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Abstract

Many diUerent kinds of manufacturing systems and transportation networks can be mod-
eled by pmax,�q-linear systems, i.e., discrete event systems ruled by standard synchroniza-
tions such as, for all k ¥ l, occurrence k of event e2 occurs at least τ units of time after
occurrence k � l of event e1. Standard synchronization can express simultaneity for events:
occurrences k of event e1 and of event e2 have to occur at the same time. However, this
implies a symmetry between events e1 and e2, which is not present in many examples. Par-
tial synchronization aims at breaking this symmetry while requiring simultaneity. Formally,
a partial synchronization corresponds to the following condition: event e2 can only occur
when, not after, event e1 occurs. For example, in the modeling of a road, a vehicle can cross
an intersection only when the associated traXc light is green. But, most frequently, the traf-
Vc light is not aUected by vehicles. Another example for partial synchronization is recurrent
in public transportation networks: a user can only take a bus when a bus is at the bus stop.
However, a bus usually does not wait for delayed users.

In this work, we consider a class of discrete event systems ruled by standard and partial
synchronizations, called pmax,�q-systems with partial synchronization. Such systems are
split into a main system and a secondary system such that there exist only standard syn-
chronizations between events in the same system and partial synchronizations of events in
the secondary system by events in the main system. The aim of this work is to extend some
modeling and control approaches developed for pmax,�q-linear systems such as transfer
function matrix, optimal feedforward control, model reference control, and model predictive
control to pmax,�q-systems with partial synchronization. For optimal feedforward control
and model predictive control, an extension to pmax,�q-systems with partial synchroniza-
tion is provided, when priority is given to the main system over the secondary system. This
requirement makes sense in many applications where the main system is shared by several
independent secondary systems. An example of such systems is the application related to
public transportation networks, as a bus is shared by many users. For transfer function ma-
trix and model reference control, an extension is only done for pmax,�q-systems subject to
partial synchronization, i.e., pmax,�q-systems with partial synchronization under a prede-
Vned behavior of the main system. An application for pmax,�q-systems subject to partial
synchronization is, for example, roads equipped with traXc lights, as the behavior of the
traXc lights is usually known.
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Résumé

De nombreux systèmes de production et réseaux de transport peuvent être modélisés par
des synchronisations ordinaires : pour tout k ¥ l, l’occurrence k de l’événement e2 se produit
au moins τ unités de temps après l’occurrence k� l de l’événement e1. Ces systèmes admet-
tent un modèle linéaire dans l’algèbre pmax,�q. Pour certaines applications, il est intéressant
de modéliser la simultanéité entre événements. La seule solution oUerte par la synchronisa-
tion ordinaire est l’égalité entre événements : les occurrences k des événements e1 et e2 se
produisent simultanément. Mais, ceci induit une symétrie entre les événements e1 et e2 qui
n’est pas toujours souhaitable. Pour pallier ce problème, nous introduisons la synchronisation
partielle, dont l’objectif est de briser cette symétrie tout en conservant la simultanéité. Ainsi,
la synchronisation partielle corespond à la condition suivante : l’événement e2 ne peut se pro-
duire que quand l’événemet e1 se produit. Par exemple, l’eUet d’un feu tricolore correspond
à une synchronisation partielle : un véhicule ne peut franchir le feu que quand le feu est
vert. De même, un usager ne peut monter dans un bus que quand un bus est à l’arrêt de bus.
Cependant, le véhicule (ou l’usager) n’aUecte pas nécéssairement le comportement du feu (ou
du bus).

Dans ce mémoire, des méthodes développées pour la modélisation et le contrôle de sys-
tèmes linéaires dans l’algèbre pmax,�q sont étendues à des systèmes régis par des synchroni-
sations ordinaires et partielles. Nous nous intéressons uniquement à des systèmes divisés en
un système principal et un système secondaire et gouvernés entièrement par des synchroni-
sations ordinaires entre événements dans le même système et des synchronisations partielles
d’événements dans le système secondaire par des événements dans le système principal. Des
méthodes relatives à la commande optimale et à la commande prédictive sont adaptées à
cette classe de systèmes par analogie avec les résultats disponibles pour les systèmes linéaires
dans l’algèbre pmax,�q. De plus, en considérant un comportement particulier du système
principal, il est possible de représenter le système secondaire par une fonction de transfert
et d’obtenir des précompensateurs et des structures de commande par rétroaction pour le
système secondaire.
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Zusammenfassung

Viele Fertigunssysteme und Verkehrsnetzwerke können mit Hilfe von Standardsynchroni-
sationen (zum Beispiel, für k ¥ l, das Auftreten k des Ereignisses e2 Vndet mindestens τ
Zeiteinheiten nach dem Auftreten k � l des Ereignisses e1 statt) modelliert werden. Eine
interessante Eigenschaft solcher Systeme ist die Möglichkeit, sie als lineares System in der
pmax,�q-Algebra abzubilden. Für solche Systeme, oft pmax,�q-lineare Systeme genannt,
existiert eine etablierte Theorie zur Modellierung und Steuerung. Es ist allerdings schwer, Be-
dingungen über Gleichzeitigkeit zwischen Ereignissen mit Standardsynchronisationen auszu-
drücken. Die einzige Möglichkeit entspricht der exakten Gleichheit der betrachteten Ereignis-
sen: die Auftreten k der Ereignisse e1 und e2 Vnden gleichzeitig statt. Dies führt zu einer
Symmetrie zwischen Ereignissen e1 und e2, die häuVg nicht erforderlich ist. Um die Gle-
ichzeitigkeit zwischen Ereignissen ohne die unerwünschte Symmetrie zu modellieren, wird
ein neues Synchronisationsverfahren, partielle Synchronisation genannt, eingeführt. Formal
ist die partielle Synchronisation durch die folgende Bedingung deVniert: Ereignis e2 kann nur
auftreten wenn Ereignis e1 auftritt. In vielen Verkehrsnetzwerken spielen partielle Synchro-
nisationen eine wesentliche Rolle. Die Auswirkung einer Ampel entspricht einer partiellen
Synchronisation: ein Fahrzeug kann eine Kreuzung überqueren nur wenn die dazugehörige
Ampel grün ist. ÖUentliche Verkehrsnetzwerke sind andere zutreUende Beispiele: ein Fahrgast
kann nur in einen Bus einsteigen wenn dieser an der Haltestelle bereitsteht.

In dieser Arbeit wird eine Erweiterung der Methoden zur Modellierung und Steuerung
von pmax,�q-linearen Systemen vorgestellt. Die betrachtete Systemklasse besteht aus Syste-
men geteilt in ein Hauptsystem und ein Nebensystem, so dass jede Synchronisation entweder
einer Standardsynchronisation zwischen Ereignissen im selben System entspricht oder eine
partielle Synchronisation eines Ereignisses im Nebensystem durch ein Ereignis im Hauptsys-
tem darstellt. Analog zu pmax,�q-linearen Systemen werden optimale Steuerung und model-
prädiktive Regelung für die oben gegebene Systemklasse eingeführt. Des Weiteren besteht die
Möglichkeit, das Nebensystem als eine Übertragungsmatrix abzubilden, wenn das Verhalten
des Hauptsystems gegeben ist. In diesem Sonderfall werden Vorsteuerungen und Rückführun-
gen für pmax,�q-lineare Systeme an dem Nebensystem angepasst.
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1
Introduction

A discrete event system (e.g., [6]) is a dynamical system driven by the instantaneous oc-
currence of events. In a discrete event system, two basic elements are distinguished: the set
of events and the rule describing the admissible behaviors of the system. Many formal ap-
proaches have been investigated to express this rule such as Vnite-state automata (e.g., [28])
and Petri nets (e.g., [33]). In some applications, time plays an important role in the dynam-
ics of the system. Therefore, the rule describing the admissible behaviors of the system can
be equipped with time. This gives rise to timed versions of the previous approaches, namely
timed automata and timed Petri nets. Depending on the selected modeling approaches, diUer-
ent theories, such as supervisory control theory for Vnite-state automata [35] or state-based
control for Petri nets (e.g., [27]), have been introduced to tackle control problems. During
the last decades, the framework of discrete event systems has been widely applied to model,
analyze, and control both man-made systems such as manufacturing systems (e.g., [5]) or
transportation networks (e.g., [26]) and natural systems such as biological systems (e.g., [17]).

In this thesis, we focus on discrete event systems, where the rule describing the admissi-
ble behaviors is only composed of synchronizations (i.e., conditions on the timed behavior of
one event in relation to one event). A well-known synchronization is the standard synchro-
nization and corresponds to the following condition: for all k ¥ l, occurrence k of event e2
occurs at least τ units of time after occurrence k � l of event e1 with τ P R�0 and l P N0.
Discrete event systems, where the rule describing the admissible behaviors is only composed
of standard synchronizations, are called pmax,�q-linear systems. This designation is due to
the fact that a speciVc behavior, namely the behavior under the earliest functioning rule, is

1



1. Introduction

described by linear equations in particular algebraic structures such as the pmax,�q-algebra.
In the literature, only this speciVc behavior is usually considered. For pmax,�q-linear sys-
tems, it is possible to partition the set of events into input, state, and output events and, based
on this partition, to derive a pmax,�q-linear state-space model of the system. Therefore,
many eUorts have been made during the last decades to adapt key concepts from standard
control theory to pmax,�q-linear systems. Transfer function matrices have been introduced
for pmax,�q-linear systems by using formal power series [1, 8, 22, 32]. Furthermore, some
standard control approaches have been extended to pmax,�q-linear systems such as optimal
feedforward control [9, 31], model reference control [14, 30], and model predictive control
[20, 34]. Graphically, pmax,�q-linear systems can be represented by a class of timed Petri
nets, namely timed event graphs. Other synchronizations have recently been investigated. In
[21], soft synchronization is introduced: a soft synchronization is a standard synchronization
which can be occasionally ignored by paying a penalty. In [18], partial synchronization is
deVned by the following condition: event e2 can only occur when, not after, event e1 occurs.

The main contributions of our work relate to pmax,�q-systems with partial synchroniza-
tion. Such systems have a rule described by standard and partial synchronizations and are
split into a main system and a secondary system such that there exist only standard synchro-
nizations between events in the same system and partial synchronizations (represented by
dashed arrows in Fig. 1.1) of events in the secondary system by events in the main system.
The main system corresponds to a pmax,�q-linear system, as the synchronizations aUecting
an event in the main system are standard synchronizations by events in the main system.
However, due to partial synchronization, some events in the secondary system can occur
only when, not after, associated events in the main system occur. Therefore, the modeling
and control methods developed for pmax,�q-linear systems cannot be directly applied to
pmax,�q-systems with partial synchronization. In this thesis, we investigate how to adapt
some of these methods to pmax,�q-systems with partial synchronization.

Main System

Secondary System

Figure 1.1.: A schematic view of a pmax,�q-system with partial synchronization

Before giving the structure of the thesis, let us brieWy illustrate the practical interest of
pmax,�q-systems with partial synchronization. The main system often oUers a service for
a time window to the secondary system, but, while obtaining this service is essential for
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the secondary system, the secondary system does not aUect the main system. In the follow-
ing, two concrete examples of pmax,�q-systems with partial synchronization are introduced.
The Vrst example (discussed in detail in § 7 and § 8) considers a road network subject to traf-
Vc lights. The traXc lights solve the resource allocation problems at intersections and give
permission to vehicles to cross intersections for time windows. This is expressed by partial
synchronizations: a vehicle can cross an intersection only when the associated traXc light is
green. Furthermore, while the color of a traXc light aUects the behavior of the vehicles, the
presence or absence of vehicles at an intersection is irrelevant for the associated traXc lights.
In this example, the main system corresponds to the traXc lights and the secondary system
corresponds to the road network. In the second example (discussed in detail in § 5 and in § 6),
a supply chain for intermodal containers shuttling back and forth between warehouses A1
and B1 is investigated. The supply chain is divided in three sections: a road transport section
between warehouse A1 and train station A, a rail transport section between train stations A
and B, and a road transport section between train station B and warehouse B1. The train
line oUers the service of transporting containers between train stations A and B for a time
window, i.e., this service can start only when a train is leaving the train station. Further-
more, while taking a train is a necessary step in the supply chain, not taking a container does
not aUect the train. In this example, the main system corresponds to the train line and the
secondary system corresponds to the supply chain.

This thesis is divided in two parts. The Vrst part focuses on the mathematical aspects and
is structured as follows:

Chapter 2 provides a broad overview of general mathematical concepts, mainly residuation
theory and dioid (or idempotent semiring). Furthermore, some classical results related
to the dioid Nmax,γvγw are summarized. In particular, the fundamental theorem linking
periodicity, rationality, and realizability in Nmax,γvγw is recalled.

Chapter 3 introduces the dioid of residuated mappings over Nmax, denoted FNmax
, and the

concepts of causality, periodicity, and rationality are presented in FNmax
.

Chapter 4 deVnes, by analogywithNmax,γvγw, the dioidFNmax,γ
vγw. The concepts of causal-

ity, periodicity, rationality, and realizability are extended to FNmax,γ
vγw. This leads to a

fundamental theorem in F
Nmax,γ

vγw similar to the one obtained in Nmax,γvγw. Further-
more, left- and right-divisions are investigated in FNmax,γ

vγw.

The second part makes explicit how to use the mathematical tools presented in the Vrst part
to model and control pmax,�q-systems with partial synchronization.

Chapter 5 focuses on the modeling of pmax,�q-systems with partial synchronization. Sim-
ilarly to pmax,�q-linear systems, the timed behavior can be captured by daters. This
leads to a model in the pmax,�q-algebra.

