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Introduction

The industrial manufacturing systems can be modeled using a subclass of Petri Nets named
Timed Event Graphs (TEGs), that is a timed discrete event system subject to synchro-
nization and delay phenomena. The synchronization represents a meeting between events,
and the delay corresponds to transportation times. A specific control theory has been
developed during the last decades [1, 2, 3, 4, 5, 6]. This work aims to purpose a specific
software tools to implement automatically an observer-based controller on a real system.
It is decomposed on several steps first the model of the system is given as a TEG, then the
corresponding state-model of this system is given to the software as an input. A specifi-
cation representing the desired behavior is also given as an input. Then the software will
give automatically the code to implement the control law in a Supervisory Control and
Data Acquisition (SCADA) system.

This work is organized as follows: First, the algebraic tools necessary to synthesize the
control law are recalled, then in Chapter 2 the modeling method of a system is presented.
The proposed control laws given in Chapter 3 is an observer-based control strategy which
aims to match a reference model. Later an illustration example is presented in Chapter 3.
Finally a discussion on the reference model choice is proposed in Chapter 4.

Figure 1: TEG example

Controlling a discrete event system in an industrial space is desirable, many times using
the just-in-time criteria, this means, the output will be smaller than a reference output,
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2 Introduction

but the input will be delayed as long as possible. This avoids accumulation in machines
or lines, for example, a raw material will be the less amount of time out of the fridge. For
example sake, this paper will use the system in figure 1 to demonstrate the TEGs and the
algebra used.



Chapter 1

Mathematical Background

An idempotent semiring S is an algebraic structure with two internal operations denoted by
⊕ and ⊗. The operation ⊕ is associative, commutative and idempotent, that is, a⊕a = a.
The operation ⊗ is associative (but not necessarily commutative) and distributive on the
left and on the right with respect to ⊕. The neutral elements of ⊕ and ⊗ are represented by
ε and e respectively, and ε is an absorbing element for the law ⊗ (∀a ∈ S, ε⊗a = a⊗ε = ε).

As in classical algebra, the operator ⊗ will be often omitted in the equations, moreover,
ai = a ⊗ ai−1 and a0 = e. In this algebraic structure, a partial order relation is defined
by a � b ⇔ a = a ⊕ b ⇔ b = a ∧ b (where a ∧ b is the greatest lower bound of a and b),
therefore an idempotent semiring S is a partially ordered set (see [7, 4] for an exhaustive
introduction). An idempotent semiring S is said to be complete if it is closed for infinite
⊕-sums and if ⊗ distributes over infinite ⊕-sums. In particular > =

⊕
x∈S x is the greatest

element of S (> is called the top element of S).

Theorem 1
[see [7], th. 4.75] The implicit inequality x � ax ⊕ b as well as the equation x = ax ⊕ b
defined over S, admit x = a∗b as the least solution, where a∗ =

⊕
i∈N

ai (Kleene star operator).

Definition 1 (Residual and residuated mapping)
An order preserving mapping f : D → E, where D and E are partially ordered sets, is
a residuated mapping if for all y ∈ E there exists a greatest solution for the inequality
f(x) � y (hereafter denoted f ](y)). Obviously, if equality f(x) = y is solvable, f ](y) yields
the greatest solution. The mapping f ] is called the residual of f and f ](y) is the optimal
solution of the inequality.

Example 1

3



4 Chapter 1. Mathematical Background

Mappings Λa : x 7→ a ⊗ x and Ψa : x 7→ x ⊗ a defined over an idempotent semiring S
are both residuated ([7], p. 181). Their residuals are order preserving mappings denoted
respectively by Λ]

a(x) = a◦\x and Ψ]
a(x) = x◦/a. This means that a◦\b (resp. b◦/a) is the

greatest solution of the inequality a⊗ x � b (resp. x⊗ a � b).

The set of n × n matrices with entries in S is an idempotent semiring. The sum, the
product and the residuation of matrices are defined after the sum, the product and the
residuation of scalars in S, i.e.,

(A⊗B)ik =
⊕

j=1...n
(aij ⊗ bjk) (1.1)

(A⊕B)ij = aij ⊕ bij , (1.2)

(A ◦\B)ij =
∧

k=1..n

(aki ◦\bkj) , (B◦/A)ij =
∧

k=1..n

(bik◦/ajk). (1.3)

The identity matrix of Sn×n is the matrix with entries equal to e on the diagonal and to ε
elsewhere. This identity matrix will also be denoted e, and the matrix with all its entries
equal to ε will also be denoted ε.

