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Angers, along the Loire Valley

1H30 in south west of Paris

350000 people, 16th city of France

1 State university, with 32000 students,

Denis Papin graduated from University of Angers in 1669

Carlos Andrey Maia graduated in 2004
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Links between UFMG and UA, more than 10 years old

UFMG - UA History in some points

PhD of Carlos Andrey Maia, in [2001-2004]

CAPES - Cofecub Project [2008-2012]

Brafitec Project [2012-2016]

Vinicius Mariano Gonçalves PhD defense, [2013-2014] in Angers
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Alexander Grothendieck 28/03/1928 - 14/11/2014

Fields medal 1966

Member of the Nicolas Bourbaki Seminar

Laurent Hardouin (LARIS) An overview on control theory for (max,plus) linear systems,November 26th 2014 5 / 52



An overview on control theory for (max,plus) linear systems

Outline

Introductive examples

(max,+) algebra in few words

Discrete event systems in (max,+) algebra

Optimal control on a finite horizon

Optimal filtering

Optimal closed loop control, how to take into account disturbances ?

Sub observer synthesis

Interval arithmetic and semiring, robust controller synthesis

Laurent Hardouin (LARIS) An overview on control theory for (max,plus) linear systems,November 26th 2014 6 / 52



An overview on control theory for (max,plus) linear systems

Outline

Introductive examples

(max,+) algebra in few words

Discrete event systems in (max,+) algebra

Optimal control on a finite horizon

Optimal filtering

Optimal closed loop control, how to take into account disturbances ?

Sub observer synthesis

Interval arithmetic and semiring, robust controller synthesis

Laurent Hardouin (LARIS) An overview on control theory for (max,plus) linear systems,November 26th 2014 6 / 52



An overview on control theory for (max,plus) linear systems

Outline

Introductive examples

(max,+) algebra in few words

Discrete event systems in (max,+) algebra

Optimal control on a finite horizon

Optimal filtering

Optimal closed loop control, how to take into account disturbances ?

Sub observer synthesis

Interval arithmetic and semiring, robust controller synthesis

Laurent Hardouin (LARIS) An overview on control theory for (max,plus) linear systems,November 26th 2014 6 / 52



An overview on control theory for (max,plus) linear systems

Outline

Introductive examples

(max,+) algebra in few words

Discrete event systems in (max,+) algebra

Optimal control on a finite horizon

Optimal filtering

Optimal closed loop control, how to take into account disturbances ?

Sub observer synthesis

Interval arithmetic and semiring, robust controller synthesis

Laurent Hardouin (LARIS) An overview on control theory for (max,plus) linear systems,November 26th 2014 6 / 52



An overview on control theory for (max,plus) linear systems

Outline

Introductive examples

(max,+) algebra in few words

Discrete event systems in (max,+) algebra

Optimal control on a finite horizon

Optimal filtering

Optimal closed loop control, how to take into account disturbances ?

Sub observer synthesis

Interval arithmetic and semiring, robust controller synthesis

Laurent Hardouin (LARIS) An overview on control theory for (max,plus) linear systems,November 26th 2014 6 / 52



An overview on control theory for (max,plus) linear systems

Outline

Introductive examples

(max,+) algebra in few words

Discrete event systems in (max,+) algebra

Optimal control on a finite horizon

Optimal filtering

Optimal closed loop control, how to take into account disturbances ?

Sub observer synthesis

Interval arithmetic and semiring, robust controller synthesis

Laurent Hardouin (LARIS) An overview on control theory for (max,plus) linear systems,November 26th 2014 6 / 52



An overview on control theory for (max,plus) linear systems

Outline

Introductive examples

(max,+) algebra in few words

Discrete event systems in (max,+) algebra

Optimal control on a finite horizon

Optimal filtering

Optimal closed loop control, how to take into account disturbances ?