Chapter 6 describes optimal control for pmax,�q-systems with partial synchronization based
on the model presented in § 5. Optimal feedforward control and its closed-loop version,
namely model predictive control, are presented.
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1. Introduction

Chapter 7 focuses on operatorial representation. An operatorial representation for pmax,�q-
systems with partial synchronization is not available. Then, only an operatorial repre-
sentation for a particular dynamics of pmax,�q-systems with partial synchronization
is considered: the dynamics of the secondary system under a predeVned behavior of
the main system. In the following, such a system is called a pmax,�q-system subject
to partial synchronization. The suitable algebraic structure for the associated operato-
rial representation is the dioid FNmax,γ

vγw. This leads to transfer function matrices for
pmax,�q-systems subject to partial synchronization and clariVes, in terms of system
theory, the meaning of the fundamental theorem in FNmax,γ

vγw.

Chapter 8 adapts some results of model reference control developed for pmax,�q-linear
systems to pmax,�q-systems subject to partial synchronization. This approach based
on operatorial representation aims at matching the dynamics of the system with a
predeVned model reference. In particular, the concepts of preVlter and feedback are
investigated.
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Part I.

Algebraic Tools
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2
Mathematical Preliminaries

In this chapter, the mathematical concepts, on which this thesis is based, are deVned. These
concepts are mainly related to residuation theory and dioid theory. Most of the following
deVnitions and results are directly taken from the literature. Some minor contributions are,
as far as we know, Prop. 1 and Lem. 3.

2.1. Residuation Theory

In the following, some basic concepts and results of residuation theory are recalled. A
survey is available in [3, 4, 7].

DeVnition 1 (Isotone mapping). Let f : E Ñ F with E and F ordered sets. Mapping f is said

to be isotone if

�x, y P E, x ¨ yñ f pxq ¨ f pyq

DeVnition 2 (Residuated mapping). Let f : E Ñ F with E and F ordered sets. Mapping f is

said to be residuated if f is isotone and if, for all y P F, the least upper bound of the subset

tx P E|fpxq ¨ yu exists and lies in this subset. This element in E is denoted f7pyq. Mapping

f7 from F to E is called the residual of f.

The following theorem characterizes residuated mappings.

7



2. Mathematical Preliminaries

Theorem 1 ([3]). Let f : E Ñ F with E and F ordered sets. The following statements are

equivalent:

1. f is residuated

2. f is isotone and there is an isotone mapping g : F Ñ E such that g � f © IdE and

f � g ¨ IdF

Furthermore, if f is residuated, the mapping g in the second condition is unique and corre-

sponds to the residual of f.

Duality leads to dual versions of Def. 2 and Th. 1.

DeVnition 3 (Dually residuated mapping). Let f : EÑ F with E and F ordered sets. Mapping

f is said to be dually residuated if f is isotone and if, for all y P F, the greatest lower bound of

the subset tx P E|fpxq © yu exists and lies in this subset. This element in E is denoted f5pyq.

Mapping f5 from F to E is called the dual residual of f.

Theorem 2 ([3]). Let f : E Ñ F with E and F ordered sets. The following statements are

equivalent:

1. f is dually residuated

2. f is isotone and there is an isotone mapping g : F Ñ E such that g � f ¨ IdE and

f � g © IdF

Furthermore, if f is dually residuated, the mapping g in the second condition is unique and

corresponds to the dual residual of f.

Remark 1. Th. 1 and Th. 2 make clear a link between residuated mappings and dually resid-

uated mappings. If a mapping f is residuated, then its residual f7 is dually residuated and
�

f7
�

5

� f. Dually, if a mapping f is dually residuated, then its dual residual f5 is residuated

and
�

f5
�

7

� f.

2.2. Dioid

Dioids (or idempotent semirings) are algebraic structures which play a major role in the
rest of this thesis. Some basic deVnitions on dioids are recalled in this section. A more
exhaustive presentation is available in [1].

DeVnition 4 (Dioid). A dioid is a set D endowed with two binary operations, denoted ` and

b, such that:

– ` is associative, commutative, idempotent (�a P D, a ` a � a), and admits a neutral

element ε.

– b is associative and admits a neutral element e.

8



2.2. Dioid

– b is distributive with respect to ` on both sides:

�a, b, c P D,

#

ab pb` cq � pab bq ` pab cq

pa` bq b c � pab cq ` pbb cq

– ε is absorbing for b:

�a P D, ab ε � εb a � ε

If b is commutative, then dioid D is said to be commutative.

Formally, the operations ` and b are very similar to � and � in rings. Therefore, these
operations are respectively called addition and multiplication. Then, ε is the zero element
of the dioid D and e is its unit element. As in classical algebra, b is often omitted and the
product is simply denoted by juxtaposition (i.e., ab corresponds to ab b).

Remark 2. In the literature, dioid might refer to slightly diUerent algebraic structures, as

explained in [1, 22]. In [29], ` is not idempotent and ε is not absorbing for b. In [32], ` is

not idempotent, but ε is absorbing for b. In [24], ` is not idempotent, but ε is absorbing for

b and another condition on ` is given:

�a, b P D, pDc1, c2 P D, a � b` c1 and b � a` c2q ñ a � b

Clearly, the previous condition holds if ` is idempotent.

As ` is associative, commutative, and idempotent, it induces an order ¨ on D deVned by
a ¨ b � a ` b � b. Therefore, a dioid is an ordered set admitting the bottom element ε,
i.e., �a P D, ε ¨ a. Furthermore, the least upper bound of ta, bu � D corresponds to a`b.
Due to the distributivity of b with respect to ` on both sides, the product by a constant is
isotone. Formally,

�c P D, a ¨ bñ

#

ac ¨ bc

ca ¨ cb

Remark 3. Let S be a set and let D be a dioid. The set of mappings from S to D, denoted

M pS,Dq, is endowed by an operation` and an order¨ induced by the operation` and the

order ¨ on D. Formally, for f1, f2 PM pS,Dq,

�s P S, pf1 ` f2q psq � f1 psq ` f2 psq

f1 ¨ f2 � �s P S, f1 psq ¨ f2 psq

DeVnition 5 (Selective dioid). A dioid D is said to be selective if, �a, b P D, a ` b is equal

either to a or to b.

Example 1 (Dioid Rmax). The set R�0 Y t�8u endowed with max as addition and � as

multiplication is a dioid denoted Rmax. Its zero element ε is equal to �8 and its unit element

e is equal to 0. The order induced by ` coincides with the standard order in R�0 . Clearly,

dioid Rmax is selective and commutative. This dioid (along with other dioids using max as

addition and � as multiplication) is often called pmax,�q-algebra in the literature.

9



2. Mathematical Preliminaries

2.2.1. Complete Dioid

DeVnition 6 (Complete dioid). A dioid D is said to be complete if it is closed for inVnite sums

and if distributivity is extended to inVnite sums. Formally, for all subsets X of D,

à

xPX

x P D and �a P D,

#

ab p

À

xPX xq �
À

xPX pab xq

p

À

xPX xq b a �
À

xPX pxb aq

In a complete dioid D,
À

xPD x, denoted J, belongs to D. Then, dioid D admits J as top
element, i.e., �a P D, a ¨ J. A new binary operation ^ is deVned on a complete dioid D by

a^ b �
à

xPDa,b

x with Da,b � tx P D|x ¨ a and x ¨ bu

Clearly, ^ is commutative, idempotent, and associative. Furthermore, ^ admits J as neutral
element in D. Dioid D is stable for ^-operation over inVnite sets. For all subsets Y of D,

©

yPY

y �
à

xPDY

x with DY � tx P D|�y P Y, x ¨ yu

Furthermore, the greatest lower bound of ta, bu � D corresponds to a^ b.

Remark 4. In general, b is not distributive with respect to ^. But, since the product by a

constant is isotone,

�a, b, c P D, a pb^ cq ¨ ab^ ac and pa^ bq c ¨ ac^ bc

In selective dioids, b is distributive with respect to ^ on both sides. Formally,

�a, b, c P D, a pb^ cq � ab^ ac and pa^ bq c � ac^ bc

In general,` is not distributive with respect to ^ and ^ is not distributive with respect to
`. However,

�a, b, c P D, a` pb^ cq ¨ pa` bq ^ pa` cq (2.1)

�a, b, c P D, a^ pb` cq © pa^ bq ` pa^ cq (2.2)

In [1], distributive dioids are deVned as complete dioids where equality holds in (2.1) and (2.2).

DeVnition 7 (Distributive dioid). A dioid D is said to be distributive if it is complete and, for

all subsets X of D,

�a P D,

#

a` p

�

xPX xq �
�

xPX pa` xq

a^ p

À

xPX xq �
À

xPX pa^ xq

10



2.2. Dioid

Lemma 1. Let D be a complete selective dioid. Then, D is distributive.

Proof. It remains to show that, for all subsets X of D,

�a P D,

#

a` p

�

xPX xq �
�

xPX pa` xq

a^ p

À

xPX xq �
À

xPX pa^ xq

Only the Vrst equality is considered. The result for the second equality is obtained by duality.
As D is selective, a` p

�

xPX xq is either equal to
�

xPX x or equal to a.
If a` p

�

xPX xq �
�

xPX x, then, for all x P X , x © a. Thus,

a`

�

©

xPX

x

�

�

©

xPX

x �
©

xPX

pa` xq

Otherwise, a ` p

�

xPX xq � a and a ¡

�

xPX x. Then, there exists x1 P X such that
x1 « a. Consequently, as D is a selective dioid, a` x1 � a. Thus,

a � a` x1 ©
©

xPX

pa` xq © a

Example 2 (Dioid Rmax). The set R
�

0 Y t�8,�8u endowed with max as addition and �

as multiplication is a complete dioid denoted Rmax. Its zero element ε is equal to �8, its

unit element e is equal to 0, and its top element J is equal to �8. The order induced by

` coincides with the standard order in R�0 . Clearly, Rmax is selective and commutative.

Therefore, according to Lem. 1, Rmax is distributive.

Example 3 (Dioid Nmax). The set N0 Y t�8,�8u endowed with max as addition and � as

multiplication is a complete dioid denoted Nmax. Its zero element ε is equal to �8, its unit

element e is equal to 0, and its top element J is equal to �8. The order induced by ` coin-

cides with the standard order in N0. Clearly, Nmax is selective and commutative. Therefore,

according to Lem. 1, Nmax is distributive.

Example 4 (Boolean dioid B). The Boolean dioid B � tε, eu is the dioid composed of ε and

e. Dioid B is complete, commutative, and selective. Therefore, according to Lem. 1, B is

distributive.

Residuation Theory in Complete Dioids

In the following, residuation theory is investigated when the considered ordered sets are
complete dioids.
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DeVnition 8 (Lower semi-continuity). Amapping f from complete dioidD1 to complete dioid

D2 is said to be lower semi-continuous if

�X � D1, f

�

à

xPX

x

�

�

à

xPX

f pxq

The next result gives a very handy characterization of residuated mappings when the con-
sidered ordered sets are complete dioids.

Theorem 3 ([1]). Let f : D1 Ñ D2 withD1 and D2 complete dioids. The following statements

are equivalent:

1. f is residuated

2. f is lower semi-continuous and fpεq � ε

Corollary 1. Let a be an element in a complete dioid D. The mappings La : x ÞÑ ab x (left-

product by a) and Ra : x ÞÑ xb a (right-product by a) over D are residuated. The residuals

are denoted by L
7

apxq � a �zx (left-division by a) and R
7

apxq � x�{a (right-division by a). By

deVnition, a �zb (resp. b�{a) denotes the greatest solution x of the inequality ab x ¨ b (resp.

xb a ¨ b).

Next, some calculation rules with left- and right-divisions are recalled.

Lemma 2 ([1]). Let D be a complete dioid. For X � D and a, b, c in D,

�

à

xPX

x

�

�

za �
©

xPX

x �za and a�{

�

à

xPX

x

�

�

©

xPX

a�{x (2.3)

a �z

�

à

xPX

x

�

©

à

xPX

a �zx and

�

à

xPX

x

�

�

{a ©
à

xPX

x�{a (2.4)

pbcq �za � c �z pb �zaq and a�{ pbcq � pa�{cq �{b (2.5)

Example 5. In Nmax, a �zb � b�{a, as b is commutative. Besides,

a �zb � b�{a �

$

'

&

'

%

J if a � ε or b � J

ε if a ¡ b

b� a if b © a and a, b P N0

Proposition 1. Let f1 and f2 be two residuated mappings from a complete selective dioid D1

to a distributive dioid D2. The mapping g from D1 to D2 deVned by, �x P D1, g pxq �

f1 pxq ^ f2 pxq, is residuated.
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Proof. This proof is based on Th. 3. As f1 and f2 are residuated mappings, g pεq � ε. It
remains to check that g is lower semi-continuous. As f1 and f2 are isotone, g is isotone.
Therefore, for all X � D1,

g

�

à

xPX

x

�

©

à

xPX

g pxq

Furthermore, as f1 and f2 are lower semi-continuous,

g

�

à

xPX

x

�

� f1

�

à

x1PX

x1

�

^ f2

�

à

x2PX

x2

�

�

�

à

x1PX

f1 px1q

�

^

�

à

x2PX

f2 px2q

�

As D2 is a distributive dioid,

g

�

à

xPX

x

�

�

à

x1PX

�

f1 px1q ^

�

à

x2PX

f2 px2q

��

�

à

x1PX

à

x2PX

pf1 px1q ^ f2 px2qq

As f1 and f2 are isotone,

g

�

à

xPX

x

�

¨

à

x1PX

à

x2PX

pf1 px1 ` x2q ^ f2 px1 ` x2qq

As D1 is a selective dioid, x1` x2 is either equal to x1 or to x2. Therefore, x1` x2 belongs to
X . Then,

g

�

à

xPX

x

�

¨

à

xPX

pf1 pxq ^ f2 pxqq

¨

à

xPX

g pxq

Duality leads to a dual version of Def. 8 and of Th. 3.

DeVnition 9 (Upper semi-continuity). A mapping f from complete dioidD1 to complete dioid

D2 is said to be upper semi-continuous if

�X � D1, f

�

©

xPX

x

�

�

©

xPX

f pxq
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The following result gives a very handy characterization of dually residuated mappings
when the considered ordered sets are complete dioids.

