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Abstract. According to the theory of Network Calculus based on the
(min,+) algebra, analysis and measure of worst-case performance in com-
munication networks can be made easily. In this context, this paper deals
with traffic regulation and performance guarantee of a network i.e. with
flow control. At first, assuming that a minimum service provided by a
network is known, we aim at finding the constraint over the input flow
in order to respect a maximal delay or backlog. Then, we deal with the
window flow control problem in the following manner: The data stream
(from the source to the destination) and the acknowledgments stream
(from the destination to the source) are assumed to be different and the
service provided by the network is assumed to be known in an uncertain
way, more precisely it is assumed to be in an interval. The results are
obtained by considering the Residuation theory which allows functions
defined over idempotent semiring to be inverted.

1 Introduction

Theory of (min,+) algebra enables the study of Discrete Event Dynamic Sys-
tems (DEDS) characterized by delay and synchronization phenomena such as
production systems, communication networks and transportation systems (see
[2]). Such systems can be described by linear models, thanks to the particular
algebraic structure called idempotent semiring or dioid. In particular, the theory
of Network Calculus aimed at worst-case performance analysis in communica-
tion networks. For instance, end-to-end delay or backlog can be computed with
curves representing constraints over traffic and service provided by a network.
Furthermore, operations defined over idempotent semiring and residuation the-
ory allows some traffic control elements to be computed. Indeed, some model
matching problems are already solved by the way of control structures (open-
loop or close-loop structures) as presented in [7, 9].

By leaning on Network Calculus as well as known control synthesis problem,
the work introduced in this paper deals with control and performance guarantee
of traffic in networks. On the one hand, the computation of the optimal constraint
applied on the input flow in order to respect a maximum delay or backlog is
given. By optimal we mean that it is the lower constraint such that the delay or
backlog is satisfied: if the input flow is greater than this constraint, the resulting



delay or backlog will be exceeded. This computation is made assuming that a
minimum service provided by the network is known. On the other hand, optimal
window size of a feedback configuration (window flow control) is studied. For that
computation, a difference is made between the data stream (from the source to
the destination) and the acknowledgments stream (from the destination to the
source). Moreover, the service provided by the network is assumed to be included
in an interval.

In order to introduce this work, the paper is organized as follows. Section 2
recalls the links between Network Calculus and (min,+) algebra. In particular
some properties of the algebraic tools called idempotent semiring or dioid and
classical operations of Network Calculus are presented. In the third section,
the modelling of a communication network is given with cumulative functions,
arrival and service curves and bounds on performances (delay and backlog) of a
network. Finally, problems addressed previously are stated in the fourth section
and an application is given in the last section.

2 An Algebraic Approach of Network Calculus

Network Calculus is a theory based on the (min,+) algebra and devoted to the
analysis of performance guarantee in communication networks (see [5], [6] and
[8]). This study lies on the particular algebraic structure called idempotent semir-
ing whereas well-known operations as deconvolution and subadditive closure can
be seen from the point of view of the residuation theory for the former and the
solution of implicit equation x = ax ⊕ b for the latter. All these properties are
recalled in this section.

2.1 (Min,+) Algebra

(Min,+) algebra is very closed to the lattice theory and the definition below
of the idempotent semiring gives the basis of the particular algebraic structure
used in this algebra (see [2]).

Definition 1. An idempotent semiring D is a set endowed with two inner op-
erations denoted ⊕ and ⊗. The sum ⊕ is associative, commutative, idempotent
(i.e. ∀a ∈ D, a⊕ a = a) and admits a neutral element denoted ε. The product ⊗
is associative, distributes over the sum and accepts e as neutral element.

When ⊗ is commutative (i.e. ∀a, b ∈ D, a ⊗ b = b ⊗ a), the idempotent
semiring D is said to be commutative. Furthermore, an idempotent semiring is
said to be complete if it is closed for infinite sums and if the product distributes
over infinite sums. Then, the greatest element of D is denoted T (for Top) and
represents the sum of all its elements (T =

⊕
x∈D x).