Example 2
(max,plus) algebra: Zmax = (Z ∪ {−∞,+∞},max,+) is a complete idempotent semiring
such that a ⊕ b = max(a, b) , a ⊗ b = a + b, a ∧ b = min(a, b) with ε = −∞, e = 0, and
> = +∞. The order � is total and corresponds to the natural order 6. By extension Zn×nmax

is a semiring of matrices with entries in Zmax. Matrix ε ∈ Zn×mmax will be such that all its
entries are equal to ε ∈ Zmax , matrix e ∈ Zn×nmax will be such that all the entries are equal
to ε ∈ Zmax except the diagonal entries which are equal to e ∈ Zmax.

Example 3
(min,plus) algebra: Zmin = (Z ∪ {−∞,+∞},min,+) is a complete idempotent semiring
such that a ⊕ b = min(a, b), a ⊗ b = a + b, a ∧ b = max(a, b) with ε = +∞, e = 0, and
> = −∞. The order � is total and corresponds to the inverse of the natural order ( i.e. ,
2 � 1. Semiring of matrices Zn×nmin is a semiring of matrices with entries in Zmin.

Example 4 (Matrix operations in Zmax)
Given three matrices with entries in Zmax,

A =

1 4

5 3

ε 2

 , B =

3 3

2 4

7 1

 , and C =

[
ε 4

1 3

]
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we get

A⊕B =

1 4

5 3

ε 2

⊕
3 3

2 4

7 1

 =

3 4

5 4

7 2



A⊗ C =

1 4

5 3

ε 2

⊕ [ε 4

1 3

]
=

5 7

5 9

3 5


Considering the relation A⊗X � B with

A =

1 2

3 4

5 ε

 and B =

6

7

8


being matrices with entries in Zmax. As the max-plus multiplication corresponds to the

classical addition, its residual corresponds to conventional subtraction, i.e. , 1 ⊗ x � 4

admits the solution set X = {x|x � 1◦\4} with 1◦\4 = 4−1 = 3 being the greatest solution of
this set. Applying the rules of residuation in max-plus algebra to the relation A⊗X � B

results in:

A◦\B =

[
1◦\6 ∧ 3◦\7 ∧ 5◦\8
2◦\6 ∧ 4◦\7 ∧ ε◦\8

]
=

[
3

3

]
Matrix A◦\B = [3 3]T is the greatest solution for X which ensures A⊗X � B. Indeed,

A⊗ (A◦\B) =

1 2

3 4

5 ε

⊗ [3
3

]
=

5

7

8

 �
6

7

8

 = B.

Remark 1
Note that residuation achieves equality in case of scalar multiplication in max-plus algebra,
while this is not true for the matrix case.



Chapter 2

System Modeling

2.1 Dioid Max
in [[γ, δ]]

DioidMax
in [[γ, δ]] is formally the quotient dioid of B[[γ, δ]] (the set of formal power series in

two commutative variables γ and δ, with Boolean coefficients ant with exponents in Z),
by the equivalence relation xRy ⇔ γ∗(delta−1)∗x = γ∗(δ−1y. DioidMax

in [[γ, δ]] is complete.

As Max
in [[γ, δ]] is a quotient dioid, an element of Max

in [[γ, δ]] may admit several repre-
sentatives in B[[γ, δ]]. The representative which is minimal with respect to the number of
terms is called the minimum representative.

A simple geometrical interpretation of the previous equivalence relation is available
in the (γ, δ)-plane. Consider a monomial γkδt ∈ B[[γ, δ]], its south-east cone is defined as
{(k′, t′)|k′ > k and t′ 6 t}. The south-east cone of a series in B[[γ, δ]] is defined as the union
of the south-east cones associated with the monomials composing the considered series.
For two elements s1 and s2 in B[[γ, δ]], s1Rs2 ( i.e. , s1 and s2 are equal in Max

in [[γ, δ]])
is equivalent to the equality of their south-east cones. Direct consequences of previous
geometrical interpretation are:

• simplification rules inMax
in [[γ, δ]]

γk ⊕ γt = γmin(k,t) and δk ⊕ δt = δmax(k,t) (2.1)

• a simple formulation of the order relation for monomials

γnδt � γn
′
δt′ ⇔ n > n′ and t 6 t′

A simple interpretation of the variable γ and δ for daters is available:

• multiplying a series s by γ is equivalent to shifting the argument of the associated
dater function by -1.

6



2.1. Dioid Max
in [[γ, δ]] 7

• multiplying a series s by δ is equivalent to shifting the values of the associated dater
function by 1

Example 5
Consider the series s = γδ2⊕ γ3δ3⊕ γ4δ1 represented by dots in figure 2.1. The minimum
representative of s in Max

in [[γ, δ]] is γδ2 ⊕ γ3δ3. This result could be obtained using the
simplification rules of 2.1.