Theorem 4 ([1]). Let f : D1 Ñ D2 withD1 andD2 complete dioids. The following statements

are equivalent:

1. f is dually residuated

2. f is upper semi-continuous and f pJq � J

Kleene Star

DeVnition 10 (Kleene star). Let D be a complete dioid. The Kleene star of a P D, denoted a�,

is deVned by

a� �
à

kPN0

ak with ak �

#

e if k � 0

ab ak�1 otherwise

Some properties of the Kleene star are recalled in the following proposition.

Proposition 2 ([22]). In a complete dioid D, the following equalities hold for all a, b P D:

pa�q
�

� a� (2.6)

a�a� � a� (2.7)

pa` bq� � pa�bq
�

a� (2.8)

pa�bq
�

� e` pa` bq� b (2.9)

The next theorem plays an essential role in the following to solve implicit inequality of the
form x © ax` b.

Theorem 5 (Kleene star theorem, [1]). Let D be a complete dioid and a, b P D. Then, the

inequality x © ax ` b admits a�b as least solution. Furthermore, this solution achieves

equality.

Example 6. In Nmax, a
� is either equal to e if a P B or to J otherwise. Then, the equation

x � ax` b admits b as least solution if b � ε or a P B and J otherwise.

2.2.2. Subdioid

The concept of subdioid matches, to a certain extent, the concept of subrings in standard
algebra.

DeVnition 11 (Subdioid). A subset S of a dioidD is a subdioid ofD if S is closed with respect

to `,b and ε, e P S .
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Remark 5. A subdioid S of a dioid D is a dioid. Besides, if D is commutative (resp. selective),

then S is commutative (resp. selective). This does not hold for completeness or distributivity.

A subdioid S of a complete dioid D is complete if, and only if, S is closed under inVnite sums.

Proposition 3 ([4]). Let S be a complete subdioid of a complete dioid D. Then, the canonical

injection i from S to D is residuated. Its residual i7, also denoted PrS , satisVes the following

conditions:

1. PrS � PrS � PrS

2. PrS ¨ IdD

3. x � PrS pxq � x P S

Remark 6. Let S be a complete subdioid of a complete dioid D. The operations ^S , left-

division �

zS , and right-division �

{S are deVned on S , as S is a complete dioid. Furthermore,

�X � S,

S
©

xPX

x � PrS

�

©

xPX

x

�

�a, b P S, b �zSa � PrS pb �zaq and a�{Sb � PrS pa�{bq

Example 7. Nmax is a complete subdioid of the complete dioid Rmax. Then, the canonical

injection from Nmax to Rmax is residuated and its residual is deVned by

PrNmax
pxq � txu

Rational Closure

DeVnition 12 (Rational closure). Let D be a complete dioid and let E be a subset of D such

that B � E . The rational closure of E , denoted E�, is the least subset ofD containing all Vnite

combinations of sums, products, and Kleene stars over E . A subset E of D with B � E is said

to be rationally closed if E� � E .

Remark 7. The rational closure of E , denoted E�, is a subdioid of D. Dioid E� might not be

complete, but E� is stable with respect to the Kleene star. Furthermore, E� is rationally closed.

Example 8. In the complete dioid Rmax, the rational closure of tε, e, 1u is the subdioid Nmax.

Lemma 3. Let D be a complete dioid and a, b, c P D. If abdc � badc for all d P

tε, e, a, bu�, then

pa` bq� c � a�b�c
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Proof. According to (2.8),

pa` bq� c � pa�bq
�

a�c

�

�

e`
à

k¥1

pa�bq
k

�

a�c

� a�c`
à

k¥1

pa�bq
k
a�c

Due to the assumption abdc � badc for all d P tε, e, a, bu�,

�j P N0,�d P tε, e, a, bu
� , a�bja�bdc � a�

�8

à

k�0

bjakbdc

� a�
�8

à

k�0

akbj�1dc

� a�bj�1dc

Therefore, �k P N, pa�bqk a�c � a�bkc. Then,

pa` bq� c � a�c`
à

k¥1

a�bkc

� a�b�c

Remark 8. The previous lemma is a minor extension of the classical formula recalled in [22]:

pa` bq� � a�b� if a and b commute

2.3. Morphism

A morphism usually refers to a structure-preserving mapping between two algebraic ob-
jects. Next, the notion of morphism is only deVned when the domain and the co-domain are
dioids.

DeVnition 13 (`-morphism). A mapping f from dioid D1 to dioid D2 is a `-morphism if

f pεq � ε and �a, b P D1, f pa` bq � f paq ` f pbq

Lemma 4. Let f be a `-morphism from dioid D1 to dioid D2. Then, mapping f is isotone.
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Proof. For a, b P D1,

a © bñ a � a` b

ñ f paq � f pa` bq � f paq ` f pbq

ñ f paq © f pbq

Lemma 5. Let f be a residuated mapping from complete dioid D1 to complete dioid D2. Then,

f is a `-morphism.

Proof. This is a direct consequence of Th. 3.

DeVnition 14 (b-morphism). A mapping f from dioid D1 to dioid D2 is a b-morphism if

f peq � e and �a, b P D1, f pab bq � f paq b f pbq

DeVnition 15 (Homomorphism). A mapping f from dioid D1 to dioidD2 is a homomorphism

if it is both a `-morphism and a b-morphism.

DeVnition 16 (Isomorphism). A mapping f from dioid D1 to dioid D2 is an isomorphism if it

is a bijective homomorphism. If there exists an isomorphism from dioid D1 to dioid D2, then

dioids D1 and D2 are said to be isomorphic.

Lemma 6. Let f be an isomorphism from dioid D1 to dioid D2. Then, f
�1 is an isomorphism

from dioid D2 to dioid D1.

Proof. Mapping f�1 is bijective. It remains to check that f�1 is a homomorphism. We only
check the behavior of f�1 with respect to `, as the result concerning b is obtained in a
similar manner. First, as f pεq � ε,

f�1 pεq � f�1 � f pεq � ε

Second, let a1, b1 P D1 and a2, b2 P D2 such that a1 � f�1 pa2q and b1 � f�1 pb2q. Then,

f�1 pa2 ` b2q � f
�1
pf pa1q ` f pb1qq

� f�1 pf pa1 ` b1qq

� a1 ` b1

� f�1 pa2q ` f
�1
pb2q

Lemma 7. Let f be an isomorphism from dioid D1 to dioid D2. Then, f is residuated and its

residual f7 is f�1.

Proof. Mappings f and f�1 are isotone. Besides, f�f�1 ¨ IdD2
and f�1�f © IdD1

. Therefore,
according to Th. 1, f is residuated and its residual is f�1.
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2.3.1. Dioid of `-Morphisms

The set of mappings over a dioid D is endowed with a binary operation ` induced by the
binary operation ` over the dioid D as mentioned in Rem. 3. Formally,

�x P D, pf1 ` f2q pxq � f1 pxq ` f2 pxq

Another binary operation b is deVned as the composition � of mappings. Next, the algebraic
structure (with respect to these operations) of particular classes of mappings over dioid D is
investigated.

Proposition 4 ([32]). The set of `-morphisms over a dioid D, denoted ED , endowed with the

binary operations ` and b is a dioid. Its zero element ε is deVned by �x P D, ε pxq � ε. Its

unit element e is deVned by �x P D, e pxq � x.

An interesting problem is to determine whether the dioid ED is complete. A necessary
condition is to consider a complete dioid D. However, the completeness of D is not suXcient
to ensure the completeness of ED as shown in the following example.

Example 9. Let fn with n P N0 denote the`-morphism over the complete dioid Nmax deVned

by

fn pxq �

$

'

&

'

%

ε if x � ε

n if x P N0

J if x � J

Then,

�

f0 b

�

à

nPN0

fn

��

peq � f0 pJq � J

�

à

nPN0

pf0 b fnq

�

peq �
à

nPN0

f0 pkq � e

Therefore, right-distributivity cannot be extended to inVnite sums. Hence, the dioid ED with

D � Nmax is not complete.

Proposition 5 ([7]). The set of residuated mappings over a complete dioid D, denoted FD ,

endowed with the previously deVned binary operations ` and b is a complete dioid.

Proof. First, we show that FD is a subdioid of ED. According to Lem. 5, FD is a subset of
ED . According to Th. 3, the set of residuated mappings coincides with the set of lower semi-
continuous `-morphisms. Clearly, ε and e are lower semi-continuous. It remains to check
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2.3. Morphism

that FD is closed with respect to ` and b. For f1, f2 P FD and X � D,

pf1 ` f2q

�

à

xPX

x

�

� f1

�

à

xPX

x

�

` f2

�

à

xPX

x

�

�

à

xPX

f1 pxq `
à

xPX

f2 pxq

�

à

xPX

pf1 ` f2q pxq

pf1 b f2q

�

à

xPX

x

�

� f1

�

f2

�

à

xPX

x

��

� f1

�

à

xPX

f2 pxq

�

since f2 is residuated

�

à

xPX

pf1 b f2q pxq since f1 is residuated

Hence, mappings f1` f2 and f1b f2 are lower semi-continuous. Therefore, FD is a subdioid
of ED .

Next, we show that the dioid FD is complete. ConsiderH � FD and f �
À

hPH h. As D
is complete, f is a mapping from D to D. Furthermore,

f pεq �
à

hPH

h pεq � ε

�X � D, f

�

à

xPX

x

�

�

à

hPH

à

xPX

h pxq �
à

xPX

f pxq

Therefore, FD is closed for inVnite sums. It remains to show that distributivity extends to
inVnite sums. For left-distributivity, it comes directly from the deVnition of operations` and
b.

�g P FD,�x P D,

��

à

hPH

h

�

b g

�

pxq �
à

hPH

h pg pxqq

�

�

à

hPH

phb gq

�

pxq

For right-distributivity, due to lower semi-continuity,

�g P FD,�x P D,

�

gb

�

à

hH

h

��

pxq � g

�

à

hPH

h pxq

�

�

�

à

hPH

pgb hq

�

pxq
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2. Mathematical Preliminaries

The next step is to determine whether FD is distributive. This problem is not solved in the
general case. As FD is a complete dioid, the operation ^ is deVned. But, for H � FD , the
calculation of

�

hPH h might not be obvious. Clearly,

�x P D,

�

©

hPH

h

�

pxq ¨
©

hPH

h pxq

However, the mapping g fromD toD deVned by g pxq �
�

hPH h pxqmay not be residuated.
A particular case has already been investigated in Prop. 1. If D is a complete selective dioid
andH is a Vnite subset of FD ,

�x P D,

�

©

hPH

h

�

pxq �
©

hPH

h pxq

However, it is not sure that the equality still holds when H is not Vnite. This problem is
addressed for the particular case D � Nmax in § 3.

2.4. Matrix Dioid

In this section, matrices with entries in a dioid are studied. By analogy with standard linear
algebra, the operations ` and b are extended to matrices with entries in a dioid D.

�A,B P Dn�p, pA` Bqij � Aij ` Bij

�A P Dn�p,�B P Dp�q, pAb Bqij �
p
à

k�1

AikBkj

Besides, if the dioid D is complete, the operations ^, �z, and �{ are also extended to matrices.

�A,B P Dn�p, pA^ Bqij � Aij ^ Bij

�A P Dn�q,�B P Dn�p, pA �

zBqij �

n
©

k�1

Aki �zBkj

�A P Dn�p,�B P Dq�p, pB�{Aqij �

p
©

k�1

Bik�{Ajk

The order ¨ induced by operation ` corresponds to the standard order for matrices with
entries in an ordered set.

A ¨ B� �i, j Aij ¨ Bij

According to this order, A ` B (resp. A ^ B) is the least upper bound (resp. greatest lower
bound) of tA,Bu and A �

zB (resp. B�{A) corresponds to the greatest solution X of the inequal-
ity AX ¨ B (resp. XA ¨ B).
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2.4. Matrix Dioid

Proposition 6 ([8]). LetD be a dioid. The setDn�n endowed with the operations` andb is a

dioid. Besides, if D is complete (resp. distributive), then Dn�n is complete (resp. distributive).

In the matrix dioid Dn�n, the zero element ε is deVned by εij � ε for all i, j and the unit
element e is deVned by

eij �

#

e if i � j

ε otherwise

If Dn�n is complete, then J is deVned by Jij � J for all i, j. Dioid Dn�n inherits neither
commutativity nor selectivity from dioid D.

Remark 9. In Th. 5, if x or b are not square matrices, it is still possible to extend a, x, and b

with ε-rows and ε-columns to come down to square matrices. Therefore, the least solution of

the matrix inequality x © ax` b is a�b.

Lemma 8. Let S be a subdioid of dioid D. The set Sn�n is a subdioid of dioid Dn�n.

Proof. The set Sn�n contains the zero element and the unit element of Dn�n. Furthermore,
Sn�n is closed with respect to ` and b.

Lemma 9. If dioids D1 and D2 are isomorphic, then dioids Dn�n1 and Dn�n2 are isomorphic.

Proof. There exists an isomorphism φ from D1 to D2. Then,Φ from Dn�n1 to Dn�n2 deVned
by

�A P Dn�n1 , pΦ pAqqij � φ pAijq

is an isomorphism.

The next results focus on Kleene star of matrices and rationality.

Lemma 10 ([1, 8]). LetD be a complete dioid and n1, n2 P N. Consider matricesA P Dn1�n1 ,

B P Dn1�n2 , C P Dn2�n1 , andD P Dn2�n2 . Then,

�

A B

C D

�

�

�

�

pA` BD�Cq� A�B pCA�B`Dq�

pCA�B`Dq�CA� pCA�B`Dq�

�

Theorem 6 ([8]). Let D be a complete dioid and let E be a subset of D such that B � E . The

subdioids pEn�nq
�

and pE�qn�n are identical.
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2. Mathematical Preliminaries

2.4.1. Rational Representation

Next, a particular representation, namely the pB,Cq-representation, for a class of matrices
is introduced. Later on, this representation appears to be central in system theory.