Due to the idempotency of the addition, a canonical order relation can be
associated with D by the following equivalences: ∀a, b ∈ D, a < b⇔ a = a⊕ b⇔
b = a ∧ b. Because of the lattice properties of a complete idempotent semiring,
a⊕ b is the least upper bound of D whereas a ∧ b is its greatest lower bound.

An example of this structure is the idempotent semiring Rmin defined below.



Example 1 ((Min,+) algebra). The set Rmin = (R ∪ {−∞,+∞}) endowed with
the min operator as sum ⊕ and the pointwise addition as product ⊗ is a complete
idempotent semiring where ε = +∞, e = 0 and T = −∞. On Rmin, the greatest
lower bound ∧ takes the sense of the max operator.

Remark 1. It is important to note that the order relation in Rmin corresponds
to the reverse of the natural order:

5⊕ 3 = 3 ⇔ 3 < 5 ⇔ 3 ≤ 5.

In the rest of this document, the order relation of Rmin is used (< and 4) but
the natural order (respectively ≤ and ≥) will be written clearly too when it will
be necessary.

2.2 Other Algebraic Preliminaries

Residuation is a general notion in lattice theory which allows “pseudo-inverse”
of some isotone maps (see [3] and [2]) to be defined. In particular, the residuation
theory provides optimal solutions to inequalities f(x) � b, where f is an order-
preserving mapping (i.e. an isotone mapping: a 4 b⇒ f(a) 4 f(b)) defined over
ordered sets.

Definition 2 (Residuation). Let f : D → C be an isotone mapping where D
and C are complete idempotent semirings. Mapping f is said residuated if ∀b ∈ C,
the greatest element denoted f ](b) of subset {x ∈ D|f(x) 4 b} exists and belongs
to this subset. Mapping f ] is called the residual of f . Furthermore, when f is
residuated, f ] is the unique isotone mapping such that f ◦ f ] 4 IdC and f ] ◦ f <
IdD, where IdC and IdD are respectively the identity mappings on C and D.

Fixed point theory allows one to find greatest finite solutions to equations
f(x) = x, where f is an isotone mapping defined over complete idempotent
semiring D. In particular, thanks to the following theorem, the optimal solution
of the implicit equation x = ax⊕ b is provided.

Theorem 1. [2, section 4.5.3] Implicit equation x = ax⊕ b defined over a com-
plete dioid D admits x = a?b as lower solution where ∀a ∈ D, a? =

⊕
i≥0 a

i and

a0 = e.

These two theories will be necessary in the definition of operations linked to
Network Calculus, as the next section shows it.

2.3 Operations of Network Calculus

Once (min,+) algebra and other tools are defined, first main operations used
by Network Calculus as pointwise minimum and inf-convolution can be given.
To this end, the set F brings together non-decreasing functions f : R 7→ Rmin
where f(t) = 0 for t < 0. A restriction of this set is the set F0 where f(0) = 0.
Let now f and g be two functions of F0, the following operations are defined:



• pointwise minimum

(f ⊕ g)(t) = min[f(t), g(t)],

• pointwise maximum

(f ∧ g)(t) = max[f(t), g(t)],

• inf-convolution

(f ∗ g)(t) ,
⊕
τ≥0

{f(τ)⊗ g(t− τ)} = min
τ≥0
{f(τ) + g(t− τ)}.

Thanks to these operations, another idempotent semiring can be defined.

Definition 3. The set F0 endowed with the two inner operations ⊕ as point-
wise minimum and ∗ as inf-convolution is a commutative idempotent semiring
denoted {F0,⊕, ∗} where ε and e are defined by:

∀t, ε : t 7→ +∞ and e : t 7→
{

0 for t < 0,
+∞ for t ≥ 0.