Sub observer synthesis

Interval arithmetic and semiring, robust controller synthesis

Laurent Hardouin (LARIS) An overview on control theory for (max,plus) linear systems,November 26th 2014 6 / 52



An overview on control theory for (max,plus) linear systems

Outline

Introductive examples

(max,+) algebra in few words

Discrete event systems in (max,+) algebra

Optimal control on a finite horizon

Optimal filtering

Optimal closed loop control, how to take into account disturbances ?

Sub observer synthesis

Interval arithmetic and semiring, robust controller synthesis

Laurent Hardouin (LARIS) An overview on control theory for (max,plus) linear systems,November 26th 2014 6 / 52



(max,+) algebra in few words

Idempotent Semiring

Sum ⊕, associative,commutative, zero element denoted ε,

Product ⊗, associative, identity element denoted e,

Product ⊗ distributes with respect of sum,
(a⊕ b)⊗ c = a⊗ c ⊕ b ⊗ c ,

Zero element ε is absorbing, a⊗ ε = ε

The sum is idempotent, a⊕ a = a.

a⊕ b = a⇔ b � a⇔ a ∧ b = b
hence a semiring has a complete lattice structure, with (ε = ⊥) as
bottom element and (> =

⊕
x∈S x) as top element.

Example :(max,+) algebra, Zmax, Cuninghame-Green 1962 More

Sum ⊕ is the operator max , product ⊗ is classical sum +, ε = −∞ and
e = 0, then :

1⊕ 1 = 1 = max(1, 1),
2⊗ 1 = 3 = 2 + 1.
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(max,+) algebra in few words

Residuation Theory (Croisot 1956, Blyth 1972)

It allows to define a kind of inverse for order preserving mapping, defined
over ordered sets. The idempotent law ⊕ induces that a semi ring has an
order structure, i .e., a⊕ b = a⇔ b � a, then this theory is suitable to
consider inversion problem over idempotent semi ring.

Inequality a ⊗ x � b

Over a complete idempotent semi ring, inequality a⊗ x � b admits a
greatest solution , denoted, x = a◦\b.

Example : (max,+) algebra Zmax

Inequality 5⊗ x � 3 admits a greatest solution x = 5◦\3 = 3− 5 = 2. It
achieves equality in the scalar case.
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(max,+) algebra in few words

Fixed point equation x = ax ⊕ b More

Theorem : Over a complete idempotent semi ring T , the least solution to
x = ax ⊕ b is x = a∗b with a∗ =

⊕
i≥0

ai = e ⊕ a⊕ a2 ⊕ ...

∗ is called Kleene star operator.

We will denote M the mapping defined over T s.t. M : x 7→ x∗

Inequality x∗ � a More

Theorem : Mapping M restricted to its image is residuated.
Application : If a ∈ ImM then inequality x∗ � a admits a greatest solution
x = a∗
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(max,+) algebra in few words

Matrix

Let A,B,C three matrices in Zn×n
max

(A⊕ B)ij = Aij ⊕ Bij

(A⊗ B)ik =
⊕

j=1...n
(Aij ⊗ Bjk)

(A◦\B)ik =
∧

j=1...n
(Aji ◦\Bjk), where A◦\B is the greatest such AX � B

More
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TEG Model in Zmax

Firing Date [Cohen et al., 85]

xi (k) : date of the firing numbered k
for the transition labelled i .

For each transition :
x1(k) = max(1 + u(k), x2(k − 1))
x2(k) = 3 + x1(k)
y(k) = 3 + x2(k)

In Zmax Zmax :

x1(k) = 1⊗ u(k)⊕ x2(k − 1)
x2(k) = 3⊗ x1(k)
y(k) = 3⊗ x2(k)
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TEG Model in Zmax

Firing Date [Cohen et al., 85]

xi (k) : date of the firing numbered k
for the transition labelled i .

Dynamic Model

x(k) = Ax(k − 1)⊕ Bu(k)
y(k) = Cx(k)
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TEG Model in Zmax[[γ]]

γ transform [Cohen et al,89] More

γ transform of x(k) is a formal series x (γ) =
⊕
k∈Z

γkx(k).

γ-operator is like a backward shift operator in the event domain,
y(γ) = γx(γ)⇔ y(k) = x(k − 1)∀k.

