aR
⇧

b () ⇧(a) = ⇧(b), 8a, b 2 D,

is a congruence.

Definition 46 (Image). The image of mapping ⇧ : D ! C is denoted Im⇧ and is defined as
follows:

Im⇧ = {y 2 C|y = ⇧(x) for some x 2 D}.

Definition 47 (Kernel). Let ⇧ : D ! C be an homomorphism. The kernel of this mapping,
denoted ker⇧, is defined as follows :

ker⇧ = {(x, x0
)|⇧(x) = ⇧(x0

)}

the following equivalence relation:

x
ker⇧⌘ x0 () ⇧(x) = ⇧(x0

)

is a congruence, according to Theorem 45.

Definition 48 (Coimage). Quotient D
/ ker⇧

is the quotient of D by this congruence, it is called
the coimage of ⇧. Hence, mapping D

/ ker⇧

! Im⇧, [x]
⇧

7! ⇧(x) is an isomorphism.

Definition 49 (Closure mapping). Let IdD : D ! D, x 7! x be the identity mapping. A closure
mapping ⇧ : D ! D is such that:

• it is extensive : ⇧ ⌫ IdD,

• it is idempotent : ⇧ � ⇧ = ⇧,

• it is isotone : 8x, x0 2 D, x � x0 ) ⇧(x) � ⇧(x0
).

Conversely, if ⇧ is isotone and ⇧ = ⇧ � ⇧ � IdD then ⇧ is called a dual closure mapping.

Definition 50 (Canonical injection of a subset). Let U a subset of D. The canonical injection of
U in D is denoted Id|U : U ! D, and is defined as Id|U(u) = u for all u 2 U .

Definition 51 (Mapping restriction to a domain). Let ⇧ : D ! C and U ⇢ D. Mapping
⇧|U : U ! C is such that

⇧|U = ⇧ � Id|U

where Id|U : U ! D is the canonical injection of U in D. Mapping ⇧|U will be called the
restriction of ⇧ to domain U .
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Remark 52. According to this definition, it can be noticed that the canonical injection is the
restriction of the identity mapping. Formally Id|U : U ! D with U ⇢ D is the restriction of the
identity mapping IdD to the domain U , formally IdD|U and is denoted Id|U in order to simplify
notation since there is no ambiguity.

Definition 53 (Image mapping). The image of ⇧ : D ! C is the canonical injection of ⇧(D) in
C ; This mapping will be denoted IIm⇧.

Definition 54 (Mapping Restriction to a co-domain). Let ⇧ : D ! C and Im⇧ ⇢ V ⇢ C.
Mapping V|⇧ : D ! V is defined as follows

⇧ =

�
Id|V
�
�
�
V|⇧
�

where Id|V : V ! C represents the canonical injection of V in C. Mapping V|⇧ will be called the
restriction of ⇧ to the co-domain V .

2.4 Fixed points of monotone mappings

This section presents some useful results in order to deal with fixed point equations.
Actually, it will be recall that iterative algorithms can be used to compute fixed points of equations
involving monotone mappings. The results are based on Knaster-Tarski theorem which states that
the set of fixed points of an order preserving mapping ⇧, defined over a complete lattice, is also
a complete lattice. This theorem guarantees the existence of at least one fixed point of ⇧, and
even the existence of a least (or greatest) fixed point. Assuming some properties of continuity
the Kleene fixed-point theorem states that the least fixed point is the supremum of the increasing
Kleene chain of ⇧.

Below the results are adapted to the setting of semirings by recalling that a complete
semiring is a complete lattice (see Remark 25).

Theorem 55. Let ⇧ : D ! D be an isotone mapping with D a complete semiring.
Let Y = {x 2 D|⇧(x) = x} be the set of fixed points of ⇧.

1.
V
y2Y

y 2 Y , and
V
y2Y

y =

V
{x 2 D|⇧(x) � x} is the least fixed point of ⇧.

2.
W
y2Y

y 2 Y , and
W
y2Y

y =

W
{x 2 D|x � ⇧(x)} is the greatest fixed point of ⇧.

Since D is complete, Theorem 55 ensures existence of both least and greatest fixed point
of monotone mapping defined over an idempotent semiring. Below a constructive algorithm
yielding the greatest fixed point is given.
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Remark 56. By considering the mapping ⇧ : x 7!  (x) ^ x
i

, with  : D ! D an isotone
mapping and x

i

2 D, the algorithm will give the greatest fixed point of ⇧ which corresponds to
the greatest fixed point of  lower than or equal to x

i

.

Remark 57. A dual algorithm can be used to find a least fixed point, it is sufficient to start the
algorithm with x

0

=

V
D = "D. In this case by considering the mapping ⇧ : x 7!  (x)� x

i

,
with  : D ! D an isotone mapping and x

i

2 D, the algorithm will give the least fixed point of
⇧ which corresponds to the least fixed point of  greater than or equal to x

i

.

When the mapping ⇧ is semi-continuous the following theorem can be considered
(see [5], section 4.5).

Theorem 58. Let D be a complete semiring and ⇧ : D ! D be a mapping and Y = {x 2
D|⇧(x) = x} be the set of fixed points of ⇧. The two following statements hold :

1. if ⇧ is lower semi-continuous (l.s.c.) then
V
y2Y

y = ⇧

⇤
(

V
x2D

x),

2. if ⇧ is upper semi-continuous (u.s.c) then
W
y2Y

y = ⇧⇤(
W
x2D

x),

where ⇧⇤ and ⇧⇤ are defined as follows :

⇧

⇤
(x) =

M

i⌫0

⇧

i

(x),

⇧⇤(x) =

^

i⌫0

⇧

i

(x),

with ⇧0 is the identity mapping, and for each i ⌫ 0, ⇧i+1

= ⇧ � ⇧i.

2.4.1 Properties of the Kleene star operator

The mapping S : D ! D, 7! x⇤
=

L
i2N x

i is frequently involved. Hence this section
is dedicated to recall specific properties of this mapping and more specifically to the Kleene
star operator denoted x⇤. The following mapping P : x 7! x+

=

L
k�1

xk is also of interest and is

considered. Of course x⇤
= e� x⇤. According to Definition 49 the both mappings are closure

mappings.

Theorem 59. The implicit equation

x = a⌦ x� b (2.8)

has x = a⇤b = (

L
k�0

ak)b as smallest solution.
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Remark 60. The proof could be done by using Theorem 58 and the l.s.c. mapping ⇧ : D !
D, x 7! a⌦ x� b.

⇧

⇤
(x) =

L
i2N⇧

i

(x) = ⇧

0

(x)� ⇧(x)� ⇧2

(x)� ...

= x� (ax� b)� (a(ax� b)� b)� (a(a(ax� b)� b)� b)� ...

= a⇤x� a⇤b = a⇤(x� b).

Hence the smallest fixed point is ⇧⇤
(

V
x2D

x) = ⇧⇤
(") = a⇤b.

It must be noted that this fixed point is also the smallest solution of the inequality
a⌦ x� b � x.

Property 61. Let D be a complete semiring. 8a, b 2 D

a+ � a⇤ (2.9)

a⇤a⇤ = a⇤ (2.10)

(a⇤)⇤ = a⇤ (2.11)

(a+)⇤ = a⇤ (2.12)

a(ba)⇤ = (ab)⇤a (2.13)

(a� b)⇤ = (a⇤b)⇤a⇤ = b⇤(ab⇤)⇤ = (a� b)⇤a⇤ = b⇤(a� b)⇤ (2.14)

(a⇤)+ = a⇤ (2.15)

(a+)+ = a+ (2.16)

(ab⇤)+ = a(a� b)⇤ (2.17)

(ab⇤)⇤ = e� a(a� b)⇤ (2.18)

Furthermore, if D is commutative (i.e., a⌦ b = b⌦ a) then

(a� b)⇤ = a⇤b⇤. (2.19)

2.5 Residuation theory

In general the mappings defined on ordered sets have not inverse mappings. Nevertheless,
by considering some assumption about continuity, the residuation theory yields an answer to
some problems like : what is the greatest solution of inequality ⇧(x) � b ? Or dually what is the
least solution of inequality ⇧(x) ⌫ b ? In particular, it is possible to characterize some residuated
mappings which are a kind of pseudo-inverse mappings.

This theory is very close, in consideration of the inversion of the order relation, of the
Galois theory. Indeed, from a mapping and its residual it is possible to obtain a Galois connection.
For these points the readers are invited to consult the following references : [3].

About residuation theory and for historical references, the readers can consult [4]. In
this chapter this theory is considered in the semiring framework, according to the chapter 4
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of [5], and to the following references [8], [2], the following PhD can also be useful to get some
refinements [7,9,10]. Even if majority of the results are from these references (especially [8], [2]),
the proofs are recalled for their pedagogical aspect and they constitute interesting exercises.

Definition 62 (Lower set, closed lower set, upper set, closed upper set). A lower set is a nonempty
subset L of D such that

(x 2 L and y � x) ) y 2 L.

A closed lower set (generated by k) is a lower set denoted #K = {x|x � k}. An upper set is a
subset U of D such that

(u 2 U and y � u) ) y 2 U.

A closed upper set (generated by k) is an upper set denoted "K = {x|x ⌫ k}.

Definition 63 (Residuated mapping, dually residuated mapping). An isotone mapping ⇧ : D !
B is said to be residuated, if equation ⇧(x) � b has a greatest solution in D for all b 2 B.

It is said dually residuated, if equation ⇧(x) ⌫ b has a least solution in D for all b 2 B.

The following theorems yield some necessary and sufficient conditions to characterize
theses mappings.

Theorem 64 ( [5],Th. 4.50). Let ⇧ : D ! B an isotone mapping. The following statements are
equivalent

1. ⇧ is residuated.

2. It exists an unique isotone and u.s.c. mapping denoted ⇧]

: B ! D such that ⇧ � ⇧] �
IdB and ⇧

] � ⇧ ⌫ IdD.

3. ⇧("D) = "B and ⇧ is l.s.c.

when it exists the mapping H] is called the residual of the residuated mapping H .

Theorem 65 ( [5],Th. 4.52). Let � : D ! B be an isotone mapping. The following statements
are equivalent :

1. � is dually residuated,

2. it exists an unique isotone and l.s.c. mapping�[

: B ! D such that���[ ⌫ IdB and �

[�
� � IdD.

3. �(>D) = >B and � is u.s.c.

Remark 66. According to Theorems 64 and 65, it is clear that ⇧] is dually residuated and that
�

[ is residuated, furthermore (⇧

]

)

[

= ⇧ and (�

[

)

]

= �.
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Theorem 67 ( [5],Th. 4.56). Let ⇧ : D ! B be a residuated mapping, the following statements
hold :

⇧ � ⇧] � ⇧ = ⇧, (2.20)

⇧

] � ⇧ � ⇧]

= ⇧

], (2.21)

� � �[ � � =  , (2.22)

�

[ � � � �[

=  

[, (2.23)

⇧

] is dually residuated and (⇧

]

)

[

= ⇧, (2.24)

 

[ is residuated and ( 

[

)

]

=  , (2.25)

⇧

] � ⇧ = IdD , ⇧ is injective , ⇧

] is surjective, (2.26)

⇧ � ⇧]

= IdB , ⇧

] is injective , ⇧ is surjective. (2.27)

the same statements holds true for dually residuated mapping by replacing ] by [.

Theorem 68. Let ⇧ : D ! B and  : B ! C two residuated mappings and � : D ! B and
⇥ : B ! C two dually residuated mappings, the following statement holds:

1. ( � ⇧)] = ⇧] � ],

2. (⇥ � �)[ = �[ �⇥[.

Theorem 69 ( [5], Th. 4.56). Let ⇧ : D ! B and  : D ! B be residuated mappings. The
following properties hold :

1. ⇧ �  ,  

] � ⇧],

2. (⇧� )] = ⇧] ^ ].

Let ⇥ : D ! B and � : D ! B be dually residuated mappings. The following properties hold :

3. � � ⇥, ⇥

[ � �[,
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4. (� ^⇥)[ = �[ �⇥[.

Theorem 70 ( [8]). Let ⇧ : D ! B and  : D ! B be two residuated mappings, then the
following equivalence holds :

Im ⇧ ⇢ Im ,  � ] � ⇧ = ⇧.

Theorem 71 ( [8, 11], Projection on the image of a mapping). Let ⇧ : D ! B be a residuated
mapping, mapping P

⇧

= ⇧ �⇧] is a dual closure mapping. Furthermore P
⇧

(b), with b 2 B, is
the greatest element in Im⇧ less than or equal to b.
Let  : D ! C be a dually residuated mapping, mapping P

 

=  �  [ is a closure mapping.
Furthermore P

 

(c), with c 2 C, is the lowest element in Im greater than or equal to c.

Theorem 72 ( [4]). Let C be a complete subsemiring of D. Let Id|C : C ! D, x 7! x be
the canonical injection. The injection Id|C is both residuated and dually residuated and their
residuals are projectors.

Theorem 73. Let ⇧ : D ! B be a mapping. The following statements hold :

1. if ⇧ is residuated then E|⇧ is residuated, with E such that Im⇧ ⇢ E ⇢ B and

(E|⇧)
]

= ⇧

] � Id|E = ⇧

]

|E ;

2. if ⇧ is residuated then ⇧|C is residuated, with C such that Im⇧] ⇢ C ⇢ D and

(⇧|C)
]

= C|⇧
]

;

3. if ⇧ is dually residuated then E|⇧ is dually residuated, with E such that Im⇧ ⇢ E ⇢ B and

(E|⇧)
[

= ⇧

[ � Id|E = ⇧

[

|E ;

4. if ⇧ is dually residuated then ⇧|C is dually residuated, with C such that Im⇧[ ⇢ C ⇢ D
and

(⇧|C)
[

= C|⇧
[.

Theorem 74 ( [4]). Let ⇧ : D ! D a closure mapping. The restriction Im⇧|⇧ is residuated and
its residual is

�
Im⇧|⇧

�
]

= Id|Im⇧

with Id|Im⇧ the canonical injection of Im⇧ in D.

Example 75. The following mappings are considered :

L
a

: D ! D
: x 7! a⌦ x (left product by a),

R
a

: D ! D
: x 7! x⌦ a (right product by a).

(2.28)
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According to semiring definition (see Definition 22) these mappings are l.s.c (L
a

(x
1

� x
2

) =

L
a

(x
1

)� L
a

(x
2

)) and such that L
a

(") = "), hence according to Definition 64 these mappings
are residuated. The residual mappings are denoted :

L]

a

(x) = a�\x (left division by a),

R]

a

(x) = x�/a (right division by a).
(2.29)

Example 76 ( [4], [12], [8], [9]). it is possible to show that the following mappings are residuated,
with D and C some ordered sets and Cop the dual set C, i.e. the same set endowed with the
opposite order (i.e., a �Cop b , a ⌫C b).

⇤

a

: D ! Cop

x 7! x�\a,
 

a

: Cop ! D
x 7! a�/x.

(2.30)

The residual mappings are given below :

⇤

]

a

=  

a

: Cop ! D
x 7! a�/x,

 

]

a

= ⇤

a

: D ! Cop

x 7! x�\a.

(2.31)

Remark 77. This result shows that the greatest solution in D of inequality x�\a ⌫ b is a�/b, and
b�\a is the greatest solution of the inequality a�/x ⌫ b.

Theorem 78 ( [5]). The implicit equation

x = a�\x ^ b

admits x = a⇤�\b as greatest solution.

Proof : : First note that mapping ⇧ : D ! D, x 7! a�\x ^ b is u.s.c., i.e., ⇧(x
1

^ x
2

) =

⇧(x
1

) ^ ⇧(x
2

). Hence according to Theorem 58,

⇧

⇤
(x) =

V
i2N⇧

i

(x) = ⇧

0

(x) ^ ⇧(x) ^ ⇧2

(x) ^ ...

= x ^ (a�\x ^ b) ^ (a�\(a�\x ^ b) ^ b) ^ (a�\(a�\(a�\x ^ b) ^ b) ^ b) ^ ...

= x ^ (a�\x ^ b) ^ (a2�\x ^ a�\b) ^ b) ^ (a3�\x ^ a2�\b) ^ a�\b) ^ b) ^ ...

= a⇤�\x ^ a⇤�\b = a⇤�\(x ^ b).

These developments are mainly based on equations ?? and ??. Hence the greatest fixed point is
obtained by considering ⇧(>) = a⇤�\b. ⇤

Below the closure mappings are considered. It is recalled that a closure mapping is
residuated if its co-domain is restricted to its image.
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Example 79 ( [7]). Mapping S : D ! D, x 7! x⇤ is a closure mapping. Hence (ImS|S) is
residuated and its residual is (ImS|S)

]

= IImS

. In other words, inequality x⇤ � a⇤ admits x = a⇤

as greatest solution.

Example 80 ( [7]). Mapping P : D ! D, x 7!
L
i�1

xi

= x+ is a closure mapping. Hence (ImP |P )

is residuated and its residual is (ImP |P )

]

= IImP

. In other words, inequality x+ � a+ admits
x = a+ as greatest solution.

Example 81 ( [13]). Isotone mapping Q
a

: D ! D, x 7! (xa)⇤x is a closure mapping.
Hence ImQ

a

|Qa

is residuated and its residual is (ImQ

a

|Qa

)

]

= IImQ

a

. In otehr words, inequality
(xa)⇤x � b, with b 2 ImQ

a

, admits x = b as greatest solution, furthermore the following equlity
holds (ba)⇤b = b.

Example 82 ( [7], [14]). Let M
h

: D ! D, x 7! h(xh)⇤ an isotone mapping defined over
complete idempotent semiring and sets

G
1

= {g 2 D | 9a 2 D, g = a⇤h} ,
G
2

= {g 2 D | 9b 2 D, g = hb⇤} .

It can be shown that G1|Mh

et G2|Mh

are residuated with:

(G1|Mh

)

]

(x) = h�\x�/h,

(G2|Mh

)

]

(x) = h�\x�/h.

Below, it is recalled that the canonical injection from a complete subsemiring into a
complete semiring is residuated.

Theorem 83 (Projection Lemma [4]). Let D be a complete semiring and D
sub

a complete
subsemiring of D. The canonical injection ID

sub

: D
sub

! D, x 7! x is residuated. The residual
is denoted as PrD

sub

= I]D
sub

and is such that :

(i) PrD
sub

� PrD
sub

= PrD
sub

,

(ii) PrD
sub

� IdD,

(iii) x 2 D
sub

() PrD
sub

(x) = x.

Proposition 84 ( [7]). Let ⇧ : C ! D a residuated mapping defined over complete idempotent
semiring and IC

sub

the canonical injection of the subsemiring C
sub

into C. Mapping⇧�IC
sub

(x) �
b is residuated and its residual is given by

�
⇧|C

sub

�
]

(b) = (⇧ � IC
sub

)

]

(b) = PrC
sub

� ⇧]

(b). (2.32)
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Proposition 85. Let ⇧ : C ! D be a residuated mapping defined over complete idempotent
semiring and ID

sub

the canonical injection of the complete subsemiring D
sub

(with Im⇧ ⇢
D

sub

⇢ D) into D. Mapping D
sub

|⇧ is residuated and
�
D

sub

|⇧
�
]

= ⇧

] � ID
sub

=

�
⇧

]

�
|D

sub

.

The classical kernel definition of a mapping (i.e., set {x|⇧(x) = "}) has a weak sense
when mappings are defined over lattices. Hence the following definition is classically considered
for these mappings.

Definition 86 (Kernel). The kernel of mapping C : X ! Y , denoted kerC, is defined by the
following equivalence relation

x
kerC⌘ x0 () C(x) = C(x0

). (2.33)

This relation defines a congruence. The quotient set X
/ kerC

is then the set of equivalence classes
modulo kerC.

Notation 87. An equivalence class of X
/ kerC

will be denoted [x]
C

.

Proposition 88 ( [15]). If C : X ! Y ia a residuated mapping then each equivalence class [x]
C

has one and only one element of ImC], furthermore it is the greatest element of this class.

2.6 Semiring Z
max

This section aims to present the semiring (max,+), denoted Z
max

and already introduced
in example 29.

2.6.1 Matrices sum

Let A and B be two matrices 2 Zn⇥p

max

, the matrices sum is a matrix defined as follows:

(A� B)

ij

= A
ij

� B
ij

Example 89. Let A =

 
2 5

3 7

!
and B =

 
e 8

1 3

!
the sum is equal to :

A� B =

 
2 8

3 7

!

2.6.2 Matrices product

Let A 2 Zm⇥p

max

, B 2 Zp⇥n

max

and C 2 Zm⇥n

max

be three matirces, the matrices product is
defined as follow :

C
ij

= (A⌦ B)

ij

=

pM

k=1

A
ik

⌦ B
kj
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In the sequel the null matrix will be denoted ", i.e. the matrix whose all entries are equal to ".
In the same manner the identity matirx will be denoted e, i.e. the matrix whose all entries are
equal to " excepted diagonal entries which are equal to e.
By extension for n 2 N, An

= A⌦ A⌦ ...⌦ A| {z }
nfois

with A0

= e the identity matrix.

Example 90. Let A =

0

B@
2 5

" 3

1 8

1

CA and B =

 
e

1

!
be matrices :

C = A⌦ B =

0

B@
6

4

9

1

CA

. Let us recall that e = 0 and " = �1.

2.7 Equation x = ax� b

This equation can admit an infinity of solution but according to corrollary ??, it admits a
least solution, denoted a⇤b with a⇤ =

L
i2N a

i. Classicaly, the star computation of matrix can be
done by considering the star of scalar, by considering a king of Gauss elimintation. Below it is
the Jordan algorithm which is proposed to compute the star of matrix A 2 Zn⇥n

max

.

A

(0) = A;

for(k = 1; k == n; k ++)

{
for(i = 1; i == n; i++)

{
for(j = 1; j == n; j ++)

{
A

(k)
ij

= A

(k�1)
ij

�A

(k�1)
ik

(A(k�1)
kk

)⇤A(k�1)
kj

}
}
}
A

⇤ = e�A

(n)

Remark 91. It is possible to associate a graph to these matrices. Let A be a matrix such that

A =

 
a
11

a
12

a
21

a
22

!
, it corresponds to the graph of figure 5. Entry a

ij

characterizes the weight

associated to the edge lying node j to i. Then Ak yields the weight of path of length k lying each
node of the graph, i.e. (Ak

)

ij

represents the greatest weight of the path between j and i whose
length is k.

Example 92. Let

x =

0

B@
" " "

2 " 3

4 " "

1

CAx�

0

B@
2

"

5

1

CA
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Figure 5 – The graph corresponding to matrix of size 2⇥ 2

be an implicit equation, with x 2 Z3

max

, the computation of a⇤ yields :

a⇤ =

0

B@
e " "

" e "

" " e

1

CA�

0

B@
" " "

2 " 3

4 " "

1

CA�

0

B@
" " "

7 " "

" " "

1

CA� " =

0

B@
e " "

7 e 3

4 " e

1

CA

and the least solution is then

x = a⇤b =

0

B@
2

9

6

1

CA

2.7.1 Equation ax � b

In a complete idempotent semiring equation ax � b has a greatest solution denoted a�\b
(see example 75), it corresponds to the residuation of mapping L

a

: x 7! ax. In the same manner
xa � b admits b�/a as greatest solution. By considering A,D 2 Zm⇥n

max

, B 2 Zm⇥p

max

, C 2 Zn⇥p

max

,
entry of matrix C:

C
ij

=

mV
k=1

(A
ki

�\B
kj

)

D
ij

=

pV
k=1

(B
ik

�/C
jk

)

Example 93. Let A =

0

B@
2 5

" 3

1 8

1

CA and B =

0

B@
6

4

9

1

CA be matrices then :

C = A�\B =

 
4

1

!
.

In the present case A⌦ (A�\B) = B and it is to compare with example 90.
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2.7.2 Spectral theory of matrices

Definition 94 (Graphe fortement connexe). A graph is said to be strongly connected if it exists a
path between i and j two nodes, 8i, j.

Definition 95 (Irreducible Matrix). Matrix A 2 Zn⇥n

max

is said to be irreductible if the correspond-
ing graph is strongly connected, conversely, A is said to be reducible.

Definition 96 (Trace of a matrix). The trace of a matrix is classically defined:

trace(A) =

nM

i=1

(A)
ii

.

Remark 97. Remark 91 said that (Aj

)

ii

represents the maximal weight of all the circuit of length

j crossing i. From defintion 96, it comes that
nL

i=1

(Aj

)

ii

= trace(Aj

) is the greatest among all

the weight associated to each node i 2 [1, n].

Definition 98. (trace(Aj

))

(

1
j

) corresponds to the mean weight associated to the circuits of
length j.

Definition 99.

� =

nM

j=1

(trace(Aj

))

(

1
j

)

is called the maximal mean cycle of matrix A. It is the greatest mean weight for all paths whose
length belongs to [1, n] (n being the maximal length of an elementary circuit).

Definition 100 (Eigen vector, eigen value). Let A 2 Zn⇥n

max

be a matrix, � a scalar, and x 2 Zn

max

a vector. � is an eigen value if :
Ax = �x

and x is an eigen vector.

