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A B S T R A C T

This thesis is dedicated to the study of discrete-event systems (DES)
exhibiting resource-sharing and partial-synchronization phenomena,
the latter consisting in the presence of external signals restricting the
occurrence of certain events. The results are developed within a well-
established framework for the modeling and control of discrete-event
systems based on tropical algebra, where the basic modeling structures
form a subclass of timed Petri nets called timed event graphs (TEGs).
A notable advantage of using TEGs is the fact that their evolution
can be described by linear equations in a tropical-algebraic setting
such as the max-plus or the min-plus algebra. This has given rise to
a solid control theory for the class of systems that can be modeled
as TEGs, including methods for feedforward, feedback, and observer-
based control design. Nonetheless, this system class is not suitable
for modeling practically-relevant phenomena involving concurrency.
The main contribution of this thesis is to further enrich the existing
TEG-based control framework by encompassing the phenomena of
resource-sharing and partial synchronization, neither of which can
be modeled by TEGs alone. Both these phenomena bring additional
restrictions (internal in the former case, external in the latter) to the
occurrence of certain events in the system. In both cases, we show that
these restrictions can be expressed as inequalities in the semiring of
counters by making use of an operation called Hadamard product.
We then proceed to propose a formal and systematic method for
optimal output-reference control of systems exhibiting either of these
phenomena, where optimality is interpreted in a just-in-time sense:
control inputs are provided as late as possible while guaranteeing
that the resulting system outputs do not occur later than dictated
by the reference signal. The method also extends to the cases in
which the output-reference signals (in the case of resource-sharing) or
the external restrictions (in the case of partial synchronization) may
change unexpectedly during the operation of the system. Finally, a
unified method is presented which allows to systematically obtain
optimal control inputs for systems in which both treated phenomena
are simultaneously present.
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Z U S A M M E N FA S S U N G

In dieser Arbeit werden ereignisdiskrete Systeme (EDS) untersucht, die
durch Ressourcen-Sharing und partielle Synchronisation gekennzeich-
net sind. Unter partieller Synchronisation versteht man ein Phänomen,
bei dem externe Signale das Auftreten bestimmter Ereignisse ein-
schränken. Zur Herleitung der in dieser Arbeit erzielten Ergebnisse
wird eine etablierte Vorgehensweise zur Modellierung und Regelung
einer speziellen Klasse zeitbehafteter ereignisdiskreter Systeme ge-
nutzt. In dieser Vorgehensweise werden zeitbehaftete Synchronisati-
onsgraphen (engl.: timed event graphs (TEGs)) in tropischen Algebren
wie der max-plus oder der min-plus Algebra beschrieben. Dies führt
zu linearen Gleichungen für die zeitliche Entwicklung der betrachte-
ten TEGs. Auf der Grundlage dieser linearen Modelle hat sich in den
letzten Jahrzehnten eine ausgereifte System- und Regelungstheorie
für TEGs entwickelt. Allerdings lassen sich in dieser Systemklasse
praktisch relevante Phänomene wie das Auftreten von Konflikten nicht
abbilden. Der Hauptbeitrag dieser Arbeit ist eine Weiterentwicklung
der für TEGs zur Verfügung stehenden System- und Regelungstheo-
rie, so dass auch Ressourcen-Sharing und partielle Synchronisation
behandelt werden können. Beide Phänome implizieren zusätzliche
Restriktionen für das Auftreten bestimmter Ereignisse – interner Art
im ersteren, externer Art im letzteren Fall. In beiden Fällen wird ge-
zeigt, dass die jeweiligen Restriktionen als Ungleichungen formuliert
werden können, wenn im Rahmen der benutzten tropischen Algebra
ein sogenanntes Hadamard-Produkt eingeführt wird. Für Systeme mit
Ressourcen-Sharing oder partieller Synchronisation wird dann eine
formale Vorgehensweise zur optimalen Berechnung von Eingangser-
eignissen entwickelt. Optimalität ist hier im Sinne eines just-in-time
Kriterums zu verstehen, d.h. alle Eingangsereignisse sollen so spät
als möglich erfolgen, allerdings unter der Bedingung, dass kein Aus-
gangsereignis später auftritt als von einem Referenzsignal spezifiziert.
Diese Vorgehensweise wird dann auf den Fall erweitert, dass Refe-
renzsignale oder externe Restriktionen sich während des Betriebs
des Systems auf unvorhergesehene Weise ändern können. Schließlich
wird eine Methode zur systematischen Berechnung des optimalen Ein-
gangs für den Fall vorgestellt, dass Ressourcen-Sharing- und partielle
Synchronisationsphänome gleichzeitig auftreten.

iv





A C K N O W L E D G M E N T S

The author of this thesis is one; the people having made it possible,
many.

I thank my advisors, Jörg Raisch and Laurent Hardouin, for letting
me borrow from their wisdom and knowledge. At the risk of sound-
ing cliché, I must sincerely say I feel privileged for having had the
opportunity to work with both of you. Thank you for trusting me
and granting me freedom in choosing a research direction, and for
constantly incentivizing my (rather inconstant) progress.

I thank Ulrike Locherer for the patience with my early teaching
endeavors and for always being helpful with all administrative matters.
Thank you, also, for encouraging and helping me to improve my
German — the meagerness of my success at that is entirely on me.

I thank Anne-Kathrin Schmuck for being so supportive and under-
standing during my late efforts to finalize this thesis.

I thank the colleagues of the Control Systems Group for the great
time I had working there.

Thank you, Soraia and Fabio, for being great office mates, for always
bringing a smile on your faces even when drowning in work, for
smelling good, and for tolerating my constant eating in the office.

Thank you, Johannes and Davide, for the pleasant conversations
and the (at least for me) fruitful scientific discussions during coffee
breaks, and simply for being such nice and down-to-earth people.

I thank my family for the unconditional encouragement and support,
and for being the cornerstones that prevent me from crumbling.

Thank you, Tante, Ingrid, Nerci, for being role models in so many
senses.

Thank you, Gustavo, for the priceless brotherly friendship, for being
so different from me at the things I am worst at and thus providing
perspective, for being a present son in times I fail to be, and for the
patience with my highly unreliable responsiveness.

Thank you, mom and dad, for the love and friendship, for all the
dedication and sacrifice over the years. Thank you, mom, for giving
meaning to the word strength, and for being more understanding than
I could ever ask for, especially in face of my absence, often virtual on
top of physical.

Ana... words fall short. I enjoyed all these years of research and
teaching and, in spite of the stress, I enjoyed writing this thesis, but all
of that would have felt rather tasteless without you by my side. You
make me a better person. You, and our beloved furry trio, of course.
Thank you. And let the future bring what it must...

vi



Finally, I acknowledge the contribution of the book Synchronization
and Linearity [5] to the research that culminated in this thesis. To the
authors, as well as to the community, I would like to point out that
the title of this thesis is meant as an homage to the book, by no means
having the pretension of conveying the (silly) idea that this thesis
could ever have a significance even remotely comparable to that of the
book.

vii





C O N T E N T S

1 Introduction 1

i Preliminaries
2 Algebraic Setting 7

2.1 Idempotent semirings 7

2.2 The min-plus tropical semiring 9

2.3 Semiring of counters 10

2.4 Fixed points of isotone mappings 12

2.5 Residuation theory 12

2.6 The Hadamard product of counters 13

3 Timed Event Graphs — Modeling and Control in the Semir-
ing of Counters 15

3.1 Modeling of TEGs in the Semiring of Counters 15

3.2 Optimal control of TEGs 17

3.3 Control of TEGs with Output-Reference Update 18

ii Systems with Shared Resources
4 Modeling and Control of TEGs with Shared Resources 22

4.1 Modeling of TEGs with a single shared resource 22

4.2 Optimal control of TEGs with a single shared resource 24

4.3 Modeling and optimal control of TEGs with multiple
shared resources 31

4.4 Optimal control of TEGs with shared resources and
with multiple input transitions 37

5 Control of TEGs with Shared Resources and Output-Reference
Update 40

5.1 Problem formulation — the case of a single shared
resource 40

5.2 Optimal update of the inputs — the case of a single
shared resource 42

5.3 Problem formulation and optimal update of the inputs
— the case of multiple shared resources 52

5.4 On the flexibility of the method regarding Priority Pol-
icy and system structure 56

6 Related Work on Systems with Shared Resources 58

iii Systems with Partial Synchronization
7 Modeling and Control of TEGs under Partial Synchroniza-

tion 61

7.1 The concept of partial synchronization 61

7.2 Modeling of TEGs under partial synchronization 61

ix



contents x

7.3 Optimal control of TEGs with a single partially-synchronized
transition 65

7.4 Optimal control of TEGs with multiple partially-synchronized
transitions 68

8 Control of TEGs under Varying Partial Synchronization 70

8.1 Problem formulation — the case of a single partially-
synchronized transition 70

8.2 Optimal update of the inputs — the case of a single
partially-synchronized transition 71

8.3 Problem formulation and optimal update of the inputs
— the case of multiple partially-synchronized transi-
tions 77

9 Related Work on Systems with Partial Synchronization 82

iv Systems with Shared Resources and Partial Synchronization
10 Control of TEGs with Shared Resources and Partial Synchro-

nization 85

10.1 Optimal Control of TEGs with a single shared resource
and with partial synchronization 85

10.2 Optimal Control of TEGs with multiple shared resources
and with partial synchronization 90

11 Conclusion 94

v Appendix
a Proofs from Chapter 5 98

b Proofs from Chapter 8 103

Bibliography 106





1
I N T R O D U C T I O N

In this thesis, we shall focus on the study of systems belonging to
the class of discrete-event systems (DES), whose dynamic evolution
consists in the sequential occurrence of events that cause instantaneous
transitions among a discrete set of states (as a standard reference, see
e. g. [9]). Two of the most commonly used formalisms to model DES
are automata [24] and Petri nets [37], which have served as the basis
for a rich control theory for this class of systems (see e. g. [9], [45],
[50], [35]). Even though the dynamics of DES is event-driven, in some
applications time plays a crucial role, for example for performance
evaluation, deadline enforcement, or scheduling of time-sensitive tasks.
In order to encompass such cases, timed models for DES have emerged
in both the automata [4] and the Petri nets [48] fronts. Typical examples
of real-world systems suitable to be modeled as DES are human-made
ones found in the context of manufacturing (e. g. [10], [26], [49], [33],
[40]), transportation (e. g. [23], [51], [19], [38], [29]), and computer
networks (e. g. [7], [14], [46]).

The building blocks for the models considered in this thesis form
a subclass of timed Petri nets called timed event graphs (TEGs), char-
acterized by the fact that each place has precisely one upstream and
one downstream transition and all arcs have weight one. In particular,
the former restriction implies that TEGs alone are not suitable for
modeling conflict or choice. They can, however, be used to model
synchronization and delay phenomena, which are central in many of
the application scenarios cited above. One advantage of TEGs is the
well-known fact that in a suitable mathematical framework, namely a
tropical semiring setting such as the max-plus or the min-plus algebra,
their evolution can be described by linear equations (see [5] for a
thorough coverage). Moreover, by partitioning the transitions of a TEG
into input, internal, and output ones, these linear equations take the
form of a linear state-space model of the system. Based thereon, an
elaborate control theory has become available for this subclass of DES,
carrying over some key concepts from classical control theory; these
include transfer functions and transfer matrices [5, 11, 20], as well as
standard control approaches like optimal output-reference feedfor-
ward control [11, 28, 34] and model-reference control with output or
state feedback [13, 27, 31]. For a tutorial introduction to this control
framework, the reader may refer to [22].

In the scope of this thesis, the relevant control approach is that of
optimal output-reference control, with optimality being understood
in a just-in-time sense: the goal is to fire all input transitions as late
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introduction 2

as possible while guaranteeing that the firing of output transitions
is not later than specified by a reference signal. In a manufacturing
context, for instance, the firing of an input transition could correspond
to the provisioning of raw material, whereas the firing of an output
transition signifies the completion of a workpiece. In general, a just-in-
time policy aims at satisfying customer demands while minimizing
internal stocks and idle waiting times.

The results presented here aim at expanding the class of systems to
which the control framework discussed above can be applied. This is
achieved by tackling two different phenomena that naturally arise in
many applications and that cannot be dealt with by methods purely
based on TEG models. The first phenomenon is resource sharing, and
the second, consisting in the presence of external restrictions for the
occurrence of certain events, has become known as partial synchroniza-
tion. Let us now motivate the investigation of each of these phenomena
and highlight the main contributions of this thesis in each context.

systems with resource sharing

Systems of practical interest often involve limited resources that are
shared among different subsystems. As examples, one can think of
an automated manufacturing cell where the same tool/machine may
be required in several (possibly concurrent) steps of the production
process, of a railway network where shared track segments are used
by multiple trains, or of computational tasks competing for the use
of a fixed number of processors. On the other hand, as pointed out
before, TEGs cannot model concurrency or choice, which implies a
TEG alone is not suitable for modeling resource-sharing phenomena.
The aforementioned algebraic advantages of using TEGs have moti-
vated considerable effort toward overcoming this limitation, leading
to adaptations and enhancements of TEG-based approaches in order
to encompass systems with shared resources (e. g. [36], [12], [53], [1],
[8]).

In the first core part of this thesis (Part II), we consider a scenario in
which a number of subsystems, each modeled as a TEG, compete for
access to one or more shared resources. The objective is to determine
just-in-time inputs that make sure every subsystem meets its own
demand (i. e., tracks its own output-reference signal) while taking
into account the limited capacity of the resources. Our approach is
based on the one from [36], where the dispute for the joint resources
is settled by establishing a priority policy among the subsystems.

The problem becomes more general — and significantly more chal-
lenging — if one considers that the output-reference signals may vary
while the system is operating, hence requiring an on-line update of the
resource-allocation schedule. Imagine a manufacturing shop floor, for
instance, where an increase in the demand for high-priority products
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will require a readjustment of resource allocations by processing steps
related to lower-priority products, or an emergency call center where
the arrival of high-priority calls may render it necessary to reschedule
the answer to lower-priority ones (the latter problem has been studied,
e. g., in [2, 3]). As the first main contribution of the thesis, in Chapter 5

a method is proposed to optimally update the inputs of all subsystems
in the case their reference signals are changed during the operation —
to the best of the author’s knowledge, this problem has not been dealt
with before in this context. More precisely, we consider that all sub-
systems are initially operating under optimal schedules with respect
to their individual output references and to the global priority policy.
Supposing the output reference of one or more of them is updated
during run-time, we show how to optimally update all their inputs
so that their outputs are as close as possible to the corresponding
new references and the priority policy is still observed. In the case the
limited availability of the resources and the performance limitation
of the subsystems make it impossible to respect some of the new
references, we also provide the optimal way to relax such references,
obtaining their closest possible feasible versions based on which the
corresponding inputs are then optimally updated.

A more detailed comparison with related work on systems with
shared resources will make more sense after the reader has become fa-
miliar with the method proposed in this thesis. Therefore, we postpone
this comparison to the end of Part II (see Chapter 6).

systems with partial synchronization

The conditions for transition firings in TEGs are classically modeled
by standard synchronization, i.e., a transition can only fire after the
firing of certain other transitions, possibly with some delay, and the
firing of one transition never disables another. In some applications,
however, different forms of synchronization arise. In the second core
part of this thesis (Part III), we consider partial synchronization (or
PS, for short), a term coined in [17] where this phenomenon was
originally studied in a TEG setting. It consists in the existence of
external signals that limit the time instants at which certain transitions
in the system are allowed to fire. This is manifested in several scenarios
of practical relevance. In manufacturing, for instance, the occurrence of
events corresponding to turning on different high-power demanding
machines may be restricted to not occur simultaneously in order
to avoid spikes in the energy consumption, or there may be time
windows within which some equipment is scheduled for maintenance
and, therefore, cannot operate. In transportation networks, the access
to single-track segments by certain lines may be restricted according
to a fixed, predetermined schedule of external lines (e. g. operated
by a different company). Furthermore, we also consider the case in
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which the external signals restricting the occurrence of certain events
may vary over time. In the manufacturing cases, the plans for utilizing
heavy machinery or for performing equipment maintenance may need
to be updated, whereas in transportation networks the availability
of single-track segments to certain lines may be altered due, e.g., to
delays or unexpected deviations from the fixed schedule of external
lines.

The second main contribution of this thesis starts in Chapter 7,
where an original approach to tackle the modeling and control of
TEGs under PS restrictions is proposed. Given a system modeled
as a TEG, a reference for its output, and predetermined external
signals restricting the occurrence of one or more of its transitions, first
we systematically obtain a model (overall no longer a TEG) which
incorporates the given PS restrictions. Then, we obtain optimal (just-
in-time) inputs which lead to tracking the output reference while
making sure that the firing of those transitions under PS respect the
imposed restrictions. In Chapter 8, we proceed to extend the method
to the case in which PS signals may change during the operation of
the system — the case of varying PS signals has not been dealt with
before in this setting. With the system initially operating according
to the optimal inputs computed before, suppose the PS restrictions
on one or more of the affected transitions are altered at a certain time.
We establish the optimal way of updating the inputs so that the new
restrictions are observed and, if possible, the reference is still met.
However, depending on how strict the updated PS restrictions turn
out to be, tracking the original reference may become unattainable.
In that case, we show how to relax the reference as little as possible
to make it feasible, and this minimally-relaxed reference is then used
when updating the inputs.

As before, we postpone the comparison with related work on sys-
tems with PS to the end of Part III, after our method has been presented
(see Chapter 9).

outline

This thesis is divided into four parts, Part I – Part IV, of which Parts II
and III are the ones containing the chief results and contributions. In
more detail, the document is structured as follows.

Part I — preliminaries

chapter 2 provides an overview of the mathematical concepts un-
derlying the discussions along the thesis. Covered topics include
idempotent semirings, the min-plus tropical semiring, the semir-
ing of counters, fixed points of isotone mappings, and residuation
theory.
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chapter 3 concerns timed event graphs (TEGs), the basic modeling
elements for the systems treated in the subsequent chapters. We
recall how the behavior of TEGs can be described in the semiring of
counters and present some related fundamental control results.

Part II — systems with shared resources

chapter 4 consists in a method for optimal output-reference control
of a collection of subsystems that compete for access to shared
resources under a predetermined priority policy. Each subsystem
is modeled as a TEG and is assigned its own reference signal. The
global conditions imposed by the joint resources are expressed as
inequalities in the semiring of counters using the Hadamard product,
and the computation of the just-in-time inputs is formulated as a
fixed-point problem.

chapter 5 takes the scenario from Chapter 4 as a starting point and
deals with the case in which the output-references may be updated
during the operation. The problem of optimally updating the inputs
can again be systematically solved by computing fixed points of
appropriate mappings.

chapter 6 is reserved for comparison of the results from Chapters 4

and 5 with selected related work from the literature.

Part III — systems with partial synchronization

chapter 7 shows how the PS phenomenon can be captured by a Petri-
net structure appended to the TEG model of a system. Analogously
to Chapter 4, restrictions from PS can be expressed as inequalities
in the semiring of counters using the Hadamard product, and the
optimal inputs are obtained by solving fixed-point problems.

chapter 8 is focused on the case of PS restrictions that can change
while the system is running. As before, we present a formal and
systematic method to optimally update the inputs by computing
fixed points of certain mappings.

chapter 9 presents a comparison of the results from Chapters 7

and 8 with selected related work from the literature.

Part IV — systems with shared resources and partial syn-
chronization

chapter 10 merges the methods from Chapters 4 and 7 into a
unified framework, capable of dealing with systems exhibiting both
resource-sharing and PS phenomena. All the results from these two
chapters can be adapted to this more general setting.



Part I

P R E L I M I N A R I E S



2
A L G E B R A I C S E T T I N G

The main purpose of this chapter is to make the thesis largely self-
contained. We present a summary of some basic definitions and results
on idempotent semirings, with particular focus on the min-plus tropi-
cal semiring and on the semiring of counters — for a more exhaustive
discussion, the reader may refer to [5] — and touch on some topics
from residuation theory — see [6].

2.1 idempotent semirings

Definition 2.1 (idempotent semiring). An idempotent semiring (or
dioid) is a set D endowed with two binary operations, denoted ⊕ (sum)
and ⊗ (product), such that the following axioms hold:

i. ⊕ is associative, commutative, idempotent — i. e., (∀a ∈ D)

a ⊕ a = a — and has a neutral (zero) element, denoted ε;

ii. ⊗ is associative and has a neutral (unit) element, denoted e;

iii. ⊗ distributes over ⊕, i. e., (∀a, b, c ∈ D) c ⊗ (a ⊕ b) = (c ⊗ a)⊕
(c ⊗ b) and (a ⊕ b)⊗ c = (a ⊗ c)⊕ (b ⊗ c);

iv. the element ε is absorbing for ⊗, i. e., (∀a ∈ D) a ⊗ ε = ε ⊗ a = ε.

Remark 2.1. As in conventional algebra, the product symbol ⊗ is often
omitted. Throughout this thesis, we assume that the product has
precedence over all other binary operations in a dioid. More precisely,
for any binary operator ⊛ on D and for all a, b, c, d ∈ D, an expression
like ab ⊛ cd is to be read (a ⊗ b)⊛ (c ⊗ d). Note that this includes
operators resulting from residuation (see Section 2.5). 3

canonical order A canonical (partial) order relation on an
idempotent semiring D can be defined by

(∀a, b ∈ D) a ⪯ b ⇔ a ⊕ b = b . (2.1)

Note that ε is the bottom element of D, as (∀a ∈ D) ε ⪯ a.

Remark 2.2 (infinite sums). Infinite sums in an idempotent semiring
are defined as the supremum (or least upper bound) with respect to the
canonical order.

Definition 2.2 (complete idempotent semiring). An idempotent
semiring D is complete if it is closed for infinite sums — i. e., (∀X ⊆ D)

7



algebraic setting 8

⊕
x∈X x ∈ D — and if the product distributes over infinite sums —

i. e., (∀a ∈ D, ∀X ⊆ D)

a ⊗
( ⊕

x∈X
x
)
=

⊕
x∈X

(a ⊗ x) and
( ⊕

x∈X
x
)
⊗ a =

⊕
x∈X

(x ⊗ a) .

top element In a complete idempotent semiring D, the top element
is defined as ⊤ =

⊕
x∈D x. Clearly, from the definition of order (2.1)

it follows that (∀a ∈ D)⊤ ⪰ a. Furthermore, as a consequence of
axiom iv from Def. 2.1 and of the distributivity of ⊗ over infinite
sums, one has that ⊤⊗ ε = ε ⊗⊤ = ε.

∧-operator In a complete idempotent semiring D with canonical
order ⪯, the greatest lower bound (or infimum) operation, denoted ∧, is
defined by

(∀a, b ∈ D) a ∧ b =
⊕

{x ∈ D | x ⪯ a and x ⪯ b} .

Operation ∧ is associative, commutative, idempotent, and has ⊤ as
neutral element. Moreover, for all a, b ∈ D the following equivalences
hold:

a ⊕ b = b ⇔ a ⪯ b ⇔ a ∧ b = a . (2.2)

Remark 2.3 (matrix dioid ; [5]). The set of n×n-matrices with entries
in a complete idempotent semiring D, endowed with sum and product
operations defined by

(A ⊕ B)ij = Aij ⊕ Bij ,

(A ⊗ B)ij =
n⊕

k=1

(Aik ⊗ Bkj) ,

for all i, j ∈ {1, . . . , n}, forms a complete idempotent semiring denoted
Dn×n. Its unit element (or identity matrix) is the n×n-matrix with
entries equal to e on the main diagonal and ε elsewhere; the zero (resp.
top) element is the n×n-matrix with all entries equal to ε (resp. ⊤).
The definition of order (2.1) implies, for any A, B ∈ Dn×n,

A ⪯ B ⇔ (∀ i, j ∈ {1, . . . , n}) Aij ⪯ Bij .

It is possible to deal with nonsquare matrices in this context by suitably
padding them with ε-rows or columns; this is done only implicitly, as
it does not interfere with the relevant parts of the results of operations
between matrices. 3

matrix notation Throughout this thesis, we shall denote the ith

row and the jth column of a matrix A by A[i·] and A[·j], respectively.
In the case of row or column vectors, i. e., a ∈ D1×n or a ∈ Dn×1 with
n ≥ 2, we denote the ith entry simply by ai.
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kleene star operator In a complete idempotent semiring D,
the Kleene star operator on a ∈ D is defined as a∗ =

⊕
i≥0 ai, with

a0 = e and ai = ai−1 ⊗ a for i > 0. Note that this unary operator has
precedence over all binary operators on D, including ⊗; for instance,
for any a, b ∈ D, the expressions ab∗ and a∗b are to be read a ⊗ (b∗)
and (a∗)⊗ b, respectively.

Remark 2.4 ([5]). The implicit equation x = ax ⊕ b over a complete
idempotent semiring admits x = a∗b as least solution. This applies,
in particular, in the case x, b ∈ Dn and a ∈ Dn×n (cf. Remark 2.3).
Moreover, if x is a solution of x = ax ⊕ b, then x = a∗x. 3

2.2 the min-plus tropical semiring

The set Z = Z∪{−∞,+∞}, with the (standard) minimum operation as
⊕ and conventional addition as ⊗, forms the min-plus tropical semiring
(or min-plus algebra), denoted Zmin. Note that the canonical order ⪯
of Zmin is reversed with respect to the conventional order ≤ over Z.
For instance, we have 2 ⊕ 5 = 2, so 5 ⪯ 2; in general, (∀a, b ∈ Zmin)

a ⪯ b ⇔ b ≤ a.
Taking ε = +∞ and e = 0, it is straightforward to check that axioms

i–iv from Def. 2.1 are obeyed, i. e., Zmin is an idempotent semiring.
In fact, one can verify that Zmin is complete, as the properties from
Def. 2.2 hold:

(∀X ⊆ Zmin)
⊕
x∈X

x =
(
min
x∈X

x
)
∈ Zmin ,

and also (∀a ∈ Zmin, ∀X ⊆ Zmin)

a ⊗
( ⊕

x∈X
x
)
= a +

(
min
x∈X

x
)
= min

x∈X
(a + x) =

⊕
x∈X

(a ⊗ x)

and ( ⊕
x∈X

x
)
⊗ a =

(
min
x∈X

x
)
+ a = min

x∈X
(x + a) =

⊕
x∈X

(x ⊗ a) .

Recall from Remark 2.2 that, in the case X is an infinite subset of
Zmin,

⊕
x∈X x corresponds to the supremum of X with respect to the

canonical order of Zmin, which, in turn, amounts to the infimum with
respect to the conventional order over Z. For example, consider the
set X = {x ∈ Zmin\{−∞,+∞} | x ⪰ 3}, which, in standard algebra,
reads as X = {x ∈ Z | x ≤ 3}; in Zmin we have

⊕
x∈X x = −∞, which

is the infimum of X in standard algebra.
The top element of Zmin is

⊤ =
⊕

x∈Zmin

x = min
x∈Z

x = −∞ ,

and ∧ corresponds to the standard maximum operation — or, if applied
over infinite sets, the supremum with respect to the conventional order
over Z.
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Remark 2.5. As Zmin will be the underlying tropical semiring in the
context of this thesis, the symbols ε, e, and ⊤ shall henceforth refer to
the corresponding elements in Zmin. 3

2.3 semiring of counters

formal power series A formal power series in δ with coefficients
in Zmin and exponents in Z is defined by

s =
⊕
t∈Z

s(t)δt .

In this thesis, the coefficients s(t) of a series will refer to the accumu-
lated number of occurrences of certain events up to (but not including)
time t. This is illustrated by the following example.

Example 2.1. Suppose the first occurrence of a given event takes place
at time 3, then the next three occurrences happen at time 5, and the
last two occurrences are at time 12; the corresponding series σ will be

σ =
3⊕

t=−∞
eδt ⊕ 1δ4 ⊕ 1δ5 ⊕

12⊕
t=6

4δt ⊕
+∞⊕
t=13

6δt .

3

The series on which we shall focus, therefore, clearly have nonin-
creasing coefficients (in the order of Zmin, which, as pointed out before,
is the reverse of the standard order of Z), meaning s(t − 1) ⪰ s(t) for
all t.

Σ — the semiring of counters The set of nonincreasing for-
mal power series in δ with coefficients in Zmin and exponents in Z,
with addition and multiplication defined by

s ⊕ s′ =
⊕
t∈Z

(s(t)⊕ s′(t))δt ,

s ⊗ s′ =
⊕
t∈Z

( ⊕
τ∈Z

(s(τ)⊗ s′(t − τ))
)

δt ,

forms a complete idempotent semiring, denoted Σ. It has

– zero element sε given by sε(t) = ε for all t;

– unit element se given by se(t) =

e if t ≤ 0 ,

ε if t > 0 ;

– top element s⊤ given by s⊤(t) = ⊤ for all t.

We refer to elements of Σ as counters.
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It is easy to see that sε, se, respectively s⊤ are indeed the zero, unit,
respectively top elements in Σ: ∀s ∈ Σ, ∀t ∈ Z,

(s ⊕ sε)(t) = s(t)⊕ sε(t) = s(t) ;

(s ⊗ se)(t) =
⊕
τ∈Z

s(τ)⊗ se(t − τ)

=
⊕
τ≥t

s(τ)

= s(t) (as s is nonincreasing) ;

(s ⊕ s⊤)(t) = s(t)⊕ s⊤(t) = ⊤ .

Note that the order in Σ is induced by the canonical order in Zmin,
i. e., for all s, s′ ∈ Σ,

s ⪯ s′ ⇔ (∀t ∈ Z) s(t) ⪯ s′(t) .