Remark 2. As in usual algebra, operator ∗ can be omitted in order to save place:

ab = a ∗ b.

Then, two another well-known operations of Network Calculus are the one
of deconvolution denoted ◦/ and the one of subadditive closure denoted ?. Firstly,
thanks to the residuation theory (see Definition 2), mapping Ra : x 7→ x ∗ a
defined over F0 is said to be residuated. Its residual is usually denoted R]a : x 7→
x◦/a and called deconvolution. Therefore, b◦/a is the greatest solution to inequality
x ∗ a 4 b, i.e.:

b◦/a = x̂ =
⊕
{x | x ∗ a 4 b}.

Remark 3. This operation of deconvolution is also called right quotient and a
similar mapping, called left quotient and denoted L]a : x 7→ a ◦\x exists. This
mapping is the residual of La : x 7→ a ∗ x defined over F0 and a ◦\b = x̂ =⊕
{x | a ∗ x 4 b}. However, since F0 is commutative b◦/a = a ◦\b.

Secondly, according to theorem 1, the subadditive closure operation ? takes
the sense of the optimal solution of a given implicit equation a? =

∧
{x | x =

ax⊕ e}. Finally, ∀f, g ∈ F0 operations of deconvolution and subadditive closure
are given:

• deconvolution

(f◦/g)(t) ,
∧
τ≥0

{f(τ)− g(t− τ)} = max
τ≥0

{f(τ)− g(τ − t)},



• subadditive closure

f?(t) ,
⊕
τ≥0

fτ (t) = min
τ≥0

fτ (t) with f0(t) = e.

Numerous properties are associated with both deconvolution and subadditive
closure. The following theorem brings together some of useful properties.

Theorem 2. Firstly, ∀x, y, a ∈ {F0,⊕, ∗}:

x 4 y ⇒
{
a ◦\x 4 a ◦\y (x 7→ a ◦\x is isotone),
x ◦\a < y ◦\a (x 7→ x ◦\a is antitone).

(1)

Then:

(x ∗ a)◦/a < x, (2)

x◦/(b ∗ a) = (x◦/a)◦/b, (3)

a◦/b < x ⇔ a < xb, (4)

(a?)? = a?. (5)

And in particular about the subadditive closure:

a? =
⊕
{x | x? 4 a?}, (6)

a? =
∧
{x | x = x?, x < a}. (7)

Proof. Proofs of these equations are found in literature. For equation (1), see [10]
whereas for equations (2) until (5) see [2]. Finally, for equations (6) and (7) see [9]
with the following precision for the latter: a? is a solution of this equation because
a? < a and it is also the smallest one because (a?)? < a? ⇔ a? < a? ⇔ x? < a?.

ut

3 Network Calculus Modelling

3.1 Input and Output Flows, Arrival and Service Curves

Input and output flows. A communication network can be seen as a blackbox
denoted S with an input flow and an output flow. These flows are respectively
described by cumulative functions belonging to F0 and denoted u and y. Element
u(t) corresponds to the total amount of data introduced in the system until time
t whereas y(t) corresponds to the total amount of data that has left the system
until this time. The main assumption made about input and output flows is a
characteristic of causality:

u 4 y,

which means that for all t, u(t) ≥ y(t). So, the amount of data leaving the
network is always lower than the one getting in.

In order to guarantee performance in network, constraints are applied over
these flows. For instance, an arrival curve is applied over the input flow whereas
the service provided by S is constrained by a lower curve as well as an upper
curve.



Arrival curve. One says that a given flow u ∈ F0 is constrained by an arrival
curve α ∈ F0 if it is such that ∀s ≤ t ∈ R+, u(t) − u(s) ≤ α(t − s) (u is said
α-smooth). So, the amount of data arriving between time s and time t is at most
α(t− s). Firstly, according to the definition of the inf-convolution:

u(t)− u(s) ≤ α(t− s) ⇔ u ≤ αu. ⇔ u < αu.