DeVnition 17 (pB,Cq-representation). Let D be a complete dioid and let E be a subset of D

such that B � E . An element X P Dm�p admits a pB,Cq-representation with respect to E if

there exist n P N, C P Bm�n, A P En�n, and B P Bn�p such that X � CA�B.

Theorem 7 ([8]). Let D be a complete dioid and let E be a subset of D such that B � E .

The dioid E� coincides with the set of elements x P D admitting a pB,Cq-representation with

respect to E .

Proposition 7. Let D be a complete dioid and let E be a subset of D such that B � E . For

X P Dm�p, the following statements are equivalent:

1. X admits a pB,Cq-representation

2. each entry of X admits a pB,Cq-representation

Proof. 1 ñ 2: X admits a pB,Cq-representation, then there exist n P N, C P Bm�n, A P

En�n, and B P Bn�p such that X � CA�B. Consequently, Xij � Ci.A�B.j with Ci., the i-th
row of C, and B.j, the j-th column of B. Then, Xij admits a pB,Cq-representation.
2 ñ 1: Xij is admits a pB,Cq-representation. There exist nij P N, Cij P B1�nij , A P

Enij�nij , and B P Bnij�1 such that Xij � CijA�ijBij. Then, X � CA
�B with

A � diag pA11, . . . , A1p, . . . , Am1, . . . , Ampq

C � diag prC11 . . . C1ps , . . . , rCm1 . . . Cmpsq

B �

�

�

�

�

diag pB11, . . . , B1pq
...

diag pBm1, . . . , Bmpq

�

Æ

Æ



Hence, X admits a pB,Cq-representation.

2.5. Dioid of Formal Power Series

Formal power series with coeXcients in a dioid D provide an elegant way to manipulate
mappings from Zp (with p P N) to D. A complete survey on formal power series with
coeXcients in a dioid is available in [1].

DeVnition 18 (Formal power series). A formal power series in p commutative variables with

coeXcients in a complete dioidD is a mapping from Zp toD. A compact notation for a formal

power series s is

s �
à

kPZp

s pkq z
k1
1 . . . z

kp
p where k � pk1, . . . , kpq
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2.5. Dioid of Formal Power Series

The set of formal power series in p commutative variables z1, . . . , zp with coeXcients in D is

denoted Dvz1, . . . , zpw.

The support of a formal power series s, denoted supp psq, is deVned by

supp psq � tk P Zp|s pkq � εu

The valuation of a formal power series s, denoted val psq, is the greatest lower bound of its
support. The degree of a formal power series s, denoted deg psq, is the least upper bound of its
support.

A polynomial (resp. monomial) is a formal power series with a Vnite support (resp. with an

empty support or a support reduced to a singleton).

Usually, only the values on the support are made explicit in the writing of a formal power
series. The set Dvz1, . . . , zpw is endowed with the binary operation ` already mentioned in
Rem. 3, i.e.,

�k P Zp, ps1 ` s2q pkq � s1 pkq ` s2 pkq

Another operation b is deVned as the Cauchy product.

�k P Zp, ps1 b s2q pkq �
à

jPZp

s1 pjq s2 pk� jq

Proposition 8 ([1]). Let D be a complete dioid. The set Dvz1, . . . , zpw endowed with the

operations` andb deVned before is a complete dioid. IfD is commutative (resp. distributive),

then Dvz1, . . . , zpw is commutative (resp. distributive).

The Cauchy product justiVes the restriction to complete dioids as shown in the next exam-
ple.

Example 10. Let f1 and f2 be two mappings from Z to the non-complete dioid Rmax deVned

by

�k P Z, f1 pkq � k and f2 pkq � e

Then,

pf1 b f2q p0q �
à

kPZ

pf1 pkq b f2 p�kqq

�

à

kPZ

k

� �8 R Rmax

Therefore, the Cauchy product may not be deVned when the dioid of coeXcients is not com-

plete.
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The zero element ε of Dvz1, . . . , zpw is deVned by ε pkq � ε for all k P Zp. The unit
element e of Dvz1, . . . , zpw is deVned by

e pkq �

#

e if k � 0

ε otherwise

As Dvz1, . . . , zpw is a complete dioid, operation ^ exists for formal power series and is de-
Vned by

�k P Zp, ps1 ^ s2q pkq � s1 pkq ^ s2 pkq

The top element J of Dvz1, . . . , zpw is deVned by Jpkq � J for all k P Zp. Besides, for all
k P Zp, left-division and right-division are deVned by

ps1 �zs2q pkq �
©

jPZp

s1 pjq �zs2 pk� jq (2.10)

ps2�{s1q pkq �
©

jPZp

s2 pk� jq �{s1 pjq (2.11)

Lemma 11. If complete dioids D1 and D2 are isomorphic, then dioids D1vz1, . . . , zpw and

D2vz1, . . . , zpw are isomorphic.

Proof. There exists an isomorphism φ from D1 to D2. Then, Φ from D1vz1, . . . , zpw to
D2vz1, . . . , zpw deVned by

�s P D1vz1, . . . , zpw, Φ psq � φ � s

is an isomorphism.

Lemma 12. Let S be a complete subdioid of a complete dioid D. The set Svz1, . . . , zpw is a

complete subdioid of Dvz1, . . . , zpw.

Proof. The set Svz1, . . . , zpw contains the zero element and the unit element ofDvz1, . . . , zpw.
Furthermore, Svz1, . . . , zpw is closed under inVnite sums and with respect to b.

Example 11 (Dioid Nmaxvγw). The dioid Nmaxvγw is the dioid of formal power series in γ with

coeXcients in the complete dioid Nmax equal to ε over tk P Z|k   0u. The series s � 3` 7γ5

belongs to Nmaxvγw and corresponds to the mapping from Z to Nmax deVned by

s pkq �

$

'

&

'

%

3 if k � 0

7 if k � 5

ε otherwise

Furthermore, supp psq � t0, 5u. Then, s is a polynomial, val psq � 0, and deg psq � 5.
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2.5. Dioid of Formal Power Series

2.5.1. Dioid of Isotone Formal Power Series

Let D be a complete dioid. In the following, we only consider formal power series in a
single variable γ with coeXcients in D. Sets Z and D are ordered. Then, a formal power
series s P Dvγw is isotone if

�k, l P Z, k ¥ lñ s pkq © s plq

The following lemma gives a simple characterization of isotone formal power series.

Lemma 13. Let s in Dvγw. Series s is isotone� s � γ�s.

Proof. ñ As γ� © e, γ�s © s. Conversely, as s is isotone, �k P Z, spk � 1q © s pkq. Thus,
s © γs. This leads to s © γ�s. Hence, s � γ�s.
ñ s � γ�s implies

�k P Z, s pkq �
à

jPN0

s pk� jq

Therefore,

�k, l P Z, k ¥ lñ s pkq © s plq

Hence, s is an isotone formal power series.

Lem. 13 allows us to easily determine the algebraic structure of the set of isotone formal
power series.

Proposition 9. Let D be a complete dioid. The set of isotone formal power series in Dvγw

endowed with the operations ` and b is a complete dioid, denoted Dγvγw. Furthermore, if D

is commutative, Dγvγw is commutative.

Proof. Let s1 and s2 be two isotone formal power series in Dvγw.

s1 ` s2 � γ
�s1 ` γ

�s2 � γ
�

ps1 ` s2q

s1 b s2 � pγ�s1q s2 � γ
�

ps1 b s2q

Then, Dγvγw is closed with respect to ` and b.
As Dγvγw is included in Dvγw, the operation ` is associative, commutative, and idem-

potent, and the operation b is associative and distributive on both sides with respect to `.
Furthermore, the zero element ofDvγw is isotone: it is the neutral element ε for ` in Dγvγw.
Consequently, ε is absorbing for b. For s P Dγvγw, s � γ�s and, clearly, s � sγ�. There-
fore, γ� is the neutral element e for b in Dγvγw. Thus, Dγvγw is a dioid included in Dvγw,
but not a subdioid of Dvγw.

Dγvγw is stable under inVnite sums and distributivity extends to inVnite sums. Hence,
Dγvγw is a complete dioid.

Clearly, if D is commutative, Dvγw is commutative. Hence, if D is commutative, Dγvγw is
commutative.
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As Dγvγw is a complete dioid, the operation ^γ, �zγ, and �

{γ are deVned on Dγvγw. Fur-
thermore, s1^γ s2, s1 �zγs2, and s2�{γs1 correspond respectively to the greatest isotone formal
power series less than or equal to s1 ^ s2, s1 �zs2, and s2�{s1. It is easy to check that these
series are isotone. Thus, s1 ^γ s2 � s1 ^ s2, s1 �zγs2 � s1 �zs2, and s2�{γs1 � s2�{s1.

Lemma 14. Let D a complete dioid. If D is distributive, Dγvγw is distributive.

Proof. As D is distributive, Dvγw is distributive. As ^ is the same operation in Dvγw and
Dγvγw, Dγvγw is distributive.

2.6. Quotient Dioid

By analogy with quotient rings (as, for example, Z{nZ), quotient dioids are deVned. More
details on quotient dioids can be found in [11].

DeVnition 19 (Congruence relation). A congruence relation on a dioid D is an equivalence

relation R on D such that

�c P D, aRbñ

#

pa` cqR pb` cq

caRcb and acRbc

Proposition 10 ([11]). Let D be a dioid. The quotient set of D by the congruence relation R

endowed with

aR ` bR � pa` bqR and aR b bR � pab bqR

is a dioid named quotient dioid of D by R and denoted DR. Besides, DR inherits complete-

ness, commutativity, and selectivity from D.

The zero element εR (resp. the unit element eR) of DR is the equivalence class of ε (resp.
e).

If a quotient dioid is considered, no distinction is usually made between an equivalence
class (an element in DR) and one of its representatives (an element in D). An element in
D is associated with its equivalence class. To tackle the inverse problem (i.e., associating an
element in DR with an element in D), a canonical representative for an equivalence class is
deVned. In this section, this question is not addressed in general.

2.6.1. Quotient Dioid of a Dioid of Formal Power Series

Quotient dioids of dioids of formal power series play an important role in the following.
The notion of support is generalized to quotient dioids of dioids of formal power series.
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DeVnition 20. Let Dvz1, . . . , zpw be a dioid of formal power series and let R be a con-

gruence relation on Dvz1, . . . , zpw. The support of the equivalence class sR of a series

s P Dvz1, . . . , zpw is deVned as

supp psRq �
£

sPsR

supp psq

A polynomial (resp. monomial) in Dvz1, . . . , zpwR is an equivalence class with a Vnite sup-
port (resp. an empty support or a support reduced to a singleton).

Congruence for the Dioid of Isotone Formal Power Series

LetD be a complete dioid. The complete dioid of formal power series in γwith coeXcients
in D is considered. In the following, the congruence relationR is deVned on Dvγw by

aRb� γ�a � γ�b

Lemma 15. Dioids DRvγw and Dγvγw are isomorphic.

Proof. LetΦ be the mapping from Dγvγw to DRvγw deVned by Φ psq � sR.
For s1, s2 in Dγvγw,

Φ ps1q � Φ ps2q ñ γ�s1 � γ
�s2

ñ s1 � s2

Therefore,Φ is injective.
For S in DRvγw and s P S, γ�s belongs to S XDγvγw. Therefore, Φ pγ�sq � S. Then, Φ

is surjective. MappingΦ is a bijection from Dγvγw to DRvγw.
Furthermore, for s1, s2 in Dγvγw,

Φ pεq � εR

Φ pγ�q � γ�R � eR

Φ ps1 ` s2q � s1R ` s2R � Φ ps1q `Φ ps2q

Φ ps1 b s2q � s1R b s2R � Φ ps1q bΦ ps2q

Consequently,Φ is an isomorphism from Dγvγw to DRvγw.

A series s in Dγvγw is associated with an element S in DRvγw. Therefore, a representative
s1 of S characterizes s. This is sometimes written in a slightly ambiguous manner s � s1.
This leads to richer deVnitions for support, monomials, and polynomials in the dioid Dγvγw.

DeVnition 21 (γ-support). Let s be a series in Dγvγw. The γ-support of s, denoted suppγ psq,
is deVned by suppγ psq � supp psRq.
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The classical deVnitions of polynomials leads to a single polynomial in Dγvγw, namely ε.
Therefore, from now on, monomials and polynomials in Dγvγw are deVned with respect to
the γ-support.

DeVnition 22. Let s be a series in Dγvγw. Series s is a polynomial if its γ-support is Vnite.
Series s is monomial if its γ-support is either empty or a singleton.

The greatest lower bounds of suppγ psq and val psq coincide. However, the least upper
bound of suppγ psq might be less than deg psq. Then, the γ-degree of series s, denoted
degγ psq, is deVned as the least upper bound of suppγ psq. Next, the canonical representa-
tives for a subclass of polynomials in Dγvγw is introduced.

DeVnition 23. Let p be a polynomial in Dγvγw fulVlling the condition: there exists k P Z

such that p pkq � ε. If p � ε, its canonical representative is ε. Otherwise, the canonical

representative of p is
À

kPsuppγppq
p pkqγk.

An algorithm to compute the canonical representative of an element in the previous class
of polynomials from any representative consists in, Vrst, maximizing the coeXcients and,
second, deleting the redundant coeXcients.

2.7. Dioid Nmax,γvγw

The dioidNmax,γvγw plays a major role in the modeling and control of pmax,�q-linear sys-
tems (e.g., [1, 14]). In this chapter, the dioid Nmax,γvγw is brieWy introduced and the concepts
of periodicity, rationality, and realizability are recalled for this dioid. The presented results
mainly come from [1, 8, 22].

DeVnition 24 (Dioid Nmax,γvγw). The distributive dioid Nmax,γvγw is deVned as the dioid of

isotone formal power series in γ with coeXcients in the distributive dioid Nmax equal to ε over

tk P Z|k   0u. Furthermore, as Nmax is commutative, Nmax,γvγw is commutative.