Theorem 101. If A is irreducible, it exists an unique eigen value. It is equal to the greates mean
cycle of matrix A.

Example 102. Let A =

0

BBBB@

2 5 " "

" " 3 3

e " " "

" e " "

1

CCCCA
be a matrix, the greatest mean cycle of this irreducible

matrix is equal to � = 8/3.



43

3 System Modelling and Control Theory

3.1 Model for systems subject to synchronization and de-

lay

3.1.1 Daters equations, the event point of view

In the beginning of the 60th Cuninghame-Green started to represent manufacturing
system in (max, plus) algebra. In the very beginning of the 80th, a team of INRIA Rocquencourt
was interested by the description of Timed Event Graphs (TEGs) in (max, plus) algebra (see
e.g. [16]. TEGs constitute a subclass of timed Petri nets whose each place admits one and only
one upstream transition and one and only one downstream transition.

Figure 6 represents a TEG. It is constituted of places (represented by circle) and transi-
tions (represented by bars or rectangles) which are connected by directed arcs. Places contain
an integer number of tokens (small black circles), and delays is associated to each place which
represents the minimal time a token has to spend in the corresponding place (the lack of delay
means the delay is equal to 0). Tokens move from place to place and represent the dynamical
behavior of the graph, to cross a transition this one has to be fired. A transition is fired if each
upstream place (connected to the transition thanks to a directed arc) has a valid token, i.e. a
token having spent the minimal time specified by the delay of the corresponding place, then the
valid token is removed from the upstream places and added in all the downstream places. In Fig.
6 the input transition are labeled u

1

,u
2

, the internal transitions are labeled x
i

, i 2 [1, 6] and y is
the output transition. The TEGs model delay and synchronization phenomena, indeed the tokens
have to spend a minimal duration in places and the firing of transition occurs when all places are
with a valid token, it can be seen as a "rendez-vous" between tokens. This TEG can represent the
behavior of an assembly line, constituted of 3 machines M

1

, M
2

and M
3

. The firing of the input
transition u

1

characterizes the input of raw materials in the system, then a token is put in the
place located between u

1

and x
1

and it must stay at least one time unit before to be considered
as valid to contribute to the firing of the downstream transition x

1

. The firing of transition x
1

represents the input of raw material in machine M
1

. This firing will occur when a token is
available in the place located between transitions x

2

et x
1

(this token means that a machine is
available), and when a valid token will be in the place between transitions u

1

and x
1

. The delay
of 2 time units associated to the place between transitions x

1

and x
2

represents the processing
time of the machine M

1

, hence firing of transition x
2

represents the output of the machine
M

1

. The functioning rule of machine M
2

is the same, only the delays are different. Transition
x
5

represents the input of machine M
3

which ensures the assembly of products coming from
machines M

1

and M
2

, it will be fired when a valid token will be available in the two upstream
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transitions. This machine is able to process three parts simultaneously.

The idea of [16, 17] was to show that these dynamical systems which are, a priori non
linear, can be represented by a linear system of equations in a specific algebraic structure. In
particular they showed a TEG admits a canonical linear model in (max, plus) algebra. The
dynamical model considered is given below and is very reminiscent to the one of classical
dynamical linear system :

x(k) = Ax(k � 1)� Bu(k) (3.1a)

y(k) = Cx(k) (3.1b)

To obtain this model a dater function is associated to each transition, this function aims to date
the occurrence of the firing of the corresponding transitions (it means that the event point of view
is considered). It will represent the life of the transition. Formally for transition x

j

, the following
function is considered : Z ! Z, k 7! x

j

(k) where x
j

(k) is the date of the firing of the token
numbered k.

For the TEG of Fig. 6, this yields :

x
1

(k) = max(1 + u
1

(k), x
2

(k � 1))

x
2

(k) = 2 + x
1

(k)

x
3

(k) = max(2 + u
2

(k), x
4

(k � 1))

x
4

(k) = 5 + x
3

(k)

x
5

(k) = max(3 + x
4

(k), 1 + x
2

(k), x
6

(k � 3))

x
6

(k) = 2 + x
5

(k)

y(k) = x
6

(k)

(3.2)

The operator plus models the delay and the operator max models the synchronization between
two dater functions. These non-linear equations become linear equations in the idempotent
semiring Z

max

(cf. definition 29), then :

x
1

(k) = 1⌦ u
1

(k)� x
2

(k � 1)

x
2

(k) = 2⌦ x
1

(k)

x
3

(k) = 2⌦ u
2

(k)� x
4

(k � 1)

x
4

(k) = 5⌦ x
3

(k)

x
5

(k) = 3⌦ x
4

(k)� 1⌦ x
2

(k)� x
6

(k � 3)

x
6

(k) = 2⌦ x
5

(k)

y(k) = x
6

(k)

(3.3)
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Figure 6 – A Timed Event Graph which can represent a manufacturing system with three
machines labeled M

1

to M
3

.
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or, by considering vector notation, and vector state : x(k) =
⇣
x
1

(k) x
2

(k) x
3

(k) x
4

(k) x
5

(k) x
6

(k)
⌘
t

,

input vector u(k) =
⇣
u
1

(k) u
2

(k)
⌘
t

and output vector y(k) = (y(k)) :

x(k) =

0

BBBBBBB@

" " " " " "

2 " " " " "

" " " " " "

" " 5 " " "

" 1 " 3 " "

" " " " 2 "

1

CCCCCCCA

x(k)�

0

BBBBBBB@

" 0 " " " "

" " " " " "

" " " 0 " "

" " " " " "

" " " " " "

" " " " " "

1

CCCCCCCA

x(k� 1)�

0

BBBBBBB@

" " " " " "

" " " " " "

" " " " " "

" " " " " "

" " " " " "

" " " " " "

1

CCCCCCCA

x(k� 2)

�

0

BBBBBBB@

" " " " " "

" " " " " "

" " " " " "

" " " " " "

" " " " " 0

" " " " " "

1

CCCCCCCA

x(k � 3)�

0

BBBBBBB@

1 "

" "

" 2

" "

" "

" "

1

CCCCCCCA

u(k)

y(k) =
⇣
" " " " " 0

⌘
x(k)

In a general manner, the model is obtained under the following formalism over Z
max

:

x(k) =

aL
i=0

A
i

x(k � i)�
bL

j=0

B
j

u(k � j),

y(k) =

cL
l=0

C
l

x(k � l).

After some modifications, it is possible to obtain an explicit form with a recurrence of 1 on the
vector state. The system admits then the following formalism :

x(k) = A
0

x(k)� A
1

x(k � 1)� B
0

u(k),

y(k) = C
0

x(k).

Practically, this is obtained by enlarging the graph in order to guarantee that each place
be initially with at the most one token, figure 7 yields an extension of the TEG of figure 6, and
leads to the model :

x(k) =

0

BBBBBBBBBBBB@

" " " " " " " "

2 " " " " " " "

" " " " " " " "

" " 5 " " " " "

" 1 " 3 " " " "

" " " " 2 " " "

" " " " " " " "

" " " " " " " "

1

CCCCCCCCCCCCA

x(k)�

0

BBBBBBBBBBBB@

" e " " " " " "

" " " " " " " "

" " " e " " " "

" " " " " " " "

" " " " " " " e

" " " " " " " "

" " " " " e " "

" " " " " " e "

1

CCCCCCCCCCCCA

x(k � 1)�

0

BBBBBBBBBBBB@

1 "

" "

" 2

" "

" "

" "

" "

" "

1

CCCCCCCCCCCCA

u(k)

y(k) =
⇣
" " " " " 0 " "

⌘
x(k)

Equation (3.1.3.1) is an implicit equation with x(k).

x(k) = Ax(k � 1)� Bu(k) (3.4)

y(k) = Cx(k) (3.5)
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Figure 7 – Example an assembly line (event extension).
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with A = A⇤
0

A
1

and B = A⇤
0

B
0

. For this example this leads to :

A

⇤
0 =

0

BBBBBBBBBBBB@

e " " " " " " "

2 e " " " " " "

" " e " " " " "

" " 5 e " " " "

3 1 8 3 0 " " "

5 3 10 5 2 0 " "

" " " " " " 0 "

" " " " " " " 0

1

CCCCCCCCCCCCA

A = A

⇤
0A1 =

0

BBBBBBBBBBBB@

" e " " " " " "

" 2 " " " " " "

" " " e " " " "

" " " 5 " " " "

" 3 " 8 " " " e

" 5 " 10 " " " 2

" " " " " e " "

" " " " " " e "

1

CCCCCCCCCCCCA

B = A

⇤
0B0 =

0

BBBBBBBBBBBB@

1 "

3 "

" 2

" 7

4 10

6 12

" "

" "

1

CCCCCCCCCCCCA

The (max,+) toolbox of Scilab, is very efficient to handle this kind of model
(see <http://scilab.org/contib> and also <http://maxplus.org>).

3.1.2 Counters Equations, the time point of view

From a dual point of view, the behavior of the previous system can be described by
considering a dynamic system in the time domain. A counter function is associated to each
transition, it aims to count the number of firing at a time t for the corresponding transition,
formally for transition x

j

: Z ! Z, t 7! x
j

(t) with x
j

(t) the number of firing for transition x
j

.

For TEG of figure 6, the following system is obtained :

x
1

(t) = min(u
1

(t� 1), 1 + x
2

(t))

x
2

(t) = x
1

(t� 2)

x
3

(t) = min(u
2

(t� 2), 1 + x
4

(t))

x
4

(t) = x
3

(t� 5)

x
5

(t) = min(x
4

(t� 3), x
2

(t� 1), 3 + x
6

(t))

x
6

(t) = x
5

(t� 2)

y(t) = x
6

(t)

(3.6)

These dynamic equations are actually linear in the idempotent semiring Z
min

(cf. example 30),
therefore :

http://scilab.org/contib
http://maxplus.org
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x
1

(t) = u
1

(t� 1)� 1⌦ x
2

(t)

x
2

(t) = x
1

(t� 2)

x
3

(t) = u
2

(t� 2)� 1⌦ x
4

(t)

x
4

(t) = x
3

(t� 5)

x
5

(t) = x
4

(t� 3)� x
2

(t� 1)� 3⌦ x
6

(t)

x
6

(t) = x
5

(t� 2)

y(t) = x
6

(t)

(3.7)

or by considering the following state vector x(t) =
⇣
x
1

(t) x
2

(t) x
3

(t) x
4

(t) x
5

(t) x
6

(t)
⌘
t

,

input vector u(t) =
⇣
u
1

(t) u
2

(t)
⌘
t

and output vector y(t) = (y(t)) :

x(t) =

0

BBBBBBB@

" 1 " " " "

" " " " " "

" " " 1 " "

" " " " " "

" " " " " 3

" " " " " "

1

CCCCCCCA

x(t)�

0

BBBBBBB@

" " " " " "

" " " " " "

" " " " " "

" " " " " "

" e " " " "

" " " " " "

1

CCCCCCCA

x(t� 1)�

0

BBBBBBB@

" " " " " "

e " " " " "

" " " " " "

" " " " " "

" " " " " "

" " " " e "

1

CCCCCCCA

x(t� 2)

�

0

BBBBBBB@

" " " " " "

" " " " " "

" " " " " "

" " " " " "

" " " e " "

" " " " " "

1

CCCCCCCA

x(t� 3)�

0

BBBBBBB@

" " " " " "

" " " " " "

" " " " " "

" " e " " "

" " " " " "

" " " " " "

1

CCCCCCCA

x(t� 5)�

0

BBBBBBB@

e "

" "

" "

" "

" "

" "

1

CCCCCCCA

u(t� 1)�

0

BBBBBBB@

" "

" e

" "

" "

" "

" "

1

CCCCCCCA

u(t� 2)

y(t) =
⇣
" " " " " e

⌘
x(t)

In a general manner the system can be represented in the following manner over Z
min

:

x(t) =

aM

i=0

A
i

x(t� i)�
bM

j=0

B
j

u(t� j), (3.8)

y(t) =

cM

l=0

C
l

x(t� l). (3.9)

After some extension of the state (see for e.g. [18]), it is possible to get a recursive
formulation with a delay of one time unit, it consists in increasing the state in order to have only
temporization of one time unit on each place. Therefore, the system obtained is as follows :

x(t) = A
0

x(t)� A
1

x(t� 1)� B
0

u(t), (3.10)

y(t) = C
0

x(t). (3.11)

Figure 8 yields the corresponding extension of the TEG of figure 6, it corresponds to the
following matrices A

0

, A
1

, B
0

et C
0

:
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Figure 8 – Assembly line with temporization lower than or equal to 1 (temporal extension.)

A0 =

0

BBBBBBBBBBBBB@

" 1 " " " " " · · · "

" " " " " " " · · · "

" " " 1 " " " · · · "

" " " " " " " · · · "

" " " " " 3 " · · · "

" " " " " " " · · · "

...
...

...
...

...
...

...
. . .

...
" " " " " " " · · · "

1

CCCCCCCCCCCCCA
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A1 =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

" " " " " " " "

" " " " " " " "
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C =
⇣
" " " " " e " " " " " " " " " " "

⌘

It is possible to obtain the following explicit formulation :

x(t) = Ax(t� 1)� Bu(t) (3.12)

y(t) = Cx(t) (3.13)

with A = A⇤
0

A
1

and B = A⇤
0

B
0

, given below :
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3.1.3 Semiring of formal series

It is also possible to represent the TEG behavior in a synthetic manner in semiring of
some formal series, among them, the semiring of formal series in two commutative variables,
� and �, with exponents in Z and boolean coefficient (e, "), it is denoted Max

in

[[�, �]] and was
introduced by the (max,+) team of INRIA Rocquencourt (see cohen89a, [19], [5]). The aim of
this section is to recall how this semiring is build.
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3.1.3.1 Semiring Z
max

[[�]]

Definition 103. The � transform of a signal is defined as follow :

d(�) =
M

i2Z

d(k)⌦ �k

Remark 104. This transform is analogous to the z transform of the classical system theory
which allows to code a discrete trajectory by a formal series.

Remark 105. Since � ⌦ d(�) =
L
i2Z

d(k) ⌦ �k+1

=

L
i2Z

d(k � 1) ⌦ �k, the � operator can be

seen as a backward shift operator, i.e., x(k � 1) = �x(k).

Definition 106 (Semiring Z
max

[[�]]). The set of formal series in � with exponents in Z and
coefficients in Z

max

has an idempotent semiring structure. The neutral element of the addition
is the series defined as : " =

L
i2Z

"�k (where " = �1 is the neutral element of the sum in

Z
max

). The neutral element of the product law is the formal series e(�) = e�0 (where e = 0 is
the neutral element of the product law in Z

max

). The sum and the product (actually a Cauchy
product) are defined as follows :

d
1

(�)� d
2

(�) =

L
k2Z(d1(k)� d

2

(k))�k

d
1

(�)⌦ d
2

(�) =

L
j2Z(d1(j)� d

2

(k � j))�k

System 3.4 in Z
max

, can be easily translated in Z
max

[[�]] :

x(�) = �Ax(�)� Bu(�)

y = Cx(�)

A transfer relation can be computed it represents the input/output behavior of the system
:

y(�) = C(�A)⇤Bu(�) = Hu(�)

It is also possible to consider model 3.1.3.1 in idempotent semiring Z
max

[[�]] :

x(�) =

aL
i=0

�iA
i

x(�)�
bL

j=0

�jB
j

u(�),

y(�) =

cL
l=0

�lC
l

x(�).

leading to the following model :

x(�) = Ax(�)� Bu(�)

y = Cx(�)

with A =

aL
i=0

�iA
i

, B =

bL
j=0

�jB
j

et C =

cL
l=0

�lC
l

. Entries of matrices A,B and C are then

polynomials. This formulation is not in a standard way, but it is then not necessary to increase
the state vector size. In the following this kind of model will be consider, but the reader should
have in mind that it can get easily a standard form.
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3.1.3.2 Monotonic Trajectories

The trajectories which are solutions of the previous systems are not necessarily monotone,
nevertheless the firing sequence associated to a transition of a TEG is not decreasing (the
occurrence date d(k) of the firing k is necessarily greater than or equal to d(k � 1)). Formally,

8k 2 Z d(k) � d(k � 1) , d(k) = d(k)� d(k � 1).

is equivalent to
d(�) = d(�)� �d(�) , d(�) = �⇤d(�).

This means that the � transform of a monotonic trajectory can be written as �⇤d(�) and
that the multiplication by �⇤ of a non monotonic trajectory yields a monotonic non decreasing
trajectory. It is a kind of filter. The set of monotonic trajectories (i.e., which can be written
�⇤d(�)) is an idempotent sub semiring Z

max

[[�]], it is denoted �⇤Z
max

[[�]]. Indeed it easy to check
that the sum and the product of non decreasing element is non decreasing, then they are closed
operations, and obviously the series e and " are non decreasing. In the sequel the product by �⇤

will be omitted but as we will handle non decreasing trajectories the equality will have to be
understood "modulo �⇤". For instance :

3� � 1�7 � 5�9

= 3� � 5�9

In general manner the following simplifiaction rules will be considered :

�n � �n

0
= �min(n,n

0
)

The neutral element for the multiplication of the semiring �⇤Z
max

[[�]] is then the series e(�) =
e� e� � e�2 � ...� e�+1. The neutral element for the addition of �⇤Z

max

[[�]] is then "(�) =

"� "� � "�2 � ...� "�+1, with " = �1 the neutral element of the addition of Z
max

.

Remark 107. In the sequel only monotonic series will be handle. Hence, in order to lighten the
notations, without ambiguity , Z

max

[[�]] must be understood as �⇤Z
max

[[�]].

3.1.3.3 Semiring Z
min

[[�]]

In a dual manner it is possible to define a transform for the trajectories considered in the
temporal domain.

Definition 108. The � transform od a signal is defined as follows :

d(�) =
M

t2Z

c(t)⌦ �t

Definition 109 (Semiring Z
min

[[�]]). The set of formal series in � with exponents in Z ans
coefficients in Z

min

has an idempotent semiring. The neutral element of the addition is the series
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" =
L
t2Z

"�t (where " = +1 is the neutral element of the addition in Z
min

). The neutral element

of the multiplication is series e(�) = e�0 (where e = 0 is the neutral element of the multiplication
of Z

min

). The sum and the product (Cauchy product) of formal series are defined as follows :

c
1

(�)� c
2

(�) =

L
t2Z(c1(t)� c

2

(t))�t

c
1

(�)⌦ c
2

(�) =

L
j2Z(c1(j)� c

2

(t� j))�t

The system of equations 3.12 corresponds to the standardized model in the semiring
Z

min

and can be transposed in the semiring Z
min

[[�]] :

x(�) = �Ax(�)� Bu(�)

y = Cx(�)

The input/output transfer relation can be computed :

y(�) = C(�A)⇤Bu(�) = Hu(�)

In an equivalent manner, it is possible to consider the system under the form given by
equation 3.1.3.1 in Z

min

[[�]] :

x(�) =

aL
i=0

�iA
i

x(�)�
bL

j=0

�jB
j

u(�),

y(�) =

cL
l=0

�lC
l

x(�).

leading to the following model:

x(�) = Ax(�)� Bu(�)

y = Cx(�)

with A =

aL
i=0

�iA
i

, B =

bL
j=0

�jB
j

et C =

cL
l=0

�lC
l

. The elements of matrices A,B and C are then

polynomials.

3.1.3.4 Monotonic trajectories

As in the event domain the trajectories corresponding to the firing of transitions ot TEG
are monotonics (the number of events occurring at time (t+ 1), c(t+ 1), is necessarily greater
than or equal to the number of firing being occurred at time t, c(t)). Formally,

8t 2 Z c(t) ⌫ c(t+ 1) , c(t) = c(t+ 1)� c(t).

this is equivalent to

c(�) = ��1c(�)� c(�) , c(�) = (��1

)

⇤c(�).
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This means that the � transform of a monotonic trajectory belongs to semiring (��1

)

⇤Z
min

[[�]].
The following simplification rules are then considered:

�t � �t
0

= �max(t,t

0
)

The neutral element of the multiplication law (��1

)

⇤Z
min

[[�]] is series e(�) = e� e�� e�2� ...�
e�+1. The neutral element for the addition (��1

)

⇤Z
min

[[�]] is series "(�) = "� "�1 � "�2 � ...�
"�+1, with " = +1 the neutral element of the addition of Z

min

.

3.1.4 Two-dimensionnal description, semiring Max

in

[[�, �]]

The choose between the temporal and the event domain will be driven by the applications.
Then it can be useful to keep the ability to switch between the two point of view by considering
a two-dimensional description of trajectories. Below the construction of a semiring of formal
series with two commutative variables, � and �, with exponents in Z and with boolean coefficient.
For the example of figure 6 the following equation is obtained :
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(3.14)

corresponding to the following standard formalism :

x = Ax� Bu

y = Cx.
(3.15)

To each transition of the TEG is associated an entry of the vector x 2 Max

in

[[�, �]]n (vector
corresponding to the internal transitions, in this example n = 6), u 2 Max

in

[[�, �]]m (vector
corresponding to the inputs transitions, inthis example m = 2) and y 2 Max

in

[[�, �]]l (vector
associated to output transitions, in this example l = 1). Matrices A 2 Max

in

[[�, �]]n⇥n, B 2
Max

in

[[�, �]]n⇥m, C 2 Max

in

[[�, �]]l⇥n, represents the interaction between transitions. The matrices
entries are polynomials of Max

in

[[�, �]]. Entry A
5,6

= �3 means that 3 tokens are in the place
between x

6

and x
5

, in a dually manner, entry A
4,3

= �5 means that a temporization of 5 times
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units is associated to the place between transitions x
3

and x
4

.
By solving the implicit equation, by considering the result on fixed point equations, an input/ouput
transfer relation is obtained. In this example, the transfer matrix denoted H 2 Max

in

[[�, �]]l⇥m is
given by :

H = CA⇤B =

⇣
�6(��2)⇤ �12(��5)⇤

⌘
. (3.16)

In a genaral manner, the entries of the transfer matrix representing a TEG are periodic
and causal series, which can be written in the following standardized form : p � qr⇤, with p

and q polynomials with exponents in N and r a monomial with exponents in N. Polynomial
p characterizes the transient behavior of the series, polynomial q represents a pattern which
is repeated periodically, the periodicity is given by r = �⌫�⌧ where ⌫/⌧ corresponds to the
production rate of the series, conversely ⌧/⌫ is the cycle time of the series. An example of
periodic seriesis given on figure 9.
To summarize a TEG admits a model in the subsemiring of periodic and causal series.

3.2 Control Theory

3.2.1 State feedback controller synthesis

State feedback controller synthesis is now considered, the reader interested should
consult [14]. The architecture considered is given in figure 10, its state representation is given by
: (

x = Ax� Bu

y = Cx
(3.17)

with A 2 Max

in

[[�, �]]n⇥n, B 2 Max

in

[[�, �]]n⇥m and C 2 Max

in

[[�, �]]l⇥n. The control is given by
the following expression :

u = Kx� v

with K 2 Max

in

[[�, �]]m⇥n. The system becomes
(

x = Ax� B(Kx� v)

y = Cx
)
(

x = (A� BK)x� Bv

y = Cx

and the input/output transfer relation with controller K is :

y = C(A� BK)

⇤Bv = G
K

v.

G
K

= CA⇤
(A⇤BK)

⇤A⇤B

= CA⇤B(KA⇤B)

⇤.

The objective is to synthesize the greatest controller K, such that G
K

� G
ref

. The
optimal controller exists if G

ref

2 G
1

, it is given by (see [14] for the proof) : :

K
opt

= (H�\G
ref

�/A⇤B). (3.18)
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Remark 110. It must be noted that the output feedback controller and the state feedback
controller are linked as follows :

F
opt

= K
opt

�/C

c.-à-d. F
opt

C = (K
opt

�/C)C � K
opt

. It comes (F
opt

H)

⇤
= (F

opt

CA⇤B)

⇤ � (K
opt

A⇤B)

⇤ )
CA⇤B(F

opt

CA⇤B)

⇤
= G

F

opt

� CA⇤B(K
opt

A⇤B)

⇤
= G

K

opt

. In other words, the measurement
of all the state improves the efficiency of the control, c.-à-d. leads to a greater control and a
corrected system closer to the reference model.

3.2.2 Observer synthesis

In this section the synthesis of an observer allowing to get an estimation of unmeasured
state is proposed. It is done in an analoguous manner to the one of the classical linear systems
(i.e. observer in the Luenberger sense (see [20]). The architecture considered is given in Figure
11.

Matrices A, B, C and R are assumed to beknown. Without lost of generality, the rows of
matrix C are such that only one entry is different of " and that this entry is equal to e. Practically
each row of matric C allows to connect one state to the output, it then represents the location
of sensors yielding information of some state. The system is characterized by the following
equations :

x = Ax� Bu�Rw = A⇤Bu� A⇤Rw (3.19)

y = Cx = CA⇤Bu� CA⇤Rw

and the observer can be written as follows :

x̂ = Ax̂� Bu� L(ŷ � y)

= Ax̂� Bu� LCx̂� LCx (3.20)

ŷ = Cx̂.