Figure 2.1: s and its south-east cone (hatched)

Besides,

s =
⊕
k60

γkδ−∞ ⊕
⊕
k=1,2

γkδ ⊕
⊕
k>3

γkδ4

Therefore, the dater ds associated with s is given by

ds(k) =


−∞ if k 6 0

1 if k = 1, 2

4 if k > 2

Knowing this, the following relations are presented
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γnδt ⊕ γn′
δt = γmin(n,n

′)δt (2.2)

γnδt ⊕ γnδt′ = γnδmax(t,t
′) (2.3)

γnδt ∧ γn′
δt

′
= γmax(n,n

′)δmin(t,t
′) (2.4)

γnδt ⊗ γn′
δt

′
= γn+n

′
δt+t

′
(2.5)

γnδt◦/γn
′
δt

′
= γn−n

′
δt−t

′
(2.6)

γnδt◦\γn′
δt

′
= γn

′−nδt
′−t (2.7)

2.2 Linear state-space representation of TEG inMax
in [[γ, δ]]

From now on, we only consider TEG with at most one place from a transition to another
transition. This assumption is not restrictive, as it is always possible to transform any
TEG in an equivalent TEG with at most one place from a transition to another transition.
The dynamics of a TEG may be captured by associating each transition with a series
s ∈ Max

in [[γ, δ]], where ds(k) is defined as the time of firing k of the transition. Therefore,
for TEG, γ is a shift operator in the event domain, where an event is interpreted as the
firing of the transition, and δ is a shift operator in the time domain.

The transitions of a TEG are divided into three categories:

• state transitions (x1, ..., xn): transitions with at least one input place and one output
place.

• input transitions (u1, ...up): transitions with at least one output place, but no input
places.

• output transitions (y1, ...ym): transitions with at least one input place, but no output
places.

Under the earliest functioning rule ( i.e. , state and output transitions fire as soon as
they are enabled), with respect to a place with initially m tokens and holding time t, the
influence of its upstream transition on its downstream transition is a positive shift in the
time domain of t time units and a negative shift in the event domain of m events. The
complete shift operator is coded by the monomial γmδt inMax

in [[γ, δ]]. Therefore, consider
the place upstream from transition xi and downstream from transition xj, the influence
of transition xj on transition xi is coded by the monomial fij in Max

in [[γ, δ]] defined by
fij = γmijδτij where mij is the initial number of tokens in the place and τij is the holding
time of the place.
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Consequently, a TEG admits a linear state-space representation inMax
in [[γ, δ]].{

x = Ax⊕Bu⊕Rw
y = Cx

where x ∈Max
in [[γ, δ]]n is the state, u ∈Max

in [[γ, δ]]p the controllable input, y ∈Max
in [[γ, δ]]m

the output and w ∈ Max
in [[γ, δ]]n the uncontrollable of the state. The uncontrollable input

w delays firing of internal transition, it can model for example unexpected failure, delays or
uncertain parameters such as task duration, while matrix R ∈ Max

in [[γ, δ]]n×n depicts how
these perturbations affect the inner states. If each transition can be affected by distur-
bance, R is the Identity matrix. A ∈Max

in [[γ, δ]]n×n, B ∈Max
in [[γ, δ]]n×p, C ∈Max

in [[γ, δ]]m×n

are matrices with monomial entries describing the influence of transitions on each other.

According to Theorem 1, under the earliest functioning rule, the input-output (resp.
perturbation-output) transfer function matrix H (resp. G) of the system is equal to CA∗B
(resp. CA∗).

y = CA∗Bu⊕ CA∗Rw = Hu⊕Gw (2.8)

When an element s ofMax
in [[γ, δ]] is used to code information concerning a transition of

a TEG, then a monomial γkδt with k, t > 0 may be interpreted as "at most k events occur
strictly before time t" ( i.e. , ds(K) > t). An element of s ofMax

in [[γ, δ]], used to code a
transfer relation between two transitions of a TEG (e.g., an entry of H), is causal ( i.e. ,
no anticipation in the time/event domain: all exponents are non-negative) and periodic (
i.e. , s = p⊕ qr∗ with polynomials p, q and a monomial r 6= e). For a periodic series s with
r = γνδτ , its asymptotic slope σ(s) is defined as ν/τ .

Example 6
Let us consider a manufacturing system depicted by the TEG given in Figure 1. The
transition labeled u represents the inputs of raw material, it is transported during 2 seconds
to a machine with 2 treatment spots. Its input is labeled x1, the processing time is equal to
5, and the machine’s output is labeled x2. The processed part is then transported out of the
system during 3 times unit, the transition y represents when the part is out of the production
line. Before accepting a new raw part the machine must be cleaned, this operation spends
7 times unit.