According to Prop. 9 and Lem. 14, the previous deVnition is valid. By deVnition, a series s
in Nmax,γvγw is an isotone mapping from Z to Nmax such that s pkq � ε for k   0.

Example 12. Let s � 1γ` 4γ3 be a series in Nmax,γvγw.

s pkq �

$

'

&

'

%

ε if k   1

1 if k � 1, 2

4 if k ¥ 3

The γ-support of s is t1, 3u. Therefore, s is a polynomial and, according to Def. 23, its canon-
ical representative is 1γ` 4γ3. A graphical representation of s is drawn in Fig. 2.1.

28



2.7. Dioid Nmax,γvγw

0

1

2

3

4

1 2 3 4 5 k

s (k)

Figure 2.1.: Series s � 1γ` 4γ3

2.7.1. Periodicity

DeVnition 25 (Periodicity). A series s in Nmax,γvγw is said to be periodic if there exist two
polynomials p, q in Nmax,γvγw, τ P N0, and ν P N such that s � p ` q pτγνq�. A matrix
with entries in Nmax,γvγw is said to be periodic if all its entries are periodic.

A canonical representative for periodic series in Nmax,γvγw has been introduced in [22, 23].

DeVnition 26 (Throughput). The throughput of a non-zero periodic series s � p` q pτγνq�

in Nmax,γvγw, denoted σ psq, is deVned by

σ psq �

$

'

&

'

%

�8 if s is a polynomial and �k P Z, s pkq   J

0 if s is a polynomial and Dk P Z|s pkq � J

ν
τ otherwise

Example 13. Let s be a periodic series in Nmax,γvγw with the canonical representative 3 `
4γ2 `

�

6γ3 ` 8γ4
� �

3γ2
�

�

. Then,

�k ¥ 3, s pk� 2q � 3s pkq

The transient of s is given by the polynomial p � 3 ` 4γ2. The pattern of s is given by the
polynomial q � 6γ3 ` 8γ4. Due to the periodicity 3γ2, the pattern q is repeated (translation
of two units to the right and three units to the top). The throughput of s is

σ psq �
ν

τ
�

2

3

A graphical representation of s is drawn in Fig. 2.2.
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Figure 2.2.: Series s � 3` 4γ2 `
�

6γ3 ` 8γ4
� �

3γ2
�

�

Calculations with Periodic Series

Proposition 11 (Sum of periodic series [11, 22]). Let s1 and s2 be two periodic series in
Nmax,γvγw. Series s1 ` s2 is periodic. Furthermore, if s1 and s2 are diUerent from ε, then

σ ps1 ` s2q � min pσ ps1q , σ ps2qq

Proposition 12 (Greatest lower bound of periodic series [11]). Let s1 and s2 be two periodic
series in Nmax,γvγw. Series s1 ^ s2 is periodic. Furthermore, if s1 and s2 are diUerent from ε,
then

σ ps1 ^ s2q � max pσ ps1q , σ ps2qq

Proposition 13 (Product of periodic series [11, 22]). Let s1 and s2 be two periodic series in
Nmax,γvγw. Series s1 b s2 is periodic. Furthermore, if s1 and s2 are diUerent from ε, then

σ ps1 b s2q � min pσ ps1q , σ ps2qq
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2.7. Dioid Nmax,γvγw

Proposition 14 (Division of periodic series [11]). Let s1 and s2 be two periodic series in
Nmax,γvγw. Series s1 �zs2 and s2�{s1 are periodic. Furthermore, if s1 and s2 are diUerent from
ε,

– s1 �zs2 � s2�{s1 � ε if σ ps1q   σ ps2q
– σ ps1 �zs2q � σ ps2�{s1q � σ ps2q otherwise

According to Prop. 11 and Prop. 13, the set of periodic series in Nmax,γvγw is a subdioid of
Nmax,γvγw, denoted N

per
max,γvγw. Moreover, the dioid N

per
max,γvγw is rationally closed as shown

in the next proposition.

Proposition 15 (Kleene star of periodic series [11, 22]). Let s be periodic series in Nmax,γvγw.
Series s� is periodic.

However,N
per
max,γvγw is not a complete dioid: pn� nqγn with n P N belongs toN

per
max,γvγw,

but
À

nPN pn� nqγ
n does not belong to N

per
max,γvγw.

Remark 10. Software tools to manipulate periodic series in Nmax,γvγw exist, e.g., [13].

2.7.2. Rationality

DeVnition 27 (Rationality). A series s in Nmax,γvγw is said to be rational if s belongs to the
rational closure of tε, e, γ, 1u. A matrix with entries in Nmax,γvγw is said to be rational if all
its entries are rational.

2.7.3. Realizability

DeVnition 28 (Realizability). A matrix S in Nmax,γvγw
m�p is said to be realizable if S admits

a pB,Cq-representation with respect to tε, e, 1, γu.

2.7.4. The Fundamental Theorem in Nmax,γvγw

Theorem 8 ([1, 8]). Let S be a matrix in Nmax,γvγw
m�p. The following statements are equiv-

alent:

1. S is periodic

2. S is rational

3. S is realizable
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3
Dioid FNmax

In this chapter, the dioid F
Nmax

, based on the set of residuated mappings over Nmax, is
introduced. Furthermore, the concepts of causality, periodicity, and rationality are deVned
in the dioid F

Nmax
and some properties of the dioid F

Nmax
are also proved. The dioid F

Nmax

serves, in § 4, as the dioid of coeXcients to develop a dioid of formal power series similar to
the dioid Nmax,γvγw.

DeVnition 29 (Dioid FNmax
). The complete dioid FNmax

is the set of residuated mappings over

Nmax endowed with the operations ` and b deVned by

�f1, f2 P FNmax
, �x P Nmax, pf1 ` f2q pxq � f1 pxq ` f2 pxq

f1 b f2 � f1 � f2

The order in the dioid FNmax
is induced by the order in Nmax, i.e.,

�f1, f2 P FNmax
, f1 ¨ f2 � �x P Nmax, f1 pxq ¨ f2 pxq

According to Prop. 5, the previous deVnition is valid. In the next two lemmas, a simple
characterization of the residuated (resp. dually residuated) mappings over Nmax is derived
from Th. 3 (resp. Th. 4) using particular properties of Nmax. These two lemmas are used to
check whether a mapping over Nmax is residuated or dually residuated.

Lemma 16. Let f be a mapping over Nmax. The following statements are equivalent:
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3. Dioid FNmax

1. f is residuated

2. f pεq � ε, f is isotone, and
À

nPN f pnq � f pJq

Proof. 1ñ 2: By deVnition, f is isotone. Besides, according to Th. 3, f pεq � ε and f is lower
semi-continuous. Therefore,

à

nPN

f pnq � f

�

à

nPN

n

�

� f pJq

2 ñ 1: According to Th. 3, it remains to prove that f is lower semi-continuous. As f is
isotone,

�X � Nmax, f

�

à

xPX

x

�

©

à

xPX

f pxq

In the dioid Nmax, �X � Nmax, x̃ �
À

xPX x is either in X or equal to J. If x̃ P X ,

à

xPX

f pxq © f px̃q � f

�

à

xPX

x

�

Otherwise, x̃ � J. Hence, for all n P N, there exists xn P X such that xn © n. Then,

à

xPX

f pxq ©
à

nPN

f pxnq ©
à

nPN

f pnq � f pJq � f px̃q � f

�

à

xPX

x

�

Therefore, f is lower semi-continuous.

Lemma 17. Let f be a mapping over Nmax. The following statements are equivalent:

1. f is dually residuated

2. f pJq � J and f is isotone

Proof. 1 ñ 2: Mapping f is dually residuated. By deVnition, f is isotone. Besides, according
to Th. 4, f pJq � J.
2 ñ 1: According to Th. 4, it remains to prove that f is upper semi-continuous. As f is

isotone,

�X � Nmax, f

�

©

xPX

x

�

¨

©

xPX

f pxq

In the dioid Nmax, �X � Nmax, x̃ �
�

xPX x belongs to X .

©

xPX

f pxq ¨ f px̃q � f

�

©

xPX

x

�

Therefore, f is upper semi-continuous.
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3.1. Projection on FNmax

As the dioid F
Nmax

is complete, right-division is deVned in F
Nmax

and f2�{f1 corresponds
to the greatest solution in F

Nmax
of f b f1 ¨ f2. The previous lemma leads, under some

conditions, to a simple expression for right-division in F
Nmax

.

Lemma 18. Let f1, f2 be two mappings in F
Nmax

such that f1 pJq � J. Then,

f2�{f1 � f2 b f
5

1

Proof. Mapping f1 is isotone and f1 pJq � J. According to Lem. 17, f1 is dually residuated.
As f51 is residuated (see Rem. 1), f51 belongs to FNmax

. Let g be a mapping in FNmax
. Then,

gb f1 ¨ f2 ñ gb f1 b f
5

1 ¨ f2 b f
5

1

ñ g ¨ f2 b f
5

1 as f1 b f
5

1 © Id

Furthermore,

g ¨ f2 b f
5

1 ñ gb f1 ¨ f2 b f
5

1 b f1

ñ gb f1 ¨ f2 as f
5

1 b f1 ¨ Id

Hence, gb f1 ¨ f2 � g ¨ f2 b f
5

1. Thus, f2�{f1 � f2 b f
5

1.

3.1. Projection on FNmax

In this section, a projection, denoted PrR, from the set of isotone mappings over Nmax to
F
Nmax

is introduced. This allows us, in particular, to prove the distributivity of F
Nmax

.

Proposition 16. Let f be an isotone mapping over Nmax. There exists a greatest mapping in
FNmax

, denoted PrR pfq, such that PrR pfq ¨ f. Mapping PrR pfq is deVned by

�x P Nmax, PrR pfq pxq �

$

'

&

'

%

ε if x � ε

f pxq if x P N0
À

nPN f pnq if x � J

Proof. The mapping g over Nmax is deVned by

�x P Nmax, g pxq �

$

'

&

'

%

ε if x � ε

f pxq if x P N0
À

nPN f pnq if x � J

Clearly, g is isotone, g pεq � ε, and
à

nPN

g pnq �
à

nPN

f pnq � g pJq
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3. Dioid FNmax

Therefore, according to Lem. 16, g is residuated. Furthermore, as f is isotone,

g pJq �
à

nPN

f pnq ¨ f pJq

Then, g ¨ f. Let h be a residuated mapping less than or equal to f. For x � ε, h pεq � ε �
g pεq. For x P N0, h pxq ¨ f pxq � g pxq. For x � J,

h pJq �
à

nPN

h pnq ¨
à

nPN

f pnq � g pJq

Hence, h ¨ g. Thus, g is the greatest residuated mapping less than or equal to f.

Remark 11. The previous proposition is reminiscent of Prop. 3. However, as shown in Ex. 9,
the set of isotone mappings over Nmax is not a complete dioid. Of course, it is possible to
reformulate Prop. 3 in terms of lattices (see [2, 3]). Then, the previous proposition is a direct
consequence of the lattice-version of Prop. 3, as the set of isotone mappings over Nmax and
FNmax

are complete lattices.

The next lemma investigates the behavior of PrR with respect to `.

Lemma 19. Let f1, f2 be two isotone mappings over Nmax. Then,

PrR pf1 ` f2q � PrR pf1q ` PrR pf2q

Proof. This comes directly from the deVnition of PrR pfq in Prop. 16.

As the dioid FNmax
is complete, left-division is deVned in FNmax

and f1 �zf2 corresponds to

the greatest solution in FNmax
of f1b f ¨ f2. The projection PrR leads to a simple expression

for left-division in FNmax
similar to the one obtained for right-division in Lem. 18.

Lemma 20. Let f1, f2 be two mappings in F
Nmax

.

f1 �zf2 � PrR
�

f
7

1 � f2

	

Proof. Let g be a mapping in F
Nmax

.

f1 b g ¨ f2 � �x P Nmax, f1 pg pxqq ¨ f2 pxq

� �x P Nmax, g pxq ¨ f
7

1 pf2 pxqq

� g ¨ f
7

1 � f2

As f71 does not belong to FNmax
, f71 � f2 may also not belong to FNmax

. Then, according to
Prop. 16,

f1 b g ¨ f2 � g ¨ PrR
�

f
7

1 � f2
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3.1. Projection on FNmax

In a complete dioid D, according to Lem. 2,

a �z

�

à

xPX

x

�

©

à

xPX

a �zx and

�

à

xPX

x

�

�

{a ©
à

xPX

x�{a

with a P D and X � D. In the complete dioid FNmax
, under some conditions, equality holds

as shown in the following lemma.

Lemma 21. Let H be a Vnite subsets of FNmax
and let f1, f2 be two mappings in FNmax

such
that f2 pJq � J. Then,

f1 �z

�

à

hPH

h

�

�

à

hPH

f1 �zh and

�

à

hPH

h

�

�

{f2 �
à

hPH

h�{f2

Proof. First, left-division is considered. As f71 is isotone,

�x P Nmax,
à

hPH

f
7

1 ph pxqq ¨ f
7

1

�

à

hPH

h pxq

�

As H is Vnite, for all x P Nmax, there exists hx P H such that
À

hPH h pxq � hx pxq. Then,

�x P Nmax, f
7

1

�

à

hPH

h pxq

�

� f
7

1 phx pxqq ¨
à

hPH

f
7

1 ph pxqq

This implies

f
7

1 �

�

à

hPH

h

�

�

à

hPH

f
7

1 � h

Consequently, according to Lem. 19 and Lem. 20,

f1 �z

�

à

hPH

h

�

� PrR

�

f
7

1 �

�

à

hPH

h

��

� PrR

�

à

hPH

f
7

1 � h

�

�

à

hPH

PrR
�

f
7

1 � h
	

�

à

hPH

f1 �zh
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3. Dioid FNmax

Second, right-division is considered. According to Lem. 18,

�

à

hPH

h

�

�

{f2 �

�

à

hPH

h

�

b f52

�

à

hPH

�

hb f52

	

by distributivity

�

à

hPH

h�{f2

The projection PrR is also used in the expression of the greatest lower bound in the com-
plete dioid F

Nmax
. The greatest lower bound over Vnite subsets has already been addressed in

Prop. 1. The next proposition is more general and deals with inVnite subsets.