Remark 2.6 ([5]). The fact that multiplication ⊗ is (obviously) commu-
tative in Zmin implies it is also commutative in Σ. 3

compact notation for counters Counters can be represented
compactly by omitting terms s(t)δt whenever s(t) = s(t + 1). For
instance, counter σ from Example 2.1 can be written compactly as
σ = eδ3 ⊕ 1δ5 ⊕ 4δ12 ⊕ 6δ+∞, as illustrated in Fig. 2.1. Recall that
in Example 2.1 we associated the coefficients of counter σ with the
accumulated number of occurrences of a certain event, as will be done
throughout this thesis. Then, one can notice that the δ-exponents of
the terms appearing explicitly in the compact notation denote the time
instants at which that event occurs. More precisely, in the compact
notation of a counter, consecutive terms aδτ ⊕ bδλ mean that b − a
occurrences of the associated event take place at time τ.

It is also common to omit terms with ε-coefficients. For instance, for
any τ ∈ Z, the counter with coefficients equal to e for t ≤ τ and ε for
t > τ is simply denoted by eδτ — in particular, the unit element se

defined above can be written se = eδ0.

t

σ(t)

−1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2.1: Graphical representation of counter σ from Example 2.1, which
can be written compactly as σ = eδ3 ⊕ 1δ5 ⊕ 4δ12 ⊕ 6δ+∞. The
squares in the graph mark the terms appearing in the compact
notation, i. e., when omitting redundant terms σ(t)δt such that
σ(t) = σ(t + 1).
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Remark 2.7. Note that, with τ > 0, for any s ∈ Σ we have

(s ⊗ eδτ)(t) =
⊕

t′≥t−τ

s(t′)⊗ e ⊕
⊕

t′<t−τ

s(t′)⊗ ε

=
⊕

t′≥t−τ

s(t′)

= s(t − τ) (as s is nonincreasing)

for all t ∈ Z, i. e., multiplication by the counter eδτ can be seen as a
backward shift operation — a delay — by τ time units. For example,
multiplying counter σ from Example 2.1 by eδ3 results in (using the
compact notation introduced above) σ⊗ eδ3 = eδ6 ⊕ 1δ8 ⊕ 4δ15 ⊕ 6δ+∞,
which graphically has the effect of sliding all the dots (and squares, of
course) in Fig. 2.1 three units to the right. 3

2.4 fixed points of isotone mappings

isotone mappings A mapping Π : D → C, with D and C two
idempotent semirings, is isotone if (∀a, b ∈ D) a ⪯ b ⇒ Π(a) ⪯ Π(b).

Remark 2.8. The composition of two isotone mappings is again an
isotone mapping. In fact, if Π1 : X → C and Π2 : D → X are two
isotone mappings, with D, C, and X idempotent semirings, then for
any a, b ∈ D we have

a ⪯D b ⇒ Π2(a) ⪯X Π2(b) ⇒ Π1
(
Π2(a)

)
⪯C Π1

(
Π2(b)

)
,

where ⪯Ξ denotes the canonical order on semiring Ξ, showing that
the mapping Π1 ◦ Π2 : D → C is isotone. 3

Remark 2.9 ([22]). Let Π be an isotone mapping over a complete idem-
potent semiring D, and let Y = {x ∈ D |Π(x) = x} be the set of fixed
points of Π. It follows that

∧
y∈Y y (resp.

⊕
y∈Y y) is the least (resp.

greatest) fixed point of Π. 3

Remark 2.10. Algorithms exist which allow to compute the least and
greatest fixed points of isotone mappings over complete idempotent
semirings. In particular, the algorithm presented in [22] is applicable
to the relevant mappings considered in this thesis. 3

2.5 residuation theory

Residuation theory provides, under certain conditions, greatest (resp.
least) solutions to inequalities such as f (x) ⪯ b (resp. f (x) ⪰ b).

Definition 2.3. An isotone mapping f : D → C, with D and C
complete idempotent semirings, is said to be residuated if for all
y ∈ C there exists a greatest solution to the inequality f (x) ⪯ y. This
greatest solution is denoted f ♯(y), and the mapping f ♯ : C → D,
y 7→ ⊕{x ∈ D | f (x) ⪯ y}, is called the residual of f .
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Mapping f is said to be dually residuated if for all y ∈ C there exists a
least solution to the inequality f (x) ⪰ y. This least solution is denoted
f ♭(y), and the mapping f ♭ : C → D, y 7→ ∧{x ∈ D | f (x) ⪰ y}, is
called the dual residual of f .

Note that, if equality f (x) = y is solvable, f ♯(y) yields its greatest
solution (provided mapping f is residuated, understood). Similarly,
as long as f is dually residuated, the least solution is given by f ♭(y).

Theorem 2.1 ([6]). Mapping f as in Def. 2.3 is residuated if and only if there
exists a unique isotone mapping f ♯ : C → D such that (∀y ∈ C) f

(
f ♯(y)

)
⪯ y

and (∀x ∈ D) f ♯
(

f (x)
)
⪰ x.

Remark 2.11. Let D be a complete idempotent semiring. For any a ∈ D,
mapping

La : D → D
x 7→ a ⊗ x

is residuated. Its residual is denoted by L♯
a(y) = a◦\y (◦\ is the “left-

division” operator). This applies, in particular, to the matrix case: for
A ∈ Dn×m, mapping

LA : Dm×p → Dn×p

X 7→ A ⊗ X

is residuated; L♯
A(Y) = A◦\Y ∈ Dm×p can be computed as follows: for

1 ≤ i ≤ m and 1 ≤ j ≤ p,

(A◦\Y)ij =
n∧

k=1

Aki◦\Ykj .

The reader should keep in mind that, as stated in Remark 2.1, through-
out this document we assume that ⊗ has precedence over ◦\, so
that, for any a, b, c, d ∈ D, an expression like ab◦\cd is to be read
as (a ⊗ b)◦\(c ⊗ d). 3

2.6 the hadamard product of counters

Definition 2.4 ([21]). The Hadamard product of s1, s2 ∈ Σ, written
s1 ⊙ s2, is the counter defined as follows:

(∀t ∈ Z) (s1 ⊙ s2)(t) = s1(t)⊗ s2(t) .

Remark 2.12. The Hadamard product is associative, commutative, dis-
tributes over ⊕ and ∧, has neutral element eδ+∞, and sε is absorbing
for it (i. e., (∀s ∈ Σ) s ⊙ sε = sε). 3

Proposition 2.2 ([21]). For any a ∈ Σ, the mapping Πa : Σ → Σ, x 7→
a ⊙ x, is residuated. For any b ∈ Σ, the counter Π♯

a(b), denoted b ⊙♯ a, is
the greatest x ∈ Σ such that a ⊙ x ⪯ b.
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t

s1(t)− s2(t)
(s1 ⊙♯ s2)(t)
(s1 ⊙♭ s2)(t)

♯ ♯ ♯ ♯

♯ ♯ ♯

♯ ♯ ♯ ♯ ♯

♭ ♭ ♭ ♭

♭ ♭ ♭

♭ ♭ ♭ ♭ ♭

−2 −1 10 1 2 3 4 5 6 7 8 9

Figure 2.2: Graphical illustration of s = “s1 − s2” /∈ Σ (points marked with
○) in comparison with s1 ⊙♯ s2 (denoted with ♯) and s1 ⊙♭ s2
(denoted with ♭), where s1 = 1δ1 ⊕ 3δ4 ⊕ 5δ+∞ and s2 = eδ0 ⊕
1δ2 ⊕ 2δ6 ⊕ 3δ+∞.

Proposition 2.3 ([52]). For a ∈ Σ, let Da = {x ∈ Σ | x = sε if ∃t ∈
Z with a(t) = −∞} and Ca = {y ∈ Σ | (∀t ∈ Z) a(t) ∈ {−∞,+∞} ⇒
y(t) = +∞}. The mapping Πa : Da → Ca, x 7→ a ⊙ x is dually residu-
ated for any a ∈ Σ. Its dual residual is denoted by Π♭

a(y) = y ⊙♭ a and
corresponds to the least x ∈ Σ that satisfies a ⊙ x ⪰ y.

Remark 2.13. Given two counters s1, s2 ∈ Σ, the series s defined by
(∀t ∈ Z) s(t) = s1(t)− s2(t) is not necessarily a counter; s1 ⊙♯ s2 is the
greatest counter less than or equal to s (in the sense of a coefficient-
wise order like that of Σ). Similarly, provided the conditions from
Prop. 2.3 are met, s1 ⊙♭ s2 is the least counter greater than or equal to
s. These ideas are illustrated in Example 2.2. 3

Example 2.2. Consider the counters s1 = 1δ1 ⊕ 3δ4 ⊕ 5δ+∞ and s2 =

eδ0 ⊕ 1δ2 ⊕ 2δ6 ⊕ 3δ+∞. The series s with s(t) = s1(t)− s2(t) for all t
is given by

Σ ̸∋ s =
0⊕

t=−∞
1δt ⊕ eδ1 ⊕ 2δ2 ⊕ 1δ3 ⊕ 1δ4 ⊕ 3δ5 ⊕ 3δ6 ⊕

+∞⊕
t=7

2δt ,

whereas we have the counters s1 ⊙♯ s2 = 1δ1 ⊕ 2δ4 ⊕ 3δ+∞ and s1 ⊙♭

s2 = eδ1 ⊕ 1δ4 ⊕ 2δ+∞. The comparison among series s and counters
s1 ⊙♯ s2 and s1 ⊙♭ s2 is graphically illustrated in Fig. 2.2. One can see
that s1 ⊙♯ s2 is the closest counter approximation of s from below in the
sense of a coefficient-wise order like that of Σ (or from above, in the
graphical sense); similarly, s1 ⊙♭ s2 is the closest counter approximation
of s from above in the sense of a coefficient-wise order like that of Σ
(or from below, in the graphical sense). 3



3
T I M E D E V E N T G R A P H S — M O D E L I N G A N D
C O N T R O L I N T H E S E M I R I N G O F C O U N T E R S

3.1 modeling of tegs in the semiring of counters

timed petri nets A timed Petri net is a tuple (P, T, A, w, h, v),
where P is a finite set of places (graphically represented by circles), T a
finite set of transitions (represented by bars), A ⊆ (P × T) ∪ (T × P) a
set of arcs connecting places to transitions and transitions to places, w
a weight function assigning a positive integer weight to every arc, and
h a function assigning a nonnegative holding time to each place. In the
following, holding times will be restricted to be integers. Furthermore,
the function v assigns to each place a nonnegative integer number
of tokens residing initially in this place. For any p ∈ P and t ∈ T,
if (p, t) ∈ A, we say that p is an upstream place of t, and t is a
downstream transition of p; analogously, if (t, p) ∈ A, t is said to be
an upstream transition of p, and p is a downstream place of t.

The dynamics of a timed Petri net is governed by the following
rules: (i) a transition t can fire if all its upstream places p contain at
least w

(
(p, t)

)
tokens that have resided there for at least h(p) time

units; (ii) if a transition t fires, it removes w
(
(p, t)

)
tokens from each

of its upstream places p and deposits w
(
(t, p̄)

)
tokens in each of its

downstream places p̄. We assume that initial tokens in a place p have
been residing in that place for an infinite amount of time, meaning they
immediately (i. e., as soon as the system starts evolving) contribute to
the firing of downstream transitions of p, regardless of the value of
h(p).

timed event graphs Timed event graphs (TEGs) are timed Petri
nets in which each place has exactly one upstream and one down-
stream transition and all arcs have weight 1. In a TEG, we can distin-
guish input transitions (those that have no upstream place), output
transitions (those that have no downstream place), and internal tran-
sitions (those that have at least one upstream and one downstream
place). We typically denote input, output, and internal transitions
respectively by the symbols u, y, and x, with appropriate sub- or
superscripts depending on the context. Fig. 3.1 shows an example
of a TEG, with input transitions u1 and u2, output transition y, and
internal transitions x1, x2, and x3.

15
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u1 x1 3 x2

u2

1

4 x3

2

y

Figure 3.1: A TEG with two inputs u1 and u2, a single output y, and three
internal transitions x1, x2, and x3.

earliest firing rule Throughout this thesis, we shall assume
that TEGs operate under the earliest firing rule, which states that every
internal and output transition always fires as soon as it is enabled.

teg dynamics in Σ With each transition xi, we associate a se-
quence {xi(t)}t∈Z, for simplicity denoted by the same symbol, where
xi(t) represents the accumulated number of firings of xi up to time
t. Similarly, we associate sequences {uj(t)}t∈Z and {y(t)}t∈Z with
transitions uj and y, respectively. By inspection of Fig. 3.1, one can see
that, at any time t, x1(t) cannot exceed the minimum between u1(t)
and x2(t − 1) + 2. This can be expressed in Zmin as

(∀t ∈ Z) x1(t) ⪰ u1(t)⊕ 2x2(t − 1) . (3.1)

Under the earliest firing rule, inequality (3.1) turns into equality and,
through the δ-transform, can be written in Σ as

x1 = u1 ⊕ 2δ1x2 .

We can obtain similar relations for x2, x3, and y; then, defining the
vectors

u =

[
u1

u2

]
, x =

x1

x2

x3

 ,

we can write

x =

 sε 2δ1 sε

eδ3 sε 1δ2

sε eδ4 sε

x ⊕

eδ0 sε

sε eδ0

sε sε

u ,

y =
[
sε sε eδ0

]
x .

In general, a TEG can be described by implicit equations over Σ of the
form

x = Ax ⊕ Bu ,

y = Cx .
(3.2)
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transfer relations From Remark 2.4, the least solution of (3.2)
is given by

x = A∗Bu and y = CA∗Bu . (3.3)

We denote
F = A∗B and G = CA∗B , (3.4)

where G is often called the (input-output) transfer matrix — or, in the
case of a single input and a single output, transfer function — of the
system. For instance, for the TEG from Fig. 3.1, we obtain

F =

eδ0 ⊕ 2δ4(1δ6)∗ 2δ1(1δ6)∗

eδ3(1δ6)∗ (1δ6)∗

eδ7(1δ6)∗ eδ4(1δ6)∗

 , G =
[
eδ7(1δ6)∗ eδ4(1δ6)∗

]
.

(3.5)

3.2 optimal control of tegs

Assume that a TEG to be controlled is modeled by equations (3.2)
and that an output-reference z ∈ Σ is given. Under the just-in-time
paradigm, we aim at firing the input transitions the least possible
number of times while guaranteeing that the output transition fires,
by each time instant, at least as many times as specified by z. In other
words, we seek the greatest (in the order of Zmin) input (vector) u
such that y = Gu ⪯ z. Based on (3.3) and Remark 2.11, the solution is
directly obtained by

uopt = G◦\z . (3.6)

Example 3.1. For the TEG from Fig. 3.1, suppose it is required that
the accumulated number of firings of y be e (= 0) for t < 14, 1 for
14 ≤ t < 23, 3 for 23 ≤ t < 29, and 4 for t ≥ 29. In other words, one
firing is required by time 14, then two more by time 23, and finally
one more by time 29. This can be represented by the output-reference

z = eδ14 ⊕ 1δ23 ⊕ 3δ29 ⊕ 4δ+∞ .

Applying (3.6), we obtain the just-in-time input

uopt =

[
u1opt

u2opt

]
=

[
eδ4 ⊕ 1δ10 ⊕ 2δ16 ⊕ 3δ22 ⊕ 4δ+∞

eδ7 ⊕ 1δ13 ⊕ 2δ19 ⊕ 3δ25 ⊕ 4δ+∞

]
,

and the corresponding optimal output is

yopt = Guopt = eδ11 ⊕ 1δ17 ⊕ 2δ23 ⊕ 3δ29 ⊕ 4δ+∞ .

One can easily verify that indeed yopt ⪯ z, as illustrated in Fig. 3.2.
Note that, as “tracking the reference” means y approximates z from
below in the sense of the canonical order in Zmin, which is reversed
with respect to the standard order, in a graphical sense (as in Fig. 3.2)
this means the approximation happens from above. 3
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t

z(t), yopt(t)

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Figure 3.2: Tracking of reference z (points marked with △) by the optimal
output yopt (marked with • ) obtained in Example 3.1.

3.3 control of tegs with output-reference update

The material of this section is a dual version, adapted to the point of
view of counters, of the results from [34].

In practice, it may be necessary to update the reference for the
output of a system during run-time, for instance when customer
demand is increased and new production objectives must be taken
into account. For a system like the one from Example 3.1, let reference
z be updated to a new one, z′, at a certain time T. The problem
at hand is to find the input u′

opt which optimally tracks z′ without,
however, changing the inputs given up to time T. Define the mapping
rT : Σ → Σ such that, for any s ∈ Σ, rT(s) is the counter defined by

[rT(s)](t) =

{
s(t), if t ≤ T ;

ε , if t > T .
(3.7)

Let us extend the definition to matrices, for simplicity using the same
notation: for any matrix A ∈ Σp×q, rT is applied entry-wise, i. e.,[
rT(A)

]
ij = rT

(
[A]ij

)
for any i ∈ {1, . . . , p} and j ∈ {1, . . . , q}. Our

objective can then be restated as follows: find the greatest element u′
opt

of the set

N = {u ∈ Σm×1 | Gu ⪯ z′ and rT(u) = rT(uopt)} ,

where m is the number of input transitions in the system and uopt is
the optimal input with respect to reference z, computed as in (3.6).
The following theorem provides, given that certain conditions are met,
a way to compute the greatest element of N .

Theorem 3.1 ([34]). Let D and C be complete idempotent semirings, f1 :
D → C and f2 : D → D residuated mappings, c1 ∈ C, and c2 ∈ D. If the
set

S = {x ∈ D | f1(x) ⪯ c1 and f2(x) = c2}

is nonempty, we have
⊕

x∈S x = f ♯1(c1) ∧ f ♯2(c2).

An obvious correspondence between set S from Theorem 3.1 and
set N can be established by taking D as Σm×1, C as Σ, f1 as LG (which
is well known to be residuated — see Remark 2.11), c1 as z′, f2 as rT,
and c2 as rT(uopt).
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Remark 3.1. Mapping rT as defined in (3.7) is residuated. Its residual is
the mapping r ♯

T : Σ → Σ such that, for any s ∈ Σ, r ♯
T(s) is the counter

defined by

[r ♯
T(s)](t) =

{
s(t), if t ≤ T ;

s(T), if t > T .

In fact, r ♯
T is clearly isotone and we have, for any s ∈ Σ, rT

(
r ♯

T(s)
)
=

rT(s) ⪯ s and r ♯
T
(
rT(s)

)
= r ♯

T(s) ⪰ s, so the conditions from Theo-
rem 2.1 are fulfilled. Mapping r ♯

T is applied to matrices entry-wise, the
same way as rT. 3

Hence, as long as set N is nonempty, Theorem 3.1 provides the
desired solution

u′
opt = G◦\z′ ∧ r ♯

T(uopt) . (3.8)

In order to check for nonemptiness of N , let us consider the set

Ñ = {u ∈ Σm×1 | rT(u) = rT(uopt)} ,

i. e., the set of counters that up to and including time T are identical
to uopt. It is easy to see that the least element of Ñ is

u =
∧

u∈Ñ

u = rT(uopt) . (3.9)

In fact, since rT ◦ rT = rT and, therefore, rT(u) = rT
(
rT(uopt)

)
=

rT(uopt), we have u ∈ Ñ . As LG is isotone, clearly if u does not lead to
respecting z′, then no input such that rT(u) = rT(uopt) will. Formally,

N ̸= ∅ ⇔ Gu ⪯ z′ . (3.10)

In the case Gu ⪯̸ z′ (and hence N = ∅), this means the past inputs
make it impossible for the system to respect z′. Intuitively, having
implemented a just-in-time policy uopt for a reference z up to time T
may make it impossible to satisfy a more demanding new reference
z′. Since the condition rT(u) = rT(uopt) cannot be relaxed, in order to
have a solution we must then increase z′; more precisely, we wish to
find the least counter z′′ ⪰ z′ such that the set

N ′′ = {u ∈ Σm×1 | Gu ⪯ z′′ and rT(u) = rT(uopt)} (3.11)

is not empty. The following result provides the answer.

Proposition 3.2. Let N ′′ be defined as in (3.11) and u as in (3.9). The least
counter z′′ ⪰ z′ such that N ′′ ̸= ∅ is z′′ = z′ ⊕ Gu.

Proof. Since Gu ⪯ z′ ⊕ Gu = z′′, we have u ∈ N ′′, therefore N ′′ ̸= ∅.
Take now an arbitrary ξ ⪰ z′ such that Nξ ̸= ∅ (where Nξ is defined
like N , only replacing z′ with ξ), and take any v ∈ Nξ . Clearly v ∈ Ñ
and hence u ⪯ v; as LG is isotone, we have Gu ⪯ Gv ⪯ ξ, implying
z′′ = z′ ⊕ Gu ⪯ z′ ⊕ ξ = ξ.
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A correspondence between sets N ′′ and S can be established analo-
gously to that between N and S , only taking c1 as z′′ (instead of z′).
Applying Theorem 3.1 and recalling that r ♯

T ◦ rT = r ♯
T, we obtain the

optimal input

u′
opt = G◦\(z′ ⊕ Gu) ∧ r ♯

T(uopt) . (3.12)

Note that, in the case N ̸= ∅, we have z′′ = z′ ⊕Gu = z′ and therefore
recover solution (3.8).
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M O D E L I N G A N D C O N T R O L O F T E G S W I T H S H A R E D
R E S O U R C E S

In this chapter, we turn our attention to systems in which a number of
TEGs share one or multiple resources. We first focus on the simple case
of a single shared resource (Sections 4.1 and 4.2) and then proceed
to generalize the approach to the case of arbitrarily many shared
resources (Section 4.3).

A preliminary version of part of the following material has appeared
in [41, 44], which reflect original work from — and have as the main
author and contributor — the author of this thesis.

The main ideas in Sections 4.1 and 4.2 are largely based on previous
results from [36]; here, the method is extended to the case of arbitrarily
many shared resources — Section 4.3 is entirely original — and to the
case of TEGs with multiple inputs — Section 4.4 originates here.

4.1 modeling of tegs with a single shared resource

Consider a system consisting of K subsystems — modeled as TEGs
S1, . . . , SK — sharing a resource with finite but arbitrary capacity, as
illustrated in Fig. 4.1. For the sake of clarity of exposition, for the time
being we keep the discussion simpler by assuming that each subsystem
Sk has only two input transitions, uk0 and uk1; the more general case
of subsystems with an arbitrary number of input transitions is covered
in Section 4.4. The firing of uk0 can be thought of, for example, as the
provisioning of raw material, whereas uk1 represents permission to
allocate the resource; as their firing schedules can be freely assigned,
these transitions play the role of control inputs. We assume uk1 to be
connected to the resource-allocation transition xk

A via a place with no
holding time and no initial tokens, which translates to the ability of
deciding in real time whether or not to grant a subsystem Sk access to
the resource. Transitions xk

R and yk correspond to resource release and
output, respectively.

Block Hk in Fig. 4.1 corresponds to the allocation-release dynamics
of Sk. If looked at individually, it can be seen as a single-input single-
output TEG, with xk

A playing the role of the input and xk
R that of the

output transition — note that, in simple cases, Hk may consist of just
a single place. Its dynamics can, therefore, be captured by a counter
Hk ∈ Σ, for simplicity denoted by the same symbol; i. e., xk

R = Hkxk
A.

We assume the initial marking inside block Hk to be such that the first
firing of xk

R cannot occur before the first firing of xk
A; in counter terms,

there exists τ ≥ 0 such that Hk(t) = e for all t ≤ τ and hence Hk ⪰ se,

22
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Figure 4.1: TEGs S1, . . . , SK with a shared resource β.

implying xk
R = Hkxk

A ⪰ xk
A. In particular, in the case block Hk is just

a place, this amounts to assuming it contains no initial tokens. This
assumption can be intuitively interpreted as there being no work in
progress in the system before the first firing of the inputs. Similarly,
blocks Pk1 and Pk2 correspond to the input-allocation (with respect to
input uk0) and release-output dynamics of Sk. Analogously to the case
of Hk, we can see Pk1 (resp. Pk2) as a TEG with a single input uk0 (resp.
xk

R) and a single output xk
A (resp. yk), and we make directly analogous

assumptions regarding the initial marking and the firings of uk0 and
xk

A (resp. xk
R and yk).

In turn, β describes the capacity of the resource as well as the
minimum delay between release and allocation events. It may, in
general, be modeled as a TEG (or simply a place) with input and
output transitions α1 and α2, respectively. These two transitions are
auxiliary, used to help make some intermediate steps in the general
algebraic formulation clearer (see arguments leading to inequality
(4.1), below); in concrete examples, they will normally be omitted,
so that all resource-release transitions xk

R (resp. resource-allocation
transitions xk

A) will be directly connected — and hence serve as inputs
(resp. outputs) — to β. We assume the resource has non-null capacity
and imposes a non-null delay between release and allocation events.
Note that, as a consequence of the aforementioned assumptions on
the initial marking of all blocks Hk, it follows that the resource is fully
available before the first firing of both inputs uk0 and uk1 of the same
subsystem Sk for some k ∈ {1, . . . , K}.

One can easily see that the overall system is not a TEG, as the
place connecting all xk

R to α1 has K > 1 upstream transitions and
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the place connecting α2 to all xk
A has K > 1 downstream transitions.

Consequently, it is not possible to model the behavior of the whole
system by linear equations such as (3.2); in order to express the re-
lationship among transitions (and corresponding counters) xk

A and
xk

R, k ∈ {1, . . . , K}, we need the Hadamard product operation, as
explained below.

Recall from Def. 2.4 that the Hadamard product amounts to the
coefficient-wise standard sum of counters. From Fig. 4.1 one can see
that, at any time instant t, the accumulated number of firings of α1

cannot exceed (in the conventional sense) that of all resource-release
transitions xk

R combined. The Hadamard product allows us to express
this in Σ as x1

R ⊙ · · · ⊙ xK
R ⪯ α1. Similarly, the combined accumulated

number of firings of all allocation transitions xk
A can never exceed that

of α2, i. e., α2 ⪯ x1
A ⊙ · · · ⊙ xK

A . Since, according to the earliest firing
rule, from Fig. 4.1 we have α2 = β ⊗ α1, the two inequalities above can
be combined into

β ⊗
( K⊙

k=1

xk
R
)
⪯

K⊙
k=1

xk
A . (4.1)

Condition (4.1) fully captures the restrictions imposed by the dynamics
and the finite capacity of the resource on the combined allocation and
release schedules of all subsystems. Individually, each subsystem Sk

would evolve according to equations (3.2). Collectively, they work
under the extra condition that all allocation and release transitions
respect (4.1).

4.2 optimal control of tegs with a single shared re-
source

For a system like the one from Fig. 4.1, let the input-output behavior
of each subsystem Sk, including the resource and ignoring all other
subsystems, be described by yk = Gkuk, where

uk =

[
uk0

uk1

]
and Gk =

[
Gk0 Gk1

]
;

i. e., Gk is the transfer matrix of Sk in the hypothetical case that no other
subsystem requires the joint resource. Assume respective references
zk are given. Our control objective is to obtain just-in-time firing
schedules for all inputs uk with respect to zk while making sure that
the capacity and dynamics of the resource are observed. This means we
seek, for each k ∈ {1, . . . , K}, the greatest uk such that Gkuk ⪯ zk and
also such that the resulting resource-allocation and release schedules
satisfy inequality (4.1). It should be noted that, due to the limited
capacity of the resource, in general it is not possible for all subsystems
to operate optimally with respect to their individual output-references,
meaning they cannot achieve the same just-in-time schedule as in the
case without resource sharing.
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One way to settle the dispute for the resource is introducing a
priority policy. We henceforth assume, without loss of generality, that
the subsystems are indexed according to their priority level, meaning
Sk has higher priority than Sk+1 for all k ∈ {1, . . . , K − 1}. We shall
then adopt the following policy: for each k ∈ {2, . . . , K} and for all
i ∈ {1, . . . , k − 1}, Sk cannot interfere with the performance of Si;
in other words, lower-priority subsystems cannot compromise the
performance of higher-priority ones.

According to the priority policy introduced above, when computing
the optimal input for a given subsystem Sk we can effectively neglect
all (if any) lower-priority subsystems. In particular, the subsystem with
highest priority, S1, is not affected by this policy, and we can simply
compute its optimal input u1

opt by applying the method for a single
TEG introduced in Section 3.2, i. e., u1

opt = G1◦\z1. The corresponding
resource-allocation and release schedules are then given by x1

Aopt
=

P11u10
opt ⊕ u11

opt and x1
Ropt

= H1x1
Aopt

, respectively.

For S2, we must compute the optimal input under the restriction that
the optimal behavior of S1 is unaffected; based on (4.1) and neglecting
all lower-priority subsystems (i. e., all Sj with 2 < j ≤ K), this means
we must respect

β ⊗ (x1
Ropt

⊙ x2
R) ⪯ x1

Aopt
⊙ x2

A . (4.2)

In fact, we want to determine the greatest u2 such that G2u2 ⪯ z2

and which also leads to allocation and release schedules (xk
A and xk

R,
respectively) satisfying (4.2). Let us denote

P2 =
[

P21 se

]
∈ Σ1×2 .