By introducing equation (3.19) and by solving the implicit equation, these equations
(3.20) become :

x̂ = (A� LC)

⇤Bu� (A� LC)

⇤LCA⇤Bu� (A� LC)

⇤LCA⇤Rw. (3.21)

By considering (2.14), the following equality is obtained :

(A� LC)

⇤
= A⇤

(LCA⇤
)

⇤, (3.22)
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by introducing it in equation (3.21), the following state estimation appears :

x̂ = A⇤
(LCA⇤

)

⇤Bu� A⇤
(LCA⇤

)

⇤LCA⇤Bu� A⇤
(LCA⇤

)

⇤LCA⇤Rw,

by recalling that (LCA⇤
)

⇤LCA⇤
= (LCA⇤

)

+, this equation becomes:

x̂ = A⇤
(LCA⇤

)

⇤Bu� A⇤
(LCA⇤

)

+Bu� A⇤
(LCA⇤

)

+Rw.

From equation (2.9), it comes (LCA⇤
)

⇤ ⌫ (LCA⇤
)

+, hence the observer equation can be written
:

x̂ = A⇤
(LCA⇤

)

⇤Bu� A⇤
(LCA⇤

)

+Rw

= (A� LC)

⇤Bu� (A� LC)

⇤LCA⇤Rw. (3.23)

(3.24)

The goal of the observer synthesis is to compute the greatest observer matrix L such that
the estimated vector

x̂ be as close as possible to state x, by respecting the following constraint x̂ � x, formally
this can be written as follows :

(A� LC)

⇤Bu� (A� LC)

⇤LCA⇤Rw � A⇤Bu� A⇤Rw 8(u, w)

or in an equivalent manner :

(A� LC)

⇤B � A⇤B (3.25)

(A� LC)

⇤LCA⇤R � A⇤R. (3.26)

Lemma 111. The greatest matrix L such that (A� LC)

⇤B = A⇤B is given by :

L
1

= (A⇤B)

�/(CA⇤B). (3.27)

Lemma 112. The greatest matrix L satisfying (A� LC)

⇤LCA⇤R � A⇤R is given by :

L
2

= (A⇤R)

�/(CA⇤R). (3.28)

Proposition 113. L
x

= L
1

^ L
2

is the greatest matrix such that :

x̂ = Ax̂� Bu� L
x

(ŷ � y) � x = Ax� Bu�Rw 8(u, w).

Corollary 114. Matrix L
x

ensures the equality between the estimated output ŷ and output y, i.e.

C(A� L
x

C)

⇤B = CA⇤B,

C(A� L
x

C)

⇤L
x

CA⇤R = CA⇤R.
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3.2.2.1 Application : Control with observer

Classically the observer can be used to estimate the state used to compute a closed loop
control (see section 3.2.1). Even if only outputs are measured, it will be shown this strategy is
more efficient than the output feedback.

The control strategy is despite in figure 12. According to equations 3.19 and 3.23, it leads
to estimated state expression x̂ and to state of the system x as follows :

x̂ = (A� LC)

⇤Bu� (A� LC)

⇤LCA⇤Rw (3.29)

x = Ax� Bu�Rw = A⇤Bu� A⇤Rw. (3.30)

The control law is given by :

u = Kx̂� v. (3.31)

To compute the observer, it is assumed that the exogenous uncontrollable inputs are null, i.e.
w = ". The transfer relation between input v and control u is then given by :

u = K(A� LC)

⇤Bu� v

= (K(A� LC)

⇤B)

⇤v. (3.32)

The estimated state (3.29) becomes :

x̂ = (A� LC)

⇤B(K(A� LC)

⇤B)

⇤v.

The state of the system becomes :

x = A⇤Bu

= A⇤B(K(A� LC)

⇤B)

⇤v. (3.33)

And the system output is given by :

y = CA⇤B(K(A� LC)

⇤B)

⇤v. (3.34)

Proposition 115. If the reference model G
ref

2 G
1

(i.e. it can be written as G
ref

= M⇤H with
H = CA⇤B the transfer relation of the system), then it exists a greatest controller K such that
the transfer relation in closed loop be lower than or equal to G

ref

. This controller is given by :

K
opt

= H�\G
ref

�/((A� LC)

⇤B). (3.35)
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To summarize, the following expression of control u is obtained :

x̂ = (A� LC � BK
opt

)x̂� (B L)

 
v

y

!
(3.36)

u = K
opt

x̂� v. (3.37)

Hereafter, the performances of this control strategy is analyzed (according to the just in time
criterion). Observer matrix L is supposed to respect the following inequality : L � L

x

, with
L
x

the optimal observer matrix of the proposition 113. It will be shown this strategy is more
efficient then the one using the output feedback F

opt

. In order to compare the both strategies, the
reference model is assuemd such that G

ref

2 G
1

. Control ux̂

opt

is the control computed with K
opt

and control uy

opt

is the one obtained with the controller F
opt

.

ux̂

opt

= K
opt

x̂� v (3.38)

uy

opt

= F
opt

y � v. (3.39)

The obective is to show that the transfer function between ux̂

opt

and v is greater than the
one between uy

opt

and v. By considering equations (3.32), the controls become :

ux̂

opt

= (K
opt

(A� L
opt

C)

⇤B)

⇤v (3.40)

uy

opt

= (F
opt

CA⇤B)

⇤v. (3.41)

According to corollary 114, matrix L
opt

is such that C(A�L
opt

C)

⇤B = CA⇤B. Hence equation
(3.41) can be written :

uy

opt

= (F
opt

C(A� L
opt

C)

⇤B)

⇤v. (3.42)

Proposition 116. If the reference model is such that G
ref

2 G
1

, the control using oberver L
opt

and state feedback controller K
opt

is greater than the control using a single output feedback F
opt

,
c.-à-d. :

uy

opt

� ux̂

opt

.

3.2.2.2 Illustration

Example of figure (6) is considered. The input/ouptut model of the system is recalled :

H =

⇣
�6(��2)⇤ �12(��5)⇤

⌘
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and the reference model to achieve : G
ref

= (��5)⇤H 2 G
1

:

G
ref

= (��5)⇤H =

⇣
�6(��5)⇤ �12(��5)⇤

⌘
.

By applying the results of proposition (113), the optimal observer is :

L
opt

= CA⇤�\CA⇤B�/CA⇤B

=

0

BBBBBBBBB@

�3�(��2)⇤

�2�(��2)⇤

"

"

�(��2)⇤

(��2)⇤

1

CCCCCCCCCA

and by considering the results of proposition 115, the state feedback controller is :

K
opt

= H�\G
ref

�/((A� L
opt

C)

⇤B)

=

 
��4(��5)⇤ ��2(��5)⇤ �4(��5)⇤ ��4(��5)⇤ ��(��5)⇤ �2�4(��5)⇤

�2�3(��5)⇤ �2�(��5)⇤ ��3(��5)⇤ �2�3(��5)⇤ �2

(��5)⇤ �3�3(��5)⇤

!
,

which leads to the following transfer relations :

u = (K
opt

(A� L
opt

C)

⇤B)

⇤v

=

 
(��5)⇤ �6(��5)⇤

�2�4(��5)⇤ (��5)⇤

!
v

y = CA⇤B(K
opt

(A� L
opt

C)

⇤B)

⇤v

=

⇣
�6(��5)⇤ �12(��5)⇤

⌘
v,

3.2.3 Modified Observer-based controller

In this section will be proposed the using of an observer-based controller to compute the
state-feedback control law, which was introduced by L. Hardouin, Y. Shang, C. A. Maya and B.
Cottenceau in [22].In order to reduce the number of calculations, some algebraic modifications
were proposed in my work.
Formally, the following control law is considered u = P (v � Mx̂) where x̂ = Ax̂ � Bu �
L
opt

(ŷ � y).

The synthesis objetive is to get the greatest control law such that the output y be smaller
than or equal to the desired output G

ref

v. G
ref

, the reference model, which can be seen as a
specification to achieve, it is denoted G

ref

2 Max

in

[[�, �]]l⇥m, its entries are given in Max

in

[[�, �]]

but it can be equivalently given in an other semiring.
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From a practical point of view an interesting reference model is G
ref

= H , it means that
the controller aims to preserve the input/output performances of the system while increasing as
much as possible the controlled input.

The controllers are given by:

Popt = CA⇤B�\G
ref

(3.43)

Mopt = Popt�\Popt�/(A⇤BPopt) = Kopt (3.44)

And the observer Lopt:

L1 = (A⇤B)

�\(CA⇤B) (3.45)

L2 = (A⇤R)

�\(CA⇤R) (3.46)

Lopt is the greatest observer matrix such that:

Lopt = inf(L1, L2) (3.47)

The state output can be written, respectively, as:

x = A⇤Bu = A⇤BP (M(A� L
opt

C)

⇤BP )

⇤v (3.48)

y = Cx = CA⇤BP (M(A� L
opt

C)

⇤BP )

⇤v (3.49)

Defining two auxiliary matrices Q and k, its possible to simplify the control law u

described in [22] :

Q = (MA⇤B)

⇤P (3.50)

K = QMA⇤L (3.51)

The control law u can be described as follows:
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u = P (v �M(A⇤Bu� A⇤Ly)) (3.52)

u = (MA⇤B)

⇤P (v �MA⇤Ly) (3.53)

u = Qv �QMA⇤Ly (3.54)

u = Qv �Ky. (3.55)

So, using the matrices Q and K previously defined, we can simplify and easily calculate
the control law u in time-domain, using the reference v and the output y. Now, its not necessary
to calculate the estimated state x̂ to obtain the control law u.
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Figure 9 – Graphical representation of series s = p�qr⇤ = e�����4�3�(�5�5��7�6)(�4�3)⇤.
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Figure 10 – Model matching : state feedback architecture.
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Figure 11 – Observer architecture
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Figure 12 – Control architecture using the estimated state
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Figure 13 – The Observer-based Controller
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4 Automated Conveyor System

The system located at the Laboratoire Angevin de Recherche en Ingénierie des Systèmes
(LARIS) at the Université d’Angers is a conveyor belt system that moves pallets through circuits
(see Figure 13). In its more general configuration, it allows by external signals the blocking of
pallets using buttons located in different parts of the system and also the dynamic change of
the paths that the pallets can follow through. The time in which is desirable to turn on or off
the buttons or to make the path modifications are the inputs of the system. Further, there are
many proximity sensors along the circuits which can detect the presence of the pallet. With this
information, it is possible to have as outputs the times in which a pallet (any pallet, there is
not, in principle, any distinction between them) passed through a given point. The entire system
receives commands from a programable logic controller, which in turn receives actions either
directly from its user interface or through a C++ program at a computer.

Figure 14 – Photo of the system in the Laboratoire Angevin de Recherche en Ingénierie des
Systèmes (LARIS) at the Université d’Angers.

In order for the system to be modeled by a TEG, the paths need to be static through all
the experiment (so, no changing of paths are allowed). Further, the buttons are programmed so,
when they are turned off (that is, the button is down and the pallet is allowed to move), they
automatically go on (up) again in 2 seconds. This guarantees that if more than one pallet is
waiting in line, when the button fires one time, only one pallet continues.
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There are two independent circuits, ten buttons (B1 to B10) and ten proximity sensors
(one sensor just before each button). The upper circuit has three pallets, all of them located
initially just before B1. The lower circuit has also three pallets, but two of them located just
before B5 and another just before B6. The pallets in the upper circuit move clockwise while
the ones in the lower circuit move counter-clockwise. For each stretch between two successive
buttons (for instance, the stretch B1 - B2), there is an associated timing and also an associated
capacity of pallets. The timing gives the time that a pallet needs to go from just before the initial
button to the successive one when there is nothing in the path (thus, it is the minimal time). These
timings were obtained through multiple experiments.

Figure 15 – Three pallets in a line, approaching a button

When the button “fires” once, only one pallet continues moving and the other two
continue waiting for another firing of the button. of the results was taken as the value. Thus, from
Figure 6.3 it is possible to conclude that, without anything in the path, a pallet takes in average 8
seconds 1 to go from just before B1 to just before B2. The capacity tells the maximum number
of tokens that this stretch can hold. Thus, the stretch B1 - B2 can hold at most 3 pallets. The
system is programmed so, if the following path is full, the button will not fire (go down). This
capacity constraint is inconsequential for the upper loop, since all the capacities are three and
there is only three pallets in the upper loop, but it is important for the lower one.

As programmed, in order for a button to fire it is necessary that three conditions hold:
(i) there must exist one presence token for that button, that is, there must be a pallet waiting
just before a button, (ii) there must exist at least one capacity token for that button, that is, there
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Figure 16 – Schematic picture of the transportation system

must exist at least one free space for a pallet in the following stretch (so, for example, B5 is only
allowed to fire if there is at most 1 pallet in the stretch B5 - B6) and finally (iii) there must exists
at least one control token, which represents an external action in the system. The first two kind of
tokens obviously represent a “physical” constraint of the system, while the third one represents a
logical constraint in which the engineer can act to obtain a desired behaviour. When the button
fires, one of each token is consumed. Of course, the average of the values was not exactly an
integer amount of seconds. Rounded numbers were used.

The system is also programmed to make a forced synchronization between the upper and
lower circuits using the buttons B3 and B10. This means that, for these two buttons in particular,
there is an additional fourth token necessary for firing. B3 fires only if (but not if) there is a
presence token in B10 and B10 fires only if (but not if) there is a presence token in B3. This way,
their firings are always synchronized.
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4.1 System Description

A TEG model for this system is proposed in [21], by Dr. Vinícius Mariano Gonçalves.
Before continuing, it is important to define the inputs u[k] and outputs y[k] of the system. Hence,
it will be defined as ui[k], i = 1, 2, ..., 10 the time in which the kth control token is available for
the ith button. Further, yi[k], i = 1, 2, ...,10 the time in which the kth palled arrived just before the
ith button. Note that these definitions comply with what one can act and observe in the system.
The modelling begins by analyzing each stretch. Suppose, to begin with, stretch B1 - B2. For
this stretch, which holds three pallets at most, one can think in three possible status for a pallet
(respective of one place in a TEG):
(i) - P1: Stopped, in the first place in line before B2;
(ii) - P2: Stopped, in the second place in line before B2;
(iii) - P3: Stopped, in the third place in line before B2;
Also, one needs four actions (respective of one transition in a TEG), labeled as x1, x2, x3 and x4:
(i) - x1: Button B1 fired, began moving to B2;
(ii) - x2: Began moving from the third place to the second place in line;
(iii) - x3: Began moving from the second place to the first place in line;
(iv) - x4: Button B2 fired, began moving to B3.

Note that:
(i) - x1 can only fire if there is at least one capacity token (that is, a free space for a pallet) in the
stretch B1 - B2, there is a presence token in the previous place (there is one, initially, see Figure
6.3) and at least one control token is available. Further, at every firing of x4, one capacity token
is restored to the stretch because one pallet is leaving. Since the stretch begins free of pallets
(see Figure 2.3), initially there are three capacity tokens;
(ii) - A pallet can only begin to move from the third place in line to the second one if there are
no pallets in the second place. Thus, there must not exist a token/pallet in P2. Further, only one
token/pallet can be at P2 at a given time (because only one pallet can be at the second place) and
every time x3 fires the space becomes free to a new pallet to go to the second position;
(iii) - A pallet can only begin to move from the second place in line to the first one if there are
no pallets in the first place. Thus, there must not exist a token/pallet in P1. Further, only one
token/pallet can be at P1 at a given time (because only one pallet can be at the first place) and
every time x4 fires the space becomes free to a new pallet to go to the first position;
(iv) - Of course, x4 can only fire if there is at least one capacity token in the stretch B2! B3,
which initially is devoid of pallets and thus B2 has initially three capacity tokens. Further, there
must exist a presence token in P1 and also at least one control token for B2.

A final concern is that P3 can only have one token/pallet at a given time. The above
constraints naturally ensure this, and thus there is no need to force it artificially. Indeed, suppose
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Figure 17 – TEG for B1-B2

there are two token/pallets at P3 at a given time. Then, there must be one token/pallet in P2
because, otherwise, x2 would have fired and there would be just one token/pallet in P1. This, in
turn, implies that there must be at least one token/pallet in P1 because, otherwise, x3 would have
fired and there would be no token/pallet in P2. Hence, there would be four tokens in P1, P2 and
P3. This is impossible, because one of the constraints above ensures at most three tokens in the
stretch. Then, it remains to discuss the timings of P1, P2, P3. Clearly, the sum of them needs to
be 8 seconds (see Figure 16). One then needs to discover how much time it takes to a pallet to
move from the second to the first position and from the third to the second position. Experiments
show that this timing is of 2 seconds for both movements, and indeed this is true for all other
stretches (it is simply the time the belt takes to move a pallet a distance of one length of a pallet,
and thus the length of the pallet divided by the belt speed). Hence, the timing of P1 and P2 are 2
seconds and the timing of P3 is 8 - 2 - 2 = 4 seconds.

In an analogous way, models for all the stretches can be derived. It is necessary, though, to
be careful about initial conditions (number of pallets initially in the stretch) and maximum number
of pallets, according to Figure 15. After that, all these models can be connected (connecting the
model of the stretch B1 - B2 with the one of the stretch B2 - B3 and so on). The resulting TEG
can be seen in Figure 17. Note that the output transitions, drawn in green, are constructed in a
way that they represents the arrival time of a pallet in each button, which is what is measured by
the proximity sensor. For instance, y2[k] = 2x3[k] which is the time that the kth pallet arrives
at B2. Some of these output transitions have an associated place with tokens (B1, B5 and B6)
because, initially, there is already a pallet close to these buttons . Note, also, the aforementioned
synchronization between B3 and B10 in transition x7.
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4.2 System Modelling

For the TEG model presented in Figure 18, the system over the two-dimentional descrip-
tion Max

in

[[�, �]], presented in last chapter 3.1.4, is described as the following:
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Input matrix B:

B =
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Output matrix C:

C =
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The transfer function H = CA?B can be seen in Appendix A.

4.3 Control System

In this section the modified observer-based controller will be used to compute the state-
feedback control law, which was described in the last chapter, section 3.2.3 .

For this problem the reference model G
ref

will be defined as G
ref

= H , it means that
the controller aims to preserve the input/output performances of the system while increasing as
much as possible the controlled input. The controlled system will be able to retard all control
entries, without losing performance.

All calculated controllers (M,P,Q and K) can be seen in Appendix A.

4.3.1 Time domain representation of u

As seen in section 3.2.3, equation 3.55, the control law u depends of the output y and the
reference v. The automated conveyor system has 10 control inputs, in order to demonstrate the
procedure of convertion to time domain, the control input u

0

was chosen.

u
0

= u0

y

+ u0

v

u
0

= Qv �Ky

The control law, given in the time domain for u0

y

(t), can be represented using the (min-
plus)-algebra as follows:

⇠
00

(t), ⇠
01

(t), ..., ⇠
19

(t) are intermediated transactions introduced by our controller.
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3

(t�8)�
4v

3

(t� 10)� 5v
3

(t� 12)� 6v
3

(t� 38)� 7v
3

(t� 42)� 8v
3

(t� 46)� 3v
4

(t� 18)� 3v
7

(t�
36)�4v

7

(t�40)�3v
8

(t�24)�4v
3

(t�28)�3v
9

(t�18)�4v
9

(t�22)�5v
9

(t�26)� ⇠0
v

(t)

So, using the matrices Q and K previously defined, we can simplify and easily calculate
the control law u in time-domain, using the reference v and the output y. Now, its not necessary
to calculate the estimated state x̂ to obtain the control law u.
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Figure 18 – Full TEG
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5 Implementation

To calculate the matrices Q, K, M, P and Lopt it was necessary to use a Toolbox,
developed in C++ language , to handle increasing pseudo-periodic series in semiring Max

in

[�, �],
introduced by the (max, plus) team of INRIA Roquencourt. The algorithms proposed in this
software are initiated in 1992 in the PhD of S. Gaubert and continuated in 1994 during the master
of Benoit Gruet. It is still in evolution in order to be improved until today. The C++ library
can be interfaced to Scilab and more efficiently with Scicoslab. This toolbox and interfaces are
downloadable in the following URL: <http://istia.univ-angers.fr/ hardouin/outils.html>. It was
used the software CodeBlocks as development environment, to handle with the C++ language.

Figure 19 – Development environment - CodeBlocks

5.1 Code

The main code is presented as follows:

#ifndef _WIN32
#include "../include/lminmaxgd.h"
#else
#include "..\include\lminmaxgd.h"
using namespace std;
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#endif

#include "..\src\gd.cpp"
#include "..\src\poly.cpp"
#include "..\src\serie.cpp"
#include "..\src\smatrix.cpp"
#include "..\src\tools.cpp"

At first it was necessary to include some C++ libraries in order to work with formal
series, monomials, polynomials and to compute the star of a matrix. From now, will be shown
how to calculate all controllers, the transfer matrix H and how to proceed a simulation using the
toolbox.

///////

int main() // Main Function
{
try
{
poly p,q;
gd r;
smatrix v(10,1);
q.init(0,3)(3,5)(5,7)(6,10);
r.init(0,0);
v(0,0).init(p,q,r); // Reference v
v(1,0)=v(0,0);
v(2,0)=v(0,0);
v(3,0)=v(0,0);
v(4,0)=v(0,0);
v(5,0)=v(0,0);
v(6,0)=v(0,0);
v(7,0)=v(0,0);
v(8,0)=v(0,0);
v(9,0)=v(0,0);

The reference v was defined using a polynomial, all entries have the same form, without
losing generality.

smatrix A(22,22); // Matrix A

smatrix Lopt,L1,L2;
int i,j;

smatrix CA,AB,CAB,AR,CAR;
smatrix Gref;
smatrix Popt, Fopt, M;
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The second step was the definition of all controllers and model. The state transfer matrix
A:

A(0,3)=gd(3,0);//(g^3,d^0) // Matrix A
A(0,11)=gd(1,2);
A(1,0)=gd(0,4);
A(1,2)=gd(1,0);
A(2,1)=gd(0,2);
A(2,3)=gd(1,0);
A(3,2)=gd(0,2);
A(3,6)=gd(3,0);
A(4,2)=gd(0,2);
A(4,6)=gd(1,0);
A(5,4)=gd(0,2);
A(5,6)=gd(1,0);

A(6,5)=gd(0,2);
A(6,9)=gd(3,0);
A(6,13)=gd(0,0);
A(6,21)=gd(0,2);
A(7,6)=gd(0,6);
A(7,8)=gd(1,0);
A(8,7)=gd(0,2);
A(8,9)=gd(1,0);
A(9,0)=gd(0,0);
A(9,8)=gd(0,2);

A(10,9)=gd(1,4);
A(10,11)=gd(0,0);
A(11,0)=gd(0,0);
A(11,10)=gd(1,2);
A(12,6)=gd(1,5);
A(12,13)=gd(0,0);
A(13,12)=gd(1,2);
A(13,15)=gd(1,0);
A(14,13)=gd(0,4);
A(14,15)=gd(0,0);

A(15,14)=gd(1,2);
A(15,16)=gd(1,0);
A(16,15)=gd(0,5);
A(16,18)=gd(2,0);
A(16,15)=gd(0,5);
A(16,18)=gd(2,0);
A(17,16)=gd(0,7);
A(17,18)=gd(1,0);
A(18,17)=gd(0,2);
A(18,20)=gd(2,0);

A(19,18)=gd(0,10);
A(19,20)=gd(1,0);
A(20,6)=gd(2,0);
A(20,19)=gd(0,2);
A(21,6)=gd(1,0);
A(21,20)=gd(0,4);
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The output matrix C and input matrix B:

smatrix C(10,22); // Output Matrix C
C(0,11)=gd(1,2);
C(1,2)=gd(0,2);
C(2,5)=gd(0,2);
C(3,8)=gd(0,2);
C(4,12)=gd(1,2);
C(5,14)=gd(1,2);
C(6,15)=gd(0,5);
C(7,17)=gd(0,2);
C(8,19)=gd(0,2);
C(9,21)=gd(0,2);

smatrix B(22,10); // Matrix B
B(0,0)=gd(1,0);
B(3,1)=gd(1,0);
B(6,2)=gd(1,0);
B(6,9)=gd(1,0);
B(9,3)=gd(1,0);
B(13,4)=gd(1,0);
B(15,5)=gd(1,0);
B(16,6)=gd(1,0);
B(18,7)=gd(1,0);
B(20,8)=gd(1,0);

Matrix R represents the connections between the uncontrollable inputs and the state
matrix. In our case R is defined as identity and we will not work with system disturbances.

smatrix R(22,22); // Matrix R = Identity
R(0,0)=gd(0,0);
R(1,1)=gd(0,0);
R(2,2)=gd(0,0);
R(3,3)=gd(0,0);
R(4,4)=gd(0,0);
R(5,5)=gd(0,0);
R(6,6)=gd(0,0);
R(7,7)=gd(0,0);
R(8,8)=gd(0,0);
R(9,9)=gd(0,0);
R(10,10)=gd(0,0);
R(11,11)=gd(0,0);
R(12,12)=gd(0,0);
R(13,13)=gd(0,0);
R(14,14)=gd(0,0);
R(15,15)=gd(0,0);
R(16,16)=gd(0,0);
R(17,17)=gd(0,0);
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R(18,18)=gd(0,0);
R(19,19)=gd(0,0);
R(20,20)=gd(0,0);
R(21,21)=gd(0,0);

Calculation of the Observer L
opt

smatrix As=star(A); // A*
CA=otimes(C,As); // CA*

AB=otimes(As,B);
CAB=otimes(C,AB);
AR=otimes(As,R);
CAR=otimes(C,AR);

L1=rfrac(AB,CAB);
L2=rfrac(AR,CAR);
Lopt=inf(L1,L2);
Lopt=prcaus(Lopt); // Observer L_opt

fstream f;
f.open("/Users/Matheus/Documents/libminmaxgd/examples/Lopt.txt",ios::out);
f<<Lopt;
f.close();

The desired behavior G
ref

was defined equal to the transfer function G
ref

= H = CA?B.
Controllers M and P

opt

are also calculated. It is important to mention that as we are working
with a real system, the use of causal controllers is required.