Lemma 22. Let H be a subset of FNmax
. Then,

�

hPH h � PrR pgHq where gH is an isotone

mapping over Nmax deVned by

�x P Nmax, gH pxq �
©

hPH

h pxq

Proof. Let f P F
Nmax

.

f ¨
©

hPH

h� �h P H, f ¨ h

� �h P H,�x P Nmax, f pxq ¨ h pxq

� �x P Nmax, f pxq ¨ gH pxq

� f ¨ gH

As gH is an isotone mapping, f ¨ gH � f ¨ PrR pgHq. Therefore,
�

hPH h � PrR pgHq.

The previous lemma leads to the distributivity of FNmax
.

Proposition 17. The complete dioid FNmax
is distributive.

Proof. AsF
Nmax

is a complete dioid, it remains to check that, for all f P F
Nmax

andH � F
Nmax

,

f`

�

©

hPH

h

�

�

©

hPH

pf` hq and f^

�

à

hPH

h

�

�

à

hPH

pf^ hq
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3.2. Subdioid F∆

To prove these equalities, we use Lem. 22 and the distributivity of Nmax. Only the case x � J

is not obvious.
�

f`

�

©

hPH

h

��

pJq � f pJq `
à

nPN

©

hPH

h pnq see Lem. 22

�

à

nPN

�

f pnq `
©

hPH

h pnq

�

�

à

nPN

�

©

hPH

pf pnq ` h pnqq

�

�

à

nPN

�

©

hPH

pf` hq

�

pnq

�

�

©

hPH

pf` hq

�

pJq see Lem. 22

�

f^

�

à

hPH

h

��

pJq � f pJq ^

�

à

hPH

h

�

pJq see Prop. 1

� f pJq ^

�

à

hPH

h pJq

�

�

à

hPH

pf pJq ^ h pJqq

�

�

à

hPH

pf^ hq

�

pJq

3.2. Subdioid F∆

In this section, a subdioid of F
Nmax

, denoted F∆, isomorphic to Nmax is introduced. The

mapping ∆ from Nmax to Nmax is deVned by ∆ pxq � L1 pxq � 1x. According to Cor. 1, ∆
belongs to F

Nmax
and its residual ∆7 is often denoted ∆7 pxq � 1 �zx.

Lemma 23. The set F∆ �

 

ε,J, ∆j with j P N0
(

endowed with the operations ` and b
deVned over FNmax

is a complete selective subdioid of FNmax
isomorphic to Nmax. Furthermore,
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3. Dioid FNmax

there exists a single isomorphism, denoted φ, from Nmax to F∆. Mapping φ is deVned by

�x P Nmax, φ pxq �

$

'

&

'

%

ε if x � ε

∆x if x P N0

J if x � J

Proof. The zero element ε and the unit element e � ∆0 of F
Nmax

belong to F∆. Obviously,
F∆ is stable for ` and b. Then, F∆ is a subdioid of FNmax

. Furthermore, F∆ is stable under
inVnite sums. Thus, F∆ is a complete subdioid of FNmax

.

The mapping φ from Nmax to F∆ deVned before is an isomorphism. Therefore, Nmax and
F∆ are isomorphic dioids. Hence, as Nmax is selective, F∆ is selective.

Finally, the uniqueness of φ is checked. Let ψ be an isomorphism from Nmax to F∆. Then,
ψ pεq � ε, as ψ is a `-morphism. We now show by induction over k P N0 that ψ pkq � ∆k.
This equality holds for k � 0, as ψ is a b-morphism. Let us assume that the equality holds
for a given k in N0. As ψ is isotone, ψ pk� 1q © ∆k. Equality ψ pk� 1q � ∆k � ψ pkq

is absurd, as ψ is injective. Then, ψ pk� 1q © ∆k�1. Inequality ψ pk� 1q © ∆k�2 is also
absurd, as ψ is surjective. Thus, ψ pk� 1q � ∆k�1. As ψ is isotone, ψ pJq © ∆j for all
j P N0. Consequently, ψ pJq � J. Hence, ψ � φ.

The next lemma makes explicit a nice property of mappings in F∆.

Lemma 24. Let a in F∆ and f, g in FNmax
.

a pf^ gq � af^ ag

Proof. There exists k P Nmax such that, for all x P Nmax, a pxq � kx. Then,

�x P Nmax, pa pf^ gqq pxq � k pf pxq ^ g pxqq

� kf pxq ^ kg pxq

� pafq pxq ^ pagq pxq

� paf^ agq pxq

3.3. Quasi-Causality and Causality

In this section, the concepts of quasi-causality and causality are introduced for residuated
mappings over Nmax (i.e., mappings in FNmax

).

DeVnition 30 (Quasi-causality). A mapping f in F
Nmax

is said to be quasi-causal if f � ε or
if there exists Y P N0 such that

#

f pxq � ε if x   Y

f pxq © x if x © Y
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3.3. Quasi-Causality and Causality

The set of quasi-causal mappings in F
Nmax

is denoted F�

Nmax
.

Lemma 25. Endowed with the operations ` and b deVned over FNmax
, F�

Nmax
is a complete

subdioid of F
Nmax

.

Proof. The zero element and the unit element of FNmax
are quasi-causal. For H � F�

Nmax
,

À

hPH h is obviously quasi-causal. Let f1 and f2 be two mappings in F�

Nmax
. If f1 or f2 is

equal to ε, then f1b f2 � ε is quasi-causal. Otherwise, Y1 and Y2 are elements in N0 deVned
by

Y1 �
©

 

x P Nmax|f1 pxq ¡ ε
(

and Y2 �
©

 

x P Nmax|f2 pxq ¡ ε
(

Then, Y �
�

 

x P Nmax|f2 pxq © Y1
(

belongs to N0, as f2 pY1 ` Y2q © Y1 ` Y2 © Y1, and

#

pf1 b f2q pxq � ε if x   Y

pf1 b f2q pxq © f2 pxq © x if x © Y

Thus, F�

Nmax
is closed with respect to b. Hence, F�

Nmax
is a complete subdioid of FNmax

.

DeVnition 31 (Quasi-causal projection). The quasi-causal projection, denoted Pr
�

, is a map-

ping from FNmax
to F�

Nmax
deVned as the residual of the canonical injection from F�

Nmax
to

FNmax
.

As F�

Nmax
is a complete subdioid of F

Nmax
, the canonical injection from F�

Nmax
to F

Nmax
is

residuated (see Prop. 3). Hence, the previous deVnition makes sense. Let f be a mapping in
F
Nmax

. Mapping Pr
�

pfq is the greatest quasi-causal mapping (i.e., in F�

Nmax
) less than or equal

to f. To calculate Pr
�

pfq, the subset A of Nmax is deVned by A �

 

x P Nmax|x ¡ f pxq
(

. If
A is not Vnite, Pr

�

pfq � ε. If A is empty, Pr
�

pfq � f. Otherwise, Z �

À

aPA 1a belongs
to N0 and Pr� pfq is deVned by

Pr
�

pfq pxq �

#

ε if x   Z

f pxq if x © Z

As F�

Nmax
is a complete dioid, the greatest lower bound ^�, the left-division �

z

�

, and the

right-division �

{

�

are deVned in F�

Nmax
. Furthermore, according to Rem. 6,

�H � F�

Nmax
,

�

©

hPH

h � Pr
�

�

©

hPH

h

�

�f, g P F�

Nmax
, f �z

�

g � Pr
�

pf �zgq and g�{
�

f � Pr
�

pg�{fq
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3. Dioid FNmax

Lemma 26. The operation ^� in F�

Nmax
coincides with the operation ^ in F

Nmax
over F�

Nmax
.

Formally, let H � F�

Nmax
,
�

�

hPH h �
�

hPH h.

Proof. To prove the previous equality, it is suXcient to show that
�

hPH h is quasi-causal. If
ε P H, then

�

hPH h � ε is quasi-causal. Otherwise, for all h P H,

Yh �
©

 

x P Nmax|h pxq © x
(

P N0

Let Y �
À

hPH Yh.
If Y � J, for all x P N0, there exists h P H such that h pxq � ε. Then,

�x P N0,

�

©

hPH

h

�

pxq �
©

hPH

h pxq � ε

Furthermore,
�

©

hPH

h

�

pJq �

à

nPN

�

©

hPH

h pnq

�

� ε

Hence,
�

hPH h � ε is quasi-causal.
Otherwise, Y P N0,

�x   Y,

�

©

hPH

h

�

pxq �
©

hPH

h pxq � ε

�x © Y, x � J,

�

©

hPH

h

�

pxq �
©

hPH

h pxq © x

x � J,

�

©

hPH

h

�

pJq �

à

nPN

�

©

hPH

h pnq

�

©

à

n¥Y

n � J

Hence,
�

hPH h is quasi-causal.

DeVnition 32 (Causality). A mapping f in F
Nmax

is said to be causal if f � ε or if, for all

x P Nmax, f pxq © x. The set of causal mappings in F
Nmax

is denoted F��

Nmax
.

Lemma 27. Endowed with the operations ` and b deVned over F
Nmax

, F��

Nmax
is a complete

subdioid of F
Nmax

.

Proof. The unit element and the zero element of FNmax
are causal. For H � F��

Nmax
,
À

hPH h

is obviously causal. Let f1 and f2 be two mappings in F��

Nmax
. If f1 or f2 is equal to ε, then

f1 b f2 � ε is causal. Otherwise,

�x P Nmax, pf1 b f2q pxq © f2 pxq © x

Thus, F��

Nmax
is closed with respect to b. Hence, F��

Nmax
is a complete subdioid of FNmax

.
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3.4. Periodicity

DeVnition 33 (Causal projection). The causal projection, denoted Pr
��

, is a mapping from
F
Nmax

to F��

Nmax
deVned as the residual of the canonical injection from F��

Nmax
to F

Nmax
.

As F��

Nmax
is a complete subdioid of F

Nmax
, the canonical injection from F��

Nmax
to F

Nmax
is

residuated (see Prop. 3). Hence, the previous deVnition makes sense. Let f be a mapping in
F
Nmax

. Mapping Pr
��

pfq is the greatest causal mapping (i.e., in F��

Nmax
) less than or equal to

f. To calculate Pr
��

pfq, the subset A of Nmax is deVned byA �

 

x P Nmax|x ¡ f pxq
(

. If A
is not empty, Pr

��

pfq � ε. If A is empty, Pr
��

pfq � f.
As F��

Nmax
is a complete dioid, the greatest lower bound ^��, the left-division �

z

��

, and

the right-division �

{

��

are deVned. Furthermore, according to Rem. 6,

�H � F��

Nmax
,

��

©

hPH

h � Pr
��

�

©

hPH

h

�

�f, g P F��

Nmax
, f �z

��

g � Pr
��

pf �zgq and g�{
��

f � Pr
��

pg�{fq

Lemma 28. The operation^�� in F��

Nmax
coincides with the operation^ in FNmax

over F��

Nmax
.

Formally, let H � F��

Nmax
,
�

��

hPH h �
�

hPH h.

Proof. To prove the previous equality, it is suXcient to show that
�

hPH h is causal. If ε P H,
�

hPH h � ε is causal. Otherwise, for all h P H and for all x P Nmax, h pxq © x. Then,

�x � J,

�

©

hPH

h

�

pxq �
©

hPH

h pxq © x

x � J,

�

©

hPH

h

�

pJq �

à

nPN

�

©

hPH

h pnq

�

©

à

nPN

n � J

Hence,
�

hPH h is causal.

3.4. Periodicity

In this section, the concept of periodicity is introduced for mappings in FNmax
.

DeVnition 34 (Periodicity). Amapping f inF
Nmax

is said to be periodic with respect to X P N0
and ω P N if

�x © X, f pωxq � ωf pxq

A mapping f periodic with respect to X and ω is completely deVned by its values f pkq
with e ¨ k   ωX. The following lemma makes explicit a property of periodic mappings,
which plays an essential role in §4.
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3. Dioid FNmax

Lemma 29. Let f be a mapping in F
Nmax

periodic with respect to X and ω. Then, f∆X�ω �

∆ωf∆X.

Proof. If x � ε,

f∆X�ω pεq � ε � ∆ωf∆X pεq

Otherwise, Xx © X. Therefore,

f∆X�ω pxq � f pωXxq � ωf pXxq � ∆ωf∆X pxq

3.4.1. Calculation with Periodic Mappings

Next, the behavior of periodic mappings with respect to operations `, ^, b, �z, and �

{ is
investigated.

Sum of Periodic Mappings

Proposition 18 (Sum of periodic mappings). Let f1 (resp. f2) be a mapping in F
Nmax

periodic
with respect to X1 (resp. X2) in N0 andω1 (resp. ω2) in N. Mapping f1 ` f2 is periodic with
respect to X � X1 ` X2 andω � lcm pω1,ω2q.

Proof.

�x © X, pf1 ` f2q pωxq � f1 pωxq ` f2 pωxq

� ωf1 pxq `ωf2 pxq

� ω pf1 ` f2q pxq

Greatest Lower Bound of Periodic Mappings

Proposition 19 (Greatest lower bound of periodic mappings). Let f1 (resp. f2) be a mapping
in FNmax

periodic with respect to X1 (resp. X2) in N0 andω1 (resp. ω2) in N. Mapping f1^f2
is periodic with respect to X � X1 ` X2 andω � lcm pω1,ω2q.

Proof. According to Prop. 1,

�x P Nmax, pf1 ^ f2q pxq � f1 pxq ^ f2 pxq
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3.4. Periodicity

Hence,

�x © X, pf1 ^ f2q pωxq � f1 pωxq ^ f2 pωxq

� ωf1 pxq ^ωf2 pxq

� ω pf1 pxq ^ f2 pxqq see Rem. 4

� ω pf1 ^ f2q pxq

Product of Periodic Mappings

Proposition 20 (Product of periodic mappings). Let f1 (resp. f2) be a mapping in F
Nmax

periodic with respect to X1 (resp. X2) in N0 and ω1 (resp. ω2) in N. Mapping f1 b f2 is
periodic with respect to

X �

#

0 if f2 � ε

X2 `
�

 

x P Nmax|f2 pxq © X1
(

otherwise

ω � lcm pω1,ω2q

Proof. If f2 � ε, then f1 b f2 � ε is periodic with respect to 0 and ω. Otherwise, by
periodicity, there exists x P N0 such that f2 pxq © X1. Therefore, X belongs to N0. For
x © X,

pf1 b f2q pωxq � f1 pωf2 pxqq as x © X2

� ω pf1 b f2q pxq as f2 pxq © X1

Left-Division of Periodic Mappings

In the following, the periodicity of f1 �zf2 is investigated when f1 and f2 are periodic map-
pings in FNmax

.

Example 14. Let f1 and f2 be two causal periodic mappings in FNmax
deVned by

f1 pxq �

#

x if x   3

J if x © 3
and f2 pxq � x

Then,

pf1 �zf2q pxq � PrR
�

f
7

1 � f2

	

pxq �

#

x if x   2

2 if x © 2

Therefore, mapping f1 �zf2 is not periodic.
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3. Dioid FNmax

Ex. 14 shows that the periodicity of f1 and of f2 does not imply the periodicity of f1 �zf2.
From now on, we focus on the quasi-causal case. In the following, we investigate the period-
icity of f1 �z

�

f2 when f1 and f2 are quasi-causal periodic mappings in F
Nmax

. First, the eUect

of the periodicity of f on its residual f7 is examined.

Lemma 30. Let f be a periodic (with respect to X andω) mapping in F
Nmax

. Then,

�y © f pXq , f7 pωyq � ωf7 pyq

Proof.

�y © f pXq , f7 pωyq �
à

 

x P Nmax|f pxq ¨ ωy
(

�

à

tx © ωX|f pxq ¨ ωyu

� ω
à

tx © X|f pxq ¨ yu

� ω
à

 

x P Nmax|f pxq ¨ y
(

� ωf7 pyq

Proposition 21. Let f1 (resp. f2) be a quasi-causal mapping in FNmax
periodic with respect

to X1 (resp. X2) in N0 and ω1 (resp. ω2) in N. Mapping f1 �z
�

f2 is periodic with respect to
X � X1 ` X2 andω � lcm pω1,ω2q.

Proof. According to Lem. 20, f1 �zf2 � PrR
�

f
7

1 � f2

	

. Then,

f1 �z
�

f2 � Pr
�

pf1 �zf2q � Pr
�

�

PrR
�

f
7

1 � f2

		

In the following, two cases are distinguished.

First Case: We assume that, for all Z P N0, there exists z © Z such that f1 pzq ¡ f2 pzq. If
�

f
7

1 � f2

	

pzq © z,

f2 pzq ©
�

f1 � f
7

1 � f2

	

pzq © f1 pzq ¡ f2 pzq

This is absurd. Then,
�

f
7

1 � f2

	

pzq   z. Hence, for all Z P N0, there exists z © Z such that

PrR
�

f
7

1 � f2

	

pzq   z. Then,

f1 �z
�

f2 � Pr
�

�

PrR
�

f
7

1 � f2

		

� ε

Mapping f1 �z
�

f2 is periodic with respect to X andω.
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3.4. Periodicity

Second Case: We assume that there exists Z P N0 such that, �x © Z, f1 pxq ¨ f2 pxq. By
periodicity, �x © X, f1 pxq ¨ f2 pxq. Hence,

�x © X,
�

f
7

1 � f2

	

pxq ©
�

f
7

1 � f1

	

pxq © x

This leads to

�x © X,
�

f1 �z
�

f2
�

pxq �
�

f
7

1 � f2

	

pxq

Thus,

�x © X,
�

f1 �z
�

f2
�

pωxq �
�

f
7

1 � f2

	

pωxq

� f
7

1 pωf2 pxqq as x © X © X2

As, for x © X, f2 pxq © f1 pxq © f1 pX1q, Lem. 30 leads to

�x © X,
�

f1 �z
�

f2
�

pωxq � ω
�

f
7

1 � f2

	

pxq

� ω
�

f1 �z
�

f2
�

pxq

Mapping f1 �z
�

f2 is periodic with respect to X andω.

Right-Division of Periodic Mappings

In the following, the periodicity of f2�{f1 is investigated when f1 and f2 are periodic.

Example 15. Let f1 and f2 be two causal periodic mappings in F
Nmax

deVned by

f1 pxq �

#

x if x   3

J if x © 3
and f2 pxq � x

Then,

pf2�{f1q pxq �
�

f2 b f
5

1

	

pxq �

#

x if x   3

3 if x © 3

Mapping f2�{f1 is not periodic.

Ex. 15 shows that the periodicity of f1 and of f2 does not imply the periodicity of f2�{f1.
From now on, we focus on the quasi-causal case. In the following, we investigate the period-
icity of f2�{

�

f1 when f1 and f2 are quasi-causal periodic mappings inFNmax
. Next, for a dually

residuated mapping f, the eUect of the periodicity of f on its dual residual f5 is examined.
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3. Dioid FNmax

Lemma 31. Let f be a dually residuated periodic (with respect to X andω) mapping in F
Nmax

such that f pXq � J. Then, f5 is periodic with respect to 1f pXq andω.

Proof. As f is dually residuated, f � ε. Furthermore, f pXq � J implies 1f pXq P N0. Then,

�y © 1f pXq , f5 pωyq �
©

 

x P Nmax|f pxq © ωy
(

�

©

tx ¡ ωX|f pxq © ωyu

� ω
©

tx ¡ X|f pxq © yu

� ω
©

 

x P Nmax|f pxq © y
(

� ωf5 pyq

Proposition 22. Let f1 (resp. f2) be a quasi-causal mapping in F
Nmax

periodic with respect to
X1 (resp. X2) in N0 and ω1 (resp. ω2) in N. Mapping f2�{

�

f1 is periodic with respect to

X �

#

e` 1f1 pX1 ` X2q if f1 pX1q � J

e` 1f1
�

�

 

x P Nmax|f1 pxq � J

(

�

{1
�

otherwise

ω � lcm pω1,ω2q

Proof. If f1 � ε, f2�{
�

f1 � J is periodic with respect to X and ω. In the following, we
assume that f1 � ε. As f1 is a non-zero quasi-causal mapping, f1 pJq � J. Then, according
to Lem. 18,

f2�{
�

f1 � Pr
�

pf2�{f1q � Pr
�

�

f2 b f
5

1

	

Let Y �
�

 

x P Nmax|f1 pxq � J

(

. In the following, three cases are distinguished.

First Case: We assume that, for all Z P N0, there exists z © Z such that f1 pzq ¡ f2 pzq.
Then, for all Z P N0, there exists z © Z`X1 such that f1 pzq ¡ f2 pzq. Thus, as f51b f1 ¨ Id,

f1 pzq ¡ f2 pzq ©
�

f2 b f
5

1 b f1

	

pzq

As f1 � ε and z © Z ` X1, f1 pzq © Z. Then, for all Z P N0, there exists z1 � f1 pzq © Z

such that

pf2�{f1q
�

z1
�

� f2

�

f51
�

z1
�

	

  z1

Consequently, due to quasi-causality, f2�{
�

f1 � ε is periodic with respect to X andω.
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3.5. Rationality

Second Case: We assume that Y P N0 and that there exists Z P N0 such that, for all
x © Z, f2 pxq © f1 pxq. For x © e` 1f1 pY�{1q, f51 pxq � Y. Then,

�x © e` 1f1 pY�{1q , pf2�{f1q pxq � f2 pYq

Consequently,

�x © e` 1f1 pY�{1q ,
�

f2�{
�

f1
�

pxq �

#

J if f2 pYq � J

ε otherwise

Therefore, f2�{
�

f1 is periodic with respect to X � e` 1f1 pY�{1q andω.

Third Case: We assume that Y � J and that there exists Z P N0 such that, for all x © Z,
f2 pxq © f1 pxq. By periodicity, �x © X1`X2, f2 pxq © f1 pxq. Then, �x © e`1f1 pX1 ` X2q,
f51 pxq © X1 ` X2. This leads to

�x © e` 1f1 pX1 ` X2q , pf2�{f1q pxq �
�

f2 b f
5

1

	

pxq ©
�

f1 b f
5

1

	

pxq © x

Therefore,

�x © e` 1f1 pX1 ` X2q ,
�

f2�{
�

f1
�

pxq � pf2�{f1q pxq �
�

f2 b f
5

1

	

pxq

Hence,

�x © e` 1f1 pX1 ` X2q ,
�

f2�{
�

f1
�

pωxq �
�

f2 b f
5

1

	

pωxq

� f2

�

ωf51 pxq
	

according to Lem. 31

� ωf2

�

f51 pxq
	

as f51 pxq © X2

� ω
�

f2�{
�

f1
�

pxq

Therefore, f2�{
�

f1 is periodic with respect to X � e` 1f1 pX1 ` X2q andω.

3.5. Rationality

The complete dioid Nmax,γvγw has already been introduced in §2.7. It corresponds to the
dioid of isotone formal power series s with coeXcients in Nmax such that s pkq � ε for
k   0. Based on Nmax,γvγw, a particular class of causal elements in FNmax

is presented and
the concepts of rationality for mappings in FNmax

is introduced.

DeVnition 35 (α-mapping). The α-mapping αs associated with a series s P Nmax,γvγw is the
causal element in F

Nmax
deVned by

αs pxq �
©

tz © x|z P Im psq Y tJuu
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3. Dioid FNmax

A link exists between the periodicity of a series in Nmax,γvγw and the periodicity of the
associated α-mapping in F

Nmax
.

Proposition 23. Let s be a series in Nmax,γvγw. If s is periodic, then αs is periodic.

Proof. Depending on the throughput of series s, four cases are distinguished.

s � ε: αs � J is periodic.

σ psq � 0: s is a polynomial with the canonical representative
ÀN

k�1 akγ
nk such that N P

N, 0 ¤ n1   � � �   nN, and e ¨ a1   � � �   aN � J. If N ¥ 2, αs pxq � J for
x © 1aN�1. Otherwise (i.e.,N � 1), αs � J. Thus, αs is periodic with respect to

X �

#

1aN�1 if N ¥ 2

e if N � 1
andω � 1

σ psq � �8: s is a polynomial with the canonical representative
ÀN

k�1 akγ
nk such that

N P N, 0 ¤ n1   � � �   nN, and e ¨ a1   � � �   aN   J. Then, αs pxq � J for
x © 1aN. Thus, αs is periodic with respect to X � 1aN andω � 1.

0   σ psq   �8: There exist K P N0 and τ, ν P N such that s pKq P N0 and s pk� νq �
τs pkq for k ¥ K. For J ¡ x © 1s pKq,

αs pτxq �
©

ts pkq © τx|k P Zu

�

©

ts pkq © τx|k ¡ K� νu

� τ
©

ts pkq © x|k ¡ Ku

� ταs pxq

Thus, αs is periodic with respect to X � 1s pKq andω � τ.

The concept of rationality in FNmax
is based on α-mappings.

DeVnition 36 (Rationality). A mapping f in FNmax
is said to be rational if there exists a

Vnite set tr1, . . . , rNu of periodic series in Nmax,γvγw such that f belongs to the rational
closure of tε, e, αr1 , . . . , αrNu. An expression of f as an element of the rational closure of
tε, e, αr1 , . . . , αrNu is called a rational expression of f.

Proposition 24. Let f be a causal periodic mapping in FNmax
. Then, f is rational.

Proof. Mapping f is a causal mapping in FNmax
: f � ε or f pxq © x for all x P Nmax. Obvi-

ously, ε is rational. Next, the case f pxq © x for all x P Nmax is considered. By assumption,
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3.5. Rationality

f is periodic with respect to X P N0 and ω P N. First, f is written as a Vnite sum of simple
causal periodic mappings in F

Nmax
.

f �
X�ω�1
à

i�0

fi

where the causal periodic mappings fi are deVned by

�i such that 0 ¤ i   X, fi pxq �

#

f piq if i ¨ x   f piq

x otherwise

�i such that X ¤ i   X�ω, fi pxq �

$

'

&

'

%

x if x   i

ωjf piq ` x ifωji ¨ x   ωj�1i with j P N0

J if x � J

Second, the rationality of the mappings fi is investigated in each case. If 0 ¤ i   X, then
fi � αri where

ri �
i�1
à

k�0

kγk ` f piqγi p1γq�

If X � ω ¡ i ¥ X, two subcases are distinguished depending on L � p1f piqq �{ pωiq. If
L � ε, fi � αri where

ri �
i�1
à

k�0

kγk `

�

M�1
à

k�0

pkf piqqγi�k

�

�

ωγM
	

�

withM � pωiq �{ p1f piqq. Otherwise, the discussion is slightly more complicated. First of all,
the particular case corresponding to ω � 1 comes down to periodic mappings with ω � 2.
Indeed, ifω � 1, then fi � f1,i ` f2,i with causal periodic mappings f1,i and f2,i deVned by

f1,i pxq �

$

'

&

'

%

x if x   i

f piq �{1 if x � i

1b 2jf piq if 1b 2ji ¨ x   3b 2ji with j P N0

f2,i pxq �

#

x if x   i

2jf piq if 2ji ¨ x   2j�1i with j P N0

Afterwards, we assume that ω ¥ 2. Then, fi �
ÂL

l�0 αri,L�l
with

ri,l �
i�1
à

k�0

kγk ` pilω�

{1qγi pωγq�
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3. Dioid FNmax

Example 16. Rational expressions of some particular causal periodic mappings in F
Nmax

are
presented. First, ∆ � αr1 ` αr2 with r1 � p2γq� and r2 � 1 p2γq�. Second, the causal
periodic mapping g deVned by

g pxq �

$

'

&

'

%

x if x   4

7b 3j if 4b 3j ¨ x   7b 3j with j P N0

J if x � J

admits the rational expression αr2αr1 with

r1 � e` 1γ` 2γ
2
` 3γ3 ` 6γ4 p3γq�

r2 � e` 1γ` 2γ
2
` 3γ3 ` 7γ4 p3γq�
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4
Dioid FNmax,γ

vγw

In this chapter, the dioid FNmax,γ
vγw is investigated. This dioid is built by analogy with the

dioid Nmax,γvγw, but the coeXcients are taken in FNmax
instead of Nmax. The main objective

of this chapter is to obtain a fundamental theorem in the dioid F
Nmax,γ

vγw similar to the one

in the dioid Nmax,γvγw (see Th. 8).

DeVnition 37 (Dioid FNmax,γ
vγw). The distributive dioid FNmax,γ

vγw is deVned as the dioid of
isotone formal power series in γ with coeXcients in the distributive dioid FNmax

equal to ε
over tk P Z|k   0u.

According to Prop. 9 and Lem. 14, the previous deVnition is valid. By deVnition, a series s
in F

Nmax,γ
vγw is an isotone mapping from Z to F

Nmax
such that s pkq � ε for k   0. Then,

s pkq pxq denotes the value in Nmax of the mapping s pkq at x P Nmax. Next, an alternative
representation for series in F

Nmax,γ
vγw is introduced.

DeVnition 38 (Slicing mapping ψ). The slicing mapping ψ is a mapping from FNmax,γ
vγw to

the set of mappings from Nmax to Nmax,γvγw deVned by

�s P FNmax,γ
vγw,�x P Nmax, ψ psq pxq �

à

kPZ

s pkq pxqγk

or, equivalently,

�s P FNmax,γ
vγw,�x P Nmax,�k P Z, ψ psq pxq pkq � s pkq pxq
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vγw

Remark 12. Basic properties of the slicing mapping ψ are

�s P F
Nmax,γ

vγw,�x P Nmax, ψ pγsq pxq � γψ psq pxq

ψ p∆sq pxq � 1ψ psq pxq

Lemma 32. Let s be a series in F
Nmax,γ

vγw. The mapping ψ psq from Nmax to Nmax,γvγw is
residuated.

Proof. This proof is based on Th. 3. For all k P Z, as mapping s pkq is residuated, s pkq pεq � ε
and s pkq is lower semi-continuous. Then,

ψ psq pεq �
à

kPZ

s pkq pεqγk � ε

�X � Nmax, ψ psq

�

à

xPX

x

�

�

à

kPZ

s pkq

�

à

xPX

x

�

γk

�

à

kPZ

à

xPX

s pkq pxqγk

�

à

xPX

ψ psq pxq

Hence, ψ psq is residuated.

The previous lemma shows that the slicing mappingψ is actually a mapping fromFNmax,γ
vγw

to the set of residuated mappings from Nmax to Nmax,γvγw, denoted FR
�

Nmax,Nmax,γvγw
�

.

Lemma 33. The slicing mapping ψ fromFNmax,γ
vγw toFR

�

Nmax,Nmax,γvγw
�

is bijective. The

mapping ψ�1 from FR
�

Nmax,Nmax,γvγw
�

to FNmax,γ
vγw is deVned by

�S P FR
�

Nmax,Nmax,γvγw
�

,�k P Z,�x P Nmax, ψ�1 pSq pkq pxq � S pxq pkq

Furthermore, mappings ψ and ψ�1 are isotone. Hence, ψ is residuated.

Proof. Let φ be the mapping from FR
�

Nmax,Nmax,γvγw
�

to FNmax,γ
vγw deVned by

�S P FR
�

Nmax,Nmax,γvγw
�

,�k P Z,�x P Nmax, φ pSq pkq pxq � S pxq pkq

First, we check that φ is well-deVned. For S P FR
�

Nmax,Nmax,γvγw
�

and k P Z,

φ pSq pkq pεq � S pεq pkq � ε pkq � ε

�X � Nmax, φ pSq pkq

�

à

xPX

x

�

� S

�

à

xPX

x

�

pkq

�

à

xPX

S pxq pkq

�

à

xPX

φ pSq pkq pxq
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Therefore, φ pSq pkq is residuated, i.e., φ pSq pkq belongs to F
Nmax

. Furthermore, for k, j P Z,

k ¥ jñ �x P Nmax, S pxq pkq © S pxq pjq

ñ �x P Nmax, φ pSq pkq pxq © φ pSq pjq pxq

ñ φ pSq pkq © φ pSq pjq

k   0ñ �x P Nmax, S pxq pkq � ε

ñ �x P Nmax, ψ pSq pkq pxq � ε

ñ �x P Nmax, ψ pSq pkq � ε

Hence, φ pSq belongs to F
Nmax,γ

vγw.

Second, φ � ψ � Id and ψ � φ � Id. Then, ψ is bijective and ψ�1 � φ.
Finally, let s1, s2 P F

Nmax,γ
vγw and S1, S2 P FR

�

Nmax,Nmax,γvγw
�

such that S1 � ψ ps1q
and S2 � ψ ps2q.

s1 � ψ
�1
pS1q © s2 � ψ

�1
pS2q � �k P Z,�x P Nmax, s1 pkq pxq © s2 pkq pxq

� �k P Z,�x P Nmax, S1 pxq pkq © S2 pxq pkq

� S1 � ψ ps1q © S2 � ψ ps2q

Thus, mappings ψ and ψ�1 are isotone.

The next lemma investigates how the operations `, b, and ^ in F
Nmax,γ

vγw interact with
the slicing mapping ψ.

Lemma 34. Let s1, s2 be two series in FNmax,γ
vγw. Then,

�x P Nmax, ψ ps1 ` s2q pxq � ψ ps1q pxq `ψ ps2q pxq

ψ ps1 ^ s2q pxq � ψ ps1q pxq ^ψ ps2q pxq

ψ ps1 b s2q pxq �
à

jPZ

ψ ps1q pψ ps2q pxq pjqqγ
j

Proof. For the sum `,

�x P Nmax, ψ ps1 ` s2q pxq �
à

jPZ

ps1 ` s2q pjq pxqγ
j

�

à

jPZ

ps1 pjq pxq ` s2 pjq pxqqγ
j

�

à

jPZ

s1 pjq pxqγ
j
`

à

jPZ

s2 pjq pxqγ
j

� ψ ps1q pxq `ψ ps2q pxq
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4. Dioid FNmax,γ
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For the greatest lower bound ^,

�x P Nmax, ψ ps1 ^ s2q pxq �
à

jPZ

ps1 ^ s2q pjq pxqγ
j

�

à

jPZ

ps1 pjq pxq ^ s2 pjq pxqqγ
j

Therefore,

�x P Nmax,�j P Z, ψ ps1 ^ s2q pxq pjq � s1 pjq pxq ^ s2 pjq pxq

Furthermore,

�x P Nmax,�j P Z, pψ ps1q pxq ^ψ ps2q pxqq pjq � ψ ps1q pxq pjq ^ψ ps2q pxq pjq

� s1 pjq pxq ^ s2 pjq pxq

Thus,

�x P Nmax, ψ ps1 ^ s2q pxq � ψ ps1q pxq ^ψ ps2q pxq

For the product b,

�x P Nmax, ψ ps1 b s2q pxq �
à

jPZ

ps1 b s2q pjq pxqγ
j

�

à

jPZ

à

lPZ

s1 pj� lq ps2 plq pxqqγ
j

�

à

lPZ

ψ ps1q ps2 plq pxqqγ
l

�

à

lPZ

ψ ps1q pψ ps2q pxq plqqγ
l

Next, a simple example illustrates the intuitive graphical interpretation of the slicing map-
ping.

Example 17. Let s be a series in F
Nmax,γ

vγw deVned by

s � γ` fγ3 with f pxq �

$

'

&

'

%

ε if x � ε

3
P

x
3

T

if x P N0

J if x � J
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The γ-support of s is t1, 3u. Then, s is a polynomial with the canonical representative γ`fγ3.
The mapping ψ psq in FR

�

Nmax,Nmax,γvγw
�

is deVned by

ψ psq pxq �

$

'

'

'

'

'

'

&

'

'

'

'

'

'

%

ε if x � ε

xγ if x � 3j with j P N0

xγ` 2xγ3 if x � 1b 3j with j P N0

xγ` 1xγ3 if x � 2b 3j with j P N0

Jγ if x � J

A graphical representation of series s is drawn in Fig. 4.1. The expression s � γ ` fγ3

leads to the planes px, s pkq pxqq for k P Z (i.e., corresponding to the 2D-representation of the
mapping s pkq in F

Nmax
). The series ψ psq pxq provides the planes pk, s pkq pxqq for x P Nmax

(i.e., corresponding to the 2D-representation of the series ψ psq pxq in Nmax,γvγw): ψ psq pxq
corresponds to the slice of the series s at x P Nmax.

Figure 4.1.: Series s � γ` fγ3
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vγw

4.1. Subdioid F∆,γvγw

DeVnition 39 (Dioid F∆,γvγw). The distributive dioid F∆,γvγw is deVned as the dioid of iso-
tone formal power series in γ with coeXcients in the distributive dioid F∆ equal to ε over
tk P Z|k   0u.

According to Prop. 9 and Lem. 14, the previous deVnition is valid. Obviously, F∆,γvγw
is a subdioid of the dioid FNmax,γ

vγw. According to Lem. 23, F∆ is isomorphic to Nmax.

Then, F∆,γvγw is isomorphic to Nmax,γvγw. An isomorphism Φ from Nmax,γvγw to F∆,γvγw

is deVned by, �s P Nmax,γvγw, Φ psq � φ � s, where φ is the isomorphism from Nmax to
F∆ mentioned in Lem. 23. Therefore, all results presented in § 2.7 are transposed in F∆,γvγw

through the isomorphism Φ. In particular, the concepts of periodic series and throughput are
directly extended toF∆,γvγw. Furthermore, the calculation rules for periodic series developed
in § 2.7 are also valid in F∆,γvγw.

The following lemma illustrates a link between the slicing mappingψ and the isomorphism
Φ from Nmax,γvγw to F∆,γvγw.

Lemma 35. Let s be a series in Nmax,γvγw. Then, ψ pΦ psqq peq � s.

Proof. First, notice that, for all x P Nmax, φ pxq peq � x where φ is the isomorphism from
Nmax to F∆ mentioned in Lem. 23. Then,

ψ pΦ psqq peq �
�8

à

k�0

Φ psq pkq peqγk

�

�8

à

k�0

φ ps pkqq peqγk

�

�8

à

k�0

s pkqγk

� s

Example 18. Let s � γ` ∆3γ3, a series in F∆,γvγw. The mapping ψ psq is deVned by

ψ psq pxq �

$

'

&

'

%

ε if x � ε

x
�

γ` 3γ3
�

if x P N0

Jγ if x � J

Series s is associated with series γ` 3γ3 in Nmax,γvγw. A graphical representation of series s
is drawn in Fig. 4.2.
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4.2. Quasi-Causality and Causality

Figure 4.2.: Series s � γ` ∆3γ3

4.2. Quasi-Causality and Causality

The concepts of causality and quasi-causality introduced in § 3 for F
Nmax

are extended to
the dioid F

Nmax,γ
vγw.

DeVnition 40 (Quasi-causality). A series s in FNmax,γ
vγw is said to be quasi-causal if s pkq is

quasi-causal for k ¥ 0.

The set of quasi-causal series in FNmax,γ
vγw is denoted F�

Nmax,γ
vγw. In the next lemma, the

algebraic structure of F�

Nmax,γ
vγw is investigated.

Lemma 36. Endowed with the operations ` and b deVned over F
Nmax,γ

vγw, F�

Nmax,γ
vγw is a

complete subdioid of F
Nmax,γ

vγw.

Proof. This is a direct consequence of Lem. 12, Lem. 25, and Prop. 9.

DeVnition 41 (Causality). A series s in F
Nmax,γ

vγw is said to be causal if s pkq is causal for
k ¥ 0.

A matrix with entries in F
Nmax,γ

vγw is said to be causal if all its entries are causal series.
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The set of causal series in F
Nmax,γ

vγw is denoted F��

Nmax,γ
vγw. In the next lemma, the alge-

braic structure of F��

Nmax,γ
vγw is examined.

Lemma 37. Endowed with the operations ` and b deVned over FNmax,γ
vγw, F��

Nmax,γ
vγw is a

complete subdioid of FNmax,γ
vγw.

Proof. This is a direct consequence of Lem. 12, Lem. 27, and Prop. 9.

According to Prop. 3, the canonical injection from F��

Nmax,γ
vγw to F

Nmax,γ
vγw is residuated.

Its residual is named causal projection and denoted Pr
��

. For s P F
Nmax,γ

vγw, Pr
��

psq is the
greatest causal series less than or equal to s. Furthermore, the causal projection is deVned by

�s P FNmax,γ
vγw, Pr

��

psq pkq � Pr
��

ps pkqq

A simple characterization of F��

Nmax,γ
vγw is based on the mapping ψ.

Proposition 25. Let s be a non-zero series in FNmax,γ
vγw. The following statements are equiv-

alent:

1. s is causal

2. �x P Nmax, ψ psq pxq © xγvalpsq

Proof. 1 ñ 2: By assumption, s is causal. As s is a non-zero causal series, val psq P N0 and
s pval psqq is a causal mapping in FNmax

diUerent from ε. Consequently,

�x P Nmax, ψ psq