For any just-in-time input u2 =
[

u20

u21

]
computed so that (4.2) holds,

it follows that x2
A = P2u2 and x2

R = H2x2
A = H2P2u2. Hence, we can

rewrite (4.2) as

β ⊗ (x1
Ropt

⊙ H2P2u2) ⪯ x1
Aopt

⊙P2u2 ,

which, in turn, thanks to the fact that left-multiplication is residuated
(cf. Remark 2.11), is equivalent to

x1
Ropt

⊙ H2P2u2 ⪯ β◦\(x1
Aopt

⊙P2u2) . (4.3)

At this point, the fact that the Hadamard product is residuated (see
Prop. 2.2) comes in handy. Applying the proposition and again Re-
mark 2.11, inequality (4.3) leads to

u2 ⪯ H2P2◦\
[(

β◦\(x1
Aopt

⊙P2u2)
)
⊙♯ x1

Ropt

]
. (4.4)

Combining (4.4) with G2u2 ⪯ z2 or, equivalently, with u2 ⪯ G2◦\z2, we
can then write

u2 ⪯ H2P2◦\
[(

β◦\(x1
Aopt

⊙P2u2)
)
⊙♯ x1

Ropt

]
∧ G2◦\z2 . (4.5)
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Since for any s1, s2 ∈ Σ it holds that s1 ⪯ s2 ⇔ s1 = s1 ∧ s2 (cf. (2.2)),
one can see that (4.5) is equivalent to

u2 = H2P2◦\
[(

β◦\(x1
Aopt

⊙P2u2)
)
⊙♯ x1

Ropt

]
∧ G2◦\z2 ∧ u2 . (4.6)

Our sought solution u2
opt is, therefore, the greatest u2 satisfying (4.6),

which can be obtained by computing the greatest fixed point (provided
it exists) of the mapping Φ2 : Σ2×1 → Σ2×1,

Φ2(u2) = H2P2◦\
[(

β◦\(x1
Aopt

⊙P2u2)
)
⊙♯ x1

Ropt

]
∧ G2◦\z2 ∧ u2 . (4.7)

Notice that Φ2 consists in a succession of order-preserving operations
(product ⊗, Hadamard product ⊙ and its residual ⊙♯, left-division
◦\, and infimum ∧), which, in turn, can be seen as the composition of
corresponding isotone mappings (for instance, following the notation
of Proposition 2.2, s1 ⊙ s2 corresponds to Πs1(s2), and similarly for
the other operations). Therefore, according to Remark 2.8, Φ2 is also
isotone; Remark 2.9 then ensures the existence of its greatest fixed
point.

The procedure presented above applies to an arbitrary Sk, k ∈
{2, . . . , K}. Again, we must compute the optimal input while guaran-
teeing that the optimal behavior of all higher-priority subsystems is
unaffected, but we can neglect lower-priority subsystems. Based on
(4.1), this means we must observe

β ⊗
( k−1⊙

i=1

xi
Ropt

⊙ xk
R

)
⪯

k−1⊙
i=1

xi
Aopt

⊙ xk
A . (4.8)

As before, we denote P k = [Pk1 se] and argue that, for a just-in-time
input uk satisfying (4.8), it follows that xk

A = P kuk and xk
R = HkP kuk,

leading to

β ⊗
( k−1⊙

i=1

xi
Ropt

⊙ HkP kuk
)

⪯
k−1⊙
i=1

xi
Aopt

⊙P kuk . (4.9)

The fact that both ⊙ and ⊗ are residuated allows us to manipulate
(4.9) and establish an upper bound for uk, analogous to (4.4):

uk ⪯ HkP k◦\
[(

β◦\
( k−1⊙

i=1

xi
Aopt

⊙P kuk
))

⊙♯
k−1⊙
i=1

xi
Ropt

]
. (4.10)

We seek the greatest input uk such that Gkuk ⪯ zk (i. e., uk ⪯ Gk◦\zk) and
that (4.10) holds. Following the same reasoning as before, this optimal
solution uk

opt is the greatest fixed point of mapping Φk : Σ2×1 → Σ2×1,

Φk(uk) = HkP k◦\
[(

β◦\
( k−1⊙

i=1

xi
Aopt

⊙P kuk
))

⊙♯
k−1⊙
i=1

xi
Ropt

]
∧ Gk◦\zk ∧ uk .

(4.11)
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Figure 4.2: Three TEGs S1, S2, and S3 with a shared resource.

Example 4.1. Consider the system shown in Figure 4.2, where three
subsystems, modeled as TEGs S1, S2, and S3, share a resource repre-
sented by the place with two initial tokens. Recalling the notation from
Figure 4.1, in this case we have P11 = eδ2, H1 = eδ6, P12 = eδ9(1δ10)∗,
P21 = eδ5, H2 = eδ4, P22 = eδ0, P31 = eδ0, H1 = eδ3, P12 = eδ0 — as
the place connecting the input to the allocation transition of S3 has
zero holding time, the assumption of there being an input directly
connected to the allocation transition is fulfilled, so transitions u30 and
u31 as in Fig. 4.1 can be merged into a single input transition, here
simply called u3. The dynamics of the resource in this example is cap-
tured simply by the counter β = 2δ1. The transfer matrices/function
of each individual subsystem (including the resource) are

G1 =
[
eδ17(1δ10)∗ eδ15(1δ10)∗

]
,

G2 =
[
eδ9(2δ5)∗ eδ4(2δ5)∗

]
,

G3 = eδ3(2δ4)∗ .

The following references are given for the outputs of the respective
subsystems: for S1, 4 firings of the output transition are required by
time 52; for S2, 3 output firings are required by time 27, plus 2 firings
at time 39; for S3, 3 outputs are required at time 9, plus 2 at time 35.
These references can be encoded in the form of counters as follows:

z1 = eδ52 ⊕ 4δ+∞ ,

z2 = eδ27 ⊕ 3δ39 ⊕ 5δ+∞ ,

z3 = eδ9 ⊕ 3δ35 ⊕ 5δ+∞ .

According to the priority policy, we start by computing the optimal
input for S1 while ignoring the other subsystems. This yields

u1
opt = G1◦\z1 =

[
eδ5 ⊕ 1δ15 ⊕ 2δ25 ⊕ 3δ35 ⊕ 4δ+∞

eδ7 ⊕ 1δ17 ⊕ 2δ27 ⊕ 3δ37 ⊕ 4δ+∞

]
.
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The resulting optimal resource-allocation and release schedules are

x1
Aopt

= x1
1opt

= eδ7 ⊕ 1δ17 ⊕ 2δ27 ⊕ 3δ37 ⊕ 4δ+∞ ,

x1
Ropt

= x1
2opt

= eδ13 ⊕ 1δ23 ⊕ 2δ33 ⊕ 3δ43 ⊕ 4δ+∞ .

Next, we compute the optimal input for S2, ignoring S3 but tak-
ing the optimal schedules of S1 as fixed. The greatest fixed point of
mapping Φ2 defined in (4.7) is

u2
opt =

[
eδ8 ⊕ 1δ13 ⊕ 2δ18 ⊕ 3δ27 ⊕ 4δ30 ⊕ 5δ+∞

eδ13 ⊕ 1δ18 ⊕ 2δ23 ⊕ 3δ32 ⊕ 4δ35 ⊕ 5δ+∞

]
,

and the corresponding resource-allocation and release schedules are

x2
Aopt

= x2
1opt

= eδ13 ⊕ 1δ18 ⊕ 2δ23 ⊕ 3δ32 ⊕ 4δ35 ⊕ 5δ+∞ ,

x2
Ropt

= x2
2opt

= eδ17 ⊕ 1δ22 ⊕ 2δ27 ⊕ 3δ36 ⊕ 4δ39 ⊕ 5δ+∞ .

Finally, we calculate the optimal input for S3, taking the optimal
schedules of both S1 and S2 as hard restrictions. The solution is the
greatest fixed point of mapping Φ3 (as in (4.11), with k = 3), resulting
in

u3
opt = eδ1 ⊕ 1δ3 ⊕ 2δ5 ⊕ 3δ9 ⊕ 4δ28 ⊕ 5δ+∞

and

x3
Aopt

= x3
1opt

= eδ1 ⊕ 1δ3 ⊕ 2δ5 ⊕ 3δ9 ⊕ 4δ28 ⊕ 5δ+∞ ,

x3
Ropt

= x3
2opt

= eδ4 ⊕ 1δ6 ⊕ 2δ8 ⊕ 3δ12 ⊕ 4δ31 ⊕ 5δ+∞ .

The obtained optimal outputs are

y1
opt = G1u1

opt = eδ22 ⊕ 1δ32 ⊕ 2δ42 ⊕ 3δ52 ⊕ 4δ+∞ ,

y2
opt = G2u2

opt = eδ17 ⊕ 1δ22 ⊕ 2δ27 ⊕ 3δ36 ⊕ 4δ39 ⊕ 5δ+∞ ,

y3
opt = G3u3

opt = eδ4 ⊕ 1δ6 ⊕ 2δ8 ⊕ 3δ12 ⊕ 4δ31 ⊕ 5δ+∞ .

The tracking of the respective output-references is shown in Fig. 4.3,
and the schedule for usage of the resource by the three subsystems
can be visualized in Fig. 4.4. 3

Remark 4.1. The method presented in this section guarantees that the
permission for a subsystem Sk to allocate the resource — represented
by the firing of uk1 — is always granted exactly at the scheduled
allocation times, and the allocation is never delayed by uk0. More
formally, the obtained just-in-time inputs uk

opt are such that xk
Aopt

=

P kuk
opt = uk1

opt, i. e., uk1
opt ⪰ Pk1uk0

opt.
To show this by contradiction, assume uk1

opt ⪰̸ Pk1uk0
opt and consider

ũk =

[
uk0

opt

uk1
opt ⊕ Pk1uk0

opt

]
.
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Figure 4.3: Tracking of the references zk (denoted by △) by the outputs yk
opt (denoted by • ), k ∈ {1, 2, 3}, from Example 4.1.

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Figure 4.4: Schedule for the use of the shared resource, obtained in Example 4.1. The gray, black, and crosshatched bars represent the time windows
during which an instance of the resource is held by S1, S2, and S3, respectively.
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Recalling that P k = [Pk1 se], we have

P kũk = Pk1uk0
opt ⊕ uk1

opt ⊕ Pk1uk0
opt = Pk1uk0

opt ⊕ uk1
opt = P kuk

opt ,

which implies ũk satisfies (4.9) and thus

ũk ⪯ HkP k◦\
[(

β◦\
( k−1⊙

i=1

xi
Aopt

⊙P kũk
))

⊙♯
k−1⊙
i=1

xi
Ropt

]
.

Furthermore, from Fig. 4.1 it is clear that Gk0 = Gk1Pk1; therefore,

Gkũk = Gk0uk0
opt ⊕ Gk1(uk1

opt ⊕ Pk1uk0
opt)

= Gk0uk0
opt ⊕ Gk1uk1

opt ⊕ Gk1Pk1uk0
opt

= Gk0uk0
opt ⊕ Gk1uk1

opt

= Gkuk
opt .

Since uk
opt is computed such that Gkuk

opt ⪯ zk, this implies Gkũk ⪯ zk

or, equivalently, ũk ⪯ Gk◦\zk. We then conclude that ũk is a fixed point
of Φk.

But note that uk1
opt ⊕ Pk1uk0

opt ⪰ uk1
opt and, due to our assumption that

uk1
opt ⪰̸ Pk1uk0

opt, also uk1
opt ⊕ Pk1uk0

opt ̸= uk1
opt, implying ũk ⪰ uk

opt and
ũk ̸= uk

opt; this contradicts the fact that uk
opt is the greatest fixed point

of Φk. 3

Remark 4.2. It is clear that the presence of resource sharing imposes ad-
ditional restrictions for the firing of allocation transitions, besides the
standard ones from the dynamics of the individual subsystems. Conse-
quently, in general it might be the case that a subsystem Sk would not
behave purely according to (3.2) for an arbitrary input uk, and hence
yk ̸= Gkuk. Nonetheless, in the presented method all just-in-time input
firing schedules uk

opt are computed so that the corresponding alloca-
tion schedules xk

Aopt
= P kuk

opt respect resource constraints (4.1). This

means an allocation transition xk
A is only going to be enabled when

it is indeed the turn of Sk to allocate the resource; that is to say, all
conflicts are resolved offline in the computation phase, and effectively
there will be no nondeterministic dispute for the resource during the
operation of the system. Thus, the obtained optimal inputs guarantee
that the evolution of the subsystems will, in fact, follow (3.2), as if
unaffected by the resource constraints, i. e., we have yk

opt = Gkuk
opt for

every k. In conclusion, even though the overall resource-sharing sys-
tem is not a TEG, we can still harness one of the main benefits of using
TEG models — namely a linear algebraic representation which allows
to extract a transfer relation for each subsystem — when computing
and analyzing the behavior of the subsystems based on the optimal
inputs yielded by the presented method.

Naturally, the same reasoning carries over to the case of multiple
shared resources, to be discussed in Section 4.3. 3
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4.3 modeling and optimal control of tegs with multiple

shared resources

Consider again a system comprising K TEGs S1, . . . , SK, but now sup-
pose they share L resources, as shown in Fig. 4.5. Each subsystem
Sk has L + 1 input transitions, uk0, . . . , ukL, which are seen as control
inputs, similarly to Section 4.1. The firing of uk0 can be thought of as
the provisioning of raw material to be processed by Sk, whereas each
ukℓ with ℓ ∈ {1, . . . , L} represents the permission for Sk to allocate re-
source ℓ. We assume that every ukℓ is connected to resource-allocation
transition xkℓ

A via a place with no holding time and no initial tokens,
meaning it is possible to decide in real time whether or not to grant a
subsystem Sk access to each resource ℓ. We denote by xkℓ

R the transition
— and associated counter — representing the release of resource ℓ by
subsystem Sk, and by yk the output transition of Sk.

Hkℓ denotes the internal dynamics of Sk between allocation (xkℓ
A )

and release (xkℓ
R ) of resource ℓ. The dynamics between input transition

uk0 and the resource-allocation transition for the first resource (xk1
A )

is denoted Pk1, whereas that between the resource-release transition
for the last resource (xkL

R ) and output transition yk is called Pk(L+1).
Finally, for each ℓ ∈ {2, . . . , L}, the dynamics between the release of
resource ℓ− 1 and the allocation of resource ℓ by Sk (i. e., between
xk(ℓ−1)

R and xkℓ
A ) is denoted Pkℓ. As in Section 4.1, we assume there is

no work in progress in any part of the system before the first firing
of some input uk0, in particular implying that the first firing of xkℓ

R
cannot occur before that of xkℓ

A . More formally, for each ℓ ∈ {1, . . . , L}
there exists τℓ ≥ 0 such that Hkℓ(t) = e for all t ≤ τℓ, so Hkℓ ⪰ se

and hence xkℓ
R = Hkℓxkℓ

A ⪰ xkℓ
A . Analogously for Pk1 with respect to

uk0 and xk1
A , for Pk(L+1) with respect to xkL

R and yk, as well as for Pkℓ

(ℓ ∈ {2, . . . , L}) with respect to xk(ℓ−1)
R and xkℓ

A .
Each βℓ, ℓ ∈ {1, . . . , L}, is modeled by a TEG (or possibly just a

place) describing the capacity as well as the minimum delay between
release and allocation of resource ℓ. Transitions αℓ1 and αℓ2 are again
auxiliary, as explained in Section 4.1. We assume every resource has
non-null capacity and imposes a non-null delay between release and
allocation events. The assumptions made above on all Hkℓ imply that
the first resource is fully available before the first firing of uk0 and
uk1 of the same subsystem Sk for some k ∈ {1, . . . , K} and, for all
ℓ ∈ {2, . . . , L}, resource ℓ is fully available before the first firing of
xk(ℓ−1)

R and ukℓ of the same subsystem Sk for some k ∈ {1, . . . , K}.
Through the same reasoning as applied in Section 4.1, it is straight-

forward to conclude that, for any k ∈ {1, . . . , K} and for each ℓ ∈
{1, . . . , L}, the relationship among counters xkℓ

A and xkℓ
R must be such

that

βℓ ⊗
( K⊙

k=1

xkℓ
R
)
⪯

K⊙
k=1

xkℓ
A . (4.12)
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Figure 4.5: TEGs S1, . . . , SK with shared resources β1, . . . , βL.
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The optimal (just-in-time) schedule for the usage of the resources is
sought under the same priority policy as in Section 4.2. Let the input-
output behavior of each Sk, considering all resources and ignoring
other subsystems, be described as usual by yk = Gkuk, where

uk =


uk0

uk1

...

ukL

 ∈ Σ(L+1)×1 and Gk =
[
Gk0 Gk1 . . . GkL] ∈ Σ1×(L+1) ,

and let us again assume respective references zk to be given.
For S1, we can simply compute the optimal input by u1

opt = G1◦\z1.
Based on u1

opt, the optimal firing schedules for the remaining transi-
tions of S1 can be obtained. For instance, we have x11

Aopt
= P11u10

opt ⊕ u11
opt

and x11
Ropt

= H11x11
Aopt

. In general, for each ℓ ∈ {2, . . . , L} we can then

successively compute x1ℓ
Aopt

= P1ℓx1(ℓ−1)
Ropt

and x1ℓ
Ropt

= H1ℓx1ℓ
Aopt

.

In order to determine the optimal input u2
opt for S2 — i. e., the

greatest u2 such that G2u2 ⪯ z2 — while guaranteeing no interference
with the optimal behavior of S1, based on (4.12) we must have, for all
ℓ ∈ {1, . . . , L},

βℓ ⊗ (x1ℓ
Ropt

⊙ x2ℓ
R ) ⪯ x1ℓ

Aopt
⊙ x2ℓ

A . (4.13)

Notice that, for a just-in-time input u2 computed so that (4.13) holds
for ℓ = 1, it follows that x21

A = P21u20 ⊕ u21, and hence x21
R =

H21x21
A = H21P21u20 ⊕ H21u21. In fact, the optimal input we seek

is such that (4.13) holds for every ℓ and, furthermore, such that a
just-in-time behavior is enforced throughout the system, implying
x2ℓ

A = P2ℓx2(ℓ−1)
R ⊕ u2ℓ and x2ℓ

R = H2ℓx2ℓ
A for all ℓ ∈ {2, . . . , L}. This

means we can express any x2ℓ
A and x2ℓ

R in terms of u2, as follows. Let
us denote by s-ℓ-

e ∈ Σ1×(L+1) the row vector such that

[s-ℓ-
e ]i =

se for i = ℓ+ 1 ,

sε for i ̸= ℓ+ 1 .
(4.14)

Now, define the terms P2ℓ ∈ Σ1×(L+1),

P2ℓ =

[P21 se sε . . . sε] , if ℓ = 1 ;

P2ℓH2(ℓ−1)P2(ℓ−1) ⊕ s-ℓ-
e , if 2 ≤ ℓ ≤ L .

(4.15)

One can see that, for a just-in-time input u2, we have

P21u2 = P21u20 ⊕ u21 = x21
A ,

i. e., P21 represents the relation between the allocation schedule (by
S2) of resource 1 and the input transitions upstream from x21

A , namely
u20 and u21. We also have

P22 = P22H21P21 ⊕ s-2-
e = [P22H21P21 P22H21 se sε . . . sε] ,
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so
P22u2 = P22H21P21u20 ⊕ P22H21u21 ⊕ u22 = x22

A ;

again, P22 represents the relation between the allocation schedule (by
S2) of resource 2 and the input transitions upstream from x22

A , , namely
u20, u21, and u22. In general, for any ℓ ∈ {1, . . . , L}, P2ℓ represents the
relation between the allocation schedule (by S2) of resource ℓ and all
input transitions upstream from x2ℓ

A , i. e., we have x2ℓ
A = P2ℓu2. This

also implies x2ℓ
R = H2ℓP2ℓu2, and hence we can rewrite (4.13) with u2

as the only unknown:

βℓ ⊗ (x1ℓ
Ropt

⊙ H2ℓP2ℓu2) ⪯ x1ℓ
Aopt

⊙P2ℓu2 . (4.16)

Then, we have

(4.16) ⇔ x1ℓ
Ropt

⊙ H2ℓP2ℓu2 ⪯ βℓ◦\(x1ℓ
Aopt

⊙P2ℓu2)

⇔ H2ℓP2ℓu2 ⪯
(

βℓ◦\(x1ℓ
Aopt

⊙P2ℓu2)
)
⊙♯ x1ℓ

Ropt

⇔ u2 ⪯ H2ℓP2ℓ◦\
[(

βℓ◦\(x1ℓ
Aopt

⊙P2ℓu2)
)
⊙♯ x1ℓ

Ropt

]
.

Define, for each ℓ ∈ {1, . . . , L}, the mapping Φ2ℓ : Σ(L+1)×1 →
Σ(L+1)×1,

Φ2ℓ(u2) = H2ℓP2ℓ◦\
[(

βℓ◦\(x1ℓ
Aopt

⊙P2ℓu2)
)
⊙♯ x1ℓ

Ropt

]
.

We seek the greatest u2 such that u2 ⪯ G2◦\z2 and (∀ℓ ∈ {1, . . . , L}) u2 ⪯
Φ2ℓ(u2). This amounts to looking for the greatest fixed point of the
(isotone) mapping Φ2 : Σ(L+1)×1 → Σ(L+1)×1,

Φ2(u2) = u2 ∧ G2◦\z2 ∧
L∧

ℓ=1

Φ2ℓ(u2) .

The same arguments presented above can be applied to determine
uk

opt for an arbitrary k. Generalizing (4.15), define the terms

P kℓ =

[Pk1 se sε . . . sε] , if ℓ = 1 ,

PkℓHk(ℓ−1)P k(ℓ−1) ⊕ s-ℓ-
e , if 2 ≤ ℓ ≤ L ,

(4.17)

with s-ℓ-
e defined as in (4.14). Using (4.17) to express each xkℓ

A and xkℓ
R

in terms of uk, from (4.12) we obtain, for all ℓ ∈ {1, . . . , L},

βℓ ⊗
( k−1⊙

i=1

xiℓ
Ropt

⊙ HkℓP kℓuk
)

⪯
k−1⊙
i=1

xiℓ
Aopt

⊙P kℓuk . (4.18)

Then, proceeding as before and defining, for each ℓ ∈ {1, . . . , L}, the
mapping Φkℓ : Σ(L+1)×1 → Σ(L+1)×1,

Φkℓ(uk) = HkℓP kℓ◦\
[(

βℓ◦\
( k−1⊙

i=1

xiℓ
Aopt

⊙P kℓuk))⊙♯
k−1⊙
i=1

xiℓ
Ropt

]
,
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the greatest uk such that uk ⪯ Gk◦\zk and uk ⪯ Φkℓ(uk) for all ℓ is given
by the greatest fixed point of Φk : Σ(L+1)×1 → Σ(L+1)×1,

Φk(uk) = uk ∧ Gk◦\zk ∧
L∧

ℓ=1

Φkℓ(uk) .

Remark 4.3. For the just-in-time inputs uk
opt, it holds that P kℓuk

opt = ukℓ
opt

for every ℓ ∈ {1, . . . , L}. Intuitively, recalling that xkℓ
Aopt

= P kℓuk
opt for

every ℓ, this means the permission to allocate each resource is always
granted exactly at the scheduled allocation times, and the allocation
is never delayed by the influence of uk0 or of any other transition
preceding xkℓ

A .
This can be shown by induction on ℓ. Let us start by proving the

base case ℓ = 1. We want to show that P k1uk
opt = uk1

opt; since, recall-
ing the definition of P k1 from (4.17), P k1uk

opt = Pk1uk0
opt ⊕ uk1

opt, this is
equivalent to showing that uk1

opt ⪰ Pk1uk0
opt. We shall do so by contradic-

tion, by close analogy with Remark 4.1. Assume uk1
opt ⪰̸ Pk1uk0

opt, and
consider an input ũk ∈ Σ(L+1)×1 with

[
ũk]

i =

uk1
opt ⊕ Pk1uk0

opt , for i = 2 ,

uk(i−1)
opt , for i ̸= 2 .

We have

P k1ũk = Pk1uk0
opt ⊕

(
uk1

opt ⊕ Pk1uk0
opt

)
= Pk1uk0

opt ⊕ uk1
opt = P k1uk

opt ,

which implies ũk satisfies (4.18) for ℓ = 1 and thus ũk ⪯ Φk1(ũk).
Moreover,

P k2ũk = Pk2Hk1P k1ũk ⊕ uk2
opt = Pk2Hk1P k1uk

opt ⊕ uk2
opt = P k2uk

opt ;

progressing successively for ℓ = 3, . . . , L , one can see that P kℓũk =

P kℓuk
opt — and hence ũk ⪯ Φkℓ(ũk) — for every ℓ.

Furthermore, from Fig. 4.1 it is clear that Gk0 = Gk1Pk1; therefore,

Gk1(uk1
opt ⊕ Pk1uk0

opt
)
= Gk1uk1

opt ⊕ Gk1Pk1uk0
opt = Gk0uk0

opt ⊕ Gk1uk1
opt ,

implying

Gkũk = Gk0uk0
opt ⊕ Gk1(uk1

opt ⊕ Pk1uk0
opt

)
⊕

L⊕
λ=2

Gkλukλ
opt

= Gk0uk0
opt ⊕

(
Gk0uk0

opt ⊕ Gk1uk1
opt

)
⊕

L⊕
λ=2

Gkλukλ
opt

=
L⊕

λ=0

Gkλukλ
opt

= Gkuk
opt
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and hence ũk ⪯ Gk◦\zk. This shows that ũk is a fixed point of Φk, which,
as ũk ⪰ uk

opt and ũk ̸= uk
opt, contradicts the fact that uk

opt is the greatest

fixed point of Φk.
Now, as our inductive hypothesis, assume P kℓuk

opt = ukℓ
opt for an

arbitrary ℓ ∈ {2, . . . , L − 1}. We proceed to show that P k(ℓ+1)uk
opt =

uk(ℓ+1)
opt . As

P k(ℓ+1)uk
opt = Pk(ℓ+1)HkℓP kℓuk

opt ⊕ uk(ℓ+1)
opt = Pk(ℓ+1)Hkℓukℓ

opt ⊕ uk(ℓ+1)
opt ,

where the first equality follows directly from the definition of P k(ℓ+1)

— see (4.17) — and the second follows from the inductive hypothesis,
it suffices to show that uk(ℓ+1)

opt ⪰ Pk(ℓ+1)Hkℓukℓ
opt. Arguing by contra-

diction, assume uk(ℓ+1)
opt ⪰̸ Pk(ℓ+1)Hkℓukℓ

opt, and consider the input ǔk

with

[
ǔk]

i =

uk(ℓ+1)
opt ⊕ Pk(ℓ+1)Hkℓukℓ

opt , for i = ℓ+ 2 ,

uk(i−1)
opt , for i ̸= ℓ+ 2 .

Note that this implies, in particular, that P kλǔk = P kλuk
opt for any

λ ∈ {1, . . . , ℓ}. We then have

P k(ℓ+1)ǔk = Pk(ℓ+1)HkℓP kℓǔk ⊕
(
uk(ℓ+1)

opt ⊕ Pk(ℓ+1)Hkℓukℓ
opt

)
= Pk(ℓ+1)HkℓP kℓuk

opt ⊕
(
uk(ℓ+1)

opt ⊕ Pk(ℓ+1)HkℓP kℓuk
opt

)
= Pk(ℓ+1)HkℓP kℓuk

opt ⊕ uk(ℓ+1)
opt

= P k(ℓ+1)uk
opt ,

which implies ǔk satisfies (4.18) for ℓ+ 1 and thus ǔk ⪯ Φk(ℓ+1)(ǔk).
In fact, one can then easily check that P kλǔk = P kλuk

opt — and hence
ǔk ⪯ Φkλ(ǔk) — for all λ ∈ {1, . . . , L}.

Furthermore, from Fig. 4.5 it is clear that Gkℓ = Gk(ℓ+1)Pk(ℓ+1)Hkℓ;
therefore,

Gk(ℓ+1)(uk(ℓ+1)
opt ⊕ Pk(ℓ+1)Hkℓukℓ

opt
)
= Gk(ℓ+1)uk(ℓ+1)

opt ⊕ Gk(ℓ+1)Pk(ℓ+1)Hkℓukℓ
opt

= Gkℓukℓ
opt ⊕ Gk(ℓ+1)uk(ℓ+1)

opt ,

implying

Gkǔk = Gk(ℓ+1)(uk(ℓ+1)
opt ⊕ Pk(ℓ+1)Hkℓukℓ

opt
)
⊕

L⊕
λ=0

λ ̸=ℓ+1

Gkλukλ
opt

= Gkℓukℓ
opt ⊕ Gk(ℓ+1)uk(ℓ+1)

opt ⊕
L⊕

λ=0
λ ̸=ℓ+1

Gkλukλ
opt

=
L⊕

λ=0

Gkλukλ
opt

= Gkuk
opt
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and hence ǔk ⪯ Gk◦\zk. This shows that ǔk is a fixed point of Φk, which,
as ǔk ⪰ uk

opt and ǔk ̸= uk
opt, contradicts the fact that uk

opt is the greatest

fixed point of Φk. 3

4.4 optimal control of tegs with shared resources and

with multiple input transitions

With the objective of making the method presented so far more broadly
applicable, we now generalize the foregoing discussion to the case
in which each subsystem may have an arbitrary number of input
transitions. In the scope of this thesis, this will be particularly relevant
in Chapter 10.

the case of a single shared resource

Starting with the case of a single shared resource (Sections 4.1 and 4.2),
we consider a system with the same structure as the one from Fig. 4.1,
in particular including input transitions uk0 and uk1, but with the cru-
cial difference that we hereafter assume there may be additional input
transitions inside blocks Pk1, Hk, and Pk2. The firing of these additional
input transitions can be interpreted, for instance, as provisioning of
raw material or tools needed in intermediate steps of the production
process, or as a direct permission for certain internal transitions to fire.
Let us denote by mk the total number of input transitions in subsystem
Sk, i. e., uk ∈ Σmk×1 with mk ≥ 2 — the interesting case being studied
here is, of course, that in which mk > 2, since with mk = 2 we have
only the inputs uk0 and uk1 and are back to the case of Section 4.1.

We again make the assumption of there being initially “no work in
progress” in the system, meaning, in particular, that the initial marking
of block Hk in Fig. 4.1 is such that the first firing of xk

R cannot occur
before the first firing of xk

A (i. e., xk
R ⪰ xk

A). Analogously for block Pk1

(resp. Pk2) with respect to the firings of uk0 and xk
A (resp. xk

R and yk).
We assume there are no input transitions inside the resource block β.
Naturally, the same condition on the resource-allocation and release
transitions established in Section 4.1 — inequality (4.1) — applies to
the present case.