Gref=CAB; // Desired behavior Gref = CA*B =H

Popt=lfrac(Gref,CAB);
M=otimes(AB,Popt);
M=rfrac(Popt,M);
M=lfrac(M,Popt);
M=prcaus(M); // Causal M

Fopt=rfrac(M,C);
Fopt=prcaus(Fopt); // Causal Fopt

fstream g;
g.open("/Users/Matheus/Documents/libminmaxgd/examples/Fopt.txt",ios::out);
g<<Fopt;
g.close();

fstream h;
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h.open("/Users/Matheus/Documents/libminmaxgd/examples/M.txt",ios::out);
h<<M;
h.close();

Calculation of Q and K.

// - - - - - - - - Control - - - - - - -

smatrix Q;

Q = otimes(As,B);
Q = otimes(Kopt,Q);
Q = star(Q);
Q = otimes(Q,Popt);
Q = prcaus(Q); // Causal Matrix Q

fstream l;
l.open("/Users/Matheus/Documents/libminmaxgd/examples/Q.txt",ios::out);
l<<Q;
l.close();

smatrix K;

K = otimes(Q,Kopt);
K = otimes(K,As);
K = otimes(K,Lopt);
K = prcaus(K); // Causal Matrix K

fstream m;
m.open("/Users/Matheus/Documents/libminmaxgd/examples/K.txt",ios::out);
m<<K;
m.close();

To conclude, is presented the simulation, where will be compared the controlled system
responce, denoted by Y and the desired output, denoted by Y2.

// -------------------- Simulation ----------------------

smatrix Y;

Y=otimes(Lopt,C);
Y=oplus(A,Y);
Y=star(Y);
Y=otimes(Kopt,Y);
Y=otimes(Y,B);
Y=otimes(Y,Popt);
Y=star(Y);
Y=otimes(Popt,Y);
Y=otimes(B,Y);
Y=otimes(As,Y);
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Y=otimes(C,Y);
Y=otimes(Y,v);

cout<<"Y"<<Y<<endl;

smatrix Y2;

Y2=otimes(Gref,v);

cout<<"Y2"<<Y2<<endl;

return(0);
}

catch(mem_limite l)
{
cout<<"Exception : too many coefficents in polynom "<<l.memoire<<endl;
return(1);
}

catch(taille_incorrecte obj)
{ // 0 : r non causal
// 1 : tentative d’accès à un element d’une matrice avec un indice incorrect
// 2 : matrice de taille incompatible pour oplus, inf, otimes, rfrac, lfrac
// 3 : etoile de matrice carrée uniquement
cout<<"Exception "<<obj.erreur<<endl;
return(1);
}
}

Using the Max

in

[�, �] C++ library we could easily work with periodic series, an effective
toolbox, that doesn’t need an huge computational effort to solve our problem. Simulation results
will be presented in the next chapter.
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6 Results

In order to test the efficacy of the observer-based controller a simulation was developed.
Remembering, the objective is to get the greatest control law such that the output y be smaller
than or equal to the desired output G

ref

v.The desired behavior of the system G
ref

, was defined
equal to the transfer function H , which means G

ref

= H = CA?B.

It was performed a simple comparison between the controlled system responce, denoted
by Y and the desired output, denoted by Y2.

Y = Cx = CA⇤BP (M(A� L
opt

C)

⇤BP )

⇤v (6.1)

Y 2 = G
ref

v = Hv (6.2)

The following code represents how to calculate Y and Y2 using the Toolbox, developed
in C++ language , to handle increasing pseudo-periodic series in semiring Max

in

[�, �], introduced
by the (max, plus) team of INRIA Roquencourt.

----------------------------------- Simulation ----------------------------------
smatrix Y;

Y=otimes(Lopt,C);
Y=oplus(A,Y);
Y=star(Y);
Y=otimes(Kopt,Y);
Y=otimes(Y,B);
Y=otimes(Y,Popt);
Y=star(Y);
Y=otimes(Popt,Y);
Y=otimes(B,Y);
Y=otimes(As,Y);
Y=otimes(C,Y);
Y=otimes(Y,v);

cout<<"Y"<<Y<<endl;

smatrix Y2;

Y2=otimes(Gref,v);

cout<<"Y2"<<Y2<<endl;
---------------------------------------------------------------------------------
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6.1 Simulation Results

The result obtained from the application changes some characters in the semiring
Max

in

[�, �] representation (g , �, d , � and + , �). The simulation result, provided by
the console application is shown below:

Y =
[0,0] = g^2 d^5+ g^3 d^7+( g^4 d^53+ g^5 d^59+ g^6 d^65)[ g^3 d^45]*
[1,0] = g^1 d^11+ g^2 d^13+ g^3 d^15+( g^4 d^61+ g^5 d^67+ g^6 d^73)[ g^3 d^45]*
[2,0] = g^1 d^15+( g^2 d^39+ g^3 d^45+ g^4 d^65)[ g^3 d^45]*
[3,0] = ( g^1 d^45+ g^2 d^51+ g^3 d^57)[ g^3 d^45]*
[4,0] = g^2 d^5+( g^3 d^42+ g^4 d^48+ g^5 d^54)[ g^3 d^45]*
[5,0] = g^2 d^9+ g^3 d^11+( g^4 d^48+ g^5 d^54+ g^6 d^60)[ g^3 d^45]*
[6,0] = g^1 d^8+ g^2 d^14+ g^3 d^19+( g^4 d^53+ g^5 d^59+ g^6 d^65)[ g^3 d^45]*
[7,0] = g^1 d^17+ g^2 d^23+ g^3 d^28+( g^4 d^62+ g^5 d^68+ g^6 d^74)[ g^3 d^45]*
[8,0] = ( g^1 d^29+ g^2 d^35+ g^3 d^41)[ g^3 d^45]*
[9,0] = ( g^1 d^35+ g^2 d^41+ g^3 d^47)[ g^3 d^45]*

Y2 =
[0,0] = g^2 d^5+ g^3 d^7+( g^4 d^53+ g^5 d^59+ g^6 d^65)[ g^3 d^45]*
[1,0] = g^1 d^11+ g^2 d^13+ g^3 d^15+( g^4 d^61+ g^5 d^67+ g^6 d^73)[ g^3 d^45]*
[2,0] = g^1 d^15+( g^2 d^39+ g^3 d^45+ g^4 d^65)[ g^3 d^45]*
[3,0] = ( g^1 d^45+ g^2 d^51+ g^3 d^57)[ g^3 d^45]*
[4,0] = g^2 d^5+( g^3 d^42+ g^4 d^48+ g^5 d^54)[ g^3 d^45]*
[5,0] = g^2 d^9+ g^3 d^11+( g^4 d^48+ g^5 d^54+ g^6 d^60)[ g^3 d^45]*
[6,0] = g^1 d^8+ g^2 d^14+ g^3 d^19+( g^4 d^53+ g^5 d^59+ g^6 d^65)[ g^3 d^45]*
[7,0] = g^1 d^17+ g^2 d^23+ g^3 d^28+( g^4 d^62+ g^5 d^68+ g^6 d^74)[ g^3 d^45]*
[8,0] = ( g^1 d^29+ g^2 d^35+ g^3 d^41)[ g^3 d^45]*
[9,0] = ( g^1 d^35+ g^2 d^41+ g^3 d^47)[ g^3 d^45]*

Writing in standardized form, we have:

Y
0

= �2�5 � �3�7 � (�4�53 � �5�59 � �6�65)[�3�45] ⇤

Y
1

= �1�11 � �2�13 � �3�15 � (�4�61 � �5�67 � �6�73)[�3�45] ⇤

Y
2

= �1�15 � (�2�39 � �3�45 � �4�65)[�3�45] ⇤

Y
3

= (�1�45 � �2�51 � �3�57)[�3�45] ⇤

Y
4

= �2�5 � (�3�42 � �4�48 � �5�54)[�3�45] ⇤

Y
5

= �2�9 � �3�11 � (�4�48 � �5�54 � �6�60)[�3�45] ⇤

Y
6

= �1�8 � �2�14 � �3�19 � (�4�53 � �5�59 � �6�65)[�3�45] ⇤

Y
7

= �1�17 � �2�23 � �3�28 � (�4�62 � �5�68 � �6�74)[�3�45] ⇤

Y
8

= (�1�29 � �2�35 � �3�41)[�3�45] ⇤

Y
9

= (�1�35 � �2�41 � �3�47)[�3�45]⇤
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Y 2

0

= �2�5 � �3�7 � (�4�53 � �5�59 � �6�65)[�3�45] ⇤

Y 2

1

= �1�11 � �2�13 � �3�15 � (�4�61 � �5�67 � �6�73)[�3�45] ⇤

Y 2

2

= �1�15 � (�2�39 � �3�45 � �4�65)[�3�45] ⇤

Y 2

3

= (�1�45 � �2�51 � �3�57)[�3�45] ⇤

Y 2

4

= �2�5 � (�3�42 � �4�48 � �5�54)[�3�45] ⇤

Y 2

5

= �2�9 � �3�11 � (�4�48 � �5�54 � �6�60)[�3�45] ⇤

Y 2

6

= �1�8 � �2�14 � �3�19 � (�4�53 � �5�59 � �6�65)[�3�45] ⇤

Y 2

7

= �1�17 � �2�23 � �3�28 � (�4�62 � �5�68 � �6�74)[�3�45] ⇤

Y 2

8

= (�1�29 � �2�35 � �3�41)[�3�45] ⇤

Y 2

9

= (�1�35 � �2�41 � �3�47)[�3�45]⇤

As mentioned in Chapter 3, the system responses are periodic and causal series, which
can be written in the following standardized form : p � qr⇤, with p and q polynomials with
exponents in N and r a monomial with exponents inN. Polynomial p characterizes the transient
behavior of the series, polynomial q represents a pattern which is repeated periodically, the
periodicity is given by r = �⌫�⌧ where ⌫/⌧ corresponds to the production rate of the series,
conversely ⌧/⌫ is the cycle time of the series.

6.2 Simulation Analysis

Analyzing the response of the controlled system Y , some conclusions can be taken:

• Y
0

, Y
1

, Y
2

, Y
4

, Y
5

, Y
6

and Y
7

have a transient behavior before reaching the steady state;

• Y
3

, Y
8

and Y
9

only have the steady state;

• The periodicity is given by r = �⌫�⌧ = �3�45;

• The production rate is ⌧/⌫ = 45/3.

At least, analysing the performance of the controlled system and the desired behavior, by
comparing the polynomials Y

0

and Y 2

0

, respectively, the output of the controlled system and
desired output.

Y
0

= �2�5 � �3�7 � (�4�53 � �5�59 � �6�65)[�3�45]⇤

Y 2

0

= �2�5 � �3�7 � (�4�53 � �5�59 � �6�65)[�3�45]⇤

Can be noticed that Y
0

= Y 2

0

. Which means that the observer-based controller has
reached the objective. This result is present for all trajectories of Y

k

and Y 2

k

.
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7 Conclusion

The first general objective of the project - to develop a model for the automated conveyor
system located in LARIS using a TEG model proposed by Dr. Vinícius Mariano Gonçalves in
his thesis [21] and the two-dimentional description Max

in

[[�, �]] for (Max,+) linear systems, was
achieved.

Using the Observer-based Controller for (Max,+) linear systems, based on the work
introduced by Prof. Laurent Hardouin in [22] , the second general objective of the project was to
control the automated conveyor system. Some algebraic manipulations were proposed by me,
in order to simplify the way of obtaining the control law u in the time domain. Now, it is not
necessary to calculate the u using the estimated state x̂. The control law can be calculated based
on the reference input v and the output of the system Y .

To calculate the observer-based controller it was necessary to use a Toolbox, developed
in C++ language , to handle with increasing pseudo-periodic series in semiring Max

in

[�, �],
introduced by the (max, plus) team of INRIA Roquencourt.

After the calculation of the controllers, a simulation of the controlled system has been
proposed. The output of the controlled system Y was compared with the desired output Y 2 =

G
ref

v. As we can observe in Chapter 6 specification has been reached. Therefore, the controlled
system has the same performance of the reference system G

ref

, but their controlled inputs u are
delayed as much as possible. For just-in-time problems this is a very important result.

As a possible continuation of this work, uncertain TEG models can be used to represent
possible modelling errors.
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APPENDIX A – Transfer Function and
Controllers

The transfer function H of the system is given by:

H =
[0,0] = g^2 d^2+ g^3 d^4+ g^4 d^30+ g^5 d^34+ g^6 d^38+( g^7 d^75+ g^8 d^80+ g^9 d^87)[ g^3 d^45]*
[0,1] = g^5 d^24+ g^6 d^28+ g^7 d^32+( g^8 d^69+ g^9 d^74+ g^10 d^81)[ g^3 d^45]*
[0,2] = g^4 d^18+ g^5 d^22+ g^6 d^26+( g^7 d^63+ g^8 d^68+ g^9 d^75)[ g^3 d^45]*
[0,3] = g^4 d^8+ g^5 d^10+ g^6 d^12+ g^7 d^38+ g^8 d^42+ g^9 d^46+( g^10 d^83+ g^11 d^88+ g^12 d^95)[ g^3 d^45]*
[0,4] = g^4 d^18+( g^5 d^56+ g^6 d^61+ g^7 d^68)[ g^3 d^45]*
[0,5] = ( g^4 d^50+ g^5 d^55+ g^6 d^62)[ g^3 d^45]*
[0,6] = ( g^4 d^45+ g^5 d^50+ g^6 d^57)[ g^3 d^45]*
[0,7] = g^4 d^36+ g^5 d^40+( g^6 d^48+ g^7 d^81+ g^8 d^86)[ g^3 d^45]*
[0,8] = g^4 d^24+ g^5 d^28+( g^6 d^36+ g^7 d^69+ g^8 d^74)[ g^3 d^45]*
[0,9] = g^4 d^18+ g^5 d^22+ g^6 d^26+( g^7 d^63+ g^8 d^68+ g^9 d^75)[ g^3 d^45]*
[1,0] = g^1 d^8+ g^2 d^10+ g^3 d^12+ g^4 d^38+ g^5 d^42+ g^6 d^46+( g^7 d^83+ g^8 d^88+ g^9 d^95)[ g^3 d^45]*
[1,1] = g^2 d^2+ g^3 d^4+ g^4 d^8+ g^5 d^32+ g^6 d^36+ g^7 d^40+( g^8 d^77+ g^9 d^82+ g^10 d^89)[ g^3 d^45]*
[1,2] = g^4 d^26+ g^5 d^30+ g^6 d^34+( g^7 d^71+ g^8 d^76+ g^9 d^83)[ g^3 d^45]*
[1,3] = g^4 d^16+ g^5 d^18+ g^6 d^20+ g^7 d^46+ g^8 d^50+ g^9 d^54+( g^10 d^91+ g^11 d^96+ g^12 d^103)[ g^3 d^45]*
[1,4] = g^4 d^26+( g^5 d^64+ g^6 d^69+ g^7 d^76)[ g^3 d^45]*
[1,5] = ( g^4 d^58+ g^5 d^63+ g^6 d^70)[ g^3 d^45]*
[1,6] = ( g^4 d^53+ g^5 d^58+ g^6 d^65)[ g^3 d^45]*
[1,7] = g^4 d^44+ g^5 d^48+( g^6 d^56+ g^7 d^89+ g^8 d^94)[ g^3 d^45]*
[1,8] = g^4 d^32+ g^5 d^36+( g^6 d^44+ g^7 d^77+ g^8 d^82)[ g^3 d^45]*
[1,9] = g^4 d^26+ g^5 d^30+ g^6 d^34+( g^7 d^71+ g^8 d^76+ g^9 d^83)[ g^3 d^45]*
[2,0] = g^1 d^12+ g^2 d^16+ g^3 d^20+( g^4 d^42+ g^5 d^61+ g^6 d^66)[ g^3 d^45]*
[2,1] = g^2 d^6+ g^3 d^10+ g^4 d^14+( g^5 d^36+ g^6 d^55+ g^7 d^60)[ g^3 d^45]*
[2,2] = g^2 d^4+ g^3 d^8+( g^4 d^30+ g^5 d^49+ g^6 d^54)[ g^3 d^45]*
[2,3] = g^4 d^20+ g^5 d^24+ g^6 d^28+( g^7 d^50+ g^8 d^69+ g^9 d^74)[ g^3 d^45]*
[2,4] = g^2 d^4+( g^3 d^42+ g^4 d^47+ g^5 d^68)[ g^3 d^45]*
[2,5] = ( g^2 d^36+ g^3 d^41+ g^4 d^62)[ g^3 d^45]*
[2,6] = ( g^2 d^31+ g^3 d^36+ g^4 d^57)[ g^3 d^45]*
[2,7] = g^2 d^22+ g^3 d^26+( g^4 d^48+ g^5 d^67+ g^6 d^72)[ g^3 d^45]*
[2,8] = g^2 d^10+ g^3 d^14+( g^4 d^36+ g^5 d^55+ g^6 d^60)[ g^3 d^45]*
[2,9] = g^2 d^4+ g^3 d^8+( g^4 d^30+ g^5 d^49+ g^6 d^54)[ g^3 d^45]*
[3,0] = g^1 d^22+ g^2 d^26+ g^3 d^30+( g^4 d^67+ g^5 d^72+ g^6 d^79)[ g^3 d^45]*
[3,1] = g^2 d^16+ g^3 d^20+ g^4 d^24+( g^5 d^61+ g^6 d^66+ g^7 d^73)[ g^3 d^45]*
[3,2] = g^1 d^10+ g^2 d^14+ g^3 d^18+( g^4 d^55+ g^5 d^60+ g^6 d^67)[ g^3 d^45]*
[3,3] = g^2 d^2+ g^3 d^4+ g^4 d^30+ g^5 d^34+ g^6 d^38+( g^7 d^75+ g^8 d^80+ g^9 d^87)[ g^3 d^45]*
[3,4] = g^1 d^10+( g^2 d^48+ g^3 d^53+ g^4 d^60)[ g^3 d^45]*
[3,5] = ( g^1 d^42+ g^2 d^47+ g^3 d^54)[ g^3 d^45]*
[3,6] = ( g^1 d^37+ g^2 d^42+ g^3 d^49)[ g^3 d^45]*
[3,7] = g^1 d^28+ g^2 d^32+( g^3 d^40+ g^4 d^73+ g^5 d^78)[ g^3 d^45]*
[3,8] = g^1 d^16+ g^2 d^20+( g^3 d^28+ g^4 d^61+ g^5 d^66)[ g^3 d^45]*
[3,9] = g^1 d^10+ g^2 d^14+ g^3 d^18+( g^4 d^55+ g^5 d^60+ g^6 d^67)[ g^3 d^45]*
[4,0] = g^3 d^19+ g^4 d^23+ g^5 d^27+( g^6 d^64+ g^7 d^69+ g^8 d^76)[ g^3 d^45]*
[4,1] = g^4 d^13+ g^5 d^17+ g^6 d^21+( g^7 d^58+ g^8 d^63+ g^9 d^70)[ g^3 d^45]*
[4,2] = g^3 d^7+ g^4 d^11+ g^5 d^15+( g^6 d^52+ g^7 d^57+ g^8 d^64)[ g^3 d^45]*
[4,3] = g^6 d^27+ g^7 d^31+ g^8 d^35+( g^9 d^72+ g^10 d^77+ g^11 d^84)[ g^3 d^45]*
[4,4] = g^2 d^2+ g^3 d^7+( g^4 d^45+ g^5 d^50+ g^6 d^57)[ g^3 d^45]*
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[4,5] = ( g^3 d^39+ g^4 d^44+ g^5 d^51)[ g^3 d^45]*
[4,6] = ( g^3 d^34+ g^4 d^39+ g^5 d^46)[ g^3 d^45]*
[4,7] = g^3 d^25+ g^4 d^29+( g^5 d^37+ g^6 d^70+ g^7 d^75)[ g^3 d^45]*
[4,8] = g^3 d^13+ g^4 d^17+( g^5 d^25+ g^6 d^58+ g^7 d^63)[ g^3 d^45]*
[4,9] = g^3 d^7+ g^4 d^11+ g^5 d^15+( g^6 d^52+ g^7 d^57+ g^8 d^64)[ g^3 d^45]*
[5,0] = g^4 d^25+ g^5 d^29+ g^6 d^33+( g^7 d^70+ g^8 d^75+ g^9 d^82)[ g^3 d^45]*
[5,1] = g^5 d^19+ g^6 d^23+ g^7 d^27+( g^8 d^64+ g^9 d^69+ g^10 d^76)[ g^3 d^45]*
[5,2] = g^4 d^13+ g^5 d^17+ g^6 d^21+( g^7 d^58+ g^8 d^63+ g^9 d^70)[ g^3 d^45]*
[5,3] = g^7 d^33+ g^8 d^37+ g^9 d^41+( g^10 d^78+ g^11 d^83+ g^12 d^90)[ g^3 d^45]*
[5,4] = g^2 d^6+ g^3 d^8+ g^4 d^13+( g^5 d^51+ g^6 d^56+ g^7 d^63)[ g^3 d^45]*
[5,5] = g^2 d^2+ g^3 d^7+( g^4 d^45+ g^5 d^50+ g^6 d^57)[ g^3 d^45]*
[5,6] = g^3 d^2+( g^4 d^40+ g^5 d^45+ g^6 d^52)[ g^3 d^45]*
[5,7] = g^4 d^31+ g^5 d^35+( g^6 d^43+ g^7 d^76+ g^8 d^81)[ g^3 d^45]*
[5,8] = g^4 d^19+ g^5 d^23+( g^6 d^31+ g^7 d^64+ g^8 d^69)[ g^3 d^45]*
[5,9] = g^4 d^13+ g^5 d^17+ g^6 d^21+( g^7 d^58+ g^8 d^63+ g^9 d^70)[ g^3 d^45]*
[6,0] = g^4 d^30+ g^5 d^35+ g^6 d^40+( g^7 d^75+ g^8 d^80+ g^9 d^87)[ g^3 d^45]*
[6,1] = g^5 d^24+ g^6 d^29+ g^7 d^34+( g^8 d^69+ g^9 d^74+ g^10 d^81)[ g^3 d^45]*
[6,2] = g^4 d^18+ g^5 d^23+ g^6 d^28+( g^7 d^63+ g^8 d^68+ g^9 d^75)[ g^3 d^45]*
[6,3] = g^7 d^38+ g^8 d^43+ g^9 d^48+( g^10 d^83+ g^11 d^88+ g^12 d^95)[ g^3 d^45]*
[6,4] = g^2 d^11+ g^3 d^16+ g^4 d^21+( g^5 d^56+ g^6 d^61+ g^7 d^68)[ g^3 d^45]*
[6,5] = g^1 d^5+ g^2 d^10+ g^3 d^15+( g^4 d^50+ g^5 d^55+ g^6 d^62)[ g^3 d^45]*
[6,6] = g^2 d^5+ g^3 d^10+( g^4 d^45+ g^5 d^50+ g^6 d^57)[ g^3 d^45]*
[6,7] = ( g^4 d^36+ g^5 d^41+ g^6 d^48)[ g^3 d^45]*
[6,8] = ( g^4 d^24+ g^5 d^29+ g^6 d^36)[ g^3 d^45]*
[6,9] = g^4 d^18+ g^5 d^23+ g^6 d^28+( g^7 d^63+ g^8 d^68+ g^9 d^75)[ g^3 d^45]*
[7,0] = g^4 d^39+ g^5 d^44+ g^6 d^49+( g^7 d^84+ g^8 d^89+ g^9 d^96)[ g^3 d^45]*
[7,1] = g^5 d^33+ g^6 d^38+ g^7 d^43+( g^8 d^78+ g^9 d^83+ g^10 d^90)[ g^3 d^45]*
[7,2] = g^4 d^27+ g^5 d^32+ g^6 d^37+( g^7 d^72+ g^8 d^77+ g^9 d^84)[ g^3 d^45]*
[7,3] = g^7 d^47+ g^8 d^52+ g^9 d^57+( g^10 d^92+ g^11 d^97+ g^12 d^104)[ g^3 d^45]*
[7,4] = g^2 d^20+ g^3 d^25+ g^4 d^30+( g^5 d^65+ g^6 d^70+ g^7 d^77)[ g^3 d^45]*
[7,5] = g^1 d^14+ g^2 d^19+ g^3 d^24+( g^4 d^59+ g^5 d^64+ g^6 d^71)[ g^3 d^45]*
[7,6] = g^1 d^9+ g^2 d^14+ g^3 d^19+( g^4 d^54+ g^5 d^59+ g^6 d^66)[ g^3 d^45]*
[7,7] = g^2 d^2+ g^3 d^9+( g^4 d^45+ g^5 d^50+ g^6 d^57)[ g^3 d^45]*
[7,8] = ( g^4 d^33+ g^5 d^38+ g^6 d^45)[ g^3 d^45]*
[7,9] = g^4 d^27+ g^5 d^32+ g^6 d^37+( g^7 d^72+ g^8 d^77+ g^9 d^84)[ g^3 d^45]*
[8,0] = ( g^4 d^51+ g^5 d^56+ g^6 d^63)[ g^3 d^45]*
[8,1] = ( g^5 d^45+ g^6 d^50+ g^7 d^57)[ g^3 d^45]*
[8,2] = ( g^4 d^39+ g^5 d^44+ g^6 d^51)[ g^3 d^45]*
[8,3] = ( g^7 d^59+ g^8 d^64+ g^9 d^71)[ g^3 d^45]*
[8,4] = ( g^2 d^32+ g^3 d^37+ g^4 d^44)[ g^3 d^45]*
[8,5] = ( g^1 d^26+ g^2 d^31+ g^3 d^38)[ g^3 d^45]*
[8,6] = ( g^1 d^21+ g^2 d^26+ g^3 d^33)[ g^3 d^45]*
[8,7] = g^1 d^12+ g^2 d^14+( g^3 d^24+ g^4 d^57+ g^5 d^62)[ g^3 d^45]*
[8,8] = g^2 d^2+( g^3 d^12+ g^4 d^45+ g^5 d^50)[ g^3 d^45]*
[8,9] = ( g^4 d^39+ g^5 d^44+ g^6 d^51)[ g^3 d^45]*
[9,0] = g^2 d^14+ g^3 d^18+( g^4 d^57+ g^5 d^62+ g^6 d^69)[ g^3 d^45]*
[9,1] = g^3 d^8+ g^4 d^12+( g^5 d^51+ g^6 d^56+ g^7 d^63)[ g^3 d^45]*
[9,2] = g^2 d^2+ g^3 d^6+( g^4 d^45+ g^5 d^50+ g^6 d^57)[ g^3 d^45]*
[9,3] = g^5 d^22+ g^6 d^26+( g^7 d^65+ g^8 d^70+ g^9 d^77)[ g^3 d^45]*
[9,4] = ( g^2 d^38+ g^3 d^43+ g^4 d^50)[ g^3 d^45]*
[9,5] = ( g^1 d^32+ g^2 d^37+ g^3 d^44)[ g^3 d^45]*
[9,6] = ( g^1 d^27+ g^2 d^32+ g^3 d^39)[ g^3 d^45]*
[9,7] = g^1 d^18+ g^2 d^20+( g^3 d^30+ g^4 d^63+ g^5 d^68)[ g^3 d^45]*
[9,8] = g^1 d^6+ g^2 d^8+( g^3 d^18+ g^4 d^51+ g^5 d^56)[ g^3 d^45]*
[9,9] = g^2 d^2+ g^3 d^6+( g^4 d^45+ g^5 d^50+ g^6 d^57)[ g^3 d^45]*
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The observer L
opt