The previous system in Zmax[[γ]] :

x1(γ) = 1u(γ)⊕ γx2(γ)
x2(γ) = 3x1(γ)
y(γ) = 3x2(γ)

General case , transfer matrix{
x(γ) = Ax(γ)⊕ Bu(γ)
y(γ) = Cx(γ)

⇒ y = CA∗Bu = Hu
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TEG Model in Zmax[[γ]]

The previous system in Zmax[[γ]] :

x(γ) = Ax(γ)⊕ Bu(γ) =

(
ε γ
3 ε

)
x(γ)⊕

(
1
ε

)
u(γ)

y(γ) = Cx(γ) =
(
ε 3

)
x(γ)

The previous system in Zmax[[γ]] : More

x(γ) = A∗B =

(
(3γ)∗ γ(3γ)∗

3(3γ)∗ (3γ)∗

)(
1
ε

)
u(γ)

y(γ) = CA∗B =
(
7(3γ)∗

)
u(γ)
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Operations over Zmax[[γ]]

Operations over Zmax[[γ]]

s = s1 ⊕ s2 More

s = s1 ⊗ s2 More

s = s1 ∧ s2, asymptotic slope σ∞(s) = max(σ∞(s1), σ∞(s2))

s∗, asymptotic slope σ∞(s∗) = min(σ∞((pi )), σ∞(qi ), σ∞(r))

s = s1◦\s2, if σ∞(s2) ≤ σ∞(s1) then σ∞(s) = σ∞(s2), else s = ε
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Optimal control : IEEE TAC, Cohen et al. 1989

Problem Formulation :

Let z be a desired output. Is it possible to a control input in order to get an
output y as close as possible to z while respecting the constraint : y � z .

Solution

The optimal input is given by :

uopt = (CA∗B)◦\z

It is the greatest input which achieves the inequality :

y = (CA∗B)uopt � z

In manufacturing setting z corresponds to the customer demands, u the
input of raw parts in the system, y the output of processed parts. Optimal
control uopt is the one which minimizes the internal stock while ensuring
the customer demand is honored.
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Optimal control : IEEE TAC, Cohen et al. 1989

Practical computation :

Residuation of matrices of series.... or In (max,plus) algebra it can be
formally expressed as :

ζ(k) = A◦\ζ(k + 1) ∧ C ◦\z(k)

u(k) = B◦\ζ(k)

It is a back tracking computation , very reminiscent to the optimal control
for classical dynamical systems. ζ(k) is the adjoint state of the system.

Drawback :

Desired output has to be known a priori, or a receding horizon has to be
performed.
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Optimal Filtering, model matching problem : JESA,
Hardouin et al. 1995

Problem Formulation :

Let H be a matrix of series describing a desired behavior, it is a reference
model to achieve. Let CA∗B be the transfer of the system to be
controlled, and Pa filter such that y = CA∗B ⊗ P ⊗ u. The optimal filter
such that CA∗BPu � Hu, ∀u is given by :

Popt = (CA∗B)◦\H

In manufacturing setting it is the one which delays as much as possible
the input while ensuring that the output y � Hu∀u.
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Optimal Filtering, model matching problem : JESA,
Hardouin et al. 1995

Particular case : Neutral controller

The model to match H = CA∗B, this means the output is not modified by
the filter P but the input is delayed as much as possible.

Drawback :

it is also on open loop control, it doesn’t take into account the possible
disturbances acting on the system.
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State Feedback controller synthesis
[Cottenceau 1999, Maia 2003, Lhommeau 2003]

system Equation :

{
x = Ax ⊕ Bu
y = Cx

input Output transfer
function

y = CA∗Bu
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State Feedback controller synthesis
[Cottenceau 1999, Maia 2003, Lhommeau 2003]

v

K

Controlled system :{
x = Ax ⊕ B(v ⊕ Kx)
y = Cx

Closed loop system
transfer function :

y = C (A⊕ BK )∗Bv

Objective :