Secondly, thanks to the isotony of the inf-convolution, this inequality can be
written as below:

u < αu ⇒ αu < (α2u) ⇒ (α2u) < (α3u) ⇒ . . .

and therefore:
u = u⊕ (αu)⊕ (α2u)⊕ . . . =

⊕
n≥0

αnu.

Finally:
u < αu ⇔ u = α?u. (8)

So, α is an arrival curve1 for u if and only if for the input flows considered we
have: u = α?u.

Service curve. As regards to the service provided by S, it is framed by two
service curves β and β ∈ F0 such that β 4 β (β ≥ β). These curves constitute

interval [ β , β ] where β corresponds to the minimum service provided by S for
all input flows and β corresponds to its maximum service. Then, output flow y
is included in an interval too:

βu 4 y 4 βu ⇔ y ∈ [ βu , βu ]. (9)

All these Network Calculus elements (input and output flows, arrival and
service curve) are illustrated in Figure 1.

Fig. 1: Network Calculus diagram.

3.2 Performance Characteristics: Delay and Backlog

Two characteristics used as performance indicator in Network Calculus are the
delay and the backlog (see [4]). The former denoted d(t) corresponds to the

1 And α? is also an arrival curve for u.



waiting time of a paquet in a FIFO order whereas the latter denoted b(t) is the
amount of paquets in a network at time t. Let u and y be the input and the
output flow of a network:

d(t) , inf
τ≥0
{τ | u(t) ≤ y(t+ τ)},

b(t) , u(t)− y(t).

These data are given for all time t in the network. However, according to
the following theorem coming from the second order theory of (min,+) linear
systems detailed in [10] and used in [11], upper bounds on their worst-case can
be measured easily.

Theorem 3. Let v1 and v2 be two functions of F where2 v1 4 v2. Function
v1◦/v2 is called the correlation of v1 over v2 and contains the maximal distances,
denoted τmax and νmax, between v1 and v2 respectively in time and event domain.
More precisely, τmax and νmax are such that:

τmax = inf
τ≥0
{τ | (v1◦/v2)(−τ) ≤ 0},

νmax = (v1◦/v2)(0).

Remark 4. It is possible that v1◦/v2 = ε. In such a case, maximal time and event
distances τmax and νmax are infinite.

Then, thanks to theorem 3, we are able to provide two kinds of distances for
a network S:

– if input and output flows u and y of S are assumed to be known then, its
maximal delay and backlog can be computed,

– if arrival curve of u and minimum service curve of S are assumed to be
known then, upper bounds on maximal delay and backlog can be computed.

These measures as well as links between them are given in the following proposi-
tion. This is a different formulation of some well known results (see [8, §3.1.11])
but with different tools.

Proposition 1. On the one hand, let u, y ∈ F0 be input and output flows of a
network S such that u 4 y. On the other hand, let α be the arrival curve of input
u such that u = α?u and β be a minimum service curve of S such that y 4 βu.
Then:

d(t) ≤ ∆max = inf
∆≥0
{(u◦/y)(−∆) ≤ 0} ≤ Dmax = inf

D≥0
{(α?◦/β)(−D) ≤ 0},

b(t) ≤ Γmax = (u◦/y)(0) ≤ Bmax = (α?◦/β)(0).

Distances ∆max and Γmax are the maximal delay and backlog of S whereas Dmax

and Bmax are their upper bounds (see Figure 2).

2 Recall that v1 4 v2 ⇔ ∀t, v1(t) ≥ v2(t).
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Fig. 2: Maximal delay and backlog and their upper bounds.

Proof. Since u = α?u and y 4 βu (see equations (8) and (9)) are the relation
between real flows of network S and constraints over these flows, the following
inequality shows that from the correlation u◦/y another correlation with α? and
β is found:

y 4 βu ⇒ u◦/y < (α?u)◦/(βu) since u = α?u and see (1),

< ((α?u)◦/u)◦/(β) see (3),

< α?◦/β see (2).