To put this system into gamma-delta equations we use the time delay as delta exponent
and the amount of initial tokens as gamma exponent for each arrow entering the transition,
e.g x1 = γ2δ7x2 ⊕ δ2u. The complete model is then given by

Ã =

[
ε γ2δ7

δ5 ε

]
B̃ =

[
δ2

ε

]
C̃ =

[
ε δ3

]
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It must be noticed that this system can be realized in a straightforward way in (max,
+) or (min, +) form:

x1(k) = max(2 + u(k), 7 + x2(k − 2))

x2(k) = max(5 + x1(k))

y(k) = max(3 + x2(k))

Where xi(k) represents the firing date of part
k.

x1(t) = min(u(t− 2), 2 + x2(t− 7))

x2(t) = min(x1(t− 5))

y(t) = min(x2(t− 3))

Where xi(t) represents the number of firing
occurred till the time t.

These both systems are implicit equations, in order to obtain an explicit model we
propose to split the system in the following way Ã = Ar ⊕ Ad ⊕ Ag where

• if nij 6= 0 and tij 6= 0, (Ar)ij = Ãij = γnijδtij else (Ar)ij = ε

• if tij = 0, (Ag)ij = Ãij = γnij else (Ag)ij = ε

• if nij = 0, (Ad)ij = Ãij = δtij else (Ad)ij = ε

In the present example:

Ag =

(
ε ε

ε ε

)
Ad =

(
ε ε

δ5 ε

)
Ar =

(
ε γ2δ7

ε ε

)
Knowing that x = Ãx⊕ B̃u separating the matrix Ã we have:

x = (Ad ⊕ Ag ⊕ Ar)x⊕ B̃u
x = (Ad ⊕ Ag)x⊕ Arx⊕ B̃u

Using Theorem 1

x = (Ad ⊕ Ag)∗Arx⊕ (Ad ⊕ Ag)∗B̃u

Knowing that, we have A = (Ad ⊕ Ag)
∗Ar and B = (Ad ⊕ Ag)

∗B̃ and these matrices
generates a model in the form {

x = Ax⊕Bu
y = Cx
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Which can be realized in an explicit form either in (max,+) or (min, +)

(Ad ⊕ Ag) =

(
ε ε

δ5 ε

)
⇒ (Ad ⊕ Ag)∗ =

(
e ε

δ5 e

)

A = (Ad ⊕ Ag)∗Ar =

(
ε γ2δ7

ε γ2δ12

)
and for the input

B = (Ad ⊕ Ag)∗B̃ =

(
δ2

δ7

)
Which generate the explicit model firstly for (max, +)

x1(k) = max(2 + u(k), 7 + x2(k − 2))

x2(k) = max(7 + u(k), 12 + x2(k − 2))

y(k) = max(3 + x2(k))

and for (min,+)

x1(k) = min(u(t− 2), 2 + x2(t− 7))

x2(k) = min(u(t− 7), 2 + x2(t− 12))

y(k) = min(x2(t− 3))

These matrices A and B can be programmed into a software without realization prob-
lems. The system can be solved by considering Theorem 1, (see equation 2.8) and the
transfer matrix y = Hu is given by H = C̃Ã∗B̃ = CA∗B = δ10(γ2δ12)∗. This computation
can be easily be performed by using the library MinMaxgd available as a C++ library as
web interface see [8]



Chapter 3

Observer Based Controller

This chapter presents how to implement an efficient control strategy for dynamical systems
considered in the previous chapter. The control strategy proposed is depicted in figure 3.1.
It is inspired from the observer based control for classical linear systems.

The motivation to control the input of these systems is to decide when the operator
should start to achieve an objective, e.g. when do you start the departure of a processing
operator in order to achieve the customer demand. Hence, the aims is to design a controller
able to decide when the system should start to work in order to achieve a desired behavior.
Classically a popular production policy is to design a just-in-time policy, that is to start
as late as possible while ensuring the customer demand. It minimizes the internal stock
while keeping the performances.

Figure 3.1: Controlled system

The design goal is then, to get controllerM and P (see 3.1) which are matrices ensuring
that the control input u = P (v ⊕Mx̂) be the greatest ( i.e. the one which delay as much
as possible the input) in order to achieve a given objective, the reference input v. Signal
x̂ is either the real state of the system, (x̂ = x if the state is measurable) an estimation

12



3.1. Example 13

x̂ observed thanks to an observer, inspired from the Luenberger observer ([9]) for classical
linear systems. This estimator is given by

x̂ = Ax̂⊕Bu⊕ L(ŷ ⊕ y) (3.1)

Where L is an observer matrix to be designed. It is fed by the measured output y of
the system and ensures that the real system output be possible to compute the estimator
x̂, especially that disturbance w feeding the system though matrix R. This observer based
controller is then a feedback control strategy. The goal is to design P,M,L in order to
achieve a desired behavior denoted Gref .