As in Section 4.2, suppose a reference zk is given for every re-
spective subsystem Sk. Our control objective is to obtain just-in-time
firing schedules for input uk ∈ Σmk×1 with respect to zk for each k ∈
{1, . . . , K}, while making sure that the capacity and dynamics of the
resource are observed. In other words, we seek, for all k ∈ {1, . . . , K},
the greatest uk leading to resource-allocation and release schedules
satisfying inequality (4.1) and also such that yk = Gkuk ⪯ zk (where, as
usual, Gk ∈ Σ1×mk is the transfer matrix of Sk, including the resource
and ignoring all other subsystems).
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The dispute for the resource is settled by adopting the same priority
policy as in Section 4.2. Accordingly, we start by computing the optimal
input for S1, which can be done by neglecting all other subsystems
(as they all have priority lower than that of S1) and hence applying
the method for a single TEG introduced in Section 3.2, i. e., u1

opt =

G1◦\z1. In order to determine the corresponding resource-allocation
and release schedules, suppose x1

A and x1
R occupy the ith and jth entries

in vector x1, respectively (i. e., x1
i = x1

A and x1
j = x1

R), and let us denote,
for convenience,

F 1
A = F 1

[i·] and F 1
R = F 1

[j·] , (4.19)

recalling that F 1
[µ·] is the µth row of matrix F 1 (cf. (3.4)). Then, we have

x1
Aopt

= F 1
Au1

opt and x1
Ropt

= F 1
R u1

opt .

For an arbitrary Sk with k ∈ {2, . . . , K}, the optimal input uk
opt can be

obtained by direct analogy with the method presented in Section 4.2,
only replacing the terms P k and HkP k respectively by F k

A and F k
R —

the latter terms being defined by an obvious generalization of (4.19) to
an arbitrary F k. This means we can write xk

A = F k
Auk and xk

R = F k
R uk,

and the sought just-in-time input uk
opt is the greatest fixed point of

mapping Φk
mi : Σmk×1 → Σmk×1,

Φk
mi(u

k) = F k
R ◦\

[(
β◦\

( k−1⊙
i=1

xi
Aopt

⊙F k
Auk

))
⊙♯

k−1⊙
i=1

xi
Ropt

]
∧ Gk◦\zk ∧ uk

(where “mi” stands for “multiple inputs”).

the case of multiple shared resources

The above discussion carries over to the case of multiple shared re-
sources (Section 4.3) in a straightforward manner. Consider a system
with the same structure as the one from Fig. 4.5, in particular including
input transitions ukℓ for all ℓ ∈ {0, . . . , L}, but now suppose there may
be additional input transitions inside any (possibly all) of the blocks
Pkℓ for ℓ ∈ {1, . . . , L + 1} and Hkℓ for ℓ ∈ {1, . . . , L}. The interpreta-
tion of these additional input transitions is the same as in the previous
case. Let us again denote by mk the total number of input transitions
in subsystem Sk, i. e., uk ∈ Σmk×1 with mk ≥ L + 1 — the interesting
case being studied here is, of course, that in which mk > L + 1, since
with mk = L + 1 we have only the inputs uk0, . . . , ukℓ and are back to
the case of Section 4.3.

Assume, for every ℓ ∈ {1, . . . , L}, that the initial marking of blocks
Hkℓ in Fig. 4.1 is such that the first firing of xkℓ

R cannot occur before the
first firing of xkℓ

A (i. e., xkℓ
R ⪰ xkℓ

A ). Analogously for Pk1 with respect to
the firings of uk0 and xk1

A , for Pk(L+1) with respect to xkL
R and yk, as well



modeling and control of tegs with shared resources 39

as for Pkℓ (ℓ ∈ {2, . . . , L}) with respect to xk(ℓ−1)
R and xkℓ

A . We assume
there are no input transitions inside any of the resource blocks βℓ. It
should be clear that the same conditions established in Section 4.3
on the allocation and release schedules of all resources — inequality
(4.12) — apply to the present case.

Let a reference zk be given for every subsystem Sk. Our goal is to
obtain just-in-time firing schedules for input uk ∈ Σmk×1 with respect
to zk for each k ∈ {1, . . . , K}, while making sure that the capacity and
dynamics of all the resources are observed. More precisely, we seek,
for all k ∈ {1, . . . , K}, the greatest uk leading to resource-allocation
and release schedules satisfying (4.12) for all ℓ ∈ {1, . . . , L} and also
such that yk = Gkuk ⪯ zk (where Gk ∈ Σ1×mk is the transfer matrix of
Sk, including all resources but ignoring all other subsystems).

Adopting the usual priority policy, we start by computing the opti-
mal input for S1 while neglecting all lower-priority subsystems, which
amounts to applying the method from Section 3.2, i. e., u1

opt = G1◦\z1. In
order to determine the corresponding resource-allocation and release
schedules for all resources, suppose xkℓ

A and xkℓ
R occupy respectively

the iℓth and jℓth entries in vector xk, for all ℓ ∈ {1, . . . , L} (i. e., xk
iℓ
= xkℓ

A

and xk
jℓ
= xkℓ

R ), and let us denote

F 1ℓ
A = F 1

[iℓ ·] and F 1ℓ
R = F 1

[jℓ ·] . (4.20)

Then, we have

x1ℓ
Aopt

= F 1ℓ
A u1

opt and x1ℓ
Ropt

= F 1ℓ
R u1

opt .

In order to obtain the optimal input uk
opt for an arbitrary Sk with

k ∈ {2, . . . , K}, one can proceed by direct analogy with the method
presented in Section 4.3. Define the terms F kℓ

A and F kℓ
R by an obvious

generalization of (4.20) to an arbitrary F k, and replace P kℓ and HkℓP kℓ

in the method from Section 4.3 by F kℓ
A and F kℓ

R , respectively. Then,
defining, for each ℓ ∈ {1, . . . , L}, the mapping Φkℓ

mi : Σmk×1 → Σmk×1,

Φkℓ
mi(u

k) = F kℓ
R ◦\

[(
βℓ◦\

( k−1⊙
i=1

xiℓ
Aopt

⊙F kℓ
A uk))⊙♯

k−1⊙
i=1

xiℓ
Ropt

]
, (4.21)

the just-in-time input uk
opt is given by the greatest fixed point of

Φk
mi : Σmk×1 → Σmk×1,

Φk
mi(u

k) = uk ∧ Gk◦\zk ∧
L∧

ℓ=1

Φkℓ
mi(u

k) .



5
C O N T R O L O F T E G S W I T H S H A R E D R E S O U R C E S
A N D O U T P U T- R E F E R E N C E U P D AT E

In this chapter, we show how to determine the optimal (just-in-time)
control inputs in face of changes in the output-references for TEGs that
share resources under a given priority policy. Thus, we incorporate
the ideas discussed in Section 3.3 to the class of systems studied in
Chapter 4.

The structure is similar to Chapter 4, starting with the simple case
of a single shared resource (Sections 5.1 and 5.2) and then generaliz-
ing to the case of multiple resources (Section 5.3). In order to avoid
breaking the flow and improve readability, some proofs are postponed
to Appendix A.

A preliminary version of part of the following material has appeared
in [41, 44], which reflect original work from — and have as the main
author and contributor — the author of this thesis.

5.1 problem formulation — the case of a single shared

resource

Consider the system from Fig. 4.1 and assume every subsystem Sk

is operating optimally with respect to its own output-reference zk,
according to the priority-based strategy introduced in Sections 4.1
and 4.2. Now, suppose that at a certain time T each Sk has its reference
zk updated to zk ′ (with the possibility that zk ′ = zk for some of them).
Our goal is to determine, for each k, the input uk

opt
′ which leads the

corresponding output to optimally track zk ′ while preserving the input
uk

opt up to time T. A crucial point is that the priority scheme for the
use of the shared resource must continue to be observed. However, we
assume that subsystems (even lower-priority ones) cannot be forced
to interrupt their operation and release the resource before the sched-
uled time. Therefore, even though when updating the inputs we still
aim at minimizing the influence of lower-priority subsystems on the
performance of higher-priority ones, past resource allocations (i. e.,
those that have occurred before time T) by subsystems with lower
priority must be taken into account, because the respective resource
releases may take place after time T, thus irrevocably influencing the
availability of the resource in the meantime.

According to the priority hierarchy, we must compute uk
opt
′ in de-

creasing order of priority, i. e., start from k = 1 and proceed up to
k = K. Now, for the purpose of the discussion to follow, let us fix an
arbitrary k ∈ {1, . . . , K}. If k > 1, when updating the input of Sk we

40
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must consider the already-updated allocation and release schedules of
higher-priority subsystems as hard restrictions, i. e., fix xi

A = xi
Aopt
′ and

xi
R = xi

Ropt
′ for every i ∈ {1, . . . , k − 1}. It will be convenient to define

the terms

Hk
A =

k−1⊙
i=1

xi
Aopt
′ , Hk

R =
k−1⊙
i=1

xi
Ropt
′ ,

where H stands for higher priority (with respect to k). Hk
A combines

the counters xi
Aopt
′ of all subsystems Si with priority higher than that of

Sk, referring to the updated optimal schedules of resource-allocation
transitions xi

A with respect to the corresponding new references zi ′;
similarly, Hk

R combines the counters xi
Ropt
′ = Hixi

Aopt
′ representing the

respective resource-release events.
If k < K, when updating the input of Sk we require minimal

interference from lower-priority subsystems (i. e., all Sj with j ∈
{k + 1, . . . , K}). This means that, although we have to respect past
resource allocations in these subsystems, we may ignore future ones.
To make the reasoning more precise, recall that xj

Aopt
is the accumulated

number of firings originally scheduled for xj
A up to time t. Respect-

ing past allocations means that the firings of xj
A which have already

occurred by time T (when the new references are received) cannot
be revoked. On the other hand, the prospective firings that have not
taken place by time T can still be postponed and hence, from the point
of view of Sk, ignored. In other words, for the sake of determining uk

opt
′

while minimizing interference from Sj, we require the terms xj
A(t) to

be preserved as xj
Aopt

for t ≤ T and neglect all new firings by making

xj
A(t) = xj

Aopt
(T) for t > T. Recalling Remark 3.1, this is precisely

captured by the counter r ♯
T(xj

Aopt
). Let us then define the additional

terms

Lk
A =

K⊙
j=k+1

r ♯
T(xj

Aopt
) , Lk

R =
K⊙

j=k+1

H jr ♯
T(xj

Aopt
) ,

where L stands for lower priority (with respect to k). Lk
A combines

the counters r ♯
T(xj

Aopt
) of all subsystems Sj with priority lower than

that of Sk, representing the past firings (up to and including time
T) of resource-allocation transitions xj

A and neglecting their firings
after T. In turn, Lk

R gathers the respective resource-release events by
combining the counters H jr ♯

T(xj
Aopt

). It should be emphasized once
more that, even though we only consider the resource allocations by
Sj up to time T, the respective resource-release events may take place
after T; this explains why, in Lk

R, we use the terms H jr ♯
T(xj

Aopt
) rather

than r ♯
T(xj

Ropt
).

Thus, based on (4.1) and on the foregoing discussion, in order to
update uk without compromising the performance of higher-priority



control of tegs w. shared resources and output-reference update 42

subsystems and, at the same time, ensuring minimal interference of
lower-priority subsystems while taking into account their past resource
allocations, we must respect

β ⊗
(
Hk

R ⊙ xk
R ⊙Lk

R
)
⪯ Hk

A ⊙ xk
A ⊙Lk

A , (5.1)

where it is understood that for k = 1 (resp. k = K), the degenerate
terms H1

A and H1
R (resp. LK

A and LK
R ) are to be neglected. Arguing

similarly to Section 4.2, for any just-in-time input uk =
[

uk0

uk1

]
leading to

schedules of xk
A and xk

R that satisfy (5.1), it holds that xk
A = Pk1uk0 ⊕ uk1

and xk
R = Hkxk

A. Recalling that we denote P k = [Pk1 se], we have
xk

A = P kuk, and (5.1) can be written in terms of uk as

β ⊗
(
Hk

R ⊙ HkP kuk ⊙Lk
R
)
⪯ Hk

A ⊙P kuk ⊙Lk
A . (⋆)

The problem of determining the new optimal input uk
opt
′ with respect

to a reference zk ′ given at time T can be formulated as follows: find
the greatest element of the set

N k =
{

uk ∈ Σ2×1 | Gkuk ⪯ zk ′ and (⋆) and rT(u
k) = rT(u

k
opt)

}
. (5.2)

5.2 optimal update of the inputs — the case of a single

shared resource

We set out to look for the greatest element of set N k (defined as in
(5.2)) by proposing an adaptation of Theorem 3.1.

Proposition 5.1. Let D be a complete idempotent semiring, f : D → D a
residuated mapping, ψ : D → D, and c ∈ D. Consider the set

Sψ = {x ∈ D | x ⪯ ψ(x) and f (x) = c}

and the isotone mapping Ω : D → D,

Ω(x) = x ∧ ψ(x) ∧ f ♯(c) .

If Sψ ̸= ∅, we have
⊕

x∈Sψ
x =

⊕{x ∈ D |Ω(x) = x}.

Now, let us once more fix an arbitrary k ∈ {1, . . . , K}, and assume
ui

opt
′ — and hence also xi

Aopt
′ and xi

Ropt
′ — have been determined for each

(if any) i ∈ {1, . . . , k − 1}. From Def. 2.3 and applying Remark 2.11

and Prop. 2.2, we have

(⋆) ⇔ Hk
R ⊙ HkP kuk ⊙Lk

R ⪯ β◦\(Hk
A⊙P kuk ⊙Lk

A)

⇔ (Hk
R ⊙Lk

R)⊙ HkP kuk ⪯ β◦\(Hk
A⊙P kuk ⊙Lk

A)

⇔ HkP kuk ⪯
(

β◦\(Hk
A ⊙P kuk ⊙Lk

A)
)
⊙♯ (Hk

R ⊙Lk
R)

⇔ uk ⪯ HkP k◦\
[(

β◦\(Hk
A ⊙P kuk ⊙Lk

A)
)
⊙♯ (Hk

R ⊙Lk
R)
]

.
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Then, defining the mapping Ψk : Σ2×1 → Σ2×1,

Ψk(uk) = Gk◦\zk ′ ∧ HkP k◦\
[(

β◦\(Hk
A ⊙P kuk ⊙Lk

A)
)
⊙♯ (Hk

R ⊙Lk
R)
]
,

(5.3)
set N k can be equivalently defined as

N k =
{

uk ∈ Σ2×1 | uk ⪯ Ψk(uk) and rT(u
k) = rT(u

k
opt)

}
.

This reveals a correspondence between set N k and set Sψ from Prop. 5.1:
take D as Σ2×1, ψ as Ψk, f as rT, and c as rT(u

k
opt). So, as long as

N k ̸= ∅, the conditions from the proposition are met and, recalling
that r ♯

T ◦ rT = r ♯
T, the optimal update of uk, uk

opt
′ , is the greatest fixed

point of the (isotone) mapping Γk : Σ2×1 → Σ2×1,

Γk(uk) = uk ∧ Ψk(uk) ∧ r ♯
T(u

k
opt) . (5.4)

Next, we must investigate under what conditions N k is nonempty.
Consider the set

Ñ k =
{

uk ∈ Σ2×1 | (⋆) and rT(u
k) = rT(u

k
opt)

}
⊇ N k .

Our approach is to look for an element uk of Ñ k that leads to the fastest
possible behavior of Sk, i. e., to the least possible output yk. Clearly, if
such an input does not lead to meeting the new reference zk ′, then no
input respecting (⋆) and rT(u

k) = rT(u
k
opt) will; more precisely, as we

shall conclude formally in the sequel (see Corollary 5.4), N k ̸= ∅ ⇔
Gkuk ⪯ zk ′.

A natural choice would be to set uk as the least element of Ñ k.
Unfortunately, in general Ñ k may not possess a least element. Nev-
ertheless, any input in Ñ k — albeit not necessarily least or unique —
leading to the least allocation schedule compatible with the resource
constraints will result in the least possible yk. Thus, we shall guide
our quest for such an input by identifying all relevant constraints on
the firing schedule of xk

A and then checking whether there exists a
least such schedule which satisfies these constraints and which can be
attained by choosing an input in Ñ k.

First, we observe that a bound for the allocation schedule xk
A can be

obtained from (5.1), as

(5.1) ⇔ β ⊗
(
Hk

R ⊙ xk
R ⊙Lk

R
)
⪯ (Hk

A ⊙Lk
A)⊙ xk

A

⇔
(

β ⊗ (Hk
R ⊙ xk

R ⊙Lk
R)
)
⊙♭ (Hk

A ⊙Lk
A) ⪯ xk

A . 1

The left-hand side of the last inequality provides a bound for how
small (in the sense of the order of Σ) xk

A can be. It represents the

1 As Hk
A encodes the combined accumulated number of resource allocations by each

time instant t of all subsystems with priority higher than that of Sk, it is reasonable
(and entails no loss of generality) to assume that Hk

A(t) /∈ {−∞,+∞} for any finite
time t ∈ Z. A similar argument applies to Lk

A and hence carries over to Hk
A ⊙Lk

A; so,
according to Prop. 2.3, mapping ΠHk

A⊙Lk
A

: Σ → Σ is dually residuated.
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maximal availability of the resource for subsystem Sk, given the fixed
optimal schedules of higher-priority subsystems (Hk

A and Hk
R) and

the truncated schedules of lower priority subsystems (Lk
A and Lk

R);
this availability also implicitly depends, of course, on xk

A itself, since
xk

R = Hkxk
A.

Another clear bound for xk
A is imposed by uk

opt, as any feasible
allocation schedule cannot fire more often than enabled by the input.
Since input firings that have occurred before time T cannot be changed,
the most often uk can possibly fire is encoded by the counter rT(u

k
opt),

which represents the preservation of the firings up to time T and an
infinite number of firings at T. The counter P krT(u

k
opt) then limits how

often xk
A can fire, i. e., one must have xk

A ⪰ P krT(u
k
opt).

Thus, any allocation schedule xk
A must obey

xk
A ⪰

[(
β ⊗ (Hk

R ⊙ Hkxk
A ⊙Lk

R)
)
⊙♭ (Hk

A ⊙Lk
A)

]
⊕ P krT(u

k
opt)

or, equivalently, must be a fixed point of the (isotone) mapping
Λk : Σ → Σ ,

Λk(χ) =
[(

β ⊗ (Hk
R ⊙ Hkχ ⊙Lk

R)
)
⊙♭ (Hk

A ⊙Lk
A)

]
⊕ P krT(u

k
opt) ⊕ χ .

(5.5)
It is easy to see that any input ũk ∈ Ñ k leads to an allocation

schedule P kũk which is a fixed point of Λk, as

P kũk ⪰ P krT(ũ
k) = P krT(u

k
opt)

and also ũk satisfies (⋆), which is equivalent to(
β ⊗ (Hk

R ⊙ HkP kuk ⊙Lk
R)
)
⊙♭ (Hk

A ⊙Lk
A) ⪯ P kuk . (5.6)

The remaining question then is whether the least fixed point of map-
ping Λk — which we shall denote xk

A — is indeed feasible, i. e., whether
there exists an input uk which is an element of Ñ k and such that
P kuk = xk

A. We proceed to present a constructive proof that the an-
swer is positive.

Consider the input

uk =

rT(u
k0
opt)

xk
A

 . (5.7)

To see that P kuk = xk
A, recalling that we denote P k = [Pk1 se], as xk

A
is a fixed point of Λk we have

xk
A ⪰ P krT(u

k
opt) = Pk1rT(u

k0
opt)⊕ rT(u

k1
opt) ⪰ Pk1rT(u

k0
opt)

and hence
P kuk = Pk1rT(u

k0
opt)⊕ xk

A = xk
A .

Now, to prove that uk ∈ Ñ k, we begin by noticing that, because xk
A

is a fixed point of Λk,(
β ⊗ (Hk

R ⊙ Hkxk
A ⊙Lk

R)
)
⊙♭ (Hk

A ⊙Lk
A) ⪯ xk

A .
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Combined with the fact that P kuk = xk
A as shown above, this implies

taking uk = uk satisfies (5.6), which is equivalent to (⋆).
It remains to show that rT(u

k) = rT(u
k
opt), i. e., thatrT

(
rT(u

k0
opt)

)
rT(xk

A)

 =

rT(u
k0
opt)

rT(u
k1
opt)

 .

Since rT
(
rT(u

k0
opt)

)
= rT(u

k0
opt), all we need to prove is that rT(xk

A) =

rT(u
k1
opt).

The fact that xk
A is a fixed point of Λk implies

xk
A ⪰ P krT(u

k
opt) = Pk1rT(u

k0
opt)⊕ rT(u

k1
opt) ⪰ rT(u

k1
opt) ,

so
rT(xk

A) ⪰ rT
(
rT(u

k1
opt)

)
= rT(u

k1
opt) . (5.8)

In order to conclude the argument by showing that rT(xk
A) ⪯

rT(u
k
opt), we need the following result.

Proposition 5.2. r ♯
T(xk

Aopt
) is a fixed point of mapping Λk.

A consequence of Prop. 5.2 is that xk
A ⪯ r ♯

T(xk
Aopt

) = r ♯
T(P kuk

opt).

We also know from Remark 4.1 that P kuk
opt = uk1

opt. Thus, as rT is

order-preserving and rT ◦ r ♯
T = rT, we have

rT(xk
A) ⪯ rT

(
r ♯

T(P
kuk

opt)
)
= rT

(
r ♯

T(u
k1
opt)

)
= rT(u

k1
opt) .

Together with (5.8), this leads to rT(xk
A) = rT(u

k1
opt) and hence rT(u

k) =

rT(u
k
opt), concluding the proof that uk ∈ Ñ k.

This does not guarantee, however, that N k ̸= ∅, as it is possible
that Gkuk ⪯̸ zk ′ and hence uk /∈ N k. Emptiness of N k means zk ′

encodes an unachievable reference; (⋆) and rT(u
k) = rT(u

k
opt) being

hard restrictions, the only possibility is then to relax zk ′, i. e., to look
for a new reference zk ′′ ⪰ zk ′ for which a solution exists. At the same
time, we want to remain as close to the original reference as possible,
meaning we seek the least possible such zk ′′. A natural approach is
then to take zk ′′ = zk ′ ⊕ Gkuk — as ⊕ is performed coefficient-wise
on counters, this amounts to preserving the terms of zk ′ that can be
achieved by taking uk as input, and relaxing those that cannot only as
much as necessary to be matched by the resulting output yk = Gkuk.
The following proposition establishes that this is indeed the optimal
way of relaxing zk ′ and, as a corollary, it also provides a simple way to
check whether N k is nonempty.

Proposition 5.3. Let N k ′′ denote the set defined as N k in (5.2), only
replacing zk ′ with zk ′′, and let uk be defined as in (5.7). The least zk ′′ ⪰ zk ′

such that N k ′′ ̸= ∅ is zk ′′ = zk ′ ⊕ Gkuk.
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Corollary 5.4. With set N k defined by (5.2) and uk as in (5.7), it follows
that N k ̸= ∅ ⇔ Gkuk ⪯ zk ′.

In the case N k turns out to be empty, define the mapping
Ψk ′′ : Σ2×1 → Σ2×1 as Ψk in (5.3), only replacing zk ′ with zk ′′ =

zk ′ ⊕ Gkuk. Following the same procedure as before, we can apply
Prop. 5.1 — only now taking ψ as Ψk ′′ instead of Ψk — to conclude
that uk

opt
′ is the greatest fixed point of mapping Γk ′′ : Σ2×1 → Σ2×1,

Γk ′′(uk) = uk ∧ Ψk ′′(uk) ∧ r ♯
T(u

k
opt) . (5.9)

Remark 5.1. Since, according to the adopted priority policy, when deter-
mining the optimal inputs through the method from Section 4.2 we do
not allow lower-priority subsystems to compromise the performance
of higher-priority ones, it should be clear that, if the reference of S1

is not changed (i. e., if z1′ = z1), then the method above will yield
u1

opt
′ = u1

opt, regardless of the changes in the references of other sub-
systems. Note that this implies x1

Aopt
= x1

Aopt
′ and x1

Ropt
= x1

Ropt
′ . Hence,

if it is also the case that z2′ = z2, then the operation of S2 will likewise
remain unchanged, i. e., we will have u2

opt
′ = u2

opt. In general, for any
k ∈ {2, . . . , K}, if zi ′ = zi for all i ∈ {1, . . . , k − 1}, then ui

opt
′ = ui

opt for
all i ∈ {1, . . . , k − 1}. In that case, supposing κ is the least index in
{1, . . . , K} such that zκ ′ ̸= zκ, the method presented in this section can
be applied starting from Sκ and taking xi

Aopt
′ = xi

Aopt
and xi

Ropt
′ = xi

Ropt
for

all i ∈ {1, . . . , κ − 1}. Nonetheless, the input of all subsystems Sj with
j ∈ {κ + 1, . . . , K} must be updated, even if zj ′ = zj. That is because,
if the new reference zκ ′ implies uκ

opt
′ ̸= uκ

opt and thus xκ
Aopt
′ ̸= xκ

Aopt

and xκ
Ropt
′ ̸= xκ

Ropt
, the availability of the resource for a lower-priority

subsystem Sj is changed and the allocation schedule xj
Aopt

resulting

from its original input uj
opt may no longer be compatible, in which

case the method will yield uj
opt
′ ̸= uj

opt. 3

summary of the method

In the following, we provide a step-by-step overview of how to apply
the method discussed in the present chapter so far. For a system
consisting of subsystems Sk, k ∈ {1, . . . , K}, sharing a resource as in
Figure 4.1, we assume that TEGs modeling all subsystems Sk are given.
Assume also, for each k ∈ {1, . . . , K}, the transfer relation Gk (see (3.4))
to have been precomputed and an output-reference to be provided in
the form of a counter zk. We consider here the case of a single shared
resource; nonetheless, the generalization of the steps for the case of
multiple shared resources (Section 5.3) is immediate.
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i. Obtain the optimal input for the highest-priority subsystem, S1,
by computing u1

opt = G1◦\z1. Then, compute the corresponding
resource-allocation and release schedules, x1

Aopt
and x1

Ropt
.

ii. Obtain the optimal inputs for all other subsystems in decreasing
order of priority — i. e., starting from S2 and proceeding until
covering SK — by computing the greatest fixed points of the
respective mappings Φk defined in (4.11).

iii. If, at a certain time T, the reference signals zk of one or more
of the subsystems are altered, let κ denote the least index in
{1, . . . , K} for which zκ ′ ̸= zκ, i. e., zi ′ = zi for all (if any) i ∈
{1, . . . , κ − 1}. Set k = κ.

iv. Compute the terms Hk
A, Hk

R, Lk
A, and Lk

R, defined as in Section 5.1,
and define the set N k as in (5.2).

v. In order to check whether the new reference zk ′ is feasible (i. e.,
whether N k ̸= ∅) based on Corollary 5.4, obtain uk as in (5.7); as
a prerequisite, compute xk

A, the least fixed point of mapping Λk

defined in (5.5). Then, compute Gkuk. If Gkuk ⪯ zk ′, go to step vi;
otherwise, go to step vii.

vi. Obtain the optimal updated input uk
opt
′ by computing the greatest

fixed point of mapping Γk defined in (5.4).

vii. According to Prop. 5.3, obtain the least-relaxed feasible reference
zk ′′ = zk ′ ⊕ Gkuk. Then, obtain the optimal updated input uk

opt
′

by computing the greatest fixed point of mapping Γk ′′ defined
in (5.9).

viii. Repeat steps iv–vii for every k ∈ {κ + 1, . . . , K}, in this order.

Example 5.1. We now apply the method summarized above to the
system from Fig. 4.5. Steps i and ii have already been taken in Ex-
ample 4.1, so let us assume the system is operating according to the
obtained optimal schedules. Now, suppose the output-references are
changed at time T = 10 as follows: one of the previously required
output firings from S1 is cancelled, so that now only 3 firings of y1

are demanded by time 52; an additional firing of y2 is required, so 3

firings are needed at time 39; the reference for S3 remains unaltered.
The counters encoding these updated references are

z1′ = eδ52 ⊕ 3δ+∞ ,

z2′ = eδ27 ⊕ 3δ39 ⊕ 6δ+∞ ,

z3′ = eδ9 ⊕ 3δ35 ⊕ 5δ+∞ .

Following step iii, since in this case z1′ ̸= z1 we must start from
k = 1. Through steps iv and v, we find out that z1′ is feasible, as
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G1u1 ⪯ z1′ — which in this case is intuitively to be expected, as the
new reference is less demanding than the original one. Hence, we
proceed to step vi, and the greatest fixed point of mapping Γ1 yields

u1
opt
′ =

[
eδ5 ⊕ 1δ25 ⊕ 2δ35 ⊕ 3δ+∞

eδ7 ⊕ 1δ27 ⊕ 2δ37 ⊕ 3δ+∞

]
.

The updated resource-allocation and release schedules are

x1
Aopt
′ = eδ7 ⊕ 1δ27 ⊕ 2δ37 ⊕ 3δ+∞ ,

x1
Ropt
′ = eδ13 ⊕ 1δ33 ⊕ 2δ43 ⊕ 3δ+∞ .

Next, we update the input of S2, i. e., we go back to step iv with
k = 2. The new reference z2′ is also achievable, so from step v we
again go to step vi. The greatest fixed point of mapping Γ2 is

u2
opt
′ =

[
eδ12 ⊕ 1δ17 ⊕ 3δ22 ⊕ 4δ27 ⊕ 5δ30 ⊕ 6δ+∞

eδ17 ⊕ 1δ22 ⊕ 3δ27 ⊕ 4δ32 ⊕ 5δ35 ⊕ 6δ+∞

]
,

resulting in the new allocation and release schedules

x2
Aopt
′ = eδ17 ⊕ 1δ22 ⊕ 3δ27 ⊕ 4δ32 ⊕ 5δ35 ⊕ 6δ+∞ ,

x2
Ropt
′ = eδ21 ⊕ 1δ26 ⊕ 3δ31 ⊕ 4δ36 ⊕ 5δ39 ⊕ 6δ+∞ .