Compute the greatest
controllet K such that :

C (A⊕ BK )∗B � Gref
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State Feedback controller synthesis

Optimal State Feedback Controller : More

Objective :

C (A⊕ BK )∗B � Gref ⇔ (A⊕ BK )∗B � A∗B((CA∗B)◦\Gref )

Ĝ = A∗B((CA∗B)◦\Gref ) is the greatest transfer between u and x
while preserving the constraint and belonging to ImA∗B (i.e. which is
achievable).
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State Feedback controller synthesis

Proposition :

If Gref � CA∗B = H then the greatest controller K ensuring
(A⊕ BK )G ⊂ G is given by :

K̂ = B◦\Ĝ◦/Ĝ

Particular case : The neutral controller

If Gref = CA∗B, the greatest controller is :

K̂ = (CA∗B)◦\(CA∗B)◦/(A∗B)

it is the one which delays as much as possible the input while preserving
the output.
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Application : a kind of disturbances decoupling problem
Lagrange 2002, Lhommeau 2003

Problem statement :
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Application : a kind of disturbances decoupling problem
Lagrange 2002, Lhommeau 2003

State model :

x = Ax ⊕ Bu ⊕ Sq
y = Cx

Transfer Relation :
y = CA∗Bu ⊕ CA∗Sq

Objective :

Compute the greatest
controller u = Fx such that

y = C (A⊕ BF )∗Sq
= CA∗Sq
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Application : a kind of disturbances decoupling problem

Objective : definition

(A⊕ BF )∗S
ker C≡ A∗S

The greatest element of [A∗S ]C [Cohen et al. 96] :

ΠC (A∗S) = C ◦\CA∗S

The greatest ideal principal A-invariant (AV ⊂ V) included in [A∗S ]C :

G =
{
x |x � Ĝ = A∗◦\ΠC (A∗S)

}
The greatest controller F such that (A⊕ BF )G ⊂ G :

F̂ = B◦\Ĝ◦/Ĝ
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Sub Observer Synthesis : Hardouin et al. IEEE TAC 2010

Observer

Sq

Simulator

Objective :

Compute the greatest observer matrix L such that

x̂ � x .
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Sub Observer Synthesis :

Observer

Sq

Simulator

System Equations : Matrix S

x = Ax ⊕ Bu ⊕ Sq = A∗Bu ⊕ A∗Sq

y = Cx = CA∗Bu ⊕ CA∗Sq.

Estimated State Equations :

x̂ = Ax̂ ⊕ Bu ⊕ L(ŷ ⊕ y)

ŷ = Cx̂ .
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Sub Observer Synthesis :

Constraints Satisfaction :

Compute the greatest observer matrix L such that

(A⊕ LC )∗Bu � A∗Bu ∀u
(A⊕ LC )∗LCA∗Sq � A∗Sq ∀q,

Constraints Satisfaction :

Compute the greatest matrix L such that

(A⊕ LC )∗B � A∗B ⇔ L � (A∗B)◦/(CA∗B)
(A⊕ LC )∗LCA∗S � A∗S ⇔ L � (A∗S)◦/(CA∗S).
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Sub Observer Synthesis :

Optimal Matrix :

Lopt = ((A∗B)◦/(CA∗B)) ∧ ((A∗S)◦/(CA∗S))

is the greatest such that
x̂ � x .

Laurent Hardouin (LARIS) An overview on control theory for (max,plus) linear systems,November 26th 2014 29 / 52



Control with an observer :

Principe :

Transfer Relation :

x = A∗B(K (A⊕ LC )∗B)∗v
y = CA∗B(K (A⊕ LC )∗B)∗v .
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Control with an observer :

Objective :

CA∗B(K (A⊕ LC )∗B)∗ � Gref

⇔ A∗B(K (A⊕ LC )∗B)∗ � A∗B((CA∗B)◦\Gref ) = Ĝ

By considering the principal ideal : G =
{
x |x � Ĝ

}
Controller K̂ :

K̂ = B◦\Ĝ◦/Ĝ◦/(A⊕ LC )∗

Properties :