So, according to the Rmin order relation:

u◦/y < α?◦/β ⇔ u◦/y ≤ α?◦/β.

ut

Remark 5. In the Network Calculus literature, maximal distances Dmax and
Bmax are obtained by horizontal and vertical deviations between elements of
correlation α?◦/β as shown in Figure 2b.

3.3 Functions associated to Delay and Backlog

In the next sections dealing with some control problems, we will need to handle
given delay and backlog as fixed value of pure delay and amount of data. To this
end, particular functions are defined below.

Definition 4. Let τ and ν be respectively a pure delay and an amount of data.
Then, function denoted δτ is defined by:

δτ (t) =

{
0 for t < τ,
+∞ for t ≥ τ,

and the one denoted γν by:

γν(t) =

{
ν for t < 0,
+∞ for t ≥ 0.



Remark 6. Some properties can be associated to these functions:

δτ ∗ δ−τ = e,

γν ∗ γ−ν = e.

Moreover, in relation to input flow u, these functions are such that:

∀t, (δτ ∗ u)(t) = u(t− τ),

∀t, (γν ∗ u)(t) = ν + u(t).

4 Flow Control

In this section, we consider the traffic regulation in order to get a guaranteed
performance of a network, this is known as the flow control.

4.1 Arrival Curve Computation

The first problem addressed in this paper is the next one. Assuming that a
minimum service provided by a network is known, we aim at finding the arrival
curve, i.e. a constraint applied over input flow, in order to respect a maximal
delay or backlog. By definition of an arrival curve (see equation (8) with u < αu
and so u = α?u), this optimal curve is a subadditive closure. Moreover, an
optimal curve represents the minimal constraint applied over the input in order
to eventually reach but not exceed the given delay or backlog. The problem from
the point of view of time performance is given in the following proposition.

Proposition 2. Let β be a minimal service curve of a network S and τ be a
fixed worst end-to-end delay. The optimal arrival curve α̂? which guarantees the
respect of τ is given by:

α̂? =
∧
{α? | α? < δ−τβ} = (δ−τβ)?

where δ−τ is the function associated with τ .

Proof. First of all, according to proposition 1 and definition 4, upper boundDmax

of worst end-to-end delay is given by correlation α?◦/β and can be represented
by function δ−Dmax

. So, the following relation is given:

Dmax = − sup{D | (α?◦/β)(D) ≤ 0} ⇒ α?◦/β < δ−Dmax
.

Then, if the worst end-to-end delay τ is chosen Dmax = τ ⇔ δ−Dmax
= δ−τ and

thanks to equation (4), arrival curve α? has to follow these following inequalities:

α?◦/β < δ−τ ⇔ α? < δ−τβ.

Finally, thanks to equation (7), the minimal α? which respects the inequality is
(δ−τβ)?. ut



The next proposition states the problem from the point of view of data
performance.

Proposition 3. Let β be the known minimal service curve of a network S and
ν be a fixed worst backlog. The optimal arrival curve α̂? which guarantees the
respect of ν is given by:

α̂? =
∧
{α? | α? < γνβ} = (γνβ)?

where γν is the function associated with ν.

Proof. The proof is the same as in proposition 2. ut

4.2 Window Flow Control

The second problem of traffic regulation and performance guarantee is the one
of the window flow control where its optimal window size is computed.

First of all, let us recall this control context. A window flow controller aims
at bounding the amount of data admitted in a network in such a way that its
total amount in transit is always less than some positive number, i.e. the window
size. This problem has already been treated in literature but not in the same
manner. The window flow control introduced in [8] do not have the same model
than in [6]. In this paper, we adopt the Chang’s modelling which is homogeneous
with the one introduced in [7].