Finally, the input of S3 is updated by continuing from step iv with
k = 3. Even though reference z3 has not changed, we must check
whether it is still feasible given the new schedules of S1 and S2. In this
case, the answer is affirmative, so once more we proceed to step vi

and compute the greatest fixed point of mapping Γ3, obtaining

u3
opt
′ = eδ1 ⊕ 1δ3 ⊕ 2δ5 ⊕ 3δ9 ⊕ 4δ18 ⊕ 5δ+∞

and

x3
Aopt
′ = eδ1 ⊕ 1δ3 ⊕ 2δ5 ⊕ 3δ9 ⊕ 4δ18 ⊕ 5δ+∞ ,

x3
Ropt
′ = eδ4 ⊕ 1δ6 ⊕ 2δ8 ⊕ 3δ12 ⊕ 4δ21 ⊕ 5δ+∞ .

The resulting updated outputs are

y1
opt
′ = G1u1

opt
′ = eδ22 ⊕ 1δ42 ⊕ 2δ52 ⊕ 3δ+∞ ,

y2
opt
′ = G2u2

opt
′ = eδ21 ⊕ 1δ26 ⊕ 3δ31 ⊕ 4δ36 ⊕ 5δ39 ⊕ 6δ+∞ ,

y3
opt
′ = G3u3

opt
′ = eδ4 ⊕ 1δ6 ⊕ 2δ8 ⊕ 3δ12 ⊕ 4δ21 ⊕ 5δ+∞ .

Similarly to Example 4.1, the tracking of the new references can be
visualized in Figure 5.1, and the updated resource-occupation schedule
is shown in Figure 5.2. 3
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Figure 5.1: Tracking of the new references zk ′ (△) by the updated outputs yk
opt
′ ( • ), k ∈ {1, 2, 3}, from Example 5.1.

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Figure 5.2: Updated schedule for the use of the shared resource, obtained in Example 5.1. The gray, black, and crosshatched bars represent the time
windows during which an instance of the resource is held by S1, S2, and S3, respectively.
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Example 5.2. Consider once more the system from Fig. 4.5, only now
operating according to the updated schedules obtained in Example 5.1.
Since here we take these previously-updated schedules as the starting
point, the extra notation is dropped, so e. g. we refer to the references
received in Example 5.1 and to the obtained optimal updated inputs
respectively as zk and uk

opt , k ∈ {1, 2, 3}.
Suppose that, at time T = 15, yet another demand for S2 arrives:

an additional firing of y2 is required at time 39, so that the counter
encoding the new reference for S2 becomes

z2′ = eδ27 ⊕ 3δ39 ⊕ 7δ+∞ ,

whereas the references for S1 and S3 remain unchanged. According to
Remark 5.1 and as instructed in step iii of the procedure summarized
above, we can then start updating the inputs by subsystem S2. The
updated reference z2′ is still achievable, so from step v we proceed to
step vi and compute the greatest fixed point of Γ2, obtaining

u2
opt
′ =

[
eδ12 ⊕ 2δ17 ⊕ 4δ22 ⊕ 5δ27 ⊕ 6δ30 ⊕ 7δ+∞

eδ17 ⊕ 2δ22 ⊕ 4δ27 ⊕ 5δ32 ⊕ 6δ35 ⊕ 7δ+∞

]
.

The allocation and release schedules are updated to

x2
Aopt
′ = eδ17 ⊕ 2δ22 ⊕ 4δ27 ⊕ 5δ32 ⊕ 6δ35 ⊕ 7δ+∞ ,

x2
Ropt
′ = eδ21 ⊕ 2δ26 ⊕ 4δ31 ⊕ 5δ36 ⊕ 6δ39 ⊕ 7δ+∞ .

We proceed to update the input of S3. However, in this case the new,
tighter schedule of S2 renders reference z3′ = z3 infeasible. Hence,
from step v we go to step vii and apply Prop. 5.3 to obtain its least-
relaxed feasible version:

z3′′ = z3′ ⊕ G3u3 = eδ9 ⊕ 3δ35 ⊕ 4δ43 ⊕ 5δ+∞ .

The greatest fixed point of mapping Γ3′′ then provides the optimal
updated input

u3
opt
′ = eδ1 ⊕ 1δ3 ⊕ 2δ5 ⊕ 3δ9 ⊕ 4δ40 ⊕ 5δ+∞

which results in the following resource-allocation and release sched-
ules:

x3
Aopt
′ = eδ1 ⊕ 1δ3 ⊕ 2δ5 ⊕ 3δ9 ⊕ 4δ40 ⊕ 5δ+∞ ,

x3
Ropt
′ = eδ4 ⊕ 1δ6 ⊕ 2δ8 ⊕ 3δ12 ⊕ 4δ43 ⊕ 5δ+∞ .

The resulting updated outputs (besides y1
opt
′ = y1

opt) are

y2
opt
′ = G2u2

opt
′ = eδ21 ⊕ 2δ26 ⊕ 4δ31 ⊕ 5δ36 ⊕ 6δ39 ⊕ 7δ+∞ ,

y3
opt
′ = G3u3

opt
′ = eδ4 ⊕ 1δ6 ⊕ 2δ8 ⊕ 3δ12 ⊕ 4δ43 ⊕ 5δ+∞ .

Figures 5.3 and 5.4 show respectively the tracking of references z2′

and z3′′ and the newly updated schedule for resource usage. 3
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z2′(t), y2
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′ (t)
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Figure 5.3: Tracking of the new references z2′ and z3′′ (△) by the updated outputs y2
opt
′ and y3

opt
′ ( • ) obtained in Example 5.2.

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Figure 5.4: Updated schedule for the use of the shared resource, obtained in Example 5.2. The gray, black, and crosshatched bars represent the time
windows during which an instance of the resource is held by S1, S2, and S3, respectively.
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5.3 problem formulation and optimal update of the in-
puts — the case of multiple shared resources

Consider the system from Fig. 4.5, with every subsystem Sk following
the optimal schedule with respect to output-reference zk, obtained
according to Section 4.3. Suppose that each reference zk is updated
to zk ′ at time T (with perhaps zk ′ = zk for some of them). In this
section, we seek, for each k, the optimal input uk

opt
′ which preserves

uk
opt up to time T and results in the output yk

opt
′ that tracks zk ′ as closely

as possible, without interfering with the operation of higher-priority
subsystems and while respecting the past resource allocations of every
resource by lower-priority subsystems.

As usual, we base the following discussion on a fixed but arbitrary
k ∈ {1, . . . , K}. Let us denote the counter representing the updated
optimal firing schedule for a resource-allocation transition xiℓ

A by xiℓ
Aopt

′ .
Arguing as in Section 5.1, the task at hand can be summarized as
follows: (i) we must compute uk

opt
′ in decreasing order of priority; (ii)

when calculating uk
opt
′ for k > 1, we must consider xiℓ

A = xiℓ
Aopt

′ for every

i ∈ {1, . . . , k − 1} and for all ℓ ∈ {1, . . . , L}; (iii) when calculating uk
opt
′

for k < K, we must take xjℓ
A = r ♯

T(xjℓ
Aopt

for every j ∈ {k + 1, . . . , K} and
for all ℓ ∈ {1, . . . , L}.

Still along the lines of Section 5.1, define the terms

Hkℓ
A =

k−1⊙
i=1

xiℓ
Aopt

′ , Hkℓ
R =

k−1⊙
i=1

xiℓ
Ropt

′ ,

Lkℓ
A =

K⊙
j=k+1

r ♯
T(xjℓ

Aopt
) , Lkℓ

R =
K⊙

j=k+1

H jℓr ♯
T(xjℓ

Aopt
) ,

which can be explained as in the referred section, only now for each
resource ℓ. In order to achieve the goals stated above, based on (4.12)
we must respect, for every ℓ ∈ {1, . . . , L},

βℓ ⊗
(
Hkℓ

R ⊙ xkℓ
R ⊙Lkℓ

R
)
⪯ Hkℓ

A ⊙ xkℓ
A ⊙Lkℓ

A , (5.10)

where it is understood that for k = 1 (resp. k = K), the degenerate
terms H1ℓ

A and H1ℓ
R (resp. LKℓ

A and LKℓ
R ) are to be neglected. Recall

that, for a just-in-time input uk leading to schedules of xkℓ
A and xkℓ

R
that satisfy (5.10), using (4.17) we can write xkℓ

A = P kℓuk and xkℓ
R =

HkℓP kℓuk, so (5.10) becomes

βℓ ⊗
(
Hkℓ

R ⊙ HkℓP kℓuk ⊙Lkℓ
R
)
⪯ Hkℓ

A ⊙P kℓuk ⊙Lkℓ
A . (⋆⋆)

We can then formulate the problem of optimally updating the input
uk with respect to a reference zk ′ given at time T as follows: find the
greatest element of the set

Mk =
{

uk ∈ Σ(L+1)×1 | Gkuk ⪯ zk ′ and rT(u
k) = rT(u

k
opt)

and (⋆⋆) holds for all ℓ ∈ {1, . . . , L}
}

.
(5.11)
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Define the mappings Ψkℓ : Σ(L+1)×1 → Σ(L+1)×1,

Ψkℓ(uk) = (HkℓP kℓ)◦\
[(

βℓ◦\
(
Hkℓ

A ⊙P kℓuk ⊙Lkℓ
A
))

⊙♯ (Hkℓ
R ⊙Lkℓ

R )
]

,

ℓ ∈ {1, . . . , L}, and Ψk : Σ(L+1)×1 → Σ(L+1)×1,

Ψk(uk) = Gk◦\zk ′ ∧
L∧

ℓ=1

Ψkℓ(uk) . (5.12)

As uk satisfying (⋆⋆) is equivalent to uk ⪯ Ψkℓ(uk), we can rewrite Mk

as

Mk =
{

uk ∈ Σ(L+1)×1 | uk ⪯ Ψk(uk) and rT(u
k) = rT(u

k
opt)

}
and then apply Prop. 5.1, taking D as Σ(L+1)×1, ψ as Ψk, f as rT, and
c as rT(u

k
opt). Provided Mk ̸= ∅, the proposition entails that uk

opt
′ can

be determined by computing the greatest fixed point of the (isotone)
mapping Γk : Σ(L+1)×1 → Σ(L+1)×1,

Γk(uk) = uk ∧ Ψk(uk) ∧ r ♯
T(u

k
opt) .

In order to check whether Mk is nonempty, consider the set

M̃k =
{

uk ∈ Σ(L+1)×1 | (⋆⋆) holds for all ℓ ∈ {1, . . . , L}
and rT(u

k) = rT(u
k
opt)

}
.

(5.13)

We once more adopt the approach of looking for an element uk of M̃k

that leads to the fastest possible behavior of Sk, i. e., to the least possible
output yk. It shall then be formally concluded below (see Corollary 5.9)
that Mk ̸= ∅ ⇔ Gkuk ⪯ zk ′. Since M̃k does not necessarily possess
a least element, we focus on finding an input in M̃k that leads to
the least allocation schedules of all resources compatible with the
respective constraints, which will result in the least possible yk.

Let us begin the search for such an input by observing that, for the
first resource, condition (5.10) provides a bound for how small (in the
sense of the order of Σ) the allocation schedule xk1

A can be, as

β1 ⊗
(
Hk1

R ⊙ xk1
R ⊙Lk1

R
)
⪯ Hk1

A ⊙ xk1
A ⊙Lk1

A

⇔ β1 ⊗
(
Hk1

R ⊙ xk1
R ⊙Lk1

R
)
⪯ (Hk1

A ⊙Lk1
A )⊙ xk1

A

⇔
(

β1 ⊗ (Hk1
R ⊙ xk1

R ⊙Lk1
R )

)
⊙♭ (Hk1

A ⊙Lk1
A ) ⪯ xk1

A .

The left-hand side of the last inequality represents the maximal avail-
ability of resource 1 for subsystem Sk, given the fixed optimal allo-
cation and release schedules of higher-priority subsystems (Hk1

A and
Hk1

R ) and of lower priority subsystems, truncated at time T (Lk1
A and

Lk1
R ); naturally, this availability also implicitly depends on xk1

A itself,
since xk1

R = Hk1xk1
A .

Another bound for xk1
A is imposed by uk

opt. More precisely, since
the most often uk can possibly fire is encoded by the counter rT(u

k
opt)
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and since any feasible allocation schedule cannot fire more often than
enabled by the input, P k1rT(u

k
opt) limits how often xk1

A can fire, i. e., it
must hold that xk1

A ⪰ P k1rT(u
k
opt).

Thus, the allocation schedule xk1
A must obey

xk1
A ⪰

[(
β1 ⊗ (Hk1

R ⊙ Hk1xk1
A ⊙Lk1

R )
)
⊙♭ (Hk1

A ⊙Lk1
A )

]
⊕ P k1rT(u

k
opt) ;

equivalently, it must be a fixed point of the mapping Λk1 : Σ → Σ,

Λk1(χ) =
[(

β1 ⊗ (Hk1
R ⊙ Hk1χ ⊙Lk1

R )
)
⊙♭ (Hk1

A ⊙Lk1
A )

]
⊕ P k1rT(u

k
opt) ⊕ χ .

(5.14)

Following a similar reasoning, for any ℓ ∈ {2, . . . , L}, condition
(5.10) implies xkℓ

A is subject to

xkℓ
A ⪰

(
βℓ ⊗ (Hkℓ

R ⊙ Hkℓxkℓ
A ⊙Lkℓ

R )
)
⊙♭ (Hkℓ

A ⊙Lkℓ
A ) .

Evidently, it is also not possible for xkℓ
A to fire more often than ukℓ

opt,
which, taking into account that the past firings of ukℓ

opt must be pre-
served, translates to xkℓ

A ⪰ rT(u
kℓ
opt).

Moreover, allocations of resource ℓ by Sk are also (indirectly) lim-
ited by the preceding inputs in the subsystem, i. e., by ukλ with
λ ∈ {0, . . . , ℓ− 1}. The effect of these inputs arrives at xkℓ

A through
xk(ℓ−1)

A . For instance, since, as argued above, xk1
A cannot fire more often

than encoded by xk1
A , it must hold that xk2

A ⪰ Pk2Hk1xk1
A . We can then

conclude that xk2
A must obey

xk2
A ⪰

[(
β2 ⊗ (Hk2

R ⊙ Hk2xk2
A ⊙Lk2

R )
)
⊙♭ (Hk2

A ⊙Lk2
A )

]
⊕ rT(u

k2
opt) ⊕ Pk2Hk1xk1

A ,

which is equivalent to being a fixed point of the mapping Λk2 : Σ → Σ,

Λk2(χ) =
[(

β2 ⊗ (Hk2
R ⊙ Hk2χ ⊙Lk2

R )
)
⊙♭ (Hk2

A ⊙Lk2
A )

]
⊕ rT(u

k2
opt) ⊕ Pk2Hk1xk1

A ⊕ χ .

Generalizing the argument, we conclude that, for every ℓ ∈ {2, . . . , L},
xkℓ

A must be a fixed point of mapping Λkℓ : Σ → Σ,

Λkℓ(χ) =
[(

βℓ ⊗ (Hkℓ
R ⊙ Hkℓχ ⊙Lkℓ

R )
)
⊙♭ (Hkℓ

A ⊙Lkℓ
A )

]
⊕ rT(u

kℓ
opt) ⊕ PkℓHk(ℓ−1)xk(ℓ−1)

A ⊕ χ ,
(5.15)

with xk(ℓ−1)
A denoting the least fixed point of Λk(ℓ−1).

We now state the following result.

Proposition 5.5. Consider the set M̃k defined as in (5.13), the terms P kℓ

as in (4.17), and the mappings Λkℓ as in (5.14) / (5.15). For any ũk ∈ M̃k,
P kℓũk is a fixed point of Λkℓ for all ℓ ∈ {1, . . . , L}.
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This means that, for every ℓ ∈ {1, . . . , L}, any schedule for the
allocation of resource ℓ by subsystem Sk which is reachable from the
inputs and which is also compatible with the resource constraints and
with past input firings is a fixed point of Λkℓ. Then, what remains to
be investigated is whether the least fixed points of mappings Λkℓ are
all simultaneously feasible, i. e., whether there exists an input uk which
is an element of M̃k and such that P kℓuk = xkℓ

A for all ℓ. Similarly to
Section 5.2, we prove constructively that the answer is positive. As the
proof is analogous to the corresponding discussion in Section 5.2, only
more intricate and with a heavier notation, we state the two key facts
as propositions and omit their proofs from the present discussion. The
interested reader can find the proofs in Appendix A.

Consider the input

uk =


rT(u

k0
opt)

xk1
A
...

xkL
A

 ∈ Σ(L+1)×1 . (5.16)

Proposition 5.6. For every ℓ ∈ {1, . . . , L}, it holds that P kℓuk = xkℓ
A , where

xkℓ
A denotes the least fixed point of mapping Λkℓ defined as in (5.14) / (5.15),

and P kℓ is defined as in (4.17).

Proposition 5.7. For uk defined as in (5.16) and M̃k as in (5.13), it follows
that uk ∈ M̃k.

This does not guarantee, however, that Mk ̸= ∅, as one might still
have Gkuk ⪯̸ zk ′ and hence uk /∈ Mk. In the case Mk = ∅, reference
zk ′ is not achievable; since conditions rT(u

k) = rT(u
k
opt) and (⋆⋆) for

all ℓ are irrevocable, in order to find a solution we must then relax
zk ′ into a new reference zk ′′ ⪰ zk ′. We want, nonetheless, to remain as
close to the original reference as possible, meaning we seek the least
possible such zk ′′. As argued in Section 5.2, it is then natural to take
zk ′′ = zk ′ ⊕ Gkuk. The following proposition shows that this is indeed
the optimal way of relaxing zk ′, and its corollary provides a way to
check whether Mk is nonempty.

Proposition 5.8. Let Mk ′′ denote the set defined as Mk in (5.11), only
replacing zk ′ with zk ′′, and let uk be defined as in (5.16). The least zk ′′ ⪰ zk ′

such that Mk ′′ ̸= ∅ is zk ′′ = zk ′ ⊕ Gkuk.

Corollary 5.9. With set Mk defined by (5.11) and uk as in (5.16), it follows
that Mk ̸= ∅ ⇔ Gkuk ⪯ zk ′.

If Mk is empty, define the mapping Ψk ′′ : Σ(L+1)×1 → Σ(L+1)×1 as
Ψk in (5.12), only replacing zk ′ with zk ′′. Following the same procedure
as before, we can apply Prop. 5.1 — only now taking ψ as Ψk ′′ instead
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of Ψk — to conclude that uk
opt
′ is the greatest fixed point of mapping

Γk ′′ : Σ(L+1)×1 → Σ(L+1)×1,

Γk ′′(uk) = uk ∧ Ψk ′′(uk) ∧ r ♯
T(u

k
opt) .

Remark 5.2. Similarly to Remark 5.1, supposing the output reference
zk of each subsystem Sk is updated to zk ′ at time T, let κ be the least
index in {1, . . . , K} such that zκ ′ ̸= zκ, i. e., we have zi ′ = zi for all
i ∈ {1, . . . , κ − 1}. The method presented in this section will then
result in ui

opt
′ = ui

opt for all i ∈ {1, . . . , κ − 1}. We can, therefore, apply
the method starting from Sκ and taking xiℓ

Aopt
′ = xiℓ

Aopt
and xiℓ

Ropt
′ = xiℓ

Ropt

for all i ∈ {1, . . . , κ − 1} and for all ℓ ∈ {1, . . . , L}. However, the inputs
of all subsystems Sj with j ∈ {κ + 1, . . . , K} must be updated, even if
zj ′ = zj for some of them.

5.4 on the flexibility of the method regarding priority

policy and system structure

In Chapter 4 as well as in the present chapter, a fixed priority hierarchy
for access to the resource has been assumed among the subsystems.
Notwithstanding, it should be pointed out that the method discussed
in this chapter for the case of varying output-reference signals can also
be applied to a situation in which the priority order of the subsystems
is rearranged during the operation. To make the idea more palpable,
consider for instance the system from Figure 4.2 and assume it is
operating according to the optimal schedules obtained in Example 4.1.
Now, suppose that, at a certain time T, subsystems S1 and S2 swap
priority levels, i. e., S2 assumes the highest priority and S1 takes the
second-highest. Naturally, this makes it necessary to update the input
schedules, while (as in the case of updates in the output-reference)
maintaining any transition firings that occurred before time T. Then,
the method from Sections 5.1 and 5.2 can be directly applied, by
simply taking references zk ′ as the original references zk and updating
the inputs in decreasing order of priority with respect to the new
priority hierarchy. Concretely, in the above example one would start
by updating the input of S2, taking into account the current occupancy
of the resource by S1 and S3 due to past firings, but neglecting their
prospective resource-allocations that have not taken place by time
T. The resulting optimal updated schedule of S2 is then considered
as fixed, and the input of S1 is updated in the standard way for a
subsystem with the second-highest priority level. Finally, the inputs
of S3 must also be updated, as the availability of the resource may be
affected by the readjustments in the operations of S1 and S2.

Another aspect that, at first glance, may seem rigid in the presented
method is the structure of the system, particularly in the case of multi-
ple shared resources (Figure 4.5). In order to simplify the presentation,
we have considered so far that all subsystems require access to all
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resources, which may, of course, not necessarily be the case in practical
scenarios. However, the case in which each subsystem only requires a
subset of the total number of resources can be handled in a straightfor-
ward manner. For instance, based on Figure 4.5, suppose an arbitrary
subsystem Sκ does not require access to a certain resource βλ. One
can then simply remove the arcs connecting transitions xκλ

A and xκλ
R to

that resource, and consider blocks Pκλ and Hκλ as single places with
zero holding time and no initial tokens, so that the corresponding
counters become Pκλ = Hκλ = se. By omitting the counters xκλ

A and
xκλ

R from inequality (4.12) for ℓ = λ, the method from Section 4.3 can
be directly applied. Similarly, in Section 5.3 we omit the counters xκλ

Aopt
′ ,

xκλ
Ropt

′ , r ♯
T(xκλ

Aopt
), and Hκλr ♯

T(xκλ
Ropt

) respectively from the terms Hkλ
A , Hkλ

R ,

Lkλ
A , and Lkλ

R for all k ∈ {1, . . . , K}\{κ}. The method can then be ap-
plied normally to obtain the optimal updated inputs, only ignoring
inequality (⋆⋆) for ℓ = λ when updating the input of Sκ.



6
R E L AT E D W O R K O N S Y S T E M S W I T H S H A R E D
R E S O U R C E S

The method presented in Chapter 4 is largely based on the one pro-
posed in [36]. More specifically, the strategy of using the Hadamard
product to express the global relationship among resource-allocation
and release schedules as an inequality in the semiring of counters,
explained in Section 4.1, was introduced in [36], inspired, in turn, by
the ideas from [21]. The control approach discussed in Section 4.2 also
preserves many of the characteristics from the one of [36], with the
difference that in [36] the authors consider only the case in which
each subsystem is a single-input-single-output TEG, whereas we start
by treating the case of TEGs with two inputs (Section 4.2) and then
generalize to the case of TEGs with an arbitrary number of inputs
(Section 4.4). Furthermore, in Section 4.3 we extend the approach
to the case of an arbitrary number of resources shared by an arbi-
trary number of subsystems; in [36], only the case of two resources
shared by two subsystems is explicitly treated. The most significant
novelty in this thesis with respect to [36], however, is the method
proposed in Chapter 5, where the whole control approach for sys-
tems with resource-sharing is generalized to the case in which the
output-references of the subsystems may unexpectedly change while
the system is running.

Different groups of authors have invested their effort in several
attempts to handle resource-sharing phenomena within a tropical-
algebraic framework. In [12], a modeling approach for TEGs with
shared resources is proposed where the constraints due to resource-
sharing are expressed as inequalities over the min-plus algebra. There
are similarities with the way we express these constraints in inequality
(4.1), although the use of the Hadamard product arguably makes our
expression simpler and easier to interpret and manipulate. Moreover,
in [12] no systematic control method is proposed for systems with
resource-sharing. Taking a different approach, the authors of [53] use
so-called switching max-plus-linear systems — i. e., discrete-event
systems that can switch between different operation modes — to
model systems with concurrency. They show that the model predictive
control problem for this class of systems can be reduced to a mixed
integer optimization problem. One limitation of the method is that
it does not scale well for systems with multiple shared resources,
as each possible distribution of the resources among the users leads
to a new mode of operation, which may cause a dramatic (possibly
exponential) increase in the number of modes. In [1], conflicting TEGs
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are modeled by time-varying equations in the max-plus algebra; the
technique is restricted to safe conflict places, i. e., it can only handle
shared resources with single capacity. This restriction is then relaxed
in [8], where the authors study cycle time evaluation of TEGs with
shared resources modeled by conflict places; the obtained models are
not employed for control purposes.

Finally, we should point out that the optimal control method pre-
sented in Chapter 4 has the advantage of being extensible to systems
exhibiting both resource-sharing and partial-synchronization phenom-
ena by being naturally combined with the method from Chapter 7, as
shown in Chapter 10. This, to the best of the author’s knowledge, is
not the case of any of the previously proposed control approaches for
systems with shared resources.
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M O D E L I N G A N D C O N T R O L O F T E G S U N D E R
PA RT I A L S Y N C H R O N I Z AT I O N

The behavior of TEGs with partial synchronization cannot be modeled
solely by equations like (3.2). In this chapter, we propose a strategy to
incorporate the PS phenomenon into the model of the system, which
naturally leads to a way of expressing PS restrictions in the context
of counters (Section 7.2). This paves the way for a method to obtain
optimal (just-in-time) inputs for TEGs with PS, presented first for the
simpler case of a single partially-synchronized transition (Section 7.3)
and then generalized to the case of multiple partially-synchronized
transitions (Section 7.4).

A preliminary version of part of the following material has appeared
in [42, 43], which reflect original work from — and have as the main
author and contributor — the author of this thesis.

7.1 the concept of partial synchronization

A general way of characterizing the partial synchronization phe-
nomenon is the following: the firings of a TEG’s partially-synchronized
(internal) transition xι are subject to a predefined synchronizing signal
S : Z → Z+

min, where

Z+
min = {a ∈ Zmin | ε ≺ a ⪯ e} ⊂ Zmin

is the set of finite nonnegative (in the standard sense) elements of
Zmin. More precisely, an additional condition for the firing of xι —
besides the ones from standard synchronization as expressed in (3.2)
— is imposed; namely, at any time t ∈ Z, xι can only fire if S(t) ̸= e, in
which case it can fire at most S(t) times. If S(t) = e, xι is not allowed
to fire at time t. Note that limiting S to only assume finite values is
not restrictive, as they can be arbitrarily large. In Zmin, this condition
on xι reads as

(∀t ∈ Z) xι(t) ⪰ S(t)⊗ xι(t − 1) . (7.1)

Signal S as above assumes values S(t) which are not necessarily
nonincreasing (in the order of Zmin) over time, and thus it cannot, in
general, be encoded as a counter. In the sequel, we present a way to
capture the effects of PS within the domain of Σ.

7.2 modeling of tegs under partial synchronization

We now propose an alternative perspective to model PS in TEGs. The
method consists in appending to any partially-synchronized transition
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α ρ

pr

1

xι 1 ξ

· · · · · ·

Figure 7.1: Appended structure (in gray) to represent PS of internal transition
xι in a TEG.

xι the structure shown in Fig. 7.1. At any given time t, the number of
tokens in place pr corresponds to how many firings PS allows for xι at
t. For this to correctly represent the restrictions on xι due to PS, the
number of tokens in pr needs to be managed accordingly, which is
made possible by assigning appropriate firing schedules to transitions
ρ and α. Suppose xι is to be conceded k firings at time t. Then, ρ will
fire k times at t, inserting k tokens in pr. These will remain available
for only one time unit, during which they enable up to k firings of xι.
Note that the number of tokens inserted in pr provides only an upper
bound to the number of times xι can fire at time t, but it is not known
a priori how many firings (if any) xι will actually perform. The role of
transition ξ is to make the mechanism independent of how often xι

fires by returning to pr at time t + 1 all the tokens consumed by xι at t.
In fact, as the earliest firing rule is assumed, based on Fig. 7.1 we have
ξ(t) = xι(t − 1) for all t ∈ Z (or simply ξ = eδ1xι, cf. Remark 2.7).
Then, at time t + 1, xι’s “right to fire” is revoked, which is carried
out by scheduling k firings for α so that pr becomes empty. Formally,
α = eδ1ρ. In order to avoid any (nondeterministic) dispute between α

and xι for the tokens residing in pr at t+ 1, the final touch is to assume
that α has higher priority than xι, meaning the firing schedule of xι

must be determined under the hard restriction that it cannot interfere
with that of α. The described mechanism is initialized as follows: if xι

is first granted the right to fire at time τ, define ρ(t) = e for all t ≤ τ.

Example 7.1. Consider the TEG from Fig. 3.1 and suppose transition x2

is partially synchronized, with the following restrictions: it may only
fire at times

t ∈ T =
{
[4, 6] ∪ [10, 12] ∪ [18, 19] ∪ [24, 27] ∪ [31, 32]

}
⊂ Z ,

and at most once at each t ∈ T . This PS is modeled through the
structure described above, as shown in Fig. 7.2, with

ρ(t) =


e if t ≤ 4 ;

1 ⊗ ρ(t − 1) if t − 1 ∈ T ;

ρ(t − 1) if t − 1 /∈ T and t > 4 .
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u1 x1 3

x2u2

1

4 x3

2

y

α ρ

1 ξ

1

Figure 7.2: TEG from Fig. 3.1 with internal transition x2 under PS.

Explicitly, we have

ρ = eδ4 ⊕ 1δ5 ⊕ 2δ6 ⊕ 3δ10 ⊕ 4δ11 ⊕ 5δ12 ⊕ 6δ18 ⊕ 7δ19 ⊕ 8δ24

⊕ 9δ25 ⊕ 10δ26 ⊕ 11δ27 ⊕ 12δ31 ⊕ 13δ32 ⊕ 14δ+∞ .

Recall that the schedule for α is then determined as α = eδ1ρ, i.e., by
shifting that of ρ backwards by one time unit. 3

It should be clear that the overall system resulting from the method
described above is no longer a TEG, as place pr has two upstream
and two downstream transitions. As a consequence, it cannot be
modeled solely by linear equations such as (3.2). In order to capture
the restrictions imposed by PS on a transition xι, we need to be able
to express the relationship among transitions (and corresponding
counters) ρ, α, xι, and ξ. For this, the Hadamard product of counters
is used.