Control strategy using both Lopt and K̂ is better (from the just in time
point of view) than the one using only the output [Cottenceau et al. 99].
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(max ,+)-linear systems with uncertain parameters
[ Lhommeau 2003]

This TEG can be represented as I(Zmax[[γ]])
x(γ) = [3γ2, 4γ]x(γ)⊕ [2, 4]u(γ)
y(γ) = [4, 7]x(γ)

The input/output transfer relation is given by :
y(γ) = [6(3γ2)∗, 11(4γ)∗]u(γ) = [H,H]u(γ) = Hu(γ)

All the transfer relations are included in interval [H,H].
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Residuation theory over idempotent semiring

Order relation inI(Zmax[[γ]])

a = [a, a] �I(Zmax[[γ]]) b = [b, b]⇔ a �Zmax[[γ]] b et a �Zmax[[γ]] b

Residuation over I(Zmax[[γ]])

The mapping La : I(Zmax[[γ]])→ I(Zmax[[γ]]), x 7→ a⊗x is residuated. The
residual mapping L]a is given by

L]a(b) = a◦\b = [a◦\b ∧ a◦\b, a◦\b].

x is the greatest interval such that :

ax �I(Zmax[[γ]]) b

Laurent Hardouin (LARIS) An overview on control theory for (max,plus) linear systems,November 26th 2014 33 / 52



Residuation theory over idempotent semiring

Order relation inI(Zmax[[γ]])

a = [a, a] �I(Zmax[[γ]]) b = [b, b]⇔ a �Zmax[[γ]] b et a �Zmax[[γ]] b

Residuation over I(Zmax[[γ]])

The mapping La : I(Zmax[[γ]])→ I(Zmax[[γ]]), x 7→ a⊗x is residuated. The
residual mapping L]a is given by

L]a(b) = a◦\b = [a◦\b ∧ a◦\b, a◦\b].

x is the greatest interval such that :

ax �I(Zmax[[γ]]) b

Laurent Hardouin (LARIS) An overview on control theory for (max,plus) linear systems,November 26th 2014 33 / 52



Conclusion :

Next works) :

Application for High-Troughput Screening Systems

How to deal with a model taking into account negative tokens, in
order to take into account the transient behavior

Control for system with maximal duration constraint, or dually a
minimal event

How to get a hierarchical approach, and also where put the sensors in
an efficient way.

and more .......

Scilab Toolboxes

http://www.istia.univ-angers.fr/~hardouin

http://www.scilab.org/contrib/

http://cermics.enpc.fr/~cohen-g//SED/book-online.html
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https://hal.inria.fr/file/index/docid/841252/filename/

HDRHardouinLaurent.pdf

Laurent Hardouin (LARIS) An overview on control theory for (max,plus) linear systems,November 26th 2014 38 / 52

https://hal.inria.fr/file/index/docid/841252/filename/HDRHardouinLaurent.pdf
https://hal.inria.fr/file/index/docid/841252/filename/HDRHardouinLaurent.pdf


(max,+) algebra in few words

Back

Sandwiches Algebra [Cohen et al. ]

1 piece of Bread + 1 slice of ham +
1 slice of cheese is equal to 1
sandwich. Another way of counting !
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(max,+) algebra in few words

Back

In classical algebra :

x = ax + b ⇔ x = (1− a)−1b
with the Taylor expansion (MacLaurin Series)
(1− a)−1 ≈ 1 + a + a2 + a3 + ...