:

Lopt =

[0,0] = g^0 d^0+ g^1 d^2+ g^2 d^4+ g^3 d^30+ g^4 d^34+ g^5 d^38+( g^6 d^75+ g^7 d^80+ g^8 d^87)[ g^3 d^45]*
[0,1] = g^3 d^22+ g^4 d^26+ g^5 d^30+( g^6 d^67+ g^7 d^72+ g^8 d^79)[ g^3 d^45]*
[0,2] = g^3 d^18+ g^4 d^22+ g^5 d^26+( g^6 d^63+ g^7 d^68+ g^8 d^75)[ g^3 d^45]*
[0,3] = g^3 d^8+ g^4 d^10+ g^5 d^12+ g^6 d^38+ g^7 d^42+ g^8 d^46+( g^9 d^83+ g^10 d^88+ g^11 d^95)[ g^3 d^45]*
[0,4] = g^3 d^18+( g^4 d^56+ g^5 d^61+ g^6 d^68)[ g^3 d^45]*
[0,5] = ( g^3 d^50+ g^4 d^55+ g^5 d^62)[ g^3 d^45]*
[0,6] = ( g^3 d^45+ g^4 d^50+ g^5 d^57)[ g^3 d^45]*
[0,7] = g^3 d^36+ g^4 d^40+( g^5 d^48+ g^6 d^81+ g^7 d^86)[ g^3 d^45]*
[0,8] = g^3 d^24+ g^4 d^28+( g^5 d^36+ g^6 d^69+ g^7 d^74)[ g^3 d^45]*
[0,9] = g^3 d^18+ g^4 d^22+ g^5 d^26+( g^6 d^63+ g^7 d^68+ g^8 d^75)[ g^3 d^45]*
[1,0] = g^0 d^4+ g^1 d^6+ g^2 d^8+ g^3 d^34+ g^4 d^38+ g^5 d^42+( g^6 d^79+ g^7 d^84+ g^8 d^91)[ g^3 d^45]*
[1,1] = g^2 d^0+ g^3 d^26+ g^4 d^30+ g^5 d^34+( g^6 d^71+ g^7 d^76+ g^8 d^83)[ g^3 d^45]*
[1,2] = g^3 d^22+ g^4 d^26+ g^5 d^30+( g^6 d^67+ g^7 d^72+ g^8 d^79)[ g^3 d^45]*
[1,3] = g^3 d^12+ g^4 d^14+ g^5 d^16+ g^6 d^42+ g^7 d^46+ g^8 d^50+( g^9 d^87+ g^10 d^92+ g^11 d^99)[ g^3 d^45]*
[1,4] = g^3 d^22+( g^4 d^60+ g^5 d^65+ g^6 d^72)[ g^3 d^45]*
[1,5] = ( g^3 d^54+ g^4 d^59+ g^5 d^66)[ g^3 d^45]*
[1,6] = ( g^3 d^49+ g^4 d^54+ g^5 d^61)[ g^3 d^45]*
[1,7] = g^3 d^40+ g^4 d^44+( g^5 d^52+ g^6 d^85+ g^7 d^90)[ g^3 d^45]*
[1,8] = g^3 d^28+ g^4 d^32+( g^5 d^40+ g^6 d^73+ g^7 d^78)[ g^3 d^45]*
[1,9] = g^3 d^22+ g^4 d^26+ g^5 d^30+( g^6 d^67+ g^7 d^72+ g^8 d^79)[ g^3 d^45]*
[2,0] = g^0 d^6+ g^1 d^8+ g^2 d^10+ g^3 d^36+ g^4 d^40+ g^5 d^44+( g^6 d^81+ g^7 d^86+ g^8 d^93)[ g^3 d^45]*
[2,1] = g^1 d^0+ g^2 d^2+ g^3 d^28+ g^4 d^32+ g^5 d^36+( g^6 d^73+ g^7 d^78+ g^8 d^85)[ g^3 d^45]*
[2,2] = g^3 d^24+ g^4 d^28+ g^5 d^32+( g^6 d^69+ g^7 d^74+ g^8 d^81)[ g^3 d^45]*
[2,3] = g^3 d^14+ g^4 d^16+ g^5 d^18+ g^6 d^44+ g^7 d^48+ g^8 d^52+( g^9 d^89+ g^10 d^94+ g^11 d^101)[ g^3 d^45]*
[2,4] = g^3 d^24+( g^4 d^62+ g^5 d^67+ g^6 d^74)[ g^3 d^45]*
[2,5] = ( g^3 d^56+ g^4 d^61+ g^5 d^68)[ g^3 d^45]*
[2,6] = ( g^3 d^51+ g^4 d^56+ g^5 d^63)[ g^3 d^45]*
[2,7] = g^3 d^42+ g^4 d^46+( g^5 d^54+ g^6 d^87+ g^7 d^92)[ g^3 d^45]*
[2,8] = g^3 d^30+ g^4 d^34+( g^5 d^42+ g^6 d^75+ g^7 d^80)[ g^3 d^45]*
[2,9] = g^3 d^24+ g^4 d^28+ g^5 d^32+( g^6 d^69+ g^7 d^74+ g^8 d^81)[ g^3 d^45]*
[3,0] = g^0 d^8+ g^1 d^10+ g^2 d^12+ g^3 d^38+ g^4 d^42+ g^5 d^46+( g^6 d^83+ g^7 d^88+ g^8 d^95)[ g^3 d^45]*
[3,1] = g^0 d^0+ g^1 d^2+ g^2 d^4+ g^3 d^30+ g^4 d^34+ g^5 d^38+( g^6 d^75+ g^7 d^80+ g^8 d^87)[ g^3 d^45]*
[3,2] = g^3 d^26+ g^4 d^30+ g^5 d^34+( g^6 d^71+ g^7 d^76+ g^8 d^83)[ g^3 d^45]*
[3,3] = g^3 d^16+ g^4 d^18+ g^5 d^20+ g^6 d^46+ g^7 d^50+ g^8 d^54+( g^9 d^91+ g^10 d^96+ g^11 d^103)[ g^3 d^45]*
[3,4] = g^3 d^26+( g^4 d^64+ g^5 d^69+ g^6 d^76)[ g^3 d^45]*
[3,5] = ( g^3 d^58+ g^4 d^63+ g^5 d^70)[ g^3 d^45]*
[3,6] = ( g^3 d^53+ g^4 d^58+ g^5 d^65)[ g^3 d^45]*
[3,7] = g^3 d^44+ g^4 d^48+( g^5 d^56+ g^6 d^89+ g^7 d^94)[ g^3 d^45]*
[3,8] = g^3 d^32+ g^4 d^36+( g^5 d^44+ g^6 d^77+ g^7 d^82)[ g^3 d^45]*
[3,9] = g^3 d^26+ g^4 d^30+ g^5 d^34+( g^6 d^71+ g^7 d^76+ g^8 d^83)[ g^3 d^45]*
[4,0] = g^0 d^8+ g^1 d^12+ g^2 d^16+( g^3 d^38+ g^4 d^57+ g^5 d^62)[ g^3 d^45]*
[4,1] = g^0 d^0+ g^1 d^4+ g^2 d^8+( g^3 d^30+ g^4 d^49+ g^5 d^54)[ g^3 d^45]*
[4,2] = g^1 d^0+ g^2 d^4+( g^3 d^26+ g^4 d^45+ g^5 d^50)[ g^3 d^45]*
[4,3] = g^3 d^16+ g^4 d^20+ g^5 d^24+( g^6 d^46+ g^7 d^65+ g^8 d^70)[ g^3 d^45]*
[4,4] = g^1 d^0+( g^2 d^38+ g^3 d^43+ g^4 d^64)[ g^3 d^45]*
[4,5] = ( g^1 d^32+ g^2 d^37+ g^3 d^58)[ g^3 d^45]*
[4,6] = ( g^1 d^27+ g^2 d^32+ g^3 d^53)[ g^3 d^45]*
[4,7] = g^1 d^18+ g^2 d^22+( g^3 d^44+ g^4 d^63+ g^5 d^68)[ g^3 d^45]*
[4,8] = g^1 d^6+ g^2 d^10+( g^3 d^32+ g^4 d^51+ g^5 d^56)[ g^3 d^45]*
[4,9] = g^1 d^0+ g^2 d^4+( g^3 d^26+ g^4 d^45+ g^5 d^50)[ g^3 d^45]*
[5,0] = g^0 d^10+ g^1 d^14+ g^2 d^18+( g^3 d^40+ g^4 d^59+ g^5 d^64)[ g^3 d^45]*
[5,1] = g^0 d^2+ g^1 d^6+ g^2 d^10+( g^3 d^32+ g^4 d^51+ g^5 d^56)[ g^3 d^45]*
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[5,2] = g^1 d^2+ g^2 d^6+( g^3 d^28+ g^4 d^47+ g^5 d^52)[ g^3 d^45]*
[5,3] = g^3 d^18+ g^4 d^22+ g^5 d^26+( g^6 d^48+ g^7 d^67+ g^8 d^72)[ g^3 d^45]*
[5,4] = g^1 d^2+( g^2 d^40+ g^3 d^45+ g^4 d^66)[ g^3 d^45]*
[5,5] = ( g^1 d^34+ g^2 d^39+ g^3 d^60)[ g^3 d^45]*
[5,6] = ( g^1 d^29+ g^2 d^34+ g^3 d^55)[ g^3 d^45]*
[5,7] = g^1 d^20+ g^2 d^24+( g^3 d^46+ g^4 d^65+ g^5 d^70)[ g^3 d^45]*
[5,8] = g^1 d^8+ g^2 d^12+( g^3 d^34+ g^4 d^53+ g^5 d^58)[ g^3 d^45]*
[5,9] = g^1 d^2+ g^2 d^6+( g^3 d^28+ g^4 d^47+ g^5 d^52)[ g^3 d^45]*
[6,0] = g^0 d^12+ g^1 d^16+ g^2 d^20+( g^3 d^57+ g^4 d^62+ g^5 d^69)[ g^3 d^45]*
[6,1] = g^0 d^4+ g^1 d^8+ g^2 d^12+( g^3 d^49+ g^4 d^54+ g^5 d^61)[ g^3 d^45]*
[6,2] = g^0 d^0+ g^1 d^4+ g^2 d^8+( g^3 d^45+ g^4 d^50+ g^5 d^57)[ g^3 d^45]*
[6,3] = g^3 d^20+ g^4 d^24+ g^5 d^28+( g^6 d^65+ g^7 d^70+ g^8 d^77)[ g^3 d^45]*
[6,4] = g^0 d^0+( g^1 d^38+ g^2 d^43+ g^3 d^50)[ g^3 d^45]*
[6,5] = ( g^0 d^32+ g^1 d^37+ g^2 d^44)[ g^3 d^45]*
[6,6] = ( g^0 d^27+ g^1 d^32+ g^2 d^39)[ g^3 d^45]*
[6,7] = g^0 d^18+ g^1 d^22+( g^2 d^30+ g^3 d^63+ g^4 d^68)[ g^3 d^45]*
[6,8] = g^0 d^6+ g^1 d^10+( g^2 d^18+ g^3 d^51+ g^4 d^56)[ g^3 d^45]*
[6,9] = g^0 d^0+ g^1 d^4+ g^2 d^8+( g^3 d^45+ g^4 d^50+ g^5 d^57)[ g^3 d^45]*
[7,0] = g^0 d^18+ g^1 d^22+ g^2 d^26+( g^3 d^63+ g^4 d^68+ g^5 d^75)[ g^3 d^45]*
[7,1] = g^0 d^10+ g^1 d^14+ g^2 d^18+( g^3 d^55+ g^4 d^60+ g^5 d^67)[ g^3 d^45]*
[7,2] = g^0 d^6+ g^1 d^10+ g^2 d^14+( g^3 d^51+ g^4 d^56+ g^5 d^63)[ g^3 d^45]*
[7,3] = g^2 d^0+ g^3 d^26+ g^4 d^30+ g^5 d^34+( g^6 d^71+ g^7 d^76+ g^8 d^83)[ g^3 d^45]*
[7,4] = g^0 d^6+( g^1 d^44+ g^2 d^49+ g^3 d^56)[ g^3 d^45]*
[7,5] = ( g^0 d^38+ g^1 d^43+ g^2 d^50)[ g^3 d^45]*
[7,6] = ( g^0 d^33+ g^1 d^38+ g^2 d^45)[ g^3 d^45]*
[7,7] = g^0 d^24+ g^1 d^28+( g^2 d^36+ g^3 d^69+ g^4 d^74)[ g^3 d^45]*
[7,8] = g^0 d^12+ g^1 d^16+( g^2 d^24+ g^3 d^57+ g^4 d^62)[ g^3 d^45]*
[7,9] = g^0 d^6+ g^1 d^10+ g^2 d^14+( g^3 d^51+ g^4 d^56+ g^5 d^63)[ g^3 d^45]*
[8,0] = g^0 d^20+ g^1 d^24+ g^2 d^28+( g^3 d^65+ g^4 d^70+ g^5 d^77)[ g^3 d^45]*
[8,1] = g^0 d^12+ g^1 d^16+ g^2 d^20+( g^3 d^57+ g^4 d^62+ g^5 d^69)[ g^3 d^45]*
[8,2] = g^0 d^8+ g^1 d^12+ g^2 d^16+( g^3 d^53+ g^4 d^58+ g^5 d^65)[ g^3 d^45]*
[8,3] = g^1 d^0+ g^2 d^2+ g^3 d^28+ g^4 d^32+ g^5 d^36+( g^6 d^73+ g^7 d^78+ g^8 d^85)[ g^3 d^45]*
[8,4] = g^0 d^8+( g^1 d^46+ g^2 d^51+ g^3 d^58)[ g^3 d^45]*
[8,5] = ( g^0 d^40+ g^1 d^45+ g^2 d^52)[ g^3 d^45]*
[8,6] = ( g^0 d^35+ g^1 d^40+ g^2 d^47)[ g^3 d^45]*
[8,7] = g^0 d^26+ g^1 d^30+( g^2 d^38+ g^3 d^71+ g^4 d^76)[ g^3 d^45]*
[8,8] = g^0 d^14+ g^1 d^18+( g^2 d^26+ g^3 d^59+ g^4 d^64)[ g^3 d^45]*
[8,9] = g^0 d^8+ g^1 d^12+ g^2 d^16+( g^3 d^53+ g^4 d^58+ g^5 d^65)[ g^3 d^45]*
[9,0] = g^0 d^22+ g^1 d^26+ g^2 d^30+( g^3 d^67+ g^4 d^72+ g^5 d^79)[ g^3 d^45]*
[9,1] = g^0 d^14+ g^1 d^18+ g^2 d^22+( g^3 d^59+ g^4 d^64+ g^5 d^71)[ g^3 d^45]*
[9,2] = g^0 d^10+ g^1 d^14+ g^2 d^18+( g^3 d^55+ g^4 d^60+ g^5 d^67)[ g^3 d^45]*
[9,3] = g^0 d^0+ g^1 d^2+ g^2 d^4+ g^3 d^30+ g^4 d^34+ g^5 d^38+( g^6 d^75+ g^7 d^80+ g^8 d^87)[ g^3 d^45]*
[9,4] = g^0 d^10+( g^1 d^48+ g^2 d^53+ g^3 d^60)[ g^3 d^45]*
[9,5] = ( g^0 d^42+ g^1 d^47+ g^2 d^54)[ g^3 d^45]*
[9,6] = ( g^0 d^37+ g^1 d^42+ g^2 d^49)[ g^3 d^45]*
[9,7] = g^0 d^28+ g^1 d^32+( g^2 d^40+ g^3 d^73+ g^4 d^78)[ g^3 d^45]*
[9,8] = g^0 d^16+ g^1 d^20+( g^2 d^28+ g^3 d^61+ g^4 d^66)[ g^3 d^45]*
[9,9] = g^0 d^10+ g^1 d^14+ g^2 d^18+( g^3 d^55+ g^4 d^60+ g^5 d^67)[ g^3 d^45]*
[10,0] = g^0 d^0+ g^1 d^26+ g^2 d^30+ g^3 d^34+( g^4 d^71+ g^5 d^76+ g^6 d^83)[ g^3 d^45]*
[10,1] = g^1 d^18+ g^2 d^22+ g^3 d^26+( g^4 d^63+ g^5 d^68+ g^6 d^75)[ g^3 d^45]*
[10,2] = g^1 d^14+ g^2 d^18+ g^3 d^22+( g^4 d^59+ g^5 d^64+ g^6 d^71)[ g^3 d^45]*
[10,3] = g^1 d^4+ g^2 d^6+ g^3 d^8+ g^4 d^34+ g^5 d^38+ g^6 d^42+( g^7 d^79+ g^8 d^84+ g^9 d^91)[ g^3 d^45]*
[10,4] = g^1 d^14+( g^2 d^52+ g^3 d^57+ g^4 d^64)[ g^3 d^45]*
[10,5] = ( g^1 d^46+ g^2 d^51+ g^3 d^58)[ g^3 d^45]*
[10,6] = ( g^1 d^41+ g^2 d^46+ g^3 d^53)[ g^3 d^45]*
[10,7] = g^1 d^32+ g^2 d^36+( g^3 d^44+ g^4 d^77+ g^5 d^82)[ g^3 d^45]*