Recall from Def. 2.4 that the Hadamard product amounts to the
coefficient-wise standard sum of counters. From the structure of
Fig. 7.1 one can see that, at any time instant t, the combined accumu-
lated number of firings of α and xι cannot exceed (in the conventional
sense) that of ρ and ξ. The Hadamard product allows us to translate
this into the following condition:

ρ ⊙ ξ ⪯ α ⊙ xι . (7.2)

With ρ, α, and ξ defined as described in this section, inequality (7.2)
fully captures the restrictions imposed by PS on a transition xι.

Remark 7.1. The formulation presented in this section does not entail
any loss of generality with respect to that of Section 7.1. If transition
xι is partially synchronized based on a synchronizing signal S , the
structure of Fig. 7.1 can be adopted to implement the same PS for xι

by defining, for all t ∈ Z, ρ(t) =
⊗

τ≤t S(τ). Hence, the accumulated
number of firings of ρ by any time t is equal to the total number of
firings of xι allowed by S up to t — naturally, not all such firings are
necessarily performed by xι, i.e., in general we have xι ⪰ ρ. Recall that
α is then automatically defined as α = eδ1ρ.
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Remark 7.2. We shall henceforth assume that the firings of a partially-
synchronized transition xι can be allowed or prevented in real time,
i.e., that there is a control input transition uη with a single down-
stream place which is initially empty, has zero holding time, and is an
upstream place of xι. This is illustrated in Fig. 7.3 for a general TEG,
and it is the case, in particular, for the system from Example 7.1 (see
input u2 in Fig. 7.2). Note that this assumption is compatible with the
real-world examples mentioned in the introduction; it is natural to
assume that one is capable of deciding (through a direct control signal)
whether or not a machine or piece of equipment should be turned on,
the same being true about granting permission for a train/vehicle to
enter a shared track segment.

We should emphasize that, even though from the point of view of
the model structure both transitions ρ and uη characterize “inputs”
(in the sense that both have no upstream place), their roles are con-
ceptually very different. Whereas uη is indeed a control input whose
firing schedule can be freely assigned, the firings of ρ are assumed
to be predetermined based on external factors, thus enforcing the
restrictions from PS, as explained above.

Remark 7.3. The modeling method presented in this section naturally
applies to the case of TEGs with multiple transitions under PS. Sup-
pose that, in a given TEG, out of the n internal transitions, I are
partially synchronized, with I ≤ n. PS is modeled by appending
an independent structure like the one from Fig. 7.1 to each partially-
synchronized transition xι, accordingly adding subscripts to transitions
— and corresponding counters — ρι, ξι, and αι. It is then straightfor-
ward to generalize the previous discussion leading to condition (7.2),
namely every xι must obey

ρι ⊙ ξι ⪯ αι ⊙ xι . (7.3)

Based on Remark 7.2, we assume there is an input transition uη

connected to each partially-synchronized transition xι via a place with
zero holding time and no initial tokens.

α ρ

pr

1

xι 1 ξ

uη

· · · · · ·

Figure 7.3: Illustration of the assumption that there is an input transition
uη directly connected to partially-synchronized transition xι (cf.
Remark 7.2).
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7.3 optimal control of tegs with a single partially-
synchronized transition

Consider a TEG modeled by linear equations (3.2), and suppose one of
its internal transitions, xι, is partially synchronized. We represent the
PS phenomenon through the structure shown in Fig. 7.3, as discussed
in Section 7.2, including input transition uη according to Remark 7.2.
Recall that counters ρ and α = eδ1ρ are predetermined. Given an
output reference z, our objective is to obtain the optimal input uopt

which leads to tracking the reference as closely as possible while
respecting the partial synchronization of xι described by ρ, i. e., we
seek the largest u such that y = Gu ⪯ z and such that (7.2) holds.

Let us start by noting that, as (3.3) describes the behavior of the
TEG operating under the earliest firing rule, for an arbitrary input
u ∈ Σm×1 leading to a schedule of xι that respects (7.2), the schedule
of all internal transitions can be uniquely determined through matrix
F = A∗B ∈ Σn×m, where n is the number of internal transitions and
m the number of inputs in the TEG. Denoting the ιth row of F by F[ι·] ,
we have xι = F[ι·]u . Applying this to (7.2), together with the fact that
ξ = eδ1xι and α = eδ1ρ (cf. Section 7.2), we can write

ρ ⊙ eδ1F[ι·]u ⪯ eδ1ρ ⊙F[ι·]u . (7.4)

Recalling Proposition 2.2, inequality (7.4) is equivalent to

eδ1F[ι·]u ⪯ (eδ1ρ ⊙F[ι·]u)⊙♯ ρ ,

which, in turn, is equivalent to (cf. Remark 2.11)

u ⪯ eδ1F[ι·]◦\
[
(eδ1ρ ⊙F[ι·]u)⊙♯ ρ

]
. (7.5)

Finding an input which leads to tracking the reference while respecting
(7.2) thus amounts to simultaneously solving u ⪯ G◦\z and (7.5), i. e.,
solving

u ⪯ eδ1F[ι·]◦\
[
(eδ1ρ ⊙F[ι·]u)⊙♯ ρ

]
∧ G◦\z ,

which is equivalent to

u = eδ1F[ι·]◦\
[
(eδ1ρ ⊙F[ι·]u)⊙♯ ρ

]
∧ G◦\z ∧ u .

The optimal input uopt is, therefore, the greatest fixed point of the
isotone mapping Φ : Σm×1 → Σm×1,

Φ(u) = eδ1F[ι·]◦\
[
(eδ1ρ ⊙F[ι·]u)⊙♯ ρ

]
∧ G◦\z ∧ u . (7.6)

Example 7.2. Let us revisit Example 3.1, only now with transition x2

partially synchronized as in Example 7.1. For the TEG from Fig. 3.1,
from (3.5) we have F[2·] =

[
eδ3(1δ6)∗ (1δ6)∗

]
. With ρ and α defined
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t

z(t), yopt(t)

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Figure 7.4: Tracking of the reference z (△) by the optimal output yopt ( • )
obtained in Example 7.2.

as in Example 7.1, we compute the greatest fixed point of mapping Φ
to get

uopt =

[
u1opt

u2opt

]
=

[
eδ3 ⊕ 1δ9 ⊕ 2δ16 ⊕ 3δ22 ⊕ 4δ+∞

eδ6 ⊕ 1δ12 ⊕ 2δ19 ⊕ 3δ25 ⊕ 4δ+∞

]
.

The corresponding optimal output (see Remark 7.4, below) is

yopt = Guopt = eδ10 ⊕ 1δ16 ⊕ 2δ22 ⊕ 3δ29 ⊕ 4δ+∞ .

The resulting reference tracking is illustrated in Fig. 7.4; as expected,
performance is clearly degraded due to the additional restrictions
imposed by PS, meaning the reference cannot be tracked as closely as
in the case without PS (compare with Fig. 3.2). 3

Remark 7.4. Due to the additional restrictions for the firing of a
partially-synchronized transition, in general it may be the case that a
TEG under PS does not behave purely according to (3.2), and hence
y ̸= Gu. Nonetheless, since in the presented method the firing sched-
ules of all input transitions are computed so as to respect condition
(7.2) and to be just-in-time, a partially-synchronized transition xι is
only going to be enabled when PS indeed allows it to fire. That is to
say, the additional restrictions are dealt with offline in the computation
phase, and the obtained optimal inputs guarantee that the evolution of
the system will follow (3.2), as if unaffected by PS constraints. To put
it in a formal way, as xιopt = F[ι·]uopt and as xιopt satisfies (7.2), we have
xopt = Fuopt and hence yopt = Guopt. Naturally, the same reasoning
carries over to the case of multiple partially-synchronized transitions,
to be discussed in Section 7.4. 3

Remark 7.5. For the just-in-time input uopt obtained through the method
presented in this section, it holds that F[ι·]uopt = uηopt . Intuitively, as
uopt is computed so that xιopt = F[ι·]uopt respects condition (7.2), this
means the control input uη enabling xι to fire is always provided
exactly within the time windows in which PS allows xι to fire.
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To show this, first note that, since F[ι·]uopt = xιopt ⪰ uηopt , it suffices
to prove that F[ι·]uopt ⪯ uηopt . The proof goes by contradiction. Assume
F[ι·]uopt ⪯̸ uηopt , and consider the input ũ ∈ Σm×1 with

ũκ =

uηopt ⊕F[ι·]uopt , for κ = η ,

uκopt , for κ ̸= η .

Because input transition uη is connected to xι via a place with no
initial tokens and null holding time (see Remark 7.2 and Fig. 7.3), for
matrix B ∈ Σn×m as in (3.2) it follows that, for all µ ∈ {1, . . . , n},

Bµη =

se , for µ = ι ,

sε , for µ ̸= ι .
(7.7)

So, denoting the ηth column of B by B[·η], for any j ∈ {1, . . . , n} we
have

Fjη = [A∗B]jη = [A∗][j·]B[·η] = [A∗]jι . (7.8)

Moreover, as xopt is a solution of (3.2) and, therefore, xopt = A∗xopt

(cf. Remark 2.4), we have

xjopt = [A∗][j·]xopt =
n⊕

µ=1

[A∗]jµxµopt ⪰ [A∗]jιxιopt .

Combined with (7.8), this means

xjopt ⪰ Fjηxιopt (7.9)

for all j ∈ {1, . . . , n}. Then,

F[j·]ũ =
m⊕

κ=1
κ ̸=η

Fjκuκopt ⊕ Fjη(uηopt ⊕F[ι·]uopt)

=
m⊕

κ=1
κ ̸=η

Fjκuκopt ⊕ Fjηuηopt ⊕ FjηF[ι·]uopt

=
m⊕

κ=1

Fjκuκopt ⊕ FjηF[ι·]uopt

= F[j·]uopt ⊕ FjηF[ι·]uopt

= F[j·]uopt ,

where the last equality follows from (7.9) and the fact that F[j·]uopt = xjopt

for all j ∈ {1, . . . , n} (which includes, of course, the case j = ι). This
implies F ũ = Fuopt and thus, recalling from (3.4) that G = CF , also
G ũ = Guopt ⪯ z, so ũ ⪯ G◦\z.

Furthermore, the fact that F[ι·]ũ = F[ι·]uopt as shown above implies
ũ satisfies (7.5), so we conclude that ũ is a fixed point of mapping
Φ. But ũ ⪰ uopt and ũ ̸= uopt, contradicting the fact that uopt is the
greatest fixed point of Φ. 3
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7.4 optimal control of tegs with multiple partially-
synchronized transitions

Consider a TEG modeled by linear equations (3.2), and suppose I out
of its n internal transitions are partially synchronized. We assume, for
ease of discussion and without loss of generality, that the correspond-
ing counters xι are the first I entries of vector x ∈ Σn×1. The PS of
each partially-synchronized transition xι, ι ∈ {1, . . . , I}, is again repre-
sented by a structure like the one from Fig. 7.3, accordingly adding
subscripts to transitions — and corresponding counters — ρι, ξι, and
αι. The assumptions from Remark 7.3 concerning input transitions uη

connected to each xι are in place.
Besides tracking a given reference z as closely as possible, the

optimal input must now be computed ensuring that (7.3) holds for
every ι ∈ {1, . . . , I}. Following the same arguments as in Section 7.3,
one can see that inequality (7.3) is equivalent to

u ⪯ eδ1F[ι·]◦\
[
(eδ1ρι ⊙F[ι·]u)⊙♯ ρι

]
. (7.10)

Recall that F[ι·] is the ιth row of F = A∗B as in (3.3), i. e., for an
input u that leads to respecting (7.2) for every ι ∈ {1, . . . , I} we have
xι = F[ι·]u.

Defining the collection of mappings Φι : Σm×1 → Σm×1,

Φι(u) = eδ1F[ι·]◦\
[
(eδ1ρι ⊙F[ι·]u)⊙♯ ρι

]
,

where m is the number of input transitions in the system, an input
u ∈ Σm×1 satisfying (7.10) simultaneously for all ι ∈ {1, . . . , I} while
respecting reference z is such that

u ⪯
I∧

ι=1

Φι(u) and u ⪯ G◦\z

or, again through a reasoning similar to the one put forth in Section 7.3,

u =
I∧

ι=1

Φι(u) ∧ G◦\z ∧ u .

Hence, the input uopt which optimally tracks the reference while
respecting (7.10) for all ι ∈ {1, . . . , I} is the greatest fixed point of the
(isotone) mapping Φ : Σm×1 → Σm×1,

Φ(u) =
I∧

ι=1

Φι(u) ∧ G◦\z ∧ u .

Remark 7.6. Similarly to Remark 7.5, the method presented in this
section yields a just-in-time input uopt such that F[ι·]uopt = uιopt for
every ι ∈ {1, . . . , I}. Again the intuition behind this fact is that, as the
method guarantees that xιopt = F[ι·]uopt obeys (7.3) for all ι ∈ {1, . . . , I},
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no partially-synchronized transition xι is ever enabled to fire by the
corresponding control input uι unless it is also allowed to fire by the
PS restrictions.

To show this, let us first recall from Remark 7.3 that we can assume,
without loss of generality, that η = ι whenever uη is connected to
xι. As F[ι·]uopt = xιopt ⪰ uιopt for every ι ∈ {1, . . . , I}, all that needs
to be proved is that F[ι·]uopt ⪯ uιopt for all ι. The proof is again done
by contradiction. Note that negating the claim “F[ι·]uopt ⪯ uιopt for all
ι ∈ {1, . . . , I}” implies assuming there exists ι̃ ∈ {1, . . . , I} such that
F[̃ι·]uopt ⪯̸ uι̃opt . Now, seeing as the arguments from Remark 7.5 are
valid for an arbitrary ι, the remainder of the proof proceeds identically
to the referred remark, only replacing ι and η with ι̃. 3

on the similarity between the methods for resource-
sharing and partial synchronization

The attentive reader will have noticed a strong similarity between the
method presented in this chapter and the one from Chapter 4; the
same will be true between Chapters 8 and 5. This, of course, is no
coincidence.

In fact, from one perspective, note that the structure from Fig. 7.1
(including transition xι) resembles that of a system comprising two
subsystems sharing a single resource, represented by place pr. The
TEG in question plays the role of a lower-priority subsystem, allocat-
ing the (fictitious) resource via transition xι and releasing it through
the added auxiliary transition ξ. In turn, transitions α and ρ can be
seen respectively as allocation and release transitions of a “resource
manager”, a higher-priority user whose role is to moderate the avail-
ability of the resource — i. e., the number of tokens available in place
pr — according to predetermined allocation and release schedules that
cannot be interfered with by the lower-priority user.

On the other hand, in the method from Chapter 4, once the optimal
inputs for a higher-priority subsystem Si have been obtained, they
are taken as fixed. Hence, from the point of view of a lower-priority
subsystem Sj, the resource-allocation and release schedules of Si can
be seen as hard restrictions that limit the time instants at which its
allocation transition, xj

A, is allowed to fire, much like PS restrictions.
Granted the consequent repetitive nature of the mathematical for-

mulation may make the reading of the thesis somewhat tedious, this
similarity can, nonetheless, be considered a side contribution, as it
reveals a (not necessarily self-evident) correspondence between the
two phenomena. It also makes the merging of the two methods (Chap-
ter 10) rather natural and elegant.
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C O N T R O L O F T E G S U N D E R VA RY I N G PA RT I A L
S Y N C H R O N I Z AT I O N

In this chapter, we extend the results presented in Chapter 7 to the case
of varying PS, i.e., where the restrictions on partially-synchronized
transitions may change during run-time. As before, we start with the
simpler case of TEGs with a single partially-synchronized transition
(Sections 8.1 and 8.2) and then proceed to generalize to the case of
multiple partially-synchronized transitions (Section 8.3). In order to
avoid breaking the flow and improve readability, some proofs along
the chapter are postponed to Appendix B.

A preliminary version of part of the following material has appeared
in [42, 43], which reflect original work from — and have as the main
author and contributor — the author of this thesis.

8.1 problem formulation — the case of a single partially-
synchronized transition

Consider a system modeled as a TEG with n internal transitions —
one of which, xι, is partially synchronized — and m input transitions
— one of which, uη , is connected to xι via a place with no initial tokens
and null holding time, according to Remark 7.2. Assume the system is
operating optimally with respect to a given output-reference z, with
optimal input uopt obtained according to the method presented in
Chapter 7.

Now, suppose that at a certain time T the restrictions due to PS
are altered, which, in terms of the modeling technique introduced in
Section 7.2, means the firing schedule of transition ρ is updated to a
new one, ρ′. Naturally, as past firings cannot be altered, it must be the
case that ρ′(t) = ρ(t) for all t ≤ T, i. e., recalling mapping rT defined
in (3.7) we have rT(ρ

′) = rT(ρ) — and thus, as α = eδ1ρ, the schedule
of transition α is also updated to α′ with r(T+1)(α

′) = r(T+1)(α). Based
on (7.2), the new restrictions imposed by PS on xι can be expressed by

ρ′ ⊙ ξ ⪯ α′ ⊙ xι . (8.1)

Our goal is to determine the input u′
opt which preserves uopt up to

time T and which results in an output that tracks reference z as closely
as possible, while guaranteeing that the resulting firing schedule for
xι, denoted x′ιopt

, observes the restrictions from PS expressed by (8.1).
Recall, as argued in Section 7.3, that we can express the firing schedule
of xι in terms of u as xι = F[ι·]u, where F[ι·] is the ιth row of F = A∗B

70
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as in (3.3). Combined with the fact that ξ = eδ1xι and α′ = eδ1ρ′ (cf.
Section 7.2), this means we can write (8.1) as

ρ′ ⊙ eδ1F[ι·]u ⪯ eδ1ρ′ ⊙F[ι·]u . (S)

The problem described above can then be stated as follows: find the
greatest element of the set

Q =
{

u ∈ Σm×1 | Gu ⪯ z and (S) and rT(u) = rT(uopt)
}

. (8.2)

8.2 optimal update of the inputs — the case of a single

partially-synchronized transition

With the objective of determining the greatest element of set Q defined
in (8.2), notice that

(S) ⇔ eδ1F[ι·]u ⪯ (eδ1ρ′ ⊙F[ι·]u)⊙♯ ρ′

⇔ u ⪯ eδ1F[ι·]◦\
[
(eδ1ρ′ ⊙F[ι·]u)⊙♯ ρ′

]
.

So, defining the mapping Ψ : Σm×1 → Σm×1,

Ψ(u) = G◦\z ∧ eδ1F[ι·]◦\
[
(eδ1ρ′ ⊙F[ι·]u)⊙♯ ρ′

]
, (8.3)

set Q can be equivalently written as

Q =
{

u ∈ Σm×1 | u ⪯ Ψ(u) and rT(u) = rT(uopt)
}

.

We can then solve the problem stated in Section 8.1 by applying
Prop. 5.1, taking D as Σm×1, ψ as Ψ, f as rT, and c as rT(uopt). There-
fore, as long as set Q is nonempty, recalling that mapping rT is residu-
ated (cf. Remark 3.1) and r ♯

T ◦ rT = r ♯
T, the sought optimal update of the

input, u′
opt, is the greatest fixed point of mapping Γ : Σm×1 → Σm×1,

Γ(u) = u ∧ Ψ(u) ∧ r ♯
T(uopt) . (8.4)

The next step is to investigate whether set Q is nonempty. With that
in mind, let us define the set

Q̃ =
{

u ∈ Σm×1 | (S) and rT(u) = rT(uopt)
}
⊇ Q . (8.5)

We look for an element u of Q̃ that leads to the fastest possible behavior
of the system, i. e., to the least possible firing schedule of the output.
If such an input does not lead to respecting reference z, then clearly
no input satisfying (S) and rT(u) = rT(uopt) will. Formally, as shall be
concluded in Corollary 8.3, Q ̸= ∅ ⇔ Gu ⪯ z.

Even though Q̃ may not possess a least element, any input in Q̃
which leads to the fastest possible schedule of the internal transitions
while guaranteeing that the restrictions due to PS are respected will
result in the least possible schedule for the output y.
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In the quest for such an input, we observe that a bound for the firing
schedule of xι can be obtained from (8.1), as, recalling from Section 7.2
that α′ = eδ1ρ′ and ξ = eδ1xι,

(8.1) ⇔ (ρ′ ⊙ eδ1xι)⊙♭ eδ1ρ′ ⪯ xι . 1

The left-hand side of the latter inequality provides a bound for how
small (in the sense of the order of Σ) xι can be. It represents the
maximal number of firings allowed for xι under the PS-restrictions.

Furthermore, naturally no internal transition can fire more often
than enabled by the inputs. Considering that input firings that have
occurred before time T cannot be changed, the most often each input
uκ can possibly fire from time T onward is encoded by the counter
rT(uκopt), which represents the preservation of the firings up to T and
an infinite number of firings at time T + 1. Thus, F rT(uopt) imposes
a bound for x, limiting how often each internal transition can fire,
i. e., we must have x ⪰ F rT(uopt); in particular, this implies xι ⪰
F[ι·]rT(uopt).

We also require x to be a solution of (3.2), which, according to
Remark 2.4, implies x = A∗x. In particular, this means we must have
xι = [A∗][ι·]x ⪰ [A∗]ιιxι. But recall from (7.8) that [A∗]ιι = Fιη , so the
above condition can be written as xι ⪰ Fιηxι.

Based on the foregoing discussion, any schedule for xι must obey

xι ⪰
[
(ρ′ ⊙ eδ1xι)⊙♭ eδ1ρ′

]
⊕ F[ι·]rT(uopt) ⊕ Fιηxι ,

which is equivalent to saying xι must be a fixed point of the (isotone)
mapping Λ : Σ → Σ,

Λ(χ) =
[
(ρ′ ⊙ eδ1χ)⊙♭ eδ1ρ′

]
⊕ F[ι·]rT(uopt) ⊕ Fιηχ ⊕ χ . (8.6)

Remark 8.1. One can easily see that, for any ũ ∈ Q̃, F[ι·]ũ is a fixed
point of Λ, because

– ũ satisfies (S), which is equivalent to

(ρ′ ⊙ eδ1F[ι·]u)⊙♭ eδ1ρ′ ⪯ F[ι·]u ; (8.7)

– F[ι·]ũ ⪰ F[ι·]rT(ũ) = F[ι·]rT(uopt);

– x̃ = F ũ is a solution of (3.2), so x̃ = A∗ x̃ (cf. Remark 2.4) and
hence

F[ι·]ũ = x̃ι = [A∗][ι·] x̃ ⪰ [A∗]ιι x̃ι = Fιη x̃ι .

3

1 As ρ′ encodes the accumulated number of firings of transition ρ by each time instant
t, which corresponds to the accumulated number of firings granted to xι up to t, it is
reasonable (and entails no loss of generality) to assume that ρ′(t) /∈ {−∞,+∞} for
any finite time t ∈ Z. The same holds, of course, for eδ1ρ′, as [eδ1ρ′](t) = ρ′(t − 1)
for all t. Hence, according to Prop. 2.3, mapping Πeδ1ρ′ : Σ → Σ is dually residuated.
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Remark 8.1 implies that any firing schedule of xι which is reachable
from the inputs and which is compatible with the restrictions due
to PS and with past input firings is in fact a fixed point of Λ. What
remains to be investigated then is whether the least fixed point of
mapping Λ — which we shall denote xι — is indeed feasible, i. e.,
whether there exists an input u which is an element of Q̃ and such
that F[ι·]u = xι . In the following, we present a constructive proof that
the answer is positive.

Define the vector θ ∈ Σm×1,

θµ =

sε , for µ ̸= η ,

xι , for µ = η ,

and consider the input

u = rT(uopt)⊕ θ =



rT(u1opt)

...
rT(uηopt)⊕ xι

...
rT(umopt)


. (8.8)

In order to show that F[ι·]u = xι, first note that, as

A∗ =
⊕
κ≥0

Aκ = In×n ⊕
⊕
κ≥1

Aκ ⪰ In×n , (8.9)

where A0 = In×n is the identity matrix in Σn×n (see Remark 2.3), it
follows that

[
A∗]

ιι
⪰

[
In×n]

ιι
= se, so Fιηxι =

[
A∗]

ιι
xι ⪰ xι. On the

other hand, the fact that xι is a fixed point of Λ implies xι ⪰ Fιηxι,
and hence

Fιηxι = xι . (8.10)

Then, we have

F[ι·]u =
m⊕

µ=1
µ ̸=η

FιµrT(uµopt) ⊕ Fιη

(
rT(uηopt)⊕ xι

)

=
m⊕

µ=1
µ ̸=η

FιµrT(uµopt) ⊕ FιηrT(uηopt) ⊕ Fιηxι

=
m⊕

µ=1

FιµrT(uµopt) ⊕ Fιηxι

= F[ι·]rT(uopt) ⊕ xι (because of (8.10))

= xι (as xι is a fixed point of Λ) .
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Now, to prove that u ∈ Q̃, we begin by noticing that, because xι is a
fixed point of Λ,

(ρ′ ⊙ eδ1xι)⊙♭ eδ1ρ′ ⪯ xι .

Combined with the fact that F[ι·]u = xι as shown above, this implies
taking u = u satisfies (8.7), which is equivalent to (S).

It remains to show that rT(u) = rT(uopt). Note that, as rT ◦ rT = rT,
for µ ̸= η it trivially holds that rT(uµ) = rT(uµopt). The problem is
then reduced to showing that rT(uη) = rT

(
rT(uηopt)⊕ xι

)
= rT(uηopt),

which, in turn, as rT distributes over ⊕, is equivalent to rT(uηopt)⊕
rT(xι) = rT(uηopt), or rT(xι) ⪯ rT(uηopt). Our argument will be based
on the following result.

Proposition 8.1. r ♯
T(xιopt) is a fixed point of mapping Λ.

A consequence of Prop. 8.1 is that xι ⪯ r ♯
T(xιopt) = r ♯

T(F[ι·]uopt). We
also know from Remark 7.5 that F[ι·]uopt = uηopt . Thus, as rT is isotone

and recalling that rT ◦ r ♯
T = rT,

rT(xι) ⪯ rT
(
r ♯

T(uηopt)
)
= rT(uηopt) ,

concluding the proof that u ∈ Q̃.
This does not guarantee, however, that Q ̸= ∅, as it is possible that

Gu ⪯̸ z and hence u /∈ Q. Intuitively, if the new restrictions from PS
on xι are more stringent than the original ones, since up to time T we
implemented just-in-time inputs based on the original restrictions, it
may be impossible to respect both reference z and the new restrictions
after T. As we assume PS-restrictions to be hard ones, this means we
have no choice but to relax z, i. e., look for a new reference z′ ⪰ z for
which a solution exists. In fact, we seek the least possible such z′, in
order to remain as close as possible to the original reference. A natural
choice is then to take z′ = z ⊕ Gu; as ⊕ is performed coefficient-wise
on counters, this amounts to preserving the terms of z that can still be
achieved by taking u as input, and relaxing those that cannot only as
much as necessary to be matched by the resulting output y = Gu. The
following proposition establishes that this is indeed the optimal way
of relaxing z.

Proposition 8.2. Let Q′ denote the set defined as Q in (8.2), only replacing
z with z′, and let u be defined as in (8.8). The least z′ ⪰ z such that Q′ ̸= ∅
is z′ = z ⊕ Gu.

Prop. 8.2 also provides a simple way to check whether set Q is
nonempty.

Corollary 8.3. Let Q be defined as in (8.2) and u as in (8.8). Then,
Q ̸= ∅ ⇔ Gu ⪯ z.

In the case Q turns out to be empty, define the mapping
Ψ′ : Σm×1 → Σm×1 as Ψ in (8.3), only replacing z with z′ = z ⊕ Gu.
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Following the same procedure as before, we can apply Prop. 5.1 —
only now taking ψ as Ψ′ instead of Ψ — to conclude that u′

opt is the
greatest fixed point of mapping Γ′ : Σm×1 → Σm×1,

Γ′(u) = u ∧ Ψ′(u) ∧ r ♯
T(uopt) . (8.11)

summary of the method

Let us now provide a step-by-step overview of how to apply the
method discussed in this chapter. We assume that a TEG modeling the
system to be controlled is given, as are the external signals describing
PS restrictions on some of its internal transitions. Assume also the
transfer relations F and G (see (3.4)) to have been precomputed and
an output-reference to be provided in the form of a counter z. Here,
we consider the case of a single transition under PS, the generalization
to the case of multiple partially-synchronized transitions (after the
discussion in Section 8.3) being straightforward.

i. Model the PS restrictions by appending to the partially-
synchronized transition xι a structure like the one shown in
Fig. 7.1, and obtain the counter ρ according to the given external
signals, as described in Section 7.2. Recall that this implicitly
provides counters α = eδ1ρ.

ii. Obtain the optimal input uopt by computing the greatest fixed
point of mapping Φ defined as in (7.6), according to Section 7.3.

iii. If, at a certain time T, the PS restrictions are altered, update the
corresponding counters ρ and α to ρ′ and α′.

iv. Obtain the input u defined as in (8.8). As a prerequisite, compute
x, the least fixed point of mapping Λ defined in (8.6).

v. Based on Corollary 8.3, check whether set Q — defined as in
(8.2) — is nonempty by checking if the inequality Gu ⪯ z holds.

vi. In the case Q ̸= ∅, obtain the optimal updated input u′
opt by

computing the greatest fixed point of mapping Γ defined in (8.4).

vii. If Q = ∅, obtain the least feasible reference z′ according to
Prop. 8.2 and then obtain the optimal updated input u′

opt by
computing the greatest fixed point of mapping Γ′ defined in
(8.11).