In semiring :

x = ax ⊕ b admits x = a∗b as least solution. with a∗ = e⊕ a⊕ a2⊕ a3⊕ ...
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(max,+) algebra in few words

Skecth of proof : if a ∈ ImM then x∗ � a⇔ x � a∗ Back

a ∈ ImM⇒ a = a∗ hence x∗ � a∗ ⇔ (e ⊕ x ⊕ x2 ⊕ ...) � a∗ ⇔ x � a∗
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(max,+) algebra in few words

Sum of matrices A⊕ B = C Back(
2 5
3 7

)
⊕
(
e 8
1 3

)
=

(
2 8
3 7

)

Product of matrices A⊗ B = C Back2 5
ε 3
1 8

⊗ (e
1

)
=

2⊗ e ⊕ 5⊗ 1
ε⊗ e ⊕ 3⊗ 1
1⊗ e ⊕ 8⊗ 1

 =

6
4
9


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(max,+) algebra in few words

Residuation of matrices A ◦\B is the greatest solution of A⊗ X � B
Back 1 2

3 4
5 6

⊗ X �

 8
9

10


1 2

3 4
5 6

 ◦\
 8

9
10

 =

(
(1◦\8) ∧ (3◦\9) ∧ (5◦\10)
(2◦\8) ∧ (4◦\9) ∧ (6◦\10)

)
=

(
5
4

)
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TEG Model in Zmax

Zmax

Zmax = (Z ∪ {−∞,+∞},max,+) is an idempotent semi ring.

(∀a ∈ Zmax, a⊕ a = a)

Back

Laurent Hardouin (LARIS) An overview on control theory for (max,plus) linear systems,November 26th 2014 44 / 52



TEG Model in Zmax[[γ]]

Back

a series in Zmax[[γ]]

s =
⊕

k∈Z s(k)γk = 1γ ⊕ 4γ2 ⊕ 5γ4 ⊕ 7γ6 ⊕ ....
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Sub Observer Synthesis :

Matrix S and input q : Back

vector q represents a vector of exogenous uncontrollable inputs
(disturbance) which act on the system through matrix S .

These disturbances lead to disable the transition firing, that is they
decrease system performances and delay tokens output.

When matrix S is equal to identity matrix and q = x0 they may
represent the initial state of the system.
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TEG Model in Zmax[[γ]]
Back

Computation A∗ = E ⊕ A⊕ A2 ⊕ A3 ⊕ ...

A =

(
e ε
ε e

)
⊕
(
ε γ
3 ε

)
⊕
(

3γ ε
ε 3γ

)
⊕
(
ε 3γ2

6γ ε

)
⊕
(

6γ2 ε
ε 6γ2

)
⊕ ...

Each entries is a periodic series A∗ =

(
(3γ)∗ γ(3γ)∗

3(3γ)∗ (3γ)∗

)
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TEG Model in Zmax[[γ]]
Back

a periodic series in Zmax[[γ]]

s = (1γ ⊕ 4γ2)⊕ (5γ4 ⊕ 7γ6)(4γ3)∗

The throughput is denoted by σ∞(s) = 3/4
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Operations over Zmax[[γ]]

Sum of series s1 ⊕ s2 Back

Asymptotic slope σ∞(s1 ⊕ s2) = min(σ∞(s1), σ∞(s2))

s
1

s
2

s
1

s
2
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Operations over Zmax[[γ]]

Cauchy product of series s1 ⊗ s2 Back

s1 ⊗ s2 : (s1 ⊗ s2)(k) =
⊕
i+j=k

s1(k)⊗ s2(k).

Asymptotic slope σ∞(s1 ⊗ s2) = min(σ∞(s1), σ∞(s2))

s1 s2

5

1 2
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State Feedback controller synthesis

Details :

Recall :

(a⊕ b)∗ = a∗(ba∗)∗

a(ba)∗ = (ab)∗a

Let
C (A⊕ BK )∗B = CA∗(BKA∗)∗B = CA∗B(KA∗B)∗

.

hence :

C (A⊕ BK )∗B � Gref ⇔ (KA∗B)∗ � ((CA∗B)◦\Gref )
⇔ (A⊕ BK )∗B � A∗B((CA∗B)◦\Gref ).

Back
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Application : a kind of disturbances decoupling problem

Definition [Davey et al.,1990],[Cohen et al, 1996] Back

The kernel of a mapping C : X → Y, denoted kerC , is defined by the
following equivalence relation

x
ker C≡ x ′ ⇐⇒ C (x) = C (x ′).
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