By solving equation 3.1 x̂ is given by

x̂ = Ax̂⊕Bu⊕ L(Cx⊕ Cx̂)

= (A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCA∗Rw

by repeating in u, the control is:

u = P (v ⊕Mx̂)

= P (M(A⊕ LC)∗BP )∗v

⊕ PM((A⊕ LC)∗BPM)∗(A⊕ LC)∗LCA∗Rw

The development are given in [10] and leads to the optimal design

Popt = (CA∗B)◦\Gref (3.2)
Lopt = ((A∗B)◦/(CA∗B)) ∧ ((A∗R)◦/(CA∗R)) (3.3)
Mopt = Popt◦\Popt◦/(A∗BPopt) (3.4)

3.1 Example

Since our sample system showed in Figure 1 does not have many inner states or inputs
and outputs, these calculations can be done easily by hand. For this example we are going
to use Gref = H, meaning that we want the system to maintain the outputs, but delay as
long as possible the inputs. In this way we are able to calculate Popt = (CA∗B)◦\(CA∗B)
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knowing that (CA∗B) = δ10(γ2δ12)∗. Using relation 2.7

Popt = δ10(γ2δ12)∗◦\δ10(γ2δ12)∗ = (γ2δ12)∗◦\(γ2δ12)∗

Since a∗◦\a∗ = a∗

Popt = (γ2δ12)∗

With the result of Popt we are able to calculate Mopt

Mopt = (γ2δ12)∗◦\(γ2δ12)∗◦/
(
δ2

δ7

)
⊗ (γ2δ12)∗

Mopt =
(
δ−2 δ−7

)
⊗ (γ2δ12)∗

It is impossible to implement a controller that has negative exponents because this
controller would be non-causal. The solution is to pick only the causal projection. To do
this imagine a Cartesian plane where gamma is the x axis and delta the y. Now we put
the points according to the series desired, for example γ−4δ−1 ⊕ γ−2δ2 ⊕ γ2δ3 ⊕ γ4δ4.

���������������
���������������
���������������
���������������
���������������
���������������
���������������
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���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

1 2 3 4

1

2

3

4

γ

δ

−1

−2

−4 −3 −2 −1

Figure 3.2: Gamma-delta plane representation

It is clear that using the south-east cone presented in Chapter 1 all the points in
the drawing must be inside the first quadrant for the series to be realizable. This way,
the causal projection is the biggest area possible, in a way that all its corners are inside
the first quadrant, and is contained in the original area. For our example, it would be
δ2 ⊕ γ2δ3 ⊕ γ4δ4, as showed in figure 3.3
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Figure 3.3: Causal series

Using the same reasoning in Mopt we get the following causal series:

Pr+(Mopt) =
(
γ2δ10 γ2δ5

)
⊗ (γ2δ12)∗

Finally the observer needs to be calculated

L1 =

(
δ2

δ7

)
⊗ (γ2δ12)∗◦/δ10 ⊗ (γ2δ12)∗

L1 =

(
δ−8

δ−3

)
⊗ (γ2δ12)∗

L2 =

(
e γ2δ7

δ5 e

)
⊗ (γ2δ12)∗◦/

(
δ8

δ3

)

δ10 ⊗ (γ2δ12)∗ L2 =

(
γ2δ4

δ−3

)
⊗ (γ2δ12)∗

Now doing L = L1 ∧ L2 :

L =

(
γ2δ4

δ−3

)
⊗ (γ2δ12)∗ ⇒ Pr+(L) =

(
γ2δ4

γ2δ9

)
⊗ (γ2δ12)∗

Since all the matrices entries are causal, all these controllers are realizable, and thus
they can be implemented.
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To convert the gamma-delta elements into min-plus or max-plus equations, we will
generalize the element to S = p⊕ qr∗ this way we define ζk = r∗ thus S = p⊕ qζk. Using
Theorem 1, we get the relation ζk = rζk. In our example x̂ = Ax̂ ⊕ Bu ⊕ Ly, using
only the first state for example sake, x̂1 = γ2δ7x2 ⊕ δ2u ⊕ γ2δ4 ⊗ (γ2δ12)∗y. Evidently
in this case p = γ2δ7x2 ⊕ δ2u, q = γ2δ4y and r = γ2δ12. Using the formula we just
found, x̂1 = γ2δ7x2 ⊕ δ2u ⊕ γ2δ4ζ1 and ζ1 = γ2δ12ζ1. In Figure 3.4 we can see the full
controlled system. It is worth mentioning that the method presented above was used for
the controller, while for the observer we decided to define ζk = qr∗ instead of ζk = r∗, this
way ζk = rζk ⊕ q, showing that we have multiple definitions that work the same.