Example 8.1. Consider, once more, the system from Example 3.1, with
transition x2 partially synchronized as in Example 7.1, and assume it
is operating optimally according to the input obtained in Example 7.2.
This means steps i and ii have already been taken. Now, suppose
that at time T = 14 the restrictions from PS are updated as follows:
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transition x2 is no longer allowed to fire at times 18 and 19. This means
that now x2 may only fire at times

t ∈ T ′ =
{
[4, 6] ∪ [10, 12] ∪ [24, 27] ∪ [31, 32]

}
⊂ Z .

Proceeding to step iii, the new schedule ρ′ for transition ρ is defined
similarly as in Example 7.1:

ρ′(t) =


e if t ≤ 4 ;

1 ⊗ ρ′(t − 1) if t − 1 ∈ T ′ ;

ρ′(t − 1) if t − 1 /∈ T ′ and t > 4 .

The explicit counter thus obtained is

ρ′ = eδ4 ⊕ 1δ5 ⊕ 2δ6 ⊕ 3δ10 ⊕ 4δ11 ⊕ 5δ12 ⊕ 6δ24 ⊕ 7δ25 ⊕ 8δ26

⊕ 9δ27 ⊕ 10δ31 ⊕ 11δ32 ⊕ 12δ+∞ .

In order to apply Corollary 8.3 to check whether reference z is
still achievable — i.e., whether Q ̸= ∅ — we compute input u, as
instructed in step iv; for that, we first need to compute x2, which is
the least fixed point of mapping Λ defined in (8.6). Note that, as the
total number of output firings required by reference z is 4, we know
the computed just-in-time inputs will not fire more than 4 times in
total, and consequently the same is true for transition x2. Thus, in
order to simplify computations, the initial counter χ for computing
the least fixed point of Λ may be chosen such that χ(t) ⪰ 4 for all t.
As we also know that the obtained least fixed point x2 will be such
that x2 ⪰ F[2·]rT(uopt), a natural choice for the starting point of the
fixed point algorithm is χ = F[2·]rT(uopt)⊕ 4δ+∞; the first term in the
sum represents the maximal (in the standard sense) possible number
of firings of x2, and the second truncates counter χ so that the total
number of firings does not exceed 4. We obtain

x2 = eδ6 ⊕ 1δ12 ⊕ 2δ24 ⊕ 3δ31 ⊕ 4δ+∞

and then

u =

[
eδ3 ⊕ 1δ9 ⊕ 2δ14 ⊕ εδ+∞

eδ6 ⊕ 1δ12 ⊕ 2δ24 ⊕ 3δ31 ⊕ 4δ+∞

]
.

This yields (step v)

Gu = eδ10 ⊕ 1δ16 ⊕ 2δ28 ⊕ 3δ35 ⊕ 4δ+∞ ⪯̸ z ,

implying Q = ∅. Thus, going to step vii, we need to relax reference z
according to Prop. 8.2, which gives

z′ = eδ14 ⊕ 1δ23 ⊕ 2δ28 ⊕ 3δ35 ⊕ 4δ+∞ .
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t

z′(t), y′
opt(t)

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Figure 8.1: Tracking of the new reference z′ (△) by the updated optimal
output y′opt ( • ) obtained in Example 8.1.

Finally, the updated optimal input u′
opt is obtained by computing the

greatest fixed point of mapping Γ′, resulting in

u′
opt =

[
eδ3 ⊕ 1δ9 ⊕ 2δ21 ⊕ 3δ28 ⊕ 4δ+∞

eδ6 ⊕ 1δ12 ⊕ 2δ24 ⊕ 3δ31 ⊕ 4δ+∞

]

and
y′opt = Gu′

opt = eδ10 ⊕ 1δ16 ⊕ 2δ28 ⊕ 3δ35 ⊕ 4δ+∞ .

The tracking of the new reference z′ by the updated output y′opt is
shown in Fig. 8.1. 3

8.3 problem formulation and optimal update of the in-
puts — the case of multiple partially-synchronized

transitions

Consider a system modeled as a TEG with n internal transitions —
I of which are partially synchronized — and m input transitions. As
in Section 7.4, for ease of discussion and without loss of generality let
us assume that the corresponding counters xι are the first I entries
of vector x ∈ Σn×1. Based on Remark 7.3, we also assume there is an
input transition uη connected to each partially-synchronized transition
xι via a place with zero holding time and no initial tokens. Moreover,
again to facilitate the discussion and without loss of generality, let
these inputs be the first I entries of the input vector u ∈ Σm×1, and let
η = ι whenever uη is connected to xι. Suppose the system is operating
optimally with respect to a given output-reference z, with optimal
input uopt obtained according to the method presented in Chapter 7.

Now, suppose that at a certain time T the restrictions due to PS
are altered for some (possibly all) xι, ι ∈ {1, . . . , I}. In terms of the
modeling technique introduced in Section 7.2, this means that, for
each ι ∈ {1, . . . , I}, the firing schedule of transition ρι is updated to a
new one, ρ′ι, with rT(ρ

′
ι) = rT(ρι) (and with the possibility that ρ′ι = ρι).

Recalling that we have αι = eδ1ρι, the schedule of transition αι is thus
also updated to α′

ι with r(T+1)(α
′
ι) = r(T+1)(αι). Based on (7.3), the new

restrictions imposed by PS on each partially-synchronized transition
xι can be expressed by

ρ′ι ⊙ ξι ⪯ α′
ι ⊙ xι . (8.12)
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Our goal is to determine the input u′
opt which preserves uopt up to time

T and which results in an output that tracks reference z as closely as
possible, while guaranteeing, for every ι ∈ {1, . . . , I}, that the resulting
firing schedule for xι, denoted x′ιopt

, observes the restrictions from PS
expressed by (8.12).

Recall that we can express the firing schedule of each xι in terms
of u as xι = F[ι·]u, where F[ι·] is the ιth row of F = A∗B as in (3.3).
Combined with the fact that ξι = eδ1xι and α′

ι = eδ1ρ′ι (cf. Section 7.2),
this means we can write (8.12) as

ρ′ι ⊙ eδ1F[ι·]u ⪯ eδ1ρ′ι ⊙F[ι·]u . (SS)

The problem described above can then be stated as follows: find the
greatest element of the set

V =
{

u ∈ Σm×1 | Gu ⪯ z and rT(u) = rT(uopt)

and (SS) holds for all ι ∈ {1, . . . , I}
}

.
(8.13)

Along the lines of Section 8.2, we set out to look for the greatest
element of set V defined in (8.13) by noticing that

(SS) ⇔ eδ1F[ι·]u ⪯ (eδ1ρ′ι ⊙F[ι·]u)⊙♯ ρ′ι

⇔ u ⪯ eδ1F[ι·]◦\
[
(eδ1ρ′ι ⊙F[ι·]u)⊙♯ ρ′ι

]
.

Let us define, for each ι ∈ {1, . . . , I}, the mapping Ψι : Σm×1 → Σm×1,

Ψι(u) = eδ1F[ι·]◦\
[
(eδ1ρ′ι ⊙F[ι·]u)⊙♯ ρ′ι

]
,

and also the mapping Ψ : Σm×1 → Σm×1,

Ψ(u) = G◦\z ∧
I∧

ι=1

Ψι(u) . (8.14)

Note that u satisfying (SS) is equivalent to u ⪯ Ψι(u), so we can write
set V equivalently as

V =
{

u ∈ Σm×1 | u ⪯ Ψ(u) and rT(u) = rT(uopt)
}

.

The problem stated above can then be solved by applying Prop. 5.1,
taking D as Σm×1, ψ as Ψ, f as rT, and c as rT(uopt). Thus, as long as set
V is nonempty, recalling that mapping rT is residuated (cf. Remark 3.1)
and r ♯

T ◦ rT = r ♯
T, the sought optimal update of the input, u′

opt, is the
greatest fixed point of mapping Γ : Σm×1 → Σm×1,

Γ(u) = u ∧ Ψ(u) ∧ r ♯
T(uopt) .

Next, we must investigate whether set V is nonempty. To that end,
let us define the set

Ṽ =
{

u ∈ Σm×1 | (SS) holds for all ι ∈ {1, . . . , I}
and rT(u) = rT(uopt)

}
.

(8.15)
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We look for an element u of Ṽ that leads to the fastest possible behavior
of the system, i. e., to the least possible firing schedule of the output.
If such an input does not ensure that reference z is respected, then
clearly there does not exist any input that does so while satisfying
(SS) for all ι ∈ {1, . . . , I} and rT(u) = rT(uopt). This means, as shall
be concluded formally in Corollary 8.7, V ̸= ∅ ⇔ Gu ⪯ z.

In general, set Ṽ may not possess a least element. Nevertheless, our
goal is to find an input in Ṽ , not necessarily least of unique, which
leads to the fastest possible schedule of the internal transitions while
guaranteeing that the restrictions on all partially-synchronized transi-
tions are respected, as this will result in the least possible schedule for
the output y.

Note that, for any ι ∈ {1, . . . , I}, a bound for the firing schedule
of xι can be obtained from (8.12), as, recalling from Section 7.2 that
α′

ι = eδ1ρ′ι and ξι = eδ1xι,

(8.12) ⇔ (ρ′ι ⊙ eδ1xι)⊙♭ eδ1ρ′ι ⪯ xι .

In the latter inequality, the left-hand side establishes a bound for
how small (in the sense of the order of Σ) xι can be, representing the
maximal number of firings allowed for xι under the PS-restrictions.

Additionally, as no internal transition can fire more often than
enabled by the inputs and, since past firings must be preserved, the
most often each input uκ can possibly fire from time T onward is
encoded by the counter rT(uκopt), one can see that F rT(uopt) imposes
a bound for x, i. e., it must hold that x ⪰ F rT(uopt). In particular, for
each ι ∈ {1, . . . , I}, this implies xι ⪰ F[ι·]rT(uopt).

It is also natural to require that x be a solution of (3.2), which,
according to Remark 2.4, implies x = A∗x. In particular, for each
ι ∈ {1, . . . , I}, this means we must have xι = [A∗][ι·]x ⪰ [A∗]ιjxj for all
j ∈ {1, . . . , I}. But note that (7.8) implies [A∗]ιj = Fιj for any ι, j ∈ {1, . . . , I};
hence, we can rewrite the above condition as xι ⪰ Fιjxj.

In conclusion, for every ι ∈ {1, . . . , I}, any schedule for xι must
obey

xι ⪰
[
(ρ′ι ⊙ eδ1xι)⊙♭ eδ1ρ′ι

]
⊕ F[ι·]rT(uopt) ⊕

I⊕
j=1

Fιjxj . (8.16)

Note that the inequality above — in particular, its last term — implies
the schedules of all partially-synchronized transitions are interdepen-
dent. Therefore, we must look for the fastest feasible schedule of all
such transitions simultaneously. With that in mind, define, for each
ι ∈ {1, . . . , I}, the mapping Λι : Σn×1 → Σ,

Λι(x) =
[
(ρ′ι ⊙ eδ1xι)⊙♭ eδ1ρ′ι

]
⊕ F[ι·]rT(uopt) ⊕

I⊕
j=1

Fιjxj ⊕ xι ,
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and then define the mapping Λ : Σn×1 → Σn×1,

[
Λ(x)

]
κ
=

Λκ(x) , if 1 ≤ κ ≤ I ,

xκ ⊕F[κ·]rT(uopt) , if I + 1 ≤ κ ≤ n .
(8.17)

Based on the foregoing discussion, it is clear that any vector x ∈ Σn×1

whose entries are feasible schedules for the internal transitions xκ,
κ ∈ {1, . . . , n}, must be a fixed point of mapping Λ.

In fact, it is straightforward to see that, for any ũ ∈ Ṽ , F ũ is a
fixed point of Λ. First, for any ι ∈ {1, . . . , I}, ũ satisfies (SS), which is
equivalent to

(ρ′ι ⊙ eδ1F[ι·]u)⊙♭ eδ1ρ′ι ⪯ F[ι·]u . (8.18)

Moreover, x̃ = F ũ is a solution of (3.2), so

x̃ι = [A∗][ι·] x̃ ⪰ [A∗]ιj x̃j = Fιj x̃j

for all j ∈ {1, . . . , I}. Finally, for all κ ∈ {1, . . . , n}, we have

F[κ·]ũ ⪰ F[κ·]rT(ũ) = F[κ·]rT(uopt) .

This implies that any x ∈ Σn×1 comprising firing schedules of internal
transitions which are compatible with past input firings and such that
the schedules xι of partially-synchronized transitions are reachable
from the inputs and are compatible with the restrictions due to PS
is in fact a fixed point of Λ. Thus, what remains to be checked is
whether the least fixed point of mapping Λ — which we shall denote
x — is indeed feasible, i. e., whether there exists an input u which is
an element of Ṽ and such that Fu = x. Similarly to Section 8.2, we
prove constructively that the answer is affirmative. As the proof is
analogous to the corresponding discussion in Section 8.2, we state the
two key facts as propositions and omit their proofs from the present
discussion. The interested reader can find the proofs in Appendix B.

Let us denote the µth entry of x by xµ, and define the vector
θ ∈ Σm×1,

θµ =

xµ , if 1 ≤ µ ≤ I ,

sε , if I + 1 ≤ µ ≤ m .

Now, consider the input

u = rT(uopt)⊕ θ =



rT(u1opt)⊕ x1
...

rT(uIopt)⊕ xI

rT(u(I+1)opt
)

...
rT(umopt)


. (8.19)
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Proposition 8.4. Let u be defined as in (8.19), x the least fixed point of
mapping Λ defined in (8.17), and F = A∗B as in (3.3). Then, it holds that
Fu = x.

Proposition 8.5. Vector u defined as in (8.19) is an element of set Ṽ defined
in (8.15).

This does not guarantee, however, that V ̸= ∅, as it is possible
that Gu ⪯̸ z and hence u /∈ V . Intuitively, if the updated restrictions
from PS on some partially-synchronized transitions are more stringent
than the original ones, since up to time T we implemented just-in-
time inputs based on the original restrictions, it may be impossible
to respect both reference z and the new restrictions after T. As we
assume PS-restrictions to be hard ones, this means we have no choice
but to relax z, i. e., look for a new reference z′ ⪰ z for which a solution
exists. In fact, we seek the least possible such z′, in order to remain
as close as possible to the original reference. A natural choice is then
to take z′ = z ⊕ Gu; as ⊕ is performed coefficient-wise on counters,
this amounts to preserving the terms of z that can still be achieved
by taking u as input, and relaxing those that cannot only as much as
necessary to be matched by the resulting output y = Gu. The following
proposition establishes that this is indeed the optimal way of relaxing
z.

Proposition 8.6. Let V ′ denote the set defined as V in (8.13), only replacing
z with z′, and let u be defined as in (8.19). The least z′ ⪰ z such that V ′ ̸= ∅
is z′ = z ⊕ Gu.

Prop. 8.6 also provides a simple way to check whether set V is
nonempty.

Corollary 8.7. Let V be defined as in (8.13) and u as in (8.19). Then,
V ̸= ∅ ⇔ Gu ⪯ z.

If V turns out to be empty, define the mapping Ψ′ : Σm×1 → Σm×1

as Ψ in (8.14), only replacing z with z′ = z ⊕ Gu. Following the same
procedure as before, we can apply Prop. 5.1 — only now taking ψ as
Ψ′ instead of Ψ — to conclude that u′

opt is the greatest fixed point of
mapping Γ′ : Σm×1 → Σm×1,

Γ′(u) = u ∧ Ψ′(u) ∧ r ♯
T(uopt) .



9
R E L AT E D W O R K O N S Y S T E M S W I T H PA RT I A L
S Y N C H R O N I Z AT I O N

TEGs with PS were originally studied in [15–17], where they are
modeled by recursive equations with additional constraints over the
max-plus and the min-plus algebra; the authors develop a method for
optimal feedforward control and MPC for this class of systems. In [47],
a specific semiring of operators is introduced to model the subclass
of TEGs under periodic PS, where PS restrictions are determined by
periodic signals. An advantage of the operatorial representation is
the possibility to obtain a direct input-output relation (i.e., a transfer
function or transfer matrix) for the system, which allows to efficiently
compute the response to periodic inputs over an infinite horizon
and solve output-reference and model-reference control problems. In
the method presented in Chapters 7 and 8, we make no periodicity
assumption on the PS signals and propose a method entirely based on
the well-established semiring of counters. We believe this makes our
model more intuitive and easier to interpret than that in [47] and, most
importantly, it allows us to harness the benefits of having a transfer
relation for the system while encompassing the general class of TEGs
under (not necessarily periodic) PS restrictions treated in [15–17].

Other classes of systems somewhat related to TEGs with PS have
been investigated in the past decades. Katz [25] and Maia et al. [30,
32] consider (A, B)-invariant and semimodule subspaces in order to
compute a control enforcing certain restrictions on the state of the
system. This can be applied, for instance, to ensure that the sojourn
time of tokens through the system belongs to a given interval. Note
that this models a different phenomenon from that of TEGs with PS,
where the permission to fire certain transitions is successively granted
and revoked according to external signals but no upper bound for
their firing times is directly imposed. In [18], the authors study TEGs
with soft synchronization, where the synchronization between certain
transitions in the system can be broken at a cost. For example, an
operation may be allowed to start without waiting for the conclusion
of delayed predecessor operations, hence preventing the propagation
of delays but incurring penalty costs. Dually to PS, where external
signals impose additional restrictions, in this case external decisions
can overrule standard synchronization constraints based on a trade-off
between performance criteria and penalty costs. Finally, it is worth
mentioning that a phenomenon analogous to PS has been studied
by the scheduling community, where the external restrictions for
the occurrence of certain events are often referred to as availability
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constraints (see, e.g., [39] and references therein). A closer comparison
of the results presented here with such scheduling methods is beyond
the scope of this thesis and remains as an interesting subject for future
work.
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10
C O N T R O L O F T E G S W I T H S H A R E D R E S O U R C E S
A N D PA RT I A L S Y N C H R O N I Z AT I O N

In this chapter, we merge the methods from Chapters 4 and 7 into a
unified framework for the optimal control of systems exhibiting both
treated phenomena, namely resource sharing and partial synchroniza-
tion.

A preliminary version of part of the material from Section 10.1 has
appeared in [42], which reflects original work from — and has as the
main author and contributor — the author of this thesis.

10.1 optimal control of tegs with a single shared re-
source and with partial synchronization

Consider a system consisting of K subsystems — modeled as TEGs
S1, . . . , SK — that share a resource with finite but arbitrary capacity.
We shall here adopt the same notation as in Section 4.1, to which
the reader is referred for a detailed description. The structure of the
system is illustrated in Fig. 4.1, but we assume the setting of Section 4.4,
i. e., each subsystem Sk may have an arbitrary number mk of input
transitions, including uk0 and uk1 as in Fig. 4.1 (hence mk ≥ 2). The
additional input transitions (besides uk0 and uk1) do not appear in
Fig. 4.1 and are here, as in Section 4.4, assumed to be inside blocks
Pk1, Hk, and/or Pk2.

Recall that Section 4.1 culminates in the following inequality (copied
below from (4.1) for convenience) capturing the restrictions imposed by
the dynamics and the finite capacity of the resource on the combined
allocation (xk

A) and release (xk
R) schedules of all subsystems:

β ⊗
( K⊙

k=1

xk
R
)
⪯

K⊙
k=1

xk
A . (10.1)

Condition (10.1) also applies in the context of Section 4.4 and, therefore,
in that of the present discussion.

Now, suppose an internal transition xk
ιk

— which might, in particu-
lar, be xk

A or xk
R — of each subsystem Sk is partially synchronized (for

ease of discussion, in this section we treat the simpler case of a single
partially-synchronized transition per TEG; the more general case of
multiple such transitions per TEG is considered in Section 10.2). For
each such transition, PS is modeled through an independent struc-
ture like the one from Fig. 7.1, as described in Section 7.2, with the
appropriate indexing of transitions (and related counters) ρk, αk, and
ξk. The assumptions from Remark 7.2 are also in place, i. e., there is an
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input uk
ηk

connected to xk
ιk

via a place with zero holding time and no
initial tokens. Based on (7.2), each partially-synchronized transition
xk

ιk
is subject to

ρk ⊙ ξk ⪯ αk ⊙ xk
ιk

. (10.2)

As in Chapter 4, let us assume each subsystem Sk is assigned a
respective output-reference zk. According to the priority policy intro-
duced in the referred chapter, when computing the optimal inputs we
must start from the subsystem with highest priority, S1, and proceed
successively through the lower-priority ones until covering SK. Sub-
system S1 is free to use the resource at will, and we can compute its
optimal input neglecting any dispute with other subsystems. We must,
nonetheless, take the restrictions due to PS into account. Computing
the optimal input for S1 thus amounts to the case discussed in Sec-
tion 7.3. Recalling that we can write x1

ι1
= F 1

[ι1·]u
1, where F 1

[ι1·] is the

ι1
th row of matrix F 1 = A1∗B1 (cf. (3.4)), and that we have ξ1 = eδ1x1

ι1

and α1 = eδ1ρ1 (cf. Section 7.2), from (10.2) we obtain1

ρ1 ⊙ eδ1F 1
[ι1·]u

1 ⪯ eδ1ρ1 ⊙F 1
[ι1·]u

1 . (10.3)

Following similar steps as in Section 7.3, we can then conclude that
the optimal input for S1 respecting (10.3) and G1u1 ⪯ z1 is given by
the greatest fixed point of mapping Φ̂1 : Σm1×1 → Σm1×1,

Φ̂1(u1) = eδ1F 1
[ι1·]◦\

[
(eδ1ρ1 ⊙F 1

[ι1·]u
1)⊙♯ ρ1] ∧ G1◦\z1 ∧ u1 , (10.4)

where m1 is the number of input transitions in subsystem S1. Recall
from Section 4.4 that we denote

F 1
A = F 1

[i·] and F 1
R = F 1

[j·] ,

where i and j indicate the entries in vector x1 occupied by x1
A and x1

R,
respectively (i. e., x1

i = x1
A and x1

j = x1
R). Then, the resulting resource-

allocation and release schedules for S1 are

x1
Aopt

= F 1
Au1

opt and x1
Ropt

= F 1
R u1

opt .

For S2, we must compute the optimal input under the restriction
that the optimal behavior of S1 is unaffected; based on (10.1) and
neglecting all lower-priority subsystems (i. e., all Sj with 2 < j ≤ K),
this means we must respect

β ⊗ (x1
Ropt

⊙ x2
R) ⪯ x1

Aopt
⊙ x2

A . (10.5)

1 Notation at this point becomes a bit unfortunate. Please note that the superscript on
δ (as in eδ1) means the exponent of δ in the compact representation of that counter,
whereas the superscripts on any other symbols (as in u1 or F1

[ι1·]) denote the index of

the corresponding subsystem, in this case S1.
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Following similar steps as in Sections 4.2 and 4.4, we can write x2
A =

F 2
Au2 and x2

R = F 2
R u2, and (10.5) can then be rewritten as

β ⊗ (x1
Ropt

⊙F 2
R u2) ⪯ x1

Aopt
⊙F 2

Au2 ,

which, in turn, is equivalent to

u2 ⪯ F 2
R ◦\

[(
β◦\(x1

Aopt
⊙F 2

Au2)
)
⊙♯ x1

Ropt

]
. (10.6)

Additionally, the restrictions on the partially-synchronized transi-
tion x2

ι2
must be observed. From condition (10.2) and applying ar-

guments similar to the ones for S1 above, these restrictions can be
expressed as

ρ2 ⊙ eδ1F 2
[ι2·]u

2 ⪯ eδ1ρ2 ⊙F 2
[ι2·]u

2

or, equivalently,

u2 ⪯ eδ1F 2
[ι2·]◦\

[
(eδ1ρ2 ⊙F 2

[ι2·]u
2)⊙♯ ρ2] . (10.7)

We look for the greatest input satisfying inequalities (10.6) and
(10.7), as well as G2u2 ⪯ z2, i. e., u2 ⪯ G2◦\z2. The fact that all three
conditions are expressed as upper bounds on u2 makes it straightfor-
ward to combine them into a single expression using operator ∧. The
sought optimal solution u2

opt is the greatest fixed point of mapping
Φ̂2 : Σm2×1 → Σm2×1,

Φ̂2(u2) = F 2
R ◦\

[(
β◦\(x1

Aopt
⊙F 2

Au2)
)
⊙♯ x1

Ropt

]
∧ eδ1F 2

[ι2·]◦\
[
(eδ1ρ2 ⊙F 2

[ι2·]u
2)⊙♯ ρ2]

∧ G2◦\z2 ∧ u2 .

(10.8)

An entirely analogous reasoning can be applied to determine the
optimal input for an arbitrary subsystem Sk with k ∈ {2, . . . , K}.
Writing xk

A = F k
Auk and xk

R = F k
R uk, from (10.1) we obtain

uk ⪯ F k
R ◦\

[(
β◦\

( k−1⊙
i=1

xi
Aopt

⊙F k
Auk

))
⊙♯

k−1⊙
i=1

xi
Ropt

]
. (10.9)

Moreover, writing xk
ιk
= F k

[ιk·]
uk, from (10.2) we obtain

uk ⪯ eδ1F k
[ιk·]◦\

[
(eδ1ρk ⊙F k

[ιk·]u
k)⊙♯ ρk] . (10.10)

Combining inequalities (10.9) and (10.10) with the condition that
reference zk must be respected, i. e., uk ⪯ Gk◦\zk, we conclude that the
optimal solution uk

opt is the greatest fixed point of Φ̂k : Σmk×1 → Σmk×1,

Φ̂k(uk) = F k
R ◦\

[(
β◦\

( k−1⊙
i=1

xi
Aopt

⊙F k
Auk

))
⊙♯

k−1⊙
i=1

xi
Ropt

]
∧ eδ1F k

[ιk·]◦\
[
(eδ1ρk ⊙F k

[ιk·]u
k)⊙♯ ρk]

∧ Gk◦\zk ∧ uk .

(10.11)
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Figure 10.1: Three TEGs S1, S2, and S3 with a shared resource, and with
transition x1

3 partially synchronized.

Example 10.1. Consider the system from Figure 4.2, described as in
Example 4.1. Now, suppose transition x1

3 is partially synchronized;
following Section 7.2, we append to it a structure like the one from
Figure 7.3, including an extra input u12 connected to x1

3 via a place
with zero initial tokens and no holding time, according to Remark 7.2.
The resulting model is shown in Figure 10.1.

The transfer matrix for subsystem S1 is

G1 =
[
eδ17(1δ10)∗ eδ15(1δ10)∗ eδ8(1δ10)∗

]
,

whereas those of S2 and S3 are the same as in Example 4.1.
The PS-restrictions dictate that x1

3 can only fire at times

t ∈ T = {[11, 15] ∪ [21, 23] ∪ [32, 36] ∪ [44, 47]} ⊂ Z ,

and at most once at each such instant. This is encoded in counter ρ1

as follows:

ρ1(t) =


e if t ≤ 11 ;

1 ⊗ ρ1(t − 1) if t − 1 ∈ T ;

ρ1(t − 1) if t − 1 /∈ T and t > 11 .

Let the same references as in Example 4.1 be given, namely

z1 = eδ52 ⊕ 4δ+∞ ,

z2 = eδ27 ⊕ 3δ39 ⊕ 5δ+∞ ,

z3 = eδ9 ⊕ 3δ35 ⊕ 5δ+∞ .
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Figure 10.2: Tracking of the references zk (denoted by △) by the outputs yk
opt (denoted by • ), k ∈ {1, 2, 3}, from Example 10.1.

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Figure 10.3: Schedule for the use of the shared resource, obtained in Example 10.1. The gray, black, and crosshatched bars represent the time windows
during which an instance of the resource is held by S1, S2, and S3, respectively.
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Following the procedure laid down in the present section, the greatest
fixed points of mappings Φ̂k, k ∈ {1, 2, 3}, yield

u1
opt =

 eδ4 ⊕ 1δ14 ⊕ 2δ25 ⊕ 3δ35 ⊕ 4δ+∞

eδ6 ⊕ 1δ16 ⊕ 2δ27 ⊕ 3δ37 ⊕ 4δ+∞

eδ13 ⊕ 1δ23 ⊕ 2δ34 ⊕ 3δ44 ⊕ 4δ+∞

 ,

u2
opt =

[
eδ8 ⊕ 1δ13 ⊕ 2δ18 ⊕ 3δ27 ⊕ 4δ30 ⊕ 5δ+∞

eδ17 ⊕ 1δ22 ⊕ 2δ23 ⊕ 3δ32 ⊕ 4δ35 ⊕ 5δ+∞

]
,

u3
opt = eδ2 ⊕ 2δ6 ⊕ 3δ13 ⊕ 4δ28 ⊕ 5δ+∞ .

The resulting optimal outputs are

y1
opt = eδ21 ⊕ 1δ31 ⊕ 2δ42 ⊕ 3δ52 ⊕ 4δ+∞ ,

y2
opt = eδ21 ⊕ 1δ26 ⊕ 2δ27 ⊕ 3δ36 ⊕ 4δ39 ⊕ 5δ+∞ ,

y3
opt = eδ5 ⊕ 2δ9 ⊕ 3δ16 ⊕ 4δ31 ⊕ 5δ+∞ .

Figure 10.2 shows the tracking of the corresponding references, and in
Figure 10.3 the distribution of the resource among the three subsys-
tems over time is illustrated. One can see that, while (as expected) the
effect of PS slightly degrades de performance of subsystem S1, in the
sense that it cannot track its output-reference as closely as in the case
without PS, subsystems S2 and S3 benefit from the additional resource
availability and can track their references more closely than before
(compare Figures 10.2 and 4.3).

10.2 optimal control of tegs with multiple shared re-
sources and with partial synchronization

In this section, we extend the ideas discussed in Section 10.1 to the
case of TEGs sharing multiple resources and with multiple partially-
synchronized transitions. We start from the setting and the notation
from Section 4.3, i. e., a system consisting of K subsystems — modeled
as TEGs S1, . . . , SK — that share L resources, each with finite but
arbitrary capacity. The structure of the system is illustrated in Fig. 4.5,
but let us now assume the case investigated in Section 4.4, i. e., each
subsystem Sk may have an arbitrary number mk of input transitions,
including ukℓ for all ℓ ∈ {0, . . . , L} as in Fig. 4.5 (hence mk ≥ L + 1).