[10,8] = g^1 d^20+ g^2 d^24+( g^3 d^32+ g^4 d^65+ g^5 d^70)[ g^3 d^45]*
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[10,9] = g^1 d^14+ g^2 d^18+ g^3 d^22+( g^4 d^59+ g^5 d^64+ g^6 d^71)[ g^3 d^45]*
[11,0] = g^0 d^0+ g^1 d^2+ g^2 d^28+ g^3 d^32+ g^4 d^36+( g^5 d^73+ g^6 d^78+ g^7 d^85)[ g^3 d^45]*
[11,1] = g^2 d^20+ g^3 d^24+ g^4 d^28+( g^5 d^65+ g^6 d^70+ g^7 d^77)[ g^3 d^45]*
[11,2] = g^2 d^16+ g^3 d^20+ g^4 d^24+( g^5 d^61+ g^6 d^66+ g^7 d^73)[ g^3 d^45]*
[11,3] = g^2 d^6+ g^3 d^8+ g^4 d^10+ g^5 d^36+ g^6 d^40+ g^7 d^44+( g^8 d^81+ g^9 d^86+ g^10 d^93)[ g^3 d^45]*
[11,4] = g^2 d^16+( g^3 d^54+ g^4 d^59+ g^5 d^66)[ g^3 d^45]*
[11,5] = ( g^2 d^48+ g^3 d^53+ g^4 d^60)[ g^3 d^45]*
[11,6] = ( g^2 d^43+ g^3 d^48+ g^4 d^55)[ g^3 d^45]*
[11,7] = g^2 d^34+ g^3 d^38+( g^4 d^46+ g^5 d^79+ g^6 d^84)[ g^3 d^45]*
[11,8] = g^2 d^22+ g^3 d^26+( g^4 d^34+ g^5 d^67+ g^6 d^72)[ g^3 d^45]*
[11,9] = g^2 d^16+ g^3 d^20+ g^4 d^24+( g^5 d^61+ g^6 d^66+ g^7 d^73)[ g^3 d^45]*
[12,0] = g^1 d^17+ g^2 d^21+ g^3 d^25+( g^4 d^62+ g^5 d^67+ g^6 d^74)[ g^3 d^45]*
[12,1] = g^1 d^9+ g^2 d^13+ g^3 d^17+( g^4 d^54+ g^5 d^59+ g^6 d^66)[ g^3 d^45]*
[12,2] = g^1 d^5+ g^2 d^9+ g^3 d^13+( g^4 d^50+ g^5 d^55+ g^6 d^62)[ g^3 d^45]*
[12,3] = g^4 d^25+ g^5 d^29+ g^6 d^33+( g^7 d^70+ g^8 d^75+ g^9 d^82)[ g^3 d^45]*
[12,4] = g^0 d^0+ g^1 d^5+( g^2 d^43+ g^3 d^48+ g^4 d^55)[ g^3 d^45]*
[12,5] = ( g^1 d^37+ g^2 d^42+ g^3 d^49)[ g^3 d^45]*
[12,6] = ( g^1 d^32+ g^2 d^37+ g^3 d^44)[ g^3 d^45]*
[12,7] = g^1 d^23+ g^2 d^27+( g^3 d^35+ g^4 d^68+ g^5 d^73)[ g^3 d^45]*
[12,8] = g^1 d^11+ g^2 d^15+( g^3 d^23+ g^4 d^56+ g^5 d^61)[ g^3 d^45]*
[12,9] = g^1 d^5+ g^2 d^9+ g^3 d^13+( g^4 d^50+ g^5 d^55+ g^6 d^62)[ g^3 d^45]*
[13,0] = g^2 d^19+ g^3 d^23+ g^4 d^27+( g^5 d^64+ g^6 d^69+ g^7 d^76)[ g^3 d^45]*
[13,1] = g^2 d^11+ g^3 d^15+ g^4 d^19+( g^5 d^56+ g^6 d^61+ g^7 d^68)[ g^3 d^45]*
[13,2] = g^2 d^7+ g^3 d^11+ g^4 d^15+( g^5 d^52+ g^6 d^57+ g^7 d^64)[ g^3 d^45]*
[13,3] = g^5 d^27+ g^6 d^31+ g^7 d^35+( g^8 d^72+ g^9 d^77+ g^10 d^84)[ g^3 d^45]*
[13,4] = g^0 d^0+ g^1 d^2+ g^2 d^7+( g^3 d^45+ g^4 d^50+ g^5 d^57)[ g^3 d^45]*
[13,5] = g^1 d^0+( g^2 d^39+ g^3 d^44+ g^4 d^51)[ g^3 d^45]*
[13,6] = ( g^2 d^34+ g^3 d^39+ g^4 d^46)[ g^3 d^45]*
[13,7] = g^2 d^25+ g^3 d^29+( g^4 d^37+ g^5 d^70+ g^6 d^75)[ g^3 d^45]*
[13,8] = g^2 d^13+ g^3 d^17+( g^4 d^25+ g^5 d^58+ g^6 d^63)[ g^3 d^45]*
[13,9] = g^2 d^7+ g^3 d^11+ g^4 d^15+( g^5 d^52+ g^6 d^57+ g^7 d^64)[ g^3 d^45]*
[14,0] = g^2 d^23+ g^3 d^27+ g^4 d^31+( g^5 d^68+ g^6 d^73+ g^7 d^80)[ g^3 d^45]*
[14,1] = g^2 d^15+ g^3 d^19+ g^4 d^23+( g^5 d^60+ g^6 d^65+ g^7 d^72)[ g^3 d^45]*
[14,2] = g^2 d^11+ g^3 d^15+ g^4 d^19+( g^5 d^56+ g^6 d^61+ g^7 d^68)[ g^3 d^45]*
[14,3] = g^5 d^31+ g^6 d^35+ g^7 d^39+( g^8 d^76+ g^9 d^81+ g^10 d^88)[ g^3 d^45]*
[14,4] = g^0 d^4+ g^1 d^6+ g^2 d^11+( g^3 d^49+ g^4 d^54+ g^5 d^61)[ g^3 d^45]*
[14,5] = g^0 d^0+ g^1 d^5+( g^2 d^43+ g^3 d^48+ g^4 d^55)[ g^3 d^45]*
[14,6] = g^1 d^0+( g^2 d^38+ g^3 d^43+ g^4 d^50)[ g^3 d^45]*
[14,7] = g^2 d^29+ g^3 d^33+( g^4 d^41+ g^5 d^74+ g^6 d^79)[ g^3 d^45]*
[14,8] = g^2 d^17+ g^3 d^21+( g^4 d^29+ g^5 d^62+ g^6 d^67)[ g^3 d^45]*
[14,9] = g^2 d^11+ g^3 d^15+ g^4 d^19+( g^5 d^56+ g^6 d^61+ g^7 d^68)[ g^3 d^45]*
[15,0] = g^3 d^25+ g^4 d^30+ g^5 d^35+( g^6 d^70+ g^7 d^75+ g^8 d^82)[ g^3 d^45]*
[15,1] = g^3 d^17+ g^4 d^22+ g^5 d^27+( g^6 d^62+ g^7 d^67+ g^8 d^74)[ g^3 d^45]*
[15,2] = g^3 d^13+ g^4 d^18+ g^5 d^23+( g^6 d^58+ g^7 d^63+ g^8 d^70)[ g^3 d^45]*
[15,3] = g^6 d^33+ g^7 d^38+ g^8 d^43+( g^9 d^78+ g^10 d^83+ g^11 d^90)[ g^3 d^45]*
[15,4] = g^1 d^6+ g^2 d^11+ g^3 d^16+( g^4 d^51+ g^5 d^56+ g^6 d^63)[ g^3 d^45]*
[15,5] = g^0 d^0+ g^1 d^5+ g^2 d^10+( g^3 d^45+ g^4 d^50+ g^5 d^57)[ g^3 d^45]*
[15,6] = g^1 d^0+ g^2 d^5+( g^3 d^40+ g^4 d^45+ g^5 d^52)[ g^3 d^45]*
[15,7] = ( g^3 d^31+ g^4 d^36+ g^5 d^43)[ g^3 d^45]*
[15,8] = ( g^3 d^19+ g^4 d^24+ g^5 d^31)[ g^3 d^45]*
[15,9] = g^3 d^13+ g^4 d^18+ g^5 d^23+( g^6 d^58+ g^7 d^63+ g^8 d^70)[ g^3 d^45]*
[16,0] = g^3 d^30+ g^4 d^35+ g^5 d^40+( g^6 d^75+ g^7 d^80+ g^8 d^87)[ g^3 d^45]*
[16,1] = g^3 d^22+ g^4 d^27+ g^5 d^32+( g^6 d^67+ g^7 d^72+ g^8 d^79)[ g^3 d^45]*
[16,2] = g^3 d^18+ g^4 d^23+ g^5 d^28+( g^6 d^63+ g^7 d^68+ g^8 d^75)[ g^3 d^45]*
[16,3] = g^6 d^38+ g^7 d^43+ g^8 d^48+( g^9 d^83+ g^10 d^88+ g^11 d^95)[ g^3 d^45]*
[16,4] = g^1 d^11+ g^2 d^16+ g^3 d^21+( g^4 d^56+ g^5 d^61+ g^6 d^68)[ g^3 d^45]*
[16,5] = g^0 d^5+ g^1 d^10+ g^2 d^15+( g^3 d^50+ g^4 d^55+ g^5 d^62)[ g^3 d^45]*
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[16,6] = g^0 d^0+ g^1 d^5+ g^2 d^10+( g^3 d^45+ g^4 d^50+ g^5 d^57)[ g^3 d^45]*
[16,7] = g^2 d^0+( g^3 d^36+ g^4 d^41+ g^5 d^48)[ g^3 d^45]*
[16,8] = ( g^3 d^24+ g^4 d^29+ g^5 d^36)[ g^3 d^45]*
[16,9] = g^3 d^18+ g^4 d^23+ g^5 d^28+( g^6 d^63+ g^7 d^68+ g^8 d^75)[ g^3 d^45]*
[17,0] = g^3 d^37+ g^4 d^42+ g^5 d^47+( g^6 d^82+ g^7 d^87+ g^8 d^94)[ g^3 d^45]*
[17,1] = g^3 d^29+ g^4 d^34+ g^5 d^39+( g^6 d^74+ g^7 d^79+ g^8 d^86)[ g^3 d^45]*
[17,2] = g^3 d^25+ g^4 d^30+ g^5 d^35+( g^6 d^70+ g^7 d^75+ g^8 d^82)[ g^3 d^45]*
[17,3] = g^6 d^45+ g^7 d^50+ g^8 d^55+( g^9 d^90+ g^10 d^95+ g^11 d^102)[ g^3 d^45]*
[17,4] = g^1 d^18+ g^2 d^23+ g^3 d^28+( g^4 d^63+ g^5 d^68+ g^6 d^75)[ g^3 d^45]*
[17,5] = g^0 d^12+ g^1 d^17+ g^2 d^22+( g^3 d^57+ g^4 d^62+ g^5 d^69)[ g^3 d^45]*
[17,6] = g^0 d^7+ g^1 d^12+ g^2 d^17+( g^3 d^52+ g^4 d^57+ g^5 d^64)[ g^3 d^45]*
[17,7] = g^1 d^0+ g^2 d^7+( g^3 d^43+ g^4 d^48+ g^5 d^55)[ g^3 d^45]*
[17,8] = ( g^3 d^31+ g^4 d^36+ g^5 d^43)[ g^3 d^45]*
[17,9] = g^3 d^25+ g^4 d^30+ g^5 d^35+( g^6 d^70+ g^7 d^75+ g^8 d^82)[ g^3 d^45]*
[18,0] = ( g^3 d^39+ g^4 d^44+ g^5 d^51)[ g^3 d^45]*
[18,1] = ( g^3 d^31+ g^4 d^36+ g^5 d^43)[ g^3 d^45]*
[18,2] = ( g^3 d^27+ g^4 d^32+ g^5 d^39)[ g^3 d^45]*
[18,3] = ( g^6 d^47+ g^7 d^52+ g^8 d^59)[ g^3 d^45]*
[18,4] = ( g^1 d^20+ g^2 d^25+ g^3 d^32)[ g^3 d^45]*
[18,5] = ( g^0 d^14+ g^1 d^19+ g^2 d^26)[ g^3 d^45]*
[18,6] = ( g^0 d^9+ g^1 d^14+ g^2 d^21)[ g^3 d^45]*
[18,7] = g^0 d^0+ g^1 d^2+( g^2 d^12+ g^3 d^45+ g^4 d^50)[ g^3 d^45]*
[18,8] = ( g^2 d^0+ g^3 d^33+ g^4 d^38)[ g^3 d^45]*
[18,9] = ( g^3 d^27+ g^4 d^32+ g^5 d^39)[ g^3 d^45]*
[19,0] = ( g^3 d^49+ g^4 d^54+ g^5 d^61)[ g^3 d^45]*
[19,1] = ( g^3 d^41+ g^4 d^46+ g^5 d^53)[ g^3 d^45]*
[19,2] = ( g^3 d^37+ g^4 d^42+ g^5 d^49)[ g^3 d^45]*
[19,3] = ( g^6 d^57+ g^7 d^62+ g^8 d^69)[ g^3 d^45]*
[19,4] = ( g^1 d^30+ g^2 d^35+ g^3 d^42)[ g^3 d^45]*
[19,5] = ( g^0 d^24+ g^1 d^29+ g^2 d^36)[ g^3 d^45]*
[19,6] = ( g^0 d^19+ g^1 d^24+ g^2 d^31)[ g^3 d^45]*
[19,7] = g^0 d^10+ g^1 d^12+( g^2 d^22+ g^3 d^55+ g^4 d^60)[ g^3 d^45]*
[19,8] = g^1 d^0+( g^2 d^10+ g^3 d^43+ g^4 d^48)[ g^3 d^45]*
[19,9] = ( g^3 d^37+ g^4 d^42+ g^5 d^49)[ g^3 d^45]*
[20,0] = g^2 d^12+( g^3 d^51+ g^4 d^56+ g^5 d^63)[ g^3 d^45]*
[20,1] = g^2 d^4+( g^3 d^43+ g^4 d^48+ g^5 d^55)[ g^3 d^45]*
[20,2] = g^2 d^0+( g^3 d^39+ g^4 d^44+ g^5 d^51)[ g^3 d^45]*
[20,3] = g^5 d^20+( g^6 d^59+ g^7 d^64+ g^8 d^71)[ g^3 d^45]*
[20,4] = ( g^1 d^32+ g^2 d^37+ g^3 d^44)[ g^3 d^45]*
[20,5] = ( g^0 d^26+ g^1 d^31+ g^2 d^38)[ g^3 d^45]*
[20,6] = ( g^0 d^21+ g^1 d^26+ g^2 d^33)[ g^3 d^45]*
[20,7] = g^0 d^12+ g^1 d^14+( g^2 d^24+ g^3 d^57+ g^4 d^62)[ g^3 d^45]*
[20,8] = g^0 d^0+ g^1 d^2+( g^2 d^12+ g^3 d^45+ g^4 d^50)[ g^3 d^45]*
[20,9] = g^2 d^0+( g^3 d^39+ g^4 d^44+ g^5 d^51)[ g^3 d^45]*
[21,0] = g^1 d^12+ g^2 d^16+( g^3 d^55+ g^4 d^60+ g^5 d^67)[ g^3 d^45]*
[21,1] = g^1 d^4+ g^2 d^8+( g^3 d^47+ g^4 d^52+ g^5 d^59)[ g^3 d^45]*
[21,2] = g^1 d^0+ g^2 d^4+( g^3 d^43+ g^4 d^48+ g^5 d^55)[ g^3 d^45]*
[21,3] = g^4 d^20+ g^5 d^24+( g^6 d^63+ g^7 d^68+ g^8 d^75)[ g^3 d^45]*
[21,4] = ( g^1 d^36+ g^2 d^41+ g^3 d^48)[ g^3 d^45]*
[21,5] = ( g^0 d^30+ g^1 d^35+ g^2 d^42)[ g^3 d^45]*
[21,6] = ( g^0 d^25+ g^1 d^30+ g^2 d^37)[ g^3 d^45]*
[21,7] = g^0 d^16+ g^1 d^18+( g^2 d^28+ g^3 d^61+ g^4 d^66)[ g^3 d^45]*
[21,8] = g^0 d^4+ g^1 d^6+( g^2 d^16+ g^3 d^49+ g^4 d^54)[ g^3 d^45]*
[21,9] = g^1 d^0+ g^2 d^4+( g^3 d^43+ g^4 d^48+ g^5 d^55)[ g^3 d^45]*
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Feedback controller M:

M =

[0,0] = g^0 d^2+ g^1 d^4+ g^2 d^30+ g^3 d^34+ g^4 d^38+( g^5 d^75+ g^6 d^80+ g^7 d^87)[ g^3 d^45]*
[0,1] = g^1 d^0+ g^2 d^26+ g^3 d^30+ g^4 d^34+( g^5 d^71+ g^6 d^76+ g^7 d^83)[ g^3 d^45]*
[0,2] = g^2 d^24+ g^3 d^28+ g^4 d^32+( g^5 d^69+ g^6 d^74+ g^7 d^81)[ g^3 d^45]*
[0,3] = g^2 d^0+ g^3 d^24+ g^4 d^28+ g^5 d^32+( g^6 d^69+ g^7 d^74+ g^8 d^81)[ g^3 d^45]*
[0,4] = g^2 d^22+ g^3 d^26+ g^4 d^30+( g^5 d^67+ g^6 d^72+ g^7 d^79)[ g^3 d^45]*
[0,5] = g^2 d^20+ g^3 d^24+ g^4 d^28+( g^5 d^65+ g^6 d^70+ g^7 d^77)[ g^3 d^45]*
[0,6] = g^2 d^18+ g^3 d^22+ g^4 d^26+( g^5 d^63+ g^6 d^68+ g^7 d^75)[ g^3 d^45]*
[0,7] = g^2 d^12+ g^3 d^16+ g^4 d^20+ g^5 d^46+( g^6 d^62+ g^7 d^69+ g^8 d^95)[ g^3 d^45]*
[0,8] = g^2 d^10+ g^3 d^12+ g^4 d^18+ g^5 d^42+ g^6 d^46+( g^7 d^67+ g^8 d^88+ g^9 d^95)[ g^3 d^45]*
[0,9] = g^2 d^8+ g^3 d^10+ g^4 d^12+ g^5 d^38+ g^6 d^42+ g^7 d^46+( g^8 d^83+ g^9 d^88+ g^10 d^95)[ g^3 d^45]*
[0,10] = g^1 d^4+ g^2 d^6+ g^3 d^8+ g^4 d^34+ g^5 d^38+ g^6 d^42+( g^7 d^79+ g^8 d^84+ g^9 d^91)[ g^3 d^45]*
[0,11] = g^0 d^2+ g^1 d^4+ g^2 d^6+ g^3 d^32+ g^4 d^36+ g^5 d^40+( g^6 d^77+ g^7 d^82+ g^8 d^89)[ g^3 d^45]*
[0,12] = g^2 d^17+ g^3 d^21+( g^4 d^58+ g^5 d^63+ g^6 d^70)[ g^3 d^45]*
[0,13] = g^2 d^18+( g^3 d^56+ g^4 d^61+ g^5 d^68)[ g^3 d^45]*
[0,14] = g^2 d^14+( g^3 d^52+ g^4 d^57+ g^5 d^64)[ g^3 d^45]*
[0,15] = ( g^2 d^50+ g^3 d^55+ g^4 d^62)[ g^3 d^45]*
[0,16] = ( g^2 d^45+ g^3 d^50+ g^4 d^57)[ g^3 d^45]*
[0,17] = ( g^2 d^38+ g^3 d^43+ g^4 d^50)[ g^3 d^45]*
[0,18] = g^2 d^36+ g^3 d^40+( g^4 d^48+ g^5 d^81+ g^6 d^86)[ g^3 d^45]*
[0,19] = g^2 d^26+ g^3 d^30+( g^4 d^38+ g^5 d^71+ g^6 d^76)[ g^3 d^45]*
[0,20] = g^2 d^24+ g^3 d^28+( g^4 d^36+ g^5 d^69+ g^6 d^74)[ g^3 d^45]*
[0,21] = g^2 d^20+ g^3 d^24+( g^4 d^32+ g^5 d^65+ g^6 d^70)[ g^3 d^45]*
[1,0] = g^0 d^10+ g^1 d^36+ g^2 d^40+ g^3 d^44+( g^4 d^81+ g^5 d^86+ g^6 d^93)[ g^3 d^45]*
[1,1] = g^0 d^6+ g^1 d^32+ g^2 d^36+ g^3 d^40+( g^4 d^77+ g^5 d^82+ g^6 d^89)[ g^3 d^45]*
[1,2] = g^0 d^4+ g^1 d^30+ g^2 d^34+ g^3 d^38+( g^4 d^75+ g^5 d^80+ g^6 d^87)[ g^3 d^45]*
[1,3] = g^0 d^2+ g^1 d^6+ g^2 d^30+ g^3 d^34+ g^4 d^38+( g^5 d^75+ g^6 d^80+ g^7 d^87)[ g^3 d^45]*
[1,4] = g^0 d^2+ g^1 d^28+ g^2 d^32+ g^3 d^36+( g^4 d^73+ g^5 d^78+ g^6 d^85)[ g^3 d^45]*
[1,5] = g^0 d^0+ g^1 d^26+ g^2 d^30+ g^3 d^34+( g^4 d^71+ g^5 d^76+ g^6 d^83)[ g^3 d^45]*
[1,6] = g^1 d^24+ g^2 d^28+ g^3 d^32+( g^4 d^69+ g^5 d^74+ g^6 d^81)[ g^3 d^45]*
[1,7] = g^1 d^18+ g^2 d^22+ g^3 d^26+ g^4 d^52+( g^5 d^68+ g^6 d^75+ g^7 d^101)[ g^3 d^45]*
[1,8] = g^1 d^16+ g^2 d^18+ g^3 d^24+ g^4 d^48+ g^5 d^52+( g^6 d^73+ g^7 d^94+ g^8 d^101)[ g^3 d^45]*
[1,9] = g^1 d^12+ g^2 d^16+ g^3 d^18+ g^4 d^44+ g^5 d^48+ g^6 d^52+( g^7 d^89+ g^8 d^94+ g^9 d^101)[ g^3 d^45]*
[1,10] = g^0 d^8+ g^1 d^12+ g^2 d^14+ g^3 d^40+ g^4 d^44+ g^5 d^48+( g^6 d^85+ g^7 d^90+ g^8 d^97)[ g^3 d^45]*
[1,11] = g^0 d^10+ g^1 d^12+ g^2 d^38+ g^3 d^42+ g^4 d^46+( g^5 d^83+ g^6 d^88+ g^7 d^95)[ g^3 d^45]*
[1,12] = g^1 d^23+ g^2 d^27+( g^3 d^64+ g^4 d^69+ g^5 d^76)[ g^3 d^45]*
[1,13] = g^1 d^24+( g^2 d^62+ g^3 d^67+ g^4 d^74)[ g^3 d^45]*
[1,14] = g^1 d^20+( g^2 d^58+ g^3 d^63+ g^4 d^70)[ g^3 d^45]*
[1,15] = ( g^1 d^56+ g^2 d^61+ g^3 d^68)[ g^3 d^45]*
[1,16] = ( g^1 d^51+ g^2 d^56+ g^3 d^63)[ g^3 d^45]*
[1,17] = ( g^1 d^44+ g^2 d^49+ g^3 d^56)[ g^3 d^45]*
[1,18] = g^1 d^42+ g^2 d^46+( g^3 d^54+ g^4 d^87+ g^5 d^92)[ g^3 d^45]*
[1,19] = g^1 d^32+ g^2 d^36+( g^3 d^44+ g^4 d^77+ g^5 d^82)[ g^3 d^45]*
[1,20] = g^1 d^30+ g^2 d^34+( g^3 d^42+ g^4 d^75+ g^5 d^80)[ g^3 d^45]*
[1,21] = g^1 d^26+ g^2 d^30+( g^3 d^38+ g^4 d^71+ g^5 d^76)[ g^3 d^45]*
[2,0] = g^0 d^16+ g^1 d^20+( g^2 d^57+ g^3 d^62+ g^4 d^69)[ g^3 d^45]*
[2,1] = g^0 d^12+ g^1 d^16+( g^2 d^53+ g^3 d^58+ g^4 d^65)[ g^3 d^45]*
[2,2] = g^0 d^10+ g^1 d^14+( g^2 d^51+ g^3 d^56+ g^4 d^63)[ g^3 d^45]*
[2,3] = g^0 d^6+ g^1 d^10+ g^2 d^14+( g^3 d^51+ g^4 d^56+ g^5 d^63)[ g^3 d^45]*
[2,4] = g^0 d^8+ g^1 d^12+( g^2 d^49+ g^3 d^54+ g^4 d^61)[ g^3 d^45]*
[2,5] = g^0 d^6+ g^1 d^10+( g^2 d^47+ g^3 d^52+ g^4 d^59)[ g^3 d^45]*
[2,6] = g^0 d^4+ g^1 d^8+( g^2 d^45+ g^3 d^50+ g^4 d^57)[ g^3 d^45]*
[2,7] = g^1 d^2+ g^2 d^28+( g^3 d^44+ g^4 d^51+ g^5 d^77)[ g^3 d^45]*
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[2,8] = g^1 d^0+ g^2 d^24+ g^3 d^28+( g^4 d^49+ g^5 d^70+ g^6 d^77)[ g^3 d^45]*
[2,9] = g^2 d^20+ g^3 d^24+ g^4 d^28+( g^5 d^65+ g^6 d^70+ g^7 d^77)[ g^3 d^45]*
[2,10] = g^1 d^16+ g^2 d^20+ g^3 d^24+( g^4 d^61+ g^5 d^66+ g^6 d^73)[ g^3 d^45]*
[2,11] = g^0 d^14+ g^1 d^18+ g^2 d^22+( g^3 d^59+ g^4 d^64+ g^5 d^71)[ g^3 d^45]*
[2,12] = g^0 d^3+( g^1 d^40+ g^2 d^45+ g^3 d^52)[ g^3 d^45]*
[2,13] = ( g^0 d^38+ g^1 d^43+ g^2 d^50)[ g^3 d^45]*
[2,14] = ( g^0 d^34+ g^1 d^39+ g^2 d^46)[ g^3 d^45]*
[2,15] = ( g^0 d^37+ g^1 d^44+ g^2 d^77)[ g^3 d^45]*
[2,16] = ( g^0 d^32+ g^1 d^39+ g^2 d^72)[ g^3 d^45]*
[2,17] = ( g^0 d^25+ g^1 d^32+ g^2 d^65)[ g^3 d^45]*
[2,18] = g^0 d^22+( g^1 d^30+ g^2 d^63+ g^3 d^68)[ g^3 d^45]*
[2,19] = g^0 d^12+( g^1 d^20+ g^2 d^53+ g^3 d^58)[ g^3 d^45]*
[2,20] = g^0 d^10+( g^1 d^18+ g^2 d^51+ g^3 d^56)[ g^3 d^45]*
[2,21] = g^0 d^6+( g^1 d^14+ g^2 d^47+ g^3 d^52)[ g^3 d^45]*
[3,0] = g^0 d^26+ g^1 d^30+( g^2 d^67+ g^3 d^72+ g^4 d^79)[ g^3 d^45]*
[3,1] = g^0 d^22+ g^1 d^26+( g^2 d^63+ g^3 d^68+ g^4 d^75)[ g^3 d^45]*
[3,2] = g^0 d^20+ g^1 d^24+( g^2 d^61+ g^3 d^66+ g^4 d^73)[ g^3 d^45]*
[3,3] = g^0 d^16+ g^1 d^20+ g^2 d^24+( g^3 d^61+ g^4 d^66+ g^5 d^73)[ g^3 d^45]*
[3,4] = g^0 d^18+ g^1 d^22+( g^2 d^59+ g^3 d^64+ g^4 d^71)[ g^3 d^45]*
[3,5] = g^0 d^16+ g^1 d^20+( g^2 d^57+ g^3 d^62+ g^4 d^69)[ g^3 d^45]*
[3,6] = g^0 d^14+ g^1 d^18+( g^2 d^55+ g^3 d^60+ g^4 d^67)[ g^3 d^45]*
[3,7] = g^0 d^8+ g^1 d^12+ g^2 d^38+( g^3 d^54+ g^4 d^61+ g^5 d^87)[ g^3 d^45]*
[3,8] = g^0 d^4+ g^1 d^10+ g^2 d^34+ g^3 d^38+( g^4 d^59+ g^5 d^80+ g^6 d^87)[ g^3 d^45]*
[3,9] = g^0 d^2+ g^1 d^4+ g^2 d^30+ g^3 d^34+ g^4 d^38+( g^5 d^75+ g^6 d^80+ g^7 d^87)[ g^3 d^45]*
[3,10] = g^0 d^0+ g^1 d^26+ g^2 d^30+ g^3 d^34+( g^4 d^71+ g^5 d^76+ g^6 d^83)[ g^3 d^45]*
[3,11] = g^0 d^24+ g^1 d^28+ g^2 d^32+( g^3 d^69+ g^4 d^74+ g^5 d^81)[ g^3 d^45]*
[3,12] = g^0 d^13+( g^1 d^50+ g^2 d^55+ g^3 d^62)[ g^3 d^45]*
[3,13] = ( g^0 d^48+ g^1 d^53+ g^2 d^60)[ g^3 d^45]*
[3,14] = ( g^0 d^44+ g^1 d^49+ g^2 d^56)[ g^3 d^45]*
[3,15] = ( g^0 d^47+ g^1 d^54+ g^2 d^87)[ g^3 d^45]*
[3,16] = ( g^0 d^42+ g^1 d^49+ g^2 d^82)[ g^3 d^45]*
[3,17] = ( g^0 d^35+ g^1 d^42+ g^2 d^75)[ g^3 d^45]*
[3,18] = g^0 d^32+( g^1 d^40+ g^2 d^73+ g^3 d^78)[ g^3 d^45]*
[3,19] = g^0 d^22+( g^1 d^30+ g^2 d^63+ g^3 d^68)[ g^3 d^45]*
[3,20] = g^0 d^20+( g^1 d^28+ g^2 d^61+ g^3 d^66)[ g^3 d^45]*
[3,21] = g^0 d^16+( g^1 d^24+ g^2 d^57+ g^3 d^62)[ g^3 d^45]*
[4,0] = g^1 d^19+ g^2 d^23+ g^3 d^27+( g^4 d^64+ g^5 d^69+ g^6 d^76)[ g^3 d^45]*
[4,1] = g^1 d^15+ g^2 d^19+ g^3 d^23+( g^4 d^60+ g^5 d^65+ g^6 d^72)[ g^3 d^45]*
[4,2] = g^1 d^13+ g^2 d^17+ g^3 d^21+( g^4 d^58+ g^5 d^63+ g^6 d^70)[ g^3 d^45]*
[4,3] = g^2 d^13+ g^3 d^17+ g^4 d^21+( g^5 d^58+ g^6 d^63+ g^7 d^70)[ g^3 d^45]*
[4,4] = g^1 d^11+ g^2 d^15+ g^3 d^19+( g^4 d^56+ g^5 d^61+ g^6 d^68)[ g^3 d^45]*
[4,5] = g^1 d^9+ g^2 d^13+ g^3 d^17+( g^4 d^54+ g^5 d^59+ g^6 d^66)[ g^3 d^45]*
[4,6] = g^1 d^7+ g^2 d^11+ g^3 d^15+( g^4 d^52+ g^5 d^57+ g^6 d^64)[ g^3 d^45]*
[4,7] = g^2 d^5+ g^3 d^9+ g^4 d^35+( g^5 d^51+ g^6 d^58+ g^7 d^84)[ g^3 d^45]*
[4,8] = g^3 d^7+ g^4 d^31+ g^5 d^35+( g^6 d^56+ g^7 d^77+ g^8 d^84)[ g^3 d^45]*
[4,9] = g^4 d^27+ g^5 d^31+ g^6 d^35+( g^7 d^72+ g^8 d^77+ g^9 d^84)[ g^3 d^45]*
[4,10] = g^3 d^23+ g^4 d^27+ g^5 d^31+( g^6 d^68+ g^7 d^73+ g^8 d^80)[ g^3 d^45]*
[4,11] = g^2 d^21+ g^3 d^25+ g^4 d^29+( g^5 d^66+ g^6 d^71+ g^7 d^78)[ g^3 d^45]*
[4,12] = g^0 d^2+ g^1 d^6+ g^2 d^10+( g^3 d^47+ g^4 d^52+ g^5 d^59)[ g^3 d^45]*
[4,13] = g^0 d^2+ g^1 d^7+( g^2 d^45+ g^3 d^50+ g^4 d^57)[ g^3 d^45]*
[4,14] = g^1 d^3+( g^2 d^41+ g^3 d^46+ g^4 d^53)[ g^3 d^45]*
[4,15] = g^0 d^1+( g^1 d^39+ g^2 d^44+ g^3 d^51)[ g^3 d^45]*
[4,16] = ( g^1 d^34+ g^2 d^39+ g^3 d^46)[ g^3 d^45]*
[4,17] = ( g^1 d^27+ g^2 d^32+ g^3 d^39)[ g^3 d^45]*
[4,18] = g^1 d^25+ g^2 d^29+( g^3 d^37+ g^4 d^70+ g^5 d^75)[ g^3 d^45]*
[4,19] = g^1 d^15+ g^2 d^19+( g^3 d^27+ g^4 d^60+ g^5 d^65)[ g^3 d^45]*
[4,20] = g^1 d^13+ g^2 d^17+( g^3 d^25+ g^4 d^58+ g^5 d^63)[ g^3 d^45]*
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[4,21] = g^1 d^9+ g^2 d^13+( g^3 d^21+ g^4 d^54+ g^5 d^59)[ g^3 d^45]*
[5,0] = g^2 d^25+ g^3 d^30+ g^4 d^35+( g^5 d^70+ g^6 d^75+ g^7 d^82)[ g^3 d^45]*
[5,1] = g^2 d^21+ g^3 d^26+ g^4 d^31+( g^5 d^66+ g^6 d^71+ g^7 d^78)[ g^3 d^45]*
[5,2] = g^2 d^19+ g^3 d^24+ g^4 d^29+( g^5 d^64+ g^6 d^69+ g^7 d^76)[ g^3 d^45]*
[5,3] = g^3 d^19+ g^4 d^24+ g^5 d^29+( g^6 d^64+ g^7 d^69+ g^8 d^76)[ g^3 d^45]*
[5,4] = g^2 d^17+ g^3 d^22+ g^4 d^27+( g^5 d^62+ g^6 d^67+ g^7 d^74)[ g^3 d^45]*
[5,5] = g^2 d^15+ g^3 d^20+ g^4 d^25+( g^5 d^60+ g^6 d^65+ g^7 d^72)[ g^3 d^45]*
[5,6] = g^2 d^13+ g^3 d^18+ g^4 d^23+( g^5 d^58+ g^6 d^63+ g^7 d^70)[ g^3 d^45]*
[5,7] = g^3 d^12+ g^4 d^17+ g^5 d^43+( g^6 d^57+ g^7 d^64+ g^8 d^90)[ g^3 d^45]*
[5,8] = g^4 d^15+ g^5 d^38+ g^6 d^43+( g^7 d^62+ g^8 d^83+ g^9 d^90)[ g^3 d^45]*
[5,9] = g^5 d^33+ g^6 d^38+ g^7 d^43+( g^8 d^78+ g^9 d^83+ g^10 d^90)[ g^3 d^45]*
[5,10] = g^4 d^29+ g^5 d^34+ g^6 d^39+( g^7 d^74+ g^8 d^79+ g^9 d^86)[ g^3 d^45]*
[5,11] = g^3 d^27+ g^4 d^32+ g^5 d^37+( g^6 d^72+ g^7 d^77+ g^8 d^84)[ g^3 d^45]*
[5,12] = g^1 d^8+ g^2 d^13+ g^3 d^18+( g^4 d^53+ g^5 d^58+ g^6 d^65)[ g^3 d^45]*
[5,13] = g^0 d^6+ g^1 d^11+ g^2 d^16+( g^3 d^51+ g^4 d^56+ g^5 d^63)[ g^3 d^45]*
[5,14] = g^0 d^2+ g^1 d^7+ g^2 d^12+( g^3 d^47+ g^4 d^52+ g^5 d^59)[ g^3 d^45]*
[5,15] = g^0 d^5+ g^1 d^10+( g^2 d^45+ g^3 d^50+ g^4 d^57)[ g^3 d^45]*
[5,16] = g^0 d^0+ g^1 d^5+( g^2 d^40+ g^3 d^45+ g^4 d^52)[ g^3 d^45]*
[5,17] = ( g^2 d^33+ g^3 d^38+ g^4 d^45)[ g^3 d^45]*
[5,18] = ( g^2 d^31+ g^3 d^36+ g^4 d^43)[ g^3 d^45]*
[5,19] = ( g^2 d^21+ g^3 d^26+ g^4 d^33)[ g^3 d^45]*
[5,20] = ( g^2 d^19+ g^3 d^24+ g^4 d^31)[ g^3 d^45]*
[5,21] = ( g^2 d^15+ g^3 d^20+ g^4 d^27)[ g^3 d^45]*
[6,0] = g^2 d^30+ g^3 d^35+ g^4 d^40+( g^5 d^75+ g^6 d^80+ g^7 d^87)[ g^3 d^45]*
[6,1] = g^2 d^26+ g^3 d^31+ g^4 d^36+( g^5 d^71+ g^6 d^76+ g^7 d^83)[ g^3 d^45]*
[6,2] = g^2 d^24+ g^3 d^29+ g^4 d^34+( g^5 d^69+ g^6 d^74+ g^7 d^81)[ g^3 d^45]*
[6,3] = g^3 d^24+ g^4 d^29+ g^5 d^34+( g^6 d^69+ g^7 d^74+ g^8 d^81)[ g^3 d^45]*
[6,4] = g^2 d^22+ g^3 d^27+ g^4 d^32+( g^5 d^67+ g^6 d^72+ g^7 d^79)[ g^3 d^45]*
[6,5] = g^2 d^20+ g^3 d^25+ g^4 d^30+( g^5 d^65+ g^6 d^70+ g^7 d^77)[ g^3 d^45]*
[6,6] = g^2 d^18+ g^3 d^23+ g^4 d^28+( g^5 d^63+ g^6 d^68+ g^7 d^75)[ g^3 d^45]*
[6,7] = g^3 d^17+ g^4 d^22+ g^5 d^48+( g^6 d^62+ g^7 d^69+ g^8 d^95)[ g^3 d^45]*
[6,8] = g^4 d^20+ g^5 d^43+ g^6 d^48+( g^7 d^67+ g^8 d^88+ g^9 d^95)[ g^3 d^45]*
[6,9] = g^5 d^38+ g^6 d^43+ g^7 d^48+( g^8 d^83+ g^9 d^88+ g^10 d^95)[ g^3 d^45]*
[6,10] = g^4 d^34+ g^5 d^39+ g^6 d^44+( g^7 d^79+ g^8 d^84+ g^9 d^91)[ g^3 d^45]*
[6,11] = g^3 d^32+ g^4 d^37+ g^5 d^42+( g^6 d^77+ g^7 d^82+ g^8 d^89)[ g^3 d^45]*
[6,12] = g^1 d^13+ g^2 d^18+ g^3 d^23+( g^4 d^58+ g^5 d^63+ g^6 d^70)[ g^3 d^45]*
[6,13] = g^0 d^11+ g^1 d^16+ g^2 d^21+( g^3 d^56+ g^4 d^61+ g^5 d^68)[ g^3 d^45]*
[6,14] = g^0 d^7+ g^1 d^12+ g^2 d^17+( g^3 d^52+ g^4 d^57+ g^5 d^64)[ g^3 d^45]*
[6,15] = g^0 d^10+ g^1 d^15+( g^2 d^50+ g^3 d^55+ g^4 d^62)[ g^3 d^45]*
[6,16] = g^0 d^5+ g^1 d^10+( g^2 d^45+ g^3 d^50+ g^4 d^57)[ g^3 d^45]*
[6,17] = g^1 d^3+( g^2 d^38+ g^3 d^43+ g^4 d^50)[ g^3 d^45]*
[6,18] = g^1 d^0+( g^2 d^36+ g^3 d^41+ g^4 d^48)[ g^3 d^45]*
[6,19] = ( g^2 d^26+ g^3 d^31+ g^4 d^38)[ g^3 d^45]*
[6,20] = ( g^2 d^24+ g^3 d^29+ g^4 d^36)[ g^3 d^45]*
[6,21] = ( g^2 d^20+ g^3 d^25+ g^4 d^32)[ g^3 d^45]*
[7,0] = ( g^2 d^39+ g^3 d^44+ g^4 d^51)[ g^3 d^45]*
[7,1] = ( g^2 d^35+ g^3 d^40+ g^4 d^47)[ g^3 d^45]*
[7,2] = ( g^2 d^33+ g^3 d^38+ g^4 d^45)[ g^3 d^45]*
[7,3] = ( g^3 d^33+ g^4 d^38+ g^5 d^45)[ g^3 d^45]*
[7,4] = ( g^2 d^31+ g^3 d^36+ g^4 d^43)[ g^3 d^45]*
[7,5] = ( g^2 d^29+ g^3 d^34+ g^4 d^41)[ g^3 d^45]*
[7,6] = ( g^2 d^27+ g^3 d^32+ g^4 d^39)[ g^3 d^45]*
[7,7] = ( g^3 d^26+ g^4 d^33+ g^5 d^59)[ g^3 d^45]*
[7,8] = ( g^4 d^31+ g^5 d^52+ g^6 d^59)[ g^3 d^45]*
[7,9] = ( g^5 d^47+ g^6 d^52+ g^7 d^59)[ g^3 d^45]*
[7,10] = ( g^4 d^43+ g^5 d^48+ g^6 d^55)[ g^3 d^45]*
[7,11] = ( g^3 d^41+ g^4 d^46+ g^5 d^53)[ g^3 d^45]*
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[7,12] = ( g^1 d^22+ g^2 d^27+ g^3 d^34)[ g^3 d^45]*
[7,13] = ( g^0 d^20+ g^1 d^25+ g^2 d^32)[ g^3 d^45]*
[7,14] = ( g^0 d^16+ g^1 d^21+ g^2 d^28)[ g^3 d^45]*
[7,15] = ( g^0 d^19+ g^1 d^26+ g^2 d^59)[ g^3 d^45]*
[7,16] = ( g^0 d^14+ g^1 d^21+ g^2 d^54)[ g^3 d^45]*
[7,17] = ( g^0 d^7+ g^1 d^14+ g^2 d^47)[ g^3 d^45]*
[7,18] = g^0 d^2+( g^1 d^12+ g^2 d^45+ g^3 d^50)[ g^3 d^45]*
[7,19] = ( g^1 d^2+ g^2 d^35+ g^3 d^40)[ g^3 d^45]*
[7,20] = ( g^1 d^0+ g^2 d^33+ g^3 d^38)[ g^3 d^45]*
[7,21] = ( g^2 d^29+ g^3 d^34+ g^4 d^41)[ g^3 d^45]*
[8,0] = g^1 d^12+( g^2 d^51+ g^3 d^56+ g^4 d^63)[ g^3 d^45]*
[8,1] = g^1 d^8+( g^2 d^47+ g^3 d^52+ g^4 d^59)[ g^3 d^45]*
[8,2] = g^1 d^6+( g^2 d^45+ g^3 d^50+ g^4 d^57)[ g^3 d^45]*
[8,3] = g^2 d^6+( g^3 d^45+ g^4 d^50+ g^5 d^57)[ g^3 d^45]*
[8,4] = g^1 d^4+( g^2 d^43+ g^3 d^48+ g^4 d^55)[ g^3 d^45]*
[8,5] = g^1 d^2+( g^2 d^41+ g^3 d^46+ g^4 d^53)[ g^3 d^45]*
[8,6] = g^1 d^0+( g^2 d^39+ g^3 d^44+ g^4 d^51)[ g^3 d^45]*
[8,7] = g^2 d^20+( g^3 d^38+ g^4 d^45+ g^5 d^71)[ g^3 d^45]*
[8,8] = g^3 d^20+( g^4 d^43+ g^5 d^64+ g^6 d^71)[ g^3 d^45]*
[8,9] = g^4 d^20+( g^5 d^59+ g^6 d^64+ g^7 d^71)[ g^3 d^45]*
[8,10] = g^3 d^16+( g^4 d^55+ g^5 d^60+ g^6 d^67)[ g^3 d^45]*
[8,11] = g^2 d^14+( g^3 d^53+ g^4 d^58+ g^5 d^65)[ g^3 d^45]*
[8,12] = ( g^1 d^34+ g^2 d^39+ g^3 d^46)[ g^3 d^45]*
[8,13] = ( g^0 d^32+ g^1 d^37+ g^2 d^44)[ g^3 d^45]*
[8,14] = ( g^0 d^28+ g^1 d^33+ g^2 d^40)[ g^3 d^45]*
[8,15] = ( g^0 d^31+ g^1 d^38+ g^2 d^71)[ g^3 d^45]*
[8,16] = ( g^0 d^26+ g^1 d^33+ g^2 d^66)[ g^3 d^45]*
[8,17] = ( g^0 d^19+ g^1 d^26+ g^2 d^59)[ g^3 d^45]*
[8,18] = g^0 d^14+( g^1 d^24+ g^2 d^57+ g^3 d^62)[ g^3 d^45]*
[8,19] = g^0 d^4+( g^1 d^14+ g^2 d^47+ g^3 d^52)[ g^3 d^45]*
[8,20] = g^0 d^2+( g^1 d^12+ g^2 d^45+ g^3 d^50)[ g^3 d^45]*
[8,21] = ( g^1 d^8+ g^2 d^41+ g^3 d^46)[ g^3 d^45]*
[9,0] = g^0 d^16+ g^1 d^20+( g^2 d^57+ g^3 d^62+ g^4 d^69)[ g^3 d^45]*
[9,1] = g^0 d^12+ g^1 d^16+( g^2 d^53+ g^3 d^58+ g^4 d^65)[ g^3 d^45]*
[9,2] = g^0 d^10+ g^1 d^14+( g^2 d^51+ g^3 d^56+ g^4 d^63)[ g^3 d^45]*
[9,3] = g^0 d^6+ g^1 d^10+ g^2 d^14+( g^3 d^51+ g^4 d^56+ g^5 d^63)[ g^3 d^45]*
[9,4] = g^0 d^8+ g^1 d^12+( g^2 d^49+ g^3 d^54+ g^4 d^61)[ g^3 d^45]*
[9,5] = g^0 d^6+ g^1 d^10+( g^2 d^47+ g^3 d^52+ g^4 d^59)[ g^3 d^45]*
[9,6] = g^0 d^4+ g^1 d^8+( g^2 d^45+ g^3 d^50+ g^4 d^57)[ g^3 d^45]*
[9,7] = g^1 d^2+ g^2 d^28+( g^3 d^44+ g^4 d^51+ g^5 d^77)[ g^3 d^45]*
[9,8] = g^1 d^0+ g^2 d^24+ g^3 d^28+( g^4 d^49+ g^5 d^70+ g^6 d^77)[ g^3 d^45]*
[9,9] = g^2 d^20+ g^3 d^24+ g^4 d^28+( g^5 d^65+ g^6 d^70+ g^7 d^77)[ g^3 d^45]*
[9,10] = g^1 d^16+ g^2 d^20+ g^3 d^24+( g^4 d^61+ g^5 d^66+ g^6 d^73)[ g^3 d^45]*
[9,11] = g^0 d^14+ g^1 d^18+ g^2 d^22+( g^3 d^59+ g^4 d^64+ g^5 d^71)[ g^3 d^45]*
[9,12] = g^0 d^3+( g^1 d^40+ g^2 d^45+ g^3 d^52)[ g^3 d^45]*
[9,13] = ( g^0 d^38+ g^1 d^43+ g^2 d^50)[ g^3 d^45]*
[9,14] = ( g^0 d^34+ g^1 d^39+ g^2 d^46)[ g^3 d^45]*
[9,15] = ( g^0 d^37+ g^1 d^44+ g^2 d^77)[ g^3 d^45]*
[9,16] = ( g^0 d^32+ g^1 d^39+ g^2 d^72)[ g^3 d^45]*
[9,17] = ( g^0 d^25+ g^1 d^32+ g^2 d^65)[ g^3 d^45]*
[9,18] = g^0 d^22+( g^1 d^30+ g^2 d^63+ g^3 d^68)[ g^3 d^45]*
[9,19] = g^0 d^12+( g^1 d^20+ g^2 d^53+ g^3 d^58)[ g^3 d^45]*
[9,20] = g^0 d^10+( g^1 d^18+ g^2 d^51+ g^3 d^56)[ g^3 d^45]*
[9,21] = g^0 d^6+( g^1 d^14+ g^2 d^47+ g^3 d^52)[ g^3 d^45]*



109

The matrix K is given by:

K =

[0,0] = g^0 d^2+ g^1 d^4+ g^2 d^30+ g^3 d^34+ g^4 d^38+( g^5 d^75+ g^6 d^80+ g^7 d^87)[ g^3 d^45]*
[0,1] = g^2 d^22+ g^3 d^26+ g^4 d^30+( g^5 d^67+ g^6 d^72+ g^7 d^79)[ g^3 d^45]*
[0,2] = g^2 d^18+ g^3 d^22+ g^4 d^26+( g^5 d^63+ g^6 d^68+ g^7 d^75)[ g^3 d^45]*
[0,3] = g^2 d^8+ g^3 d^10+ g^4 d^12+ g^5 d^38+ g^6 d^42+ g^7 d^46+( g^8 d^83+ g^9 d^88+ g^10 d^95)[ g^3 d^45]*
[0,4] = g^2 d^18+( g^3 d^56+ g^4 d^61+ g^5 d^68)[ g^3 d^45]*
[0,5] = ( g^2 d^50+ g^3 d^55+ g^4 d^62)[ g^3 d^45]*
[0,6] = ( g^2 d^45+ g^3 d^50+ g^4 d^57)[ g^3 d^45]*
[0,7] = g^2 d^36+ g^3 d^40+( g^4 d^48+ g^5 d^81+ g^6 d^86)[ g^3 d^45]*
[0,8] = g^2 d^24+ g^3 d^28+( g^4 d^36+ g^5 d^69+ g^6 d^74)[ g^3 d^45]*
[0,9] = g^2 d^18+ g^3 d^22+ g^4 d^26+( g^5 d^63+ g^6 d^68+ g^7 d^75)[ g^3 d^45]*
[1,0] = g^0 d^10+ g^1 d^36+ g^2 d^40+ g^3 d^44+( g^4 d^81+ g^5 d^86+ g^6 d^93)[ g^3 d^45]*
[1,1] = g^0 d^2+ g^1 d^28+ g^2 d^32+ g^3 d^36+( g^4 d^73+ g^5 d^78+ g^6 d^85)[ g^3 d^45]*
[1,2] = g^1 d^24+ g^2 d^28+ g^3 d^32+( g^4 d^69+ g^5 d^74+ g^6 d^81)[ g^3 d^45]*
[1,3] = g^1 d^12+ g^2 d^16+ g^3 d^18+ g^4 d^44+ g^5 d^48+ g^6 d^52+( g^7 d^89+ g^8 d^94+ g^9 d^101)[ g^3 d^45]*
[1,4] = g^1 d^24+( g^2 d^62+ g^3 d^67+ g^4 d^74)[ g^3 d^45]*
[1,5] = ( g^1 d^56+ g^2 d^61+ g^3 d^68)[ g^3 d^45]*
[1,6] = ( g^1 d^51+ g^2 d^56+ g^3 d^63)[ g^3 d^45]*
[1,7] = g^1 d^42+ g^2 d^46+( g^3 d^54+ g^4 d^87+ g^5 d^92)[ g^3 d^45]*
[1,8] = g^1 d^30+ g^2 d^34+( g^3 d^42+ g^4 d^75+ g^5 d^80)[ g^3 d^45]*
[1,9] = g^1 d^24+ g^2 d^28+ g^3 d^32+( g^4 d^69+ g^5 d^74+ g^6 d^81)[ g^3 d^45]*
[2,0] = g^0 d^16+ g^1 d^20+( g^2 d^57+ g^3 d^62+ g^4 d^69)[ g^3 d^45]*
[2,1] = g^0 d^8+ g^1 d^12+( g^2 d^49+ g^3 d^54+ g^4 d^61)[ g^3 d^45]*
[2,2] = g^0 d^4+ g^1 d^8+( g^2 d^45+ g^3 d^50+ g^4 d^57)[ g^3 d^45]*
[2,3] = g^2 d^20+ g^3 d^24+ g^4 d^28+( g^5 d^65+ g^6 d^70+ g^7 d^77)[ g^3 d^45]*
[2,4] = ( g^0 d^38+ g^1 d^43+ g^2 d^50)[ g^3 d^45]*
[2,5] = ( g^0 d^37+ g^1 d^44+ g^2 d^77)[ g^3 d^45]*
[2,6] = ( g^0 d^32+ g^1 d^39+ g^2 d^72)[ g^3 d^45]*
[2,7] = g^0 d^22+( g^1 d^30+ g^2 d^63+ g^3 d^68)[ g^3 d^45]*
[2,8] = g^0 d^10+( g^1 d^18+ g^2 d^51+ g^3 d^56)[ g^3 d^45]*
[2,9] = g^0 d^4+ g^1 d^8+( g^2 d^45+ g^3 d^50+ g^4 d^57)[ g^3 d^45]*
[3,0] = g^0 d^26+ g^1 d^30+( g^2 d^67+ g^3 d^72+ g^4 d^79)[ g^3 d^45]*
[3,1] = g^0 d^18+ g^1 d^22+( g^2 d^59+ g^3 d^64+ g^4 d^71)[ g^3 d^45]*
[3,2] = g^0 d^14+ g^1 d^18+( g^2 d^55+ g^3 d^60+ g^4 d^67)[ g^3 d^45]*
[3,3] = g^0 d^2+ g^1 d^4+ g^2 d^30+ g^3 d^34+ g^4 d^38+( g^5 d^75+ g^6 d^80+ g^7 d^87)[ g^3 d^45]*
[3,4] = ( g^0 d^48+ g^1 d^53+ g^2 d^60)[ g^3 d^45]*
[3,5] = ( g^0 d^47+ g^1 d^54+ g^2 d^87)[ g^3 d^45]*
[3,6] = ( g^0 d^42+ g^1 d^49+ g^2 d^82)[ g^3 d^45]*
[3,7] = g^0 d^32+( g^1 d^40+ g^2 d^73+ g^3 d^78)[ g^3 d^45]*
[3,8] = g^0 d^20+( g^1 d^28+ g^2 d^61+ g^3 d^66)[ g^3 d^45]*
[3,9] = g^0 d^14+ g^1 d^18+( g^2 d^55+ g^3 d^60+ g^4 d^67)[ g^3 d^45]*
[4,0] = g^1 d^19+ g^2 d^23+ g^3 d^27+( g^4 d^64+ g^5 d^69+ g^6 d^76)[ g^3 d^45]*
[4,1] = g^1 d^11+ g^2 d^15+ g^3 d^19+( g^4 d^56+ g^5 d^61+ g^6 d^68)[ g^3 d^45]*
[4,2] = g^1 d^7+ g^2 d^11+ g^3 d^15+( g^4 d^52+ g^5 d^57+ g^6 d^64)[ g^3 d^45]*
[4,3] = g^4 d^27+ g^5 d^31+ g^6 d^35+( g^7 d^72+ g^8 d^77+ g^9 d^84)[ g^3 d^45]*
[4,4] = g^0 d^2+ g^1 d^7+( g^2 d^45+ g^3 d^50+ g^4 d^57)[ g^3 d^45]*
[4,5] = g^0 d^1+( g^1 d^39+ g^2 d^44+ g^3 d^51)[ g^3 d^45]*
[4,6] = ( g^1 d^34+ g^2 d^39+ g^3 d^46)[ g^3 d^45]*
[4,7] = g^1 d^25+ g^2 d^29+( g^3 d^37+ g^4 d^70+ g^5 d^75)[ g^3 d^45]*
[4,8] = g^1 d^13+ g^2 d^17+( g^3 d^25+ g^4 d^58+ g^5 d^63)[ g^3 d^45]*
[4,9] = g^1 d^7+ g^2 d^11+ g^3 d^15+( g^4 d^52+ g^5 d^57+ g^6 d^64)[ g^3 d^45]*
[5,0] = g^2 d^25+ g^3 d^30+ g^4 d^35+( g^5 d^70+ g^6 d^75+ g^7 d^82)[ g^3 d^45]*
[5,1] = g^2 d^17+ g^3 d^22+ g^4 d^27+( g^5 d^62+ g^6 d^67+ g^7 d^74)[ g^3 d^45]*
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[5,2] = g^2 d^13+ g^3 d^18+ g^4 d^23+( g^5 d^58+ g^6 d^63+ g^7 d^70)[ g^3 d^45]*
[5,3] = g^5 d^33+ g^6 d^38+ g^7 d^43+( g^8 d^78+ g^9 d^83+ g^10 d^90)[ g^3 d^45]*
[5,4] = g^0 d^6+ g^1 d^11+ g^2 d^16+( g^3 d^51+ g^4 d^56+ g^5 d^63)[ g^3 d^45]*
[5,5] = g^0 d^5+ g^1 d^10+( g^2 d^45+ g^3 d^50+ g^4 d^57)[ g^3 d^45]*
[5,6] = g^0 d^0+ g^1 d^5+( g^2 d^40+ g^3 d^45+ g^4 d^52)[ g^3 d^45]*
[5,7] = ( g^2 d^31+ g^3 d^36+ g^4 d^43)[ g^3 d^45]*
[5,8] = ( g^2 d^19+ g^3 d^24+ g^4 d^31)[ g^3 d^45]*
[5,9] = g^2 d^13+ g^3 d^18+ g^4 d^23+( g^5 d^58+ g^6 d^63+ g^7 d^70)[ g^3 d^45]*
[6,0] = g^2 d^30+ g^3 d^35+ g^4 d^40+( g^5 d^75+ g^6 d^80+ g^7 d^87)[ g^3 d^45]*
[6,1] = g^2 d^22+ g^3 d^27+ g^4 d^32+( g^5 d^67+ g^6 d^72+ g^7 d^79)[ g^3 d^45]*
[6,2] = g^2 d^18+ g^3 d^23+ g^4 d^28+( g^5 d^63+ g^6 d^68+ g^7 d^75)[ g^3 d^45]*
[6,3] = g^5 d^38+ g^6 d^43+ g^7 d^48+( g^8 d^83+ g^9 d^88+ g^10 d^95)[ g^3 d^45]*
[6,4] = g^0 d^11+ g^1 d^16+ g^2 d^21+( g^3 d^56+ g^4 d^61+ g^5 d^68)[ g^3 d^45]*
[6,5] = g^0 d^10+ g^1 d^15+( g^2 d^50+ g^3 d^55+ g^4 d^62)[ g^3 d^45]*
[6,6] = g^0 d^5+ g^1 d^10+( g^2 d^45+ g^3 d^50+ g^4 d^57)[ g^3 d^45]*
[6,7] = g^1 d^0+( g^2 d^36+ g^3 d^41+ g^4 d^48)[ g^3 d^45]*
[6,8] = ( g^2 d^24+ g^3 d^29+ g^4 d^36)[ g^3 d^45]*
[6,9] = g^2 d^18+ g^3 d^23+ g^4 d^28+( g^5 d^63+ g^6 d^68+ g^7 d^75)[ g^3 d^45]*
[7,0] = ( g^2 d^39+ g^3 d^44+ g^4 d^51)[ g^3 d^45]*
[7,1] = ( g^2 d^31+ g^3 d^36+ g^4 d^43)[ g^3 d^45]*
[7,2] = ( g^2 d^27+ g^3 d^32+ g^4 d^39)[ g^3 d^45]*
[7,3] = ( g^5 d^47+ g^6 d^52+ g^7 d^59)[ g^3 d^45]*
[7,4] = ( g^0 d^20+ g^1 d^25+ g^2 d^32)[ g^3 d^45]*
[7,5] = ( g^0 d^19+ g^1 d^26+ g^2 d^59)[ g^3 d^45]*
[7,6] = ( g^0 d^14+ g^1 d^21+ g^2 d^54)[ g^3 d^45]*
[7,7] = g^0 d^2+( g^1 d^12+ g^2 d^45+ g^3 d^50)[ g^3 d^45]*
[7,8] = ( g^1 d^0+ g^2 d^33+ g^3 d^38)[ g^3 d^45]*
[7,9] = ( g^2 d^27+ g^3 d^32+ g^4 d^39)[ g^3 d^45]*
[8,0] = g^1 d^12+( g^2 d^51+ g^3 d^56+ g^4 d^63)[ g^3 d^45]*
[8,1] = g^1 d^4+( g^2 d^43+ g^3 d^48+ g^4 d^55)[ g^3 d^45]*
[8,2] = g^1 d^0+( g^2 d^39+ g^3 d^44+ g^4 d^51)[ g^3 d^45]*
[8,3] = g^4 d^20+( g^5 d^59+ g^6 d^64+ g^7 d^71)[ g^3 d^45]*
[8,4] = ( g^0 d^32+ g^1 d^37+ g^2 d^44)[ g^3 d^45]*
[8,5] = ( g^0 d^31+ g^1 d^38+ g^2 d^71)[ g^3 d^45]*
[8,6] = ( g^0 d^26+ g^1 d^33+ g^2 d^66)[ g^3 d^45]*
[8,7] = g^0 d^14+( g^1 d^24+ g^2 d^57+ g^3 d^62)[ g^3 d^45]*
[8,8] = g^0 d^2+( g^1 d^12+ g^2 d^45+ g^3 d^50)[ g^3 d^45]*
[8,9] = g^1 d^0+( g^2 d^39+ g^3 d^44+ g^4 d^51)[ g^3 d^45]*
[9,0] = g^0 d^16+ g^1 d^20+( g^2 d^57+ g^3 d^62+ g^4 d^69)[ g^3 d^45]*
[9,1] = g^0 d^8+ g^1 d^12+( g^2 d^49+ g^3 d^54+ g^4 d^61)[ g^3 d^45]*
[9,2] = g^0 d^4+ g^1 d^8+( g^2 d^45+ g^3 d^50+ g^4 d^57)[ g^3 d^45]*
[9,3] = g^2 d^20+ g^3 d^24+ g^4 d^28+( g^5 d^65+ g^6 d^70+ g^7 d^77)[ g^3 d^45]*
[9,4] = ( g^0 d^38+ g^1 d^43+ g^2 d^50)[ g^3 d^45]*
[9,5] = ( g^0 d^37+ g^1 d^44+ g^2 d^77)[ g^3 d^45]*
[9,6] = ( g^0 d^32+ g^1 d^39+ g^2 d^72)[ g^3 d^45]*
[9,7] = g^0 d^22+( g^1 d^30+ g^2 d^63+ g^3 d^68)[ g^3 d^45]*
[9,8] = g^0 d^10+( g^1 d^18+ g^2 d^51+ g^3 d^56)[ g^3 d^45]*
[9,9] = g^0 d^4+ g^1 d^8+( g^2 d^45+ g^3 d^50+ g^4 d^57)[ g^3 d^45]*

The matrix Q is given by:

Q =

[0,0] = g^0 d^0+ g^1 d^2+ g^2 d^4+ g^3 d^30+ g^4 d^34+ g^5 d^38+( g^6 d^75+ g^7 d^80+ g^8 d^87)[ g^3 d^45]*
[0,1] = g^3 d^0+ g^4 d^24+ g^5 d^28+ g^6 d^32+( g^7 d^69+ g^8 d^74+ g^9 d^81)[ g^3 d^45]*
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[0,2] = g^3 d^18+ g^4 d^22+ g^5 d^26+( g^6 d^63+ g^7 d^68+ g^8 d^75)[ g^3 d^45]*
[0,3] = g^3 d^8+ g^4 d^10+ g^5 d^12+ g^6 d^38+ g^7 d^42+ g^8 d^46+( g^9 d^83+ g^10 d^88+ g^11 d^95)[ g^3 d^45]*
[0,4] = g^3 d^18+( g^4 d^56+ g^5 d^61+ g^6 d^68)[ g^3 d^45]*
[0,5] = ( g^3 d^50+ g^4 d^55+ g^5 d^62)[ g^3 d^45]*
[0,6] = ( g^3 d^45+ g^4 d^50+ g^5 d^57)[ g^3 d^45]*
[0,7] = g^3 d^36+ g^4 d^40+( g^5 d^48+ g^6 d^81+ g^7 d^86)[ g^3 d^45]*
[0,8] = g^3 d^24+ g^4 d^28+( g^5 d^36+ g^6 d^69+ g^7 d^74)[ g^3 d^45]*
[0,9] = g^3 d^18+ g^4 d^22+ g^5 d^26+( g^6 d^63+ g^7 d^68+ g^8 d^75)[ g^3 d^45]*
[1,0] = g^0 d^8+ g^1 d^10+ g^2 d^36+ g^3 d^40+ g^4 d^44+( g^5 d^81+ g^6 d^86+ g^7 d^93)[ g^3 d^45]*
[1,1] = g^0 d^0+ g^1 d^2+ g^2 d^6+ g^3 d^30+ g^4 d^34+ g^5 d^38+( g^6 d^75+ g^7 d^80+ g^8 d^87)[ g^3 d^45]*
[1,2] = g^2 d^24+ g^3 d^28+ g^4 d^32+( g^5 d^69+ g^6 d^74+ g^7 d^81)[ g^3 d^45]*
[1,3] = g^2 d^12+ g^3 d^16+ g^4 d^18+ g^5 d^44+ g^6 d^48+ g^7 d^52+( g^8 d^89+ g^9 d^94+ g^10 d^101)[ g^3 d^45]*
[1,4] = g^2 d^24+( g^3 d^62+ g^4 d^67+ g^5 d^74)[ g^3 d^45]*
[1,5] = ( g^2 d^56+ g^3 d^61+ g^4 d^68)[ g^3 d^45]*
[1,6] = ( g^2 d^51+ g^3 d^56+ g^4 d^63)[ g^3 d^45]*
[1,7] = g^2 d^42+ g^3 d^46+( g^4 d^54+ g^5 d^87+ g^6 d^92)[ g^3 d^45]*
[1,8] = g^2 d^30+ g^3 d^34+( g^4 d^42+ g^5 d^75+ g^6 d^80)[ g^3 d^45]*
[1,9] = g^2 d^24+ g^3 d^28+ g^4 d^32+( g^5 d^69+ g^6 d^74+ g^7 d^81)[ g^3 d^45]*
[2,0] = g^0 d^12+ g^1 d^16+ g^2 d^20+( g^3 d^57+ g^4 d^62+ g^5 d^69)[ g^3 d^45]*
[2,1] = g^1 d^6+ g^2 d^10+ g^3 d^14+( g^4 d^51+ g^5 d^56+ g^6 d^63)[ g^3 d^45]*
[2,2] = g^0 d^0+ g^1 d^4+ g^2 d^8+( g^3 d^45+ g^4 d^50+ g^5 d^57)[ g^3 d^45]*
[2,3] = g^3 d^20+ g^4 d^24+ g^5 d^28+( g^6 d^65+ g^7 d^70+ g^8 d^77)[ g^3 d^45]*
[2,4] = g^0 d^0+( g^1 d^38+ g^2 d^43+ g^3 d^50)[ g^3 d^45]*
[2,5] = ( g^0 d^32+ g^1 d^37+ g^2 d^44)[ g^3 d^45]*
[2,6] = ( g^0 d^27+ g^1 d^32+ g^2 d^39)[ g^3 d^45]*
[2,7] = g^0 d^18+ g^1 d^22+( g^2 d^30+ g^3 d^63+ g^4 d^68)[ g^3 d^45]*
[2,8] = g^0 d^6+ g^1 d^10+( g^2 d^18+ g^3 d^51+ g^4 d^56)[ g^3 d^45]*
[2,9] = g^0 d^0+ g^1 d^4+ g^2 d^8+( g^3 d^45+ g^4 d^50+ g^5 d^57)[ g^3 d^45]*
[3,0] = g^0 d^22+ g^1 d^26+ g^2 d^30+( g^3 d^67+ g^4 d^72+ g^5 d^79)[ g^3 d^45]*
[3,1] = g^1 d^16+ g^2 d^20+ g^3 d^24+( g^4 d^61+ g^5 d^66+ g^6 d^73)[ g^3 d^45]*
[3,2] = g^0 d^10+ g^1 d^14+ g^2 d^18+( g^3 d^55+ g^4 d^60+ g^5 d^67)[ g^3 d^45]*
[3,3] = g^0 d^0+ g^1 d^2+ g^2 d^4+ g^3 d^30+ g^4 d^34+ g^5 d^38+( g^6 d^75+ g^7 d^80+ g^8 d^87)[ g^3 d^45]*
[3,4] = g^0 d^10+( g^1 d^48+ g^2 d^53+ g^3 d^60)[ g^3 d^45]*
[3,5] = ( g^0 d^42+ g^1 d^47+ g^2 d^54)[ g^3 d^45]*
[3,6] = ( g^0 d^37+ g^1 d^42+ g^2 d^49)[ g^3 d^45]*
[3,7] = g^0 d^28+ g^1 d^32+( g^2 d^40+ g^3 d^73+ g^4 d^78)[ g^3 d^45]*
[3,8] = g^0 d^16+ g^1 d^20+( g^2 d^28+ g^3 d^61+ g^4 d^66)[ g^3 d^45]*
[3,9] = g^0 d^10+ g^1 d^14+ g^2 d^18+( g^3 d^55+ g^4 d^60+ g^5 d^67)[ g^3 d^45]*
[4,0] = g^2 d^19+ g^3 d^23+ g^4 d^27+( g^5 d^64+ g^6 d^69+ g^7 d^76)[ g^3 d^45]*
[4,1] = g^3 d^13+ g^4 d^17+ g^5 d^21+( g^6 d^58+ g^7 d^63+ g^8 d^70)[ g^3 d^45]*
[4,2] = g^2 d^7+ g^3 d^11+ g^4 d^15+( g^5 d^52+ g^6 d^57+ g^7 d^64)[ g^3 d^45]*
[4,3] = g^5 d^27+ g^6 d^31+ g^7 d^35+( g^8 d^72+ g^9 d^77+ g^10 d^84)[ g^3 d^45]*
[4,4] = g^0 d^0+ g^1 d^2+ g^2 d^7+( g^3 d^45+ g^4 d^50+ g^5 d^57)[ g^3 d^45]*
[4,5] = g^1 d^1+( g^2 d^39+ g^3 d^44+ g^4 d^51)[ g^3 d^45]*
[4,6] = ( g^2 d^34+ g^3 d^39+ g^4 d^46)[ g^3 d^45]*
[4,7] = g^2 d^25+ g^3 d^29+( g^4 d^37+ g^5 d^70+ g^6 d^75)[ g^3 d^45]*
[4,8] = g^2 d^13+ g^3 d^17+( g^4 d^25+ g^5 d^58+ g^6 d^63)[ g^3 d^45]*
[4,9] = g^2 d^7+ g^3 d^11+ g^4 d^15+( g^5 d^52+ g^6 d^57+ g^7 d^64)[ g^3 d^45]*
[5,0] = g^3 d^25+ g^4 d^30+ g^5 d^35+( g^6 d^70+ g^7 d^75+ g^8 d^82)[ g^3 d^45]*
[5,1] = g^4 d^19+ g^5 d^24+ g^6 d^29+( g^7 d^64+ g^8 d^69+ g^9 d^76)[ g^3 d^45]*
[5,2] = g^3 d^13+ g^4 d^18+ g^5 d^23+( g^6 d^58+ g^7 d^63+ g^8 d^70)[ g^3 d^45]*
[5,3] = g^6 d^33+ g^7 d^38+ g^8 d^43+( g^9 d^78+ g^10 d^83+ g^11 d^90)[ g^3 d^45]*
[5,4] = g^1 d^6+ g^2 d^11+ g^3 d^16+( g^4 d^51+ g^5 d^56+ g^6 d^63)[ g^3 d^45]*
[5,5] = g^0 d^0+ g^1 d^5+ g^2 d^10+( g^3 d^45+ g^4 d^50+ g^5 d^57)[ g^3 d^45]*
[5,6] = g^1 d^0+ g^2 d^5+( g^3 d^40+ g^4 d^45+ g^5 d^52)[ g^3 d^45]*
[5,7] = ( g^3 d^31+ g^4 d^36+ g^5 d^43)[ g^3 d^45]*
[5,8] = ( g^3 d^19+ g^4 d^24+ g^5 d^31)[ g^3 d^45]*
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[5,9] = g^3 d^13+ g^4 d^18+ g^5 d^23+( g^6 d^58+ g^7 d^63+ g^8 d^70)[ g^3 d^45]*
[6,0] = g^3 d^30+ g^4 d^35+ g^5 d^40+( g^6 d^75+ g^7 d^80+ g^8 d^87)[ g^3 d^45]*
[6,1] = g^4 d^24+ g^5 d^29+ g^6 d^34+( g^7 d^69+ g^8 d^74+ g^9 d^81)[ g^3 d^45]*
[6,2] = g^3 d^18+ g^4 d^23+ g^5 d^28+( g^6 d^63+ g^7 d^68+ g^8 d^75)[ g^3 d^45]*
[6,3] = g^6 d^38+ g^7 d^43+ g^8 d^48+( g^9 d^83+ g^10 d^88+ g^11 d^95)[ g^3 d^45]*
[6,4] = g^1 d^11+ g^2 d^16+ g^3 d^21+( g^4 d^56+ g^5 d^61+ g^6 d^68)[ g^3 d^45]*
[6,5] = g^0 d^5+ g^1 d^10+ g^2 d^15+( g^3 d^50+ g^4 d^55+ g^5 d^62)[ g^3 d^45]*
[6,6] = g^0 d^0+ g^1 d^5+ g^2 d^10+( g^3 d^45+ g^4 d^50+ g^5 d^57)[ g^3 d^45]*
[6,7] = g^2 d^0+( g^3 d^36+ g^4 d^41+ g^5 d^48)[ g^3 d^45]*
[6,8] = ( g^3 d^24+ g^4 d^29+ g^5 d^36)[ g^3 d^45]*
[6,9] = g^3 d^18+ g^4 d^23+ g^5 d^28+( g^6 d^63+ g^7 d^68+ g^8 d^75)[ g^3 d^45]*
[7,0] = ( g^3 d^39+ g^4 d^44+ g^5 d^51)[ g^3 d^45]*
[7,1] = ( g^4 d^33+ g^5 d^38+ g^6 d^45)[ g^3 d^45]*
[7,2] = ( g^3 d^27+ g^4 d^32+ g^5 d^39)[ g^3 d^45]*
[7,3] = ( g^6 d^47+ g^7 d^52+ g^8 d^59)[ g^3 d^45]*
[7,4] = ( g^1 d^20+ g^2 d^25+ g^3 d^32)[ g^3 d^45]*
[7,5] = ( g^0 d^14+ g^1 d^19+ g^2 d^26)[ g^3 d^45]*
[7,6] = ( g^0 d^9+ g^1 d^14+ g^2 d^21)[ g^3 d^45]*
[7,7] = g^0 d^0+ g^1 d^2+( g^2 d^12+ g^3 d^45+ g^4 d^50)[ g^3 d^45]*
[7,8] = ( g^2 d^0+ g^3 d^33+ g^4 d^38)[ g^3 d^45]*
[7,9] = ( g^3 d^27+ g^4 d^32+ g^5 d^39)[ g^3 d^45]*
[8,0] = g^2 d^12+( g^3 d^51+ g^4 d^56+ g^5 d^63)[ g^3 d^45]*
[8,1] = g^3 d^6+( g^4 d^45+ g^5 d^50+ g^6 d^57)[ g^3 d^45]*
[8,2] = g^2 d^0+( g^3 d^39+ g^4 d^44+ g^5 d^51)[ g^3 d^45]*
[8,3] = g^5 d^20+( g^6 d^59+ g^7 d^64+ g^8 d^71)[ g^3 d^45]*
[8,4] = ( g^1 d^32+ g^2 d^37+ g^3 d^44)[ g^3 d^45]*
[8,5] = ( g^0 d^26+ g^1 d^31+ g^2 d^38)[ g^3 d^45]*
[8,6] = ( g^0 d^21+ g^1 d^26+ g^2 d^33)[ g^3 d^45]*
[8,7] = g^0 d^12+ g^1 d^14+( g^2 d^24+ g^3 d^57+ g^4 d^62)[ g^3 d^45]*
[8,8] = g^0 d^0+ g^1 d^2+( g^2 d^12+ g^3 d^45+ g^4 d^50)[ g^3 d^45]*
[8,9] = g^2 d^0+( g^3 d^39+ g^4 d^44+ g^5 d^51)[ g^3 d^45]*
[9,0] = g^0 d^12+ g^1 d^16+ g^2 d^20+( g^3 d^57+ g^4 d^62+ g^5 d^69)[ g^3 d^45]*
[9,1] = g^1 d^6+ g^2 d^10+ g^3 d^14+( g^4 d^51+ g^5 d^56+ g^6 d^63)[ g^3 d^45]*
[9,2] = g^0 d^0+ g^1 d^4+ g^2 d^8+( g^3 d^45+ g^4 d^50+ g^5 d^57)[ g^3 d^45]*
[9,3] = g^3 d^20+ g^4 d^24+ g^5 d^28+( g^6 d^65+ g^7 d^70+ g^8 d^77)[ g^3 d^45]*
[9,4] = g^0 d^0+( g^1 d^38+ g^2 d^43+ g^3 d^50)[ g^3 d^45]*
[9,5] = ( g^0 d^32+ g^1 d^37+ g^2 d^44)[ g^3 d^45]*
[9,6] = ( g^0 d^27+ g^1 d^32+ g^2 d^39)[ g^3 d^45]*
[9,7] = g^0 d^18+ g^1 d^22+( g^2 d^30+ g^3 d^63+ g^4 d^68)[ g^3 d^45]*
[9,8] = g^0 d^6+ g^1 d^10+( g^2 d^18+ g^3 d^51+ g^4 d^56)[ g^3 d^45]*
[9,9] = g^0 d^0+ g^1 d^4+ g^2 d^8+( g^3 d^45+ g^4 d^50+ g^5 d^57)[ g^3 d^45]*
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