Moreover, this problem is studied here with two associated configurations.
On the one hand, the service provided by the network is assumed to be included
in interval. Indeed, assuming that minimum and maximum service curves are
known, the size of the window can be computed as well as for the worst case
than for the best case of traffic without damaging the service provided. On the
other hand, a difference is made between the data stream (from the source to
the destination) and the acknowledgments stream (from the destination to the
source) since these acknowledgments requires considerably less bandwidth than
the data itself (see [1]). So, the computation of the window size will have ben-
efit of this profit of bandwidth. This configuration is described in the following
proposition and illustrated in Figure 3.

Proposition 4. Let S1 be the system representing the data stream where [ β
1
, β1 ]

(β
1
4 β1) is the interval containing its provided service. In the same way, let

S2 be the system representing the acknowledgments stream where [ β
2
, β2 ]

(β
2
4 β2) is the interval containing its provided service. Then, let γw be the rep-

resentative function of the window size w. The service curve of the whole system
is included in the interval:

[ β
1
(γwβ2

β
1
)? , β1(γwβ2β1)? ].



Fig. 3: Chosen configuration of the window flow control system.

Proof. The output flow y is described by the following equation:

β
1
u 4 y 4 β1u,

whereas intermediate flow u is included in:

min(v, γwβ2
β
1
u) 4 u 4 min(v, γwβ2β1u),

v ⊕ γwβ2
β
1
u 4 u 4 v ⊕ γwβ2β1u see operator ⊕,

(γwβ2
β
1
)?v 4 u 4 (γwβ2β1)?v see theorem 1.

Therefore:
β
1
(γwβ2

β
1
)?v 4 y 4 β1(γwβ2β1)?v.

ut

By considering this configuration, the computation of the optimal window
size ŵ can be studied. The chosen point of view is to compute a minimal window
size such that the global network behavior, i.e. the controlled one, is the same
as the open-loop network behavior, i.e. the one of S1 only. The behavior of S1 is
described by the interval of service curve [ β

1
, β1 ], this objective can be stated

as follows:

γ̂w =
⊕
{γw | β1

(γwβ2
β
1
)? = β

1
and β1(γwβ2β1)? = β1}. (10)

The following proposition puts forward the computation of such a window size.

Proposition 5. In order to obtain a behavior of the closed-loop system un-
changed in comparison to the one of the open-loop (see equation (10)), the opti-
mal window size ŵ represented by function γ̂w is given below:

γ̂w = (β
1
◦\β

1
◦/(β

2
β
1
)) ∧ (β1 ◦\β1◦/(β2β1)).

Proof. Firstly, by considering the minimal bound, letGc be the minimal behavior
of the controlled network and Gref be the reference behavior we want to reach,
so the one of β

1
:

Gc = β
1
(γwβ2

β
1
)? and Gref = β

1
.



Equation (10) can be written as follow:

γ̂w =
⊕
{γw | Gc 4 Gref}.

Then:

Gc 4 Gref ⇔ β
1
(γwβ2

β
1
)? 4 β

1
,

⇔ (γwβ2
β
1
)? 4 β

1
◦\β

1
see (4),

⇔ γwβ2
β
1
4 β

1
◦\β

1
since a 4 a?,

⇔ γw 4 β
1
◦\β

1
◦/(β

2
β
1
) see (4). (11)

Secondly, this proof is the same for the maximal bound and thus we obtain:

γw 4 β1 ◦\β1◦/(β2β1). (12)

Then, in order to satisfy both equations (11) and (12), function γw is given by:

γ̂w = (β
1
◦\β

1
◦/(β

2
β
1
)) ∧ (β1 ◦\β1◦/(β2β1)).

ut

Remark 7. Thanks to this optimal window size, the interval including the service
curve of the controlled system is the same as the one of the open-loop system:

[ β
1
(γ̂wβ2

β
1
)? , β1(γ̂wβ2β1)? ] = [ β

1
, β1 ].