In Section 4.3, we established condition (4.12) — which also applies
to the case of Section 4.4 and hence to that of the present section
— capturing the restrictions imposed by the dynamics and the finite
capacity of each resource ℓ on the combined allocation (xkℓ

A ) and release
(xkℓ

R ) schedules of all subsystems; we repeat inequality (4.12) here for
ease of reference:

βℓ ⊗
( K⊙

k=1

xkℓ
R
)
⪯

K⊙
k=1

xkℓ
A . (10.12)
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Now, for each subsystem Sk, suppose Ik out of its nk internal tran-
sitions are partially synchronized. As in Section 7.4, we assume, for
notational convenience and without loss of generality, that the corre-
sponding counters xk

ι are the first Ik entries of vector xk ∈ Σnk×1. The
PS of each partially-synchronized transition xk

ι , ι ∈ {1, . . . , Ik}, is rep-
resented by a structure like the one from Fig. 7.3, with the appropriate
indexing of transitions (and related counters) ρk

ι , ξk
ι , and αk

ι . The as-
sumptions from Remark 7.3 concerning input transitions uk

η connected
to each xk

ι are in place. Based on (7.3), each partially-synchronized
transition xk

ι , for every ι ∈ {1, . . . , Ik}, is subject to

ρk
ι ⊙ ξk

ι ⪯ αk
ι ⊙ xk

ι . (10.13)

As usual, assume that each subsystem Sk is assigned a respec-
tive output-reference zk and that the priority policy introduced in
Chapter 4 is to be observed when computing the optimal inputs.
The optimal input for S1 can be computed ignoring all other subsys-
tems, thus amounting to the case from Section 7.4. Writing, for each
ι ∈ {1, . . . , I1}, x1

ι = F 1
[ι·]u

1, ξ1
ι = eδ1x1

ι , and α1
ι = eδ1ρ1

ι , inequality
(10.13) assumes the form

ρ1
ι ⊙ eδ1F 1

[ι·]u
1 ⪯ eδ1ρ1

ι ⊙F 1
[ι·]u

1 . (10.14)

Now, define, for ι ∈ {1, . . . , I1}, the collection of mappings Φ̂1
ι :

Σm1×1 → Σm1×1,

Φ̂1
ι (u

1) = eδ1F 1
[ι·]◦\

[
(eδ1ρ1

ι ⊙F 1
[ι·]u

1)⊙♯ ρ1
ι

]
.

Trough similar steps as in Section 7.4, the optimal input u1
opt respecting

(10.14) for all ι ∈ {1, . . . , I1} and also G1u1 ⪯ z1 is then given by the
greatest fixed point of mapping Φ̂1 : Σm1×1 → Σm1×1,

Φ̂1(u1) =
I1∧

ι=1

Φ̂1
ι (u

1) ∧ G1◦\z1 ∧ u1 .

Using the notation from Section 4.4 (see (4.20)), we obtain the resulting
schedules for allocation and release of each resource ℓ by S1 as

x1ℓ
Aopt

= F 1ℓ
A u1

opt and x1ℓ
Ropt

= F 1ℓ
R u1

opt .

The method then proceeds by computing the optimal inputs for
S2, . . . , SK in decreasing order of priority. For an arbitrary k ∈ {2, . . . , K},
we must compute the optimal input of Sk under the restriction that
the optimal behavior of higher-priority subsystems (i. e., all Si with
i < k) is unaffected. Based on (10.12) and neglecting all lower-priority
subsystems (i. e., all Sj with k < j ≤ K), this means we must respect

uk ⪯ F kℓ
R ◦\

[(
βℓ◦\

( k−1⊙
i=1

xiℓ
Aopt

⊙F kℓ
A uk

))
⊙♯

k−1⊙
i=1

xiℓ
Ropt

]
. (10.15)
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We must also observe the restrictions on all partially-synchronized
transitions xk

ι , ι ∈ {1, . . . , Ik}. From condition (10.13) and applying
arguments similar to the ones for S1 above, these restrictions can be
expressed, for each ι ∈ {1, . . . , Ik}, as

uk ⪯ eδ1F k
[ι·]◦\

[
(eδ1ρk

ι ⊙F k
[ι·]u

k)⊙♯ ρk
ι

]
. (10.16)

We look for the greatest input satisfying inequalities (10.15) for all
ℓ ∈ {1, . . . , L} and (10.16) for all ι ∈ {1, . . . , Ik}, as well as Gkuk ⪯ zk,
i. e., uk ⪯ Gk◦\zk. Consider, for each ℓ ∈ {1, . . . , L}, mapping Φkℓ

mi
defined in (4.21), and also, for each ι ∈ {1, . . . , Ik}, define the mapping
Φ̂k

ι : Σmk×1 → Σmk×1,

Φ̂k
ι (u

k) = eδ1F k
[ι·]◦\

[
(eδ1ρk

ι ⊙F k
[ι·]u

k)⊙♯ ρk
ι

]
,

The sought optimal solution, uk
opt, is the greatest fixed point of map-

ping Φ̂k : Σmk×1 → Σmk×1,

Φ̂k(uk) =
L∧

ℓ=1

Φkℓ
mi(u

k) ∧
Ik∧

ι=1

Φ̂k
ι (u

k) ∧ Gk◦\zk ∧ uk .





11
C O N C L U S I O N

The results presented in this thesis contribute to a well-established
framework for the control of discrete-event systems based on tropical
algebra. The main contributions are two-fold, as the proposed method
enhances the existing framework by encompassing two different phe-
nomena of practical relevance, namely resource-sharing and partial
synchronization.

In the resource-sharing front, the considered scenario is that of a
number of subsystems, each modeled as a TEG, competing for access
to one or more shared resources. Note that, in this scenario, the overall
system cannot be modeled as a single TEG. The proposed method
first shows that it is possible to express the additional constraints
on certain transitions in the system due to the limited capacity of
the shared resources as inequalities in the semiring of counters, with
the help of an operation called Hadamard product. In order to settle
the dispute for the resources, a priority hierarchy is enforced among
the users (subsystems), so that each subsystem strives to track its
own output-reference while being prohibited from interfering with
the operation of any of the higher-priority subsystems. The optimal
control input for each of the subsystems is then sought under the
just-in-time paradigm, meaning the input-events must occur as late
as possible while guaranteeing that the demand for output-events,
encoded by a reference signal, is met at all times. We formulate the
problem such that these optimal inputs can be obtained by computing
greatest fixed points of appropriate (isotone) mappings, defined so as
to capture all relevant constraints — namely, global constraints coming
from the shared resources as well as local ones from the respective
output-reference signals.

The method for systems with shared resources is also extended
to the case in which the output-references of the subsystems are
subject to unforeseen changes during the operation of the system. This
makes it necessary to perform on-line updates in (possibly all) the
control inputs, which must be done while still observing the adopted
priority policy. Nevertheless, as past event occurrences (obviously)
cannot be revoked, the behavior of a given subsystem may not only
be affected by that of higher-priority subsystems, but also by lower-
priority ones if they happen to be in possession of the resources at
the time the reference signals are updated. In order to check whether
the new references are feasible, we show how to determine the fastest
possible behavior (i. e., the one providing the earliest possible outputs)
for each subsystem from the time the new references are received,
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by computing least fixed points of certain mappings. If this fastest
behavior cannot meet the new reference for a given subsystem, we
provide a way to relax the reference as little as possible so as to make
it attainable. Then, as before the just-in-time inputs are computed as
greatest fixed points of appropriately-defined mappings.

The partial synchronization (PS) phenomenon consists in the exis-
tence of external signals restricting the occurrence of certain events in
the system, and it cannot be modeled by a TEG alone. In this thesis,
an approach is proposed to model this phenomenon entirely within
the context of the semiring of counters. Then, similarly to the case
of resource-sharing, the external constraints can be expressed in the
form of inequalities. Still seeking optimality in a just-in-time sense,
the problem of obtaining the optimal input for the system can again
be formulated as a fixed-point problem. We further consider the case
in which the external signals encoding PS-restrictions may change
while the system is running; similarly to the case of varying output-
references, this requires an on-line update in the input schedules,
and the newly imposed restrictions may render the output-reference
unachievable. The proposed method detects whether that is the case
by calculating the fastest behavior of the system after receiving the
updated PS signal, provides the least-relaxed feasible reference (if
necessary), and optimally updates the inputs by computing greatest
fixed points of mappings tailored for that purpose.

Every part of the method mentioned above is developed in a formal
and systematic way. In particular, this means that, as long as the perti-
nent TEG models, reference signals, and (in the case of PS) external
restrictions are provided, the optimal inputs can be automatically com-
puted. Similarly, if the reference or PS signals are changed during the
operation, it is possible to obtain the least-relaxed feasible versions of
the references (whenever necessary) and then the optimally-updated
inputs in an algorithmic fashion.

The similarities in the mathematical formulation of the methods for
dealing with resource-sharing and with PS make it natural to merge
them into a unified method, capable of providing optimal inputs
(based on output-references) for systems exhibiting both phenomena.
The extension of this combined method to the cases of varying output-
references and varying PS signals requires further investigation and
remains as a promising topic for future work. Furthermore, as a side
contribution of the method proposed in this thesis, the fact that these
two phenomena can be studied through such similar mathematical
lenses reveals a correspondence between them, which — at lease to
this author — was previously not self-evident. It is then natural to
wonder whether a method of similar flavor can be applied to deal
with yet other interesting phenomena; this also remains as an open
question for future work.





Part V

A P P E N D I X
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Proof of Proposition 5.1. Define the set

S̃ψ = {x ∈ D | x ⪯ ψ(x) and f (x) ⪯ c}

and denote χ =
⊕

x∈Sψ
x and χ̃ =

⊕
x∈S̃ψ

x. Note that

x ⪯ ψ(x) and f (x) ⪯ c ⇔ x ⪯ ψ(x) and x ⪯ f ♯(c) (see Def. 2.3)

⇔ x ⪯ ψ(x) ∧ f ♯(c)

⇔ x = x ∧ ψ(x) ∧ f ♯(c) = Ω(x) .

So, set S̃ψ can be equivalently defined as S̃ψ = {x ∈ D | x = Ω(x)},
clearly implying χ̃ =

⊕{x ∈ D |Ω(x) = x}. Then, it also follows from
Remark 2.9 that χ̃ ∈ S̃ψ.

Now, assume Sψ ̸= ∅. As Sψ ⊆ S̃ψ, this implies (∃x̃ ∈ S̃ψ) f (x̃) = c.
Taking such an x̃, we have x̃ ⪯ χ̃ and so c = f (x̃) ⪯ f (χ̃) (as f
is isotone). But we saw above that χ̃ ∈ S̃ψ, meaning f (χ̃) ⪯ c, so
f (χ̃) = c. Therefore, χ̃ ∈ Sψ and hence χ̃ ⪯ χ. On the other hand,
Sψ ⊆ S̃ψ implies χ ⪯ χ̃, showing that χ = χ̃.

Proof of Proposition 5.2. First, note that the assumptions made about β

in Section 4.1 imply that there exist tβ > 0 and b ≺ e (which, recall,
in the standard sense means b > 0) such that β(t) = b for all t ≤ tβ.
Therefore, for any t ≤ T we have[

β ⊗
(

H1r ♯
T(x1

Aopt
)⊙L1

R
)]
(t) =

[
β ⊗

K⊙
k=1

Hkr ♯
T(xk

Aopt
)
]
(t)

=
⊕
τ∈Z

β(τ)⊗
[ K⊙

k=1

Hkr ♯
T(xk

Aopt
)
]
(t − τ)

=
⊕
τ≥tβ

β(τ)⊗
[ K⊙

k=1

Hkr ♯
T(xk

Aopt
)
]
(t − τ)

(as t − τ < T) =
⊕
τ≥tβ

β(τ)⊗
[ K⊙

k=1

Hkxk
Aopt

]
(t − τ)

=
[

β ⊗
K⊙

k=1

Hkxk
Aopt

]
(t)

⪯
[ K⊙

k=1

xk
Aopt

]
(t)

(because t ≤ T) =
[ K⊙

k=1

r ♯
T(xk

Aopt
)
]
(t)
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=
[
r ♯

T(x1
Aopt

)⊙L1
A

]
(t) .

Moreover, for t > T we have[
β ⊗

(
H1r ♯

T(x1
Aopt

)⊙L1
R
)]
(t) ⪯

[
β ⊗

(
H1r ♯

T(x1
Aopt

)⊙L1
R
)]
(T)

⪯
[
r ♯

T(x1
Aopt

)⊙L1
A

]
(T)

=
[
r ♯

T(x1
Aopt

)⊙L1
A

]
(t) .

This shows that

β ⊗
(

H1r ♯
T(x1

Aopt
)⊙L1

R
)
⪯ r ♯

T(x1
Aopt

)⊙L1
A

or, equivalently,(
β ⊗

(
H1r ♯

T(x1
Aopt

)⊙L1
R
))

⊙♭ L1
A ⪯ r ♯

T(x1
Aopt

) . (A.1)

For any k ∈ {2, . . . , K}, assuming xi
Aopt
′ to be given for each i ∈

{1, . . . , k − 1}, from (⋆) and since P ku(k−1)
opt

′ = x(k−1)
Aopt

′ we know

β ⊗
(
H(k−1)

R ⊙ H(k−1)x(k−1)
Aopt

′ ⊙L(k−1)
R

)
⪯ H(k−1)

A ⊙ x(k−1)
Aopt

′ ⊙L(k−1)
A .

(A.2)
But note that

H(k−1)
R ⊙ H(k−1)x(k−1)

Aopt

′ = Hk
R ,

L(k−1)
R = Hkr ♯

T(xk
Aopt

)⊙Lk
R ,

H(k−1)
A ⊙ x(k−1)

Aopt

′ = Hk
A , and

L(k−1)
A = r ♯

T(xk
Aopt

)⊙Lk
A ,

so (A.2) is equivalent to

β ⊗
(
Hk

R ⊙ Hkr ♯
T(xk

Aopt
)⊙Lk

R
)
⪯ Hk

A ⊙ r ♯
T(xk

Aopt
)⊙Lk

A

which, in turn, implies(
β ⊗ (Hk

R ⊙ Hkr ♯
T(xk

Aopt
)⊙Lk

R)
)
⊙♭ (Hk

A⊙Lk
A) ⪯ r ♯

T(xk
Aopt

) . (A.3)

Finally, for any k ∈ {1, . . . , K}, we have

r ♯
T(xk

Aopt
) = r ♯

T(P
kuk

opt) ⪰ P kuk
opt ⪰ P krT(u

k
opt) .

This, together with (A.1) and (A.3), concludes the proof.

Proof of Proposition 5.3. Taking zk ′′ = zk ′ ⊕ Gkuk implies Gkuk ⪯ zk ′′

and, as uk ∈ Ñ k, it follows that uk ∈ N k ′′ and hence N k ′′ ̸= ∅. Now,
take ζ ⪰ zk ′ such that N k

ζ ̸= ∅ (where N k
ζ is defined like N k, only
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replacing zk ′ with ζ), and take v ∈ N k
ζ . As v ∈ Ñ k, it satisfies (⋆) and

thus also (
β ⊗ (Hk

R ⊙ HkP kv ⊙Lk
R)
)
⊙♭ (Hk

A ⊙Lk
A) ⪯ P kv ;

besides, as v ⪰ rT(v), we have P kv ⪰ P krT(v) = P krT(u
k
opt), so

clearly P kv is a fixed point of Λk, which implies P kv ⪰ xk
A =

P kuk. Recalling, as argued in Remark 4.1, that Gk0 = Gk1Pk1 and
so Gk = Gk1P k, we have Gkuk = Gk1P kuk ⪯ Gk1P kv = Gkv ⪯ ζ, so
zk ′′ = zk ′ ⊕ Gkuk ⪯ zk ′ ⊕ ζ = ζ.

Proof of Proposition 5.5. First, note that, as ũk satisfies (⋆⋆), we have(
βℓ ⊗ (Hkℓ

R ⊙ HkℓP kℓũk ⊙Lkℓ
R )

)
⊙♭ (Hkℓ

A ⊙Lkℓ
A ) ⪯ P kℓũk

for every ℓ. We then proceed by induction on ℓ. For any ũk ∈ M̃k,
P k1ũk ⪰ P k1rT(ũ

k) = P k1rT(u
k
opt), proving the base case ℓ = 1.

Assuming P kℓũk is a fixed point of Λkℓ for a fixed but arbitrary
ℓ ∈ {1, . . . , L − 1}, we have

P k(ℓ+1)ũk ⪰ P k(ℓ+1)rT(ũ
k) = P k(ℓ+1)rT(u

k
opt) = rT(u

k(ℓ+1)
opt )

(where the last equality follows from Remark 4.3) and

P k(ℓ+1)ũk = Pk(ℓ+1)HkℓP kℓũk ⊕ ũk(ℓ+1) (check (4.17))

⪰ Pk(ℓ+1)HkℓP kℓũk

⪰ Pk(ℓ+1)Hkℓxkℓ
A , (from the induction hypothesis)

which proves that P k(ℓ+1)ũk is a fixed point of Λk(ℓ+1).

Proof of Proposition 5.6. Denote by P kℓ
i the ith entry of P kℓ (defined as

in (4.17)). As xk1
A is a fixed point of Λk1,

xk1
A ⪰ P k1rT(u

k
opt) ⪰ P k1

1 rT(u
k0
opt) ,

so, as P k1
2 = se and P k1

i = sε for i > 2 (cf. (4.17)),

P k1uk = P k1
1 rT(u

k0
opt)⊕P k1

2 xk1
A = P k1

1 rT(u
k0
opt)⊕ xk1

A = xk1
A .

This proves the case ℓ = 1.
Now, for any ℓ ∈ {2, . . . , L}, because xkℓ

A is a fixed point of Λkℓ we
have

xkℓ
A ⪰ rT(u

kℓ
opt) = P kℓrT(u

k
opt) ⪰ P kℓ

1 rT(u
k0
opt) , (A.4)

where the equality follows from Remark 4.3.
Furthermore, since xk2

A is a fixed point of Λk2,

xk2
A ⪰ Pk2Hk1xk1

A = P k2
2 xk1

A

and, similarly, as xk3
A is a fixed point of Λk3

xk3
A ⪰ Pk3Hk2xk2

A = P k3
3 xk2

A ,
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so also
xk3

A ⪰ Pk3Hk2Pk2Hk1xk1
A = P k3

2 xk1
A ;

more generally, for any ℓ ∈ {2, . . . , L},

xkℓ
A ⪰ P kℓ

i xk(i−1)
A for all i ∈ {2 . . . , ℓ} . (A.5)

Therefore, recalling that the (ℓ+ 1)st entry of P kℓ is se and the ith entry
is sε for i > ℓ+ 1 (check (4.17)), for all ℓ ∈ {2, . . . , L} we have

P kℓuk = P kℓ
1 rT(u

k0
opt) ⊕

ℓ+1⊕
i=2

P kℓ
i xk(i−1)

A

= P kℓ
1 rT(u

k0
opt) ⊕

ℓ⊕
i=2

P kℓ
i xk(i−1)

A ⊕ xkℓ
A

= xkℓ
A ,

where the last equality follows from (A.4) and (A.5).

Lemma A.1 (of Proposition 5.7). r ♯
T(xkℓ

Aopt
) is a fixed point of mapping Λkℓ,

for all ℓ ∈ {1, . . . , L}.

Proof. It follows by direct analogy with the proof of Prop. 5.2.

Proof of Proposition 5.7. For any ℓ ∈ {1, . . . , L}, the fact xkℓ
A is a fixed

point of Λkℓ implies(
βℓ ⊗ (Hkℓ

R ⊙ Hkℓxkℓ
A ⊙Lkℓ

R )
)
⊙♭ (Hkℓ

A ⊙Lkℓ
A ) ⪯ xkℓ

A .

This, combined with Prop. 5.6, implies that taking uk = uk satisfies(
βℓ ⊗ (Hkℓ

R ⊙ HkℓP kℓuk ⊙Lkℓ
R )

)
⊙♭ (Hkℓ

A ⊙Lkℓ
A ) ⪯ P kℓuk ,

which is equivalent to (⋆⋆).
It remains to show that rT(u

k) = rT(u
k
opt). Since rT

(
rT(u

k0
opt)

)
=

rT(u
k0
opt), all we need to prove is that rT(xkℓ

A ) = rT(u
kℓ
opt) for all ℓ ∈

{1, . . . , L}.
The fact that xk1

A is a fixed point of Λk1 implies

xk1
A ⪰ P k1rT(u

k
opt) = rT(u

k1
opt) ,

where the equality follows from Remark 4.3. Moreover, xkℓ
A ⪰ rT(u

kℓ
opt)

for all ℓ ∈ {2, . . . , L} (because xkℓ
A is a fixed point of Λkℓ). Thus, as rT

is order-preserving and rT ◦ rT = rT, we can conclude that

rT(xkℓ
A ) ⪰ rT

(
rT(u

kℓ
opt)

)
= rT(u

kℓ
opt)

for all ℓ ∈ {1, . . . , L}.
In order to show that the converse inequality holds, note that, as a

consequence of Lemma A.1,

xkℓ
A ⪯ r ♯

T(xkℓ
Aopt

) = r ♯
T(P

kℓuk
opt)



proofs from chapter 5 102

for all ℓ ∈ {1, . . . , L}. We also know from Remark 4.3 that P kℓuk
opt =

ukℓ
opt. Thus, as rT is order-preserving and rT ◦ r ♯

T = rT, we have

rT(xkℓ
A ) ⪯ rT

(
r ♯

T(P
kℓuk

opt)
)
= rT

(
r ♯

T(u
kℓ
opt)

)
= rT(u

kℓ
opt)

for all ℓ ∈ {1, . . . , L}, concluding the proof.

Proof of Proposition 5.8. It follows by direct analogy with the proof of
Prop. 5.3.



B
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Proof of Proposition 8.1. For any t ≤ T, we have[
ρ′ ⊙ eδ1r ♯

T(xιopt)
]
(t) = ρ′(t) ⊗

[
eδ1r ♯

T(xιopt)
]
(t)

= ρ(t) ⊗
[
r ♯

T(xιopt)
]
(t − 1)

= ρ(t) ⊗ xιopt(t − 1) (because t − 1 < T)

= ρ(t) ⊗
[
eδ1xιopt

]
(t)

=
[
ρ(t) ⊙ eδ1xιopt

]
(t)

⪯
[
eδ1ρ ⊙ xιopt

]
(t) (as xιopt satisfies (7.2))

=
[
eδ1ρ

]
(t) ⊗ xιopt(t)

=
[
eδ1ρ′

]
(t) ⊗

[
r ♯

T(xιopt)
]
(t) (again as t − 1 < T)

=
[
eδ1ρ′ ⊙ r ♯

T(xιopt)
]
(t) .

Moreover, for t > T,[
ρ′ ⊙ eδ1r ♯

T(xιopt)
]
(t) = ρ′(t) ⊗

[
eδ1r ♯

T(xιopt)
]
(t)

= ρ′(t) ⊗
[
r ♯

T(xιopt)
]
(t − 1)

= ρ′(t) ⊗
[
r ♯

T(xιopt)
]
(T) (because t − 1 ≥ T)

= ρ′(t) ⊗
[
r ♯

T(xιopt)
]
(t) (because t > T)

⪯
[
eδ1ρ′

]
(t) ⊗

[
r ♯

T(xιopt)
]
(t)

=
[
eδ1ρ′ ⊙ r ♯

T(xιopt)
]
(t) .

This shows that ρ′ ⊙ eδ1r ♯
T(xιopt) ⪯ eδ1ρ′ ⊙ r ♯

T(xιopt) or, equivalently,(
ρ′ ⊙ eδ1r ♯

T(xιopt)
)
⊙♭ eδ1ρ′ ⪯ r ♯

T(xιopt) .

We also have

r ♯
T(xιopt) = r ♯

T
(
F[ι·]uopt

)
⪰ F[ι·]uopt ⪰ F[ι·]rT(uopt) .

Finally, as xιopt is a solution of (3.2), we have

xιopt = [A∗][ι·]xopt ⪰ [A∗]ιιxιopt = Fιηxιopt ,

which implies r ♯
T(xιopt) ⪰ r ♯

T
(
Fιηxιopt

)
⪰ Fιηr ♯

T(xιopt).

Proof of Proposition 8.2. Taking z′ = z ⊕ Gu implies Gu ⪯ z′ and, as
u ∈ Q̃, it follows that u ∈ Q′ and hence Q′ ̸= ∅. Now, take ζ ⪰ z
such that Qζ ̸= ∅ (where Qζ is defined like Q, only replacing z with
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ζ), and take v ∈ Qζ . As Fv is a solution of (3.2), from Remark 2.4 is
follows that Fv = A∗Fv, which implies

F[j·]v = [A∗][j·]Fv =
n⊕

κ=1

[A∗]jκ[Fv]κ ⪰ [A∗]jι[Fv]ι = [A∗]jιF[ι·]v

for all j ∈ {1, . . . , n}. Moreover, as v ∈ Q̃, we know from Remark 8.1
that F[ι·]v is a fixed point of mapping Λ, which implies F[ι·]v ⪰ xι.
Hence, recalling from (7.8) that Fjη = [A∗]jι for any j ∈ {1, . . . , n}, we
have

F[j·]v ⪰ [A∗]jιF[ι·]v = FjηF[ι·]v ⪰ Fjηxι . (B.1)

The fact that v ∈ Q̃ also implies rT(v) = rT(uopt), so v ⪰ rT(uopt) and
hence

(∀j ∈ {1, . . . , n}) F[j·]v ⪰ F[j·]rT(uopt) . (B.2)

Thus, for every j ∈ {1, . . . , n} we have

F[j·]u =
m⊕

µ=1
µ ̸=η

FjµrT(uµopt) ⊕ Fjη
(
rT(uµopt)⊕ xι

)

=
m⊕

µ=1
µ ̸=η

FjµrT(uµopt) ⊕ FjηrT(uµopt) ⊕ Fjηxι

=
m⊕

µ=1

FjµrT(uµopt) ⊕ Fjηxι

= F[j·]rT(uopt) ⊕ Fjηxι

⪯ F[j·]v ,

where the last inequality is a consequence of (B.1) and (B.2). This
means Fu ⪯ Fv. But, recalling from (3.4) that G = CF , we then have
Gu = CFu ⪯ CFv = Gv ⪯ ζ, so z′ = z ⊕ Gu ⪯ z ⊕ ζ = ζ.

Proof of Corollary 8.3. First note that, if Gu ⪯ z, then u ∈ Q and hence
Q ̸= ∅. Conversely, if Q ̸= ∅, then obviously the least z′ ⪰ z such that
Q′ ̸= ∅ is z itself; Prop. 8.2 then implies z = z ⊕ Gu or, equivalently,
z ⪰ Gu.

Proof of Proposition 8.4. We want to show that F[ι·]u = xι for all ι ∈
{1, . . . , I}. First, from (8.9) it follows, for all ι ∈ {1, . . . , I}, that [A∗]ιι ⪰[
In×n]

ιι
= se, so Fιιxι = [A∗]ιιxι ⪰ xι. On the other hand, the fact that

x is a fixed point of Λ implies xι ⪰ Fιιxι, and hence

Fιιxι = xι ; (B.3)

it further implies that

xι ⪰
I⊕

j=1
j ̸=ι

Fιjxj and xι ⪰ F[ι·]rT(uopt) . (B.4)
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Then, for any ι ∈ {1, . . . , I}, we have

F[ι·]u =
m⊕

µ=I+1

FιµrT(uµopt) ⊕
I⊕

j=1

Fιj
(
rT(ujopt)⊕ xj

)
=

m⊕
µ=I+1

FιµrT(uµopt) ⊕
I⊕

j=1

FιjrT(ujopt) ⊕
I⊕

j=1

Fιjxj

=
m⊕

µ=1

FιµrT(uµopt) ⊕
I⊕

j=1

Fιjxj

= F[ι·]rT(uopt) ⊕
I⊕

j=1
j ̸=ι

Fιjxj ⊕ Fιιxι

= F[ι·]rT(uopt) ⊕
I⊕

j=1
j ̸=ι

Fιjxj ⊕ xι (because of (B.3))

= xι (due to (B.4)) .

Lemma B.1 (of Proposition 8.5). r ♯
T(xopt) is a fixed point of mapping Λ.

Proof. It follows as a straightforward generalization of the proof of
Prop. 8.1.

Proof of Proposition 8.5. Because x is a fixed point of Λ, for all ι ∈
{1, . . . , I} it follows that

(ρ′ ⊙ eδ1xι)⊙♭ eδ1ρ′ ⪯ xι .

Combined with the fact that F[ι·]u = xι for all such ι, as shown in
Prop. 8.4, this implies taking u = u satisfies (8.18), which is equivalent
to (SS).

It remains to show that rT(u) = rT(uopt). Note that, as rT ◦ rT = rT,
for µ ∈ {I + 1, . . . , m} it trivially holds that rT(uµ) = rT(uµopt). The
problem is then reduced to showing that, for all ι ∈ {1, . . . , I}, rT(uι) =

rT
(
rT(uιopt)⊕ xι

)
= rT(uιopt), which, in turn, as rT distributes over ⊕, is

equivalent to rT(uιopt)⊕ rT(xι) = rT(uιopt), or rT(xι) ⪯ rT(uιopt). From
Prop. B.1 we know that xι ⪯ r ♯

T(xιopt) = r ♯
T(F[ι·]uopt) for every ι. We

also know from Remark 7.6 that F[ι·]uopt = uιopt . Thus, as rT is isotone
and recalling that rT ◦ r ♯

T = rT, for all ι ∈ {1, . . . , I} we have

rT(xι) ⪯ rT
(
r ♯

T(uιopt)
)
= rT(uιopt) .

Proof of Proposition 8.6. It follows by direct analogy with the proof of
Prop. 8.2.

Proof of Corollary 8.7. It follows by direct analogy with the proof of
Corollary 8.3.
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