Figure 3.4: Controlled Sample System

This way we are able to put these equations in min-plus or max-plus easily. For sim-
plicity sake, min-plus will be used because updating the system periodically is easier than
when events occur. The min-plus equation for x̂1 is x̂1 = min(2 + x̂2(t− 7), u(t− 2), ζ1(t))

knowing that ζ1(t) = min(2 + ζ1(t − 12), 2 + y(t − 4)). These equations can be easily
programmed into a software, since they only require data storage to use the time delays
properly.

All this calculus as well as the translation from gamma-delta equations into code are
done automatically by a software made in the university. First, one needs to put the
matrices of the modeled system Ã, B̃ and C̃, as showed in figure 3.5.

Then, the software will calculate the observer using the relations x̂ = Ax̂ ⊕ Bu ⊕ Ly
and u = P (v ⊕Mx̂). Considering v = ε. Substituting the first relation into the second
one we get the input relation u = PMAx̂ ⊕ PMBu ⊕ PMLy. Next, using the same
method presented in chapter 2, the realizable matrix is calculated for the input, and then
finally the code is made using these results. The controller is separated in several libraries,



3.1. Example 17

Figure 3.5: Code of the example made

each one for each necessary update, for example, we need to update the auxiliary states
before updating the observer. The function used to make the code also can receive a 4th
parameter, allowing the user to put the perturbation matrix as a pre-defined one, in this
case the default value was used as the identity matrix. If the user choses to test a controller
known a priori the function void GenerateCode(A,B,L,M, P ) can be used to the only the
translation from gamma delta matrices to C code.

The delays were made using circular arrays to store the information, using the smallest
number of positions possible. A circular array is one such its first and last position are
connected, as shown in figure 3.6, its access is made using the mod function. In this way,
the values are stored into the positions, and once they are no longer useful ( i.e. , it is not
necessary to store 14 seconds of values if the maximum delay required for this transition is
12 seconds) the older values start being overwritten. The type of data used in these arrays
can be changed in the typedef present in the generated Functions.h file.

Figure 3.6: Circular Array
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Real System Application

In this chapter we are interested in applying this method in a real system in figure 4.1 which
is located in Institut des sciences et techniques de l’ingénieur d’Angers (ISTIA) Angers,
France.

Figure 4.1: Real system

The system has 2 separated parts, a faster loop and a slower loop as showed in figure
4.1. The slower loop has 6 buttons that do not let the pallets pass while the faster loop has
only 4. All the buttons has sensors just before them, as it can be seen in figure 4.2. The
pallet’s size is such that if they are waiting the button, the sensor will stay active. Each
trajectory (between two buttons) has a defined maximum number of pallets. The travel
times were measured 10 times, and the time used were the average of them.

18
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Figure 4.2: Button and Sensor

Each button was named B1 to B10 and the travel time as well as the maximum number
of pallets are represented in Figure 4.3. It is important to notice that there are 3 pallets
waiting for B1, 2 waiting for B5 and 1 waiting for B6, as initial conditions of the system.

Figure 4.3: Buttons, travel times and pallet limit

The system is programmed to activate the buttons when there is one pallet waiting for
it (the sensor is active), at least one space left for the path and at least one control token
(that will be given by the supervisory system) available. Especially for B3 and B10, there
is a forced synchronization, meaning that B3 and B10 will always activate at the same
time, requiring 2 control tokens, one free space between B10 and B5 and 1 pallet waiting
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for B3 and another waiting for B10. It is worth mentioning that after each consecutive
activation of any button, it will wait for 2 seconds until it activates again.

Now the first step is to put this system in a Petri net model. We will analyze the path
between B4 and B1 and then apply the same reasoning to the other paths. Since each
button changes the state of the system, we have the first two inner states, each one with
one associated input because of the control tokens as shown in figure 4.4. Then we will
need one place for each empty slot in the path, and since 2 pallets cannot be in the same
place, these places must have only one token at a time. Besides the tokens, the timings
for each place has to be 2 seconds, since the button will only activate 2 seconds after its
previous activation, but the sum of all the places between the buttons has to be the total
traveling time. Using these conditions we have the second step of the model in figure 4.5.
It is worth mentioning that the initial pallets are the tokens into (P1), (P2) and (P3) so
that the token in (P1) can activate B1 instantaneously.

Figure 4.4: Modeling 1

Figure 4.5: Modeling 2

To summarize the model so far, the token in P1 will activate the B1 transition, meaning
that the button will go down and the pallet will enter the path between B1 and B2. After
that, the two other pallets will begin moving and wait for the 2 seconds to pass, what
explains the 2 seconds traveling time in the model. The last condition that is missing is
the total number of pallets for each path. Since for the path B4 to B1 only 3 pallets are
allowed, and all the three are already in it, so we have the final model represented in figure
4.6.

Figure 4.6: Final path Model
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Lastly, the output y is made by the sensor, this means, the transition y is activated
when the sensor just behind the button is activated. This is the reason why the output
has to be put in the auxiliary state x3 before the button transition, otherwise the output
would be incremented when the button activates. If we replicate this reasoning to all paths
combined we get the final model represented in figure 4.7. The image below as well as the
model explanation were obtained in [11].