5 Application: Window Flow Control with a Given Delay

Let us see an example of a window flow control with a given delay to respect.
This application takes the main propositions of this paper into account, namely
proposition 2 about the computation of an arrival curve according to a given
delay (its backlog version given in proposition 3 is not treated in this example)
and proposition 5 about optimal size of a window flow controller.

5.1 Configuration

For this application, the scheme of the network is the same as described in
proposition 4 and illustrated in Figure 3. All the service provided by element
S1 is included in interval [ β

1
β1 ]. Services curves β

1
and β1 are rate-latency

functions with a latency of 16ms for the former, 20ms for the latter and a rate
of 100Mb/s for both of them:

β
1
(t) = 16ms+ 100Mb/s · t and β1(t) = 20ms+ 100Mb/s · t.

By considering the service provided by element S2 included in interval [ β
2
β2 ]

with rate-latency functions as services curves β
2

and β2:

β
2
(t) = 12ms+ 100Mb/s · t and β2(t) = 14ms+ 100Mb/s · t.

For this network, the upper bound Dmax of the worst end-to-end delay from
v to y is fixed to 90ms. This delay is represented by function δ−Dmax

.



5.2 Computation of the arrival curve α̂?

Firstly, proposition 2 is applied in order to find the minimal arrival curve α̂?

which allows Dmax to be respected in the open-loop context. Thus:

α̂? = (δ−Dmax
β1)? ⇒ α̂?(t) = (−90ms) ∗ (20ms+ 100Mb/s · t),

= 9Mb+ 100Mb/s · t.

This arrival curve is the lowest one, so the less restrictive one enabling even-
tually to reach but not to exceed the given delay. If an arrival curve still less
restrictive is chosen, the network will be subjected to congestions and the max-
imum end-to-end delay of the network will increase.

5.3 Computation of the window size ŵ

Secondly, we can compute the optimal window size ŵ for this configuration.
However, the maximum end-to-end delay Dmax has to be respected again and
thus the optimal arrival curve α̂? previously computed is used as follows: input
v of the global system is constrained by α̂? such that v = α̂?v. So, the open-loop
behavior is the following interval:

α̂?[ β
1
, β1 ]

whereas the closed-loop one is:

α̂?[ β
1
(γ̂wβ2

β
1
)? , β1(γ̂wβ2β1)? ].

Then, proposition 5 is applied in order to find the minimal window size ŵ
which allows the same behavior in closed-loop context than in open-loop context
to be obtained and function γ̂w is given by:

γ̂w = ((β
1
α̂?) ◦\(β

1
α̂?)◦/(β

2
β
1
)) ∧ ((β1α̂

?) ◦\(β1α̂
?)◦/(β2β1)).

The proof of this result is left to reader by following the one of proposition 5.
Finally, the optimal window size is obtained:

ŵ = 2, 8Mb.

This window size is the minimal one for the largest bandwidth of the network
without congestion it. Moreover, this window size respect the maximum end-to-
end delay given in the assumption.

6 Conclusion

In this paper, traffic regulation and performance guarantee of a network have
been treated. First of all, we recalled the algebraic linked to Network Calculus
operations thanks to the (min,+) algebra and the residuation theory. Once these



useful properties defined, we used them in the context of flow control in order
to solve two problems enabling to avoid congestion in the network.

The first case shows the computation of an optimal arrival curve in order to
respect a maximal delay or backlog, assuming that the minimum service provided
by a network is known. This arrival curve is said to be optimal because it is the
less restrictive one where the given delay is not exceeded.

The second case brings forward the computation of a window size in a closed-
loop structure. Assuming that the data stream and the acknowledgments are
different, this window size is said to be optimal. Moreover, the service provided
by network elements are included in an interval so the window flow controller is
computed as well as for the worst case than for the best case of traffic.

Finally, an example applies propositions made in order to solve these two
problems and optimal arrival curve and window size are found.
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