Figure 4.7: Complete Model

We can achieve the system’s matrices as shown in appendix, where Ã will be devised
into Ag, Ad and Ar to make the model implementable using the same procedure discussed in
chapter 2. The next step is to use these 3 matrices to calculate Popt, Lopt and Mopt thought
equations 3.2-3.4. These calculus were made using the software described in chapter 3,
using the data type as unsigned short int, a 7 thread input/output main program (3
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threads for writing, 3 for reading and 1 thread to end the program) and an update control
time of 500 ms. The process of calculus and implementation is shown in figure 4.8.

Figure 4.8: Implementation Process

In this way, the PLCs read the sensor’s outputs and count the transitions y1 to y10, this
information is then read by the SCADA System present in a computer, and the values for
the observer and control tokens are updated. After updating those values, the computer
waits for a certain time in a way that the inactive time plus the time taken to read/write
the values and update all the values is equal to 500ms, basically Tupdate + Tidle = 500ms.
With the control tokens counter updated, the PLCs start activating the buttons in order
to control the system and minimize accumulation.
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Results

In this chapter we are going to discuss the effects of having implemented the control into
the real system. Since the only place that can occur pallet accumulation is in B3 and B10
and the loop containing B3 is faster, it is the only place that can have accumulation. Gref

is chosen such that it is equal to the system’s transfer function, that means, we chose to
maintain the original output, but delay as much as possible the buttons activations in order
to reduce stock. Knowing that, the objective of the controller is to reduce the stock in front
of B3 without changing the original output. The PLC was programmed to inform when
the inner state x7 was activated since all the outputs are defined by this state but with
a time delay. In this matter, analyzing x7’s behavior we are able to analyze all outputs,
meaning that if the objective is to maintain all outputs, the inner state x7 without and
with control must be the same.

Although, being exactly equal in this system is impossible since the traveling times are
not deterministic, instead we expect the difference between x7s to be floating around zero,
sometimes positive and sometimes negative. In figure 5.1 it is possible to see the time
evolution of the difference between x7 before and after control. As expected, the difference
is insignificant principally because x7 is the number of times the state has been activated,
which is a number that gets bigger though time. The mean value of the difference is -
0.1342, very close to 0, showing that all outputs would have been maintained if the system
has perfectly deterministic.1 For a visual explanation, the reader is invited to see the
demonstration of the Not Controlled System and the Controlled System.

1Figures generated using MATLAB R2015b

23

http://youtu.be/xUHocFhOGc0
https://youtu.be/uR3TgFjjK-U
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Figure 5.1: x7’s difference

The next topic will be the stocking difference. For this matter the PLCs were pro-
grammed to acquire x4’s information, this way the stock is calculated using stock(t) =

x4(t)− x7(t). The result can be seen in figure 5.2.

Figure 5.2: Stock Evolution

This pattern keeps repeating for the whole simulation. As it can be seen, the controlled
system has at maximum 2 pallets in stock, while the not controlled (natural) system has 3.
This result makes sense, since our aim is to maintain the outputs, in this case, for output y2
to be maintained the system has to activate B2 at least twice, in order to activate the sensor
before B2 three times, resulting in a minimum stock of 2. Calculating the mean stock, we
get 1.6550 pallets for the natural system, and 1.3175 for the controlled one, meaning a
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20.4% stock reduction. It is worth mentioning that this result is a direct consequence of
our Gref choice, another one can be chosen in order to have a different control and thus
a different result. Although the Gref = H is hardcoded into the software, it is easy to
change it to have a generic reference transfer matrix.

Next, We are going to analyze the effects of a malfunction in the system. A disturbance
was put between buttons B7 and B8 in a way that the pallets could not pass though, this
way button B3 and B10 would never activate. This test was made in both controlled and
not controlled system. In figure 5.3 we can see the difference in stock between the controlled
and not controlled systems. As expected the feedback controller still grants minimum stock
even with a malfunction in the system. After, the disturbance was removed and the system
began reacting as normal as presented in figure 5.2.

Figure 5.3: Stock Evolution in B3 with malfunctioning

Finally we made the same test, but this time putting the disturbance between B1
and B2, in order to see the accumulation in B10. Again, the test was made both in
the controlled and not controlled systems. The results can be seen in figure 5.4. In this
case, the controller made no difference in the accumulation time, this effect is due to the
limitations of the system, this means, the path between B9 and B10 only accepts 2 pallets
maximum. In other hand, when analyzed, the number of control tokens available for B9
was 0 in the controlled system, and infinity for the not controlled one, meaning that if the
pallet restriction did non exist, the controlled system would have 2 pallets stock, and the
not controlled one 3. The explanation for the required number of pallets is the same as for
output y2.
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Figure 5.4: Stock Evolution in B10 with malfunctioning



Conclusion

After all these tests and simulations applying the chosen reference model Gref = H, we can
conclude the system had its pallet accumulation significantly reduced and the outputs have
been maintained as expected. In this aspect, the software developed in the Institut des
sciences et techniques de l’ingénieur d’Angers (ISTIA) made it easy to test and implement
in any industrial line, with the only difficulty being modeling the system into TEG, and
then translating this model to gamma-delta matrices.

An interesting progression to this study is to use the theory based on [12] to generate a
reference model Gref capable of limiting both the time in each inner state and the amount
of pallets allowed for each place. In the system presented, it would be interesting to limit
the amount of pallets in B3 and B10 to 1 and the hold time to 5 seconds, this would
generate a controller with no stock in these places. This theory would only change the
code that calculates the controller M , the observer L and the input filter P , the code to
translate it into C can be used as normal.

Another interesting improvement is to make a better software, with a fully auto-
matic code generation (the code made still requires the user to make the loop and the
input/output with the controllers) as well as a graphic interface. This interface would let
the user to insert the model, and do the gamma-delta modeling automatically, saving time
and possible human errors.

Another problem is that the holding times must be divisible by the update control
period, i.e. if the update time is 3 seconds and the holding time is 10 seconds, since the
machine reads and stores the values each 3 seconds it is impossible to have 10 second delay,
the program would pick the 12 second delay since the result is rounded up. It is worth
mentioning that we were not able to think in a solution to this problem for every update
rate, and the solution we used was to pick an update time that is a divisor of 1 second (in
this case 500ms). The update time must be 100ms, 250ms, 500ms or 1s if all the holding
times are integers.
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Model matrices for the real system

Ã =

ε ε ε γ3 ε ε ε ε ε ε ε γδ2 ε ε ε ε ε ε ε ε ε ε

δ4 ε γ ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

ε δ2 ε γ ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

ε ε δ2 ε ε ε γ3 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

ε ε ε δ2 ε γ ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

ε ε ε ε δ2 ε γ ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε δ2 ε ε ε γ3 ε ε ε 0 ε ε ε ε ε ε ε δ2

ε ε ε ε ε ε δ5 ε γ ε ε ε ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε δ2 ε γ ε ε ε ε ε ε ε ε ε ε ε ε

0 ε ε ε ε ε ε ε δ2 ε ε ε ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε γδ3 ε 0 ε ε ε ε ε ε ε ε ε ε

0 ε ε ε ε ε ε ε ε ε γδ2 ε ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε γδ4 ε ε ε ε ε ε 0 ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε ε ε γδ2 ε ε γ ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε ε ε ε δ6 ε 0 ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε ε ε ε ε γδ2 ε γ ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε δ5 ε ε γ2 ε ε ε

ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε δ8 ε γ ε ε ε

ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε δ2 ε ε γ2 ε

ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε δ9 ε γ ε

ε ε ε ε ε ε γ2 ε ε ε ε ε ε ε ε ε ε ε ε δ2 ε ε

ε ε ε ε ε ε γ ε ε ε ε ε ε ε ε ε ε ε ε ε δ4 ε
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B̃ =



0 ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε

ε 0 ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε

ε ε 0 ε ε ε ε ε ε 0

ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε

ε ε ε 0 ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε

ε ε ε ε 0 ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε 0 ε ε ε ε

ε ε ε ε ε ε 0 ε ε ε

ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε 0 ε ε

ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε 0 ε

ε ε ε ε ε ε ε ε ε ε



C̃ =



ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε

ε γ2 ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε

ε ε δ2 ε ε ε ε ε ε ε

ε ε ε δ2 ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε

ε ε ε δ2 ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε

γδ2 ε ε ε ε ε ε ε ε ε

ε ε ε ε γδ2 ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε γδ2 ε ε ε ε

ε ε ε ε ε ε δ5 ε ε ε

ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε δ2 ε ε

ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε δ2 ε

ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε δ2
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Abstract — This article aims to present the fundamentals of a Timed Event Graph (TEG
- a petri net subclass) and apply it on industrial lines. Using a TEG, this article proposes
an observer’s feedback controller, based on classic theory, and a discussion of its benefits.
Later, this calculus are exemplified using a simple system and the reader is able to follow
the calculations (made by hand) to better understand the algebra. Finally, this controller
is applied (using a software made by the author) into a real system, that simulates an
industrial line. It aims to maintain a reference output while delaying the input as much as
possible, in order to reduce overload in machines and lines, as well as other advantages.

Key words : Timed Event Graphs, Max-Plus, Control, State Observer, just-in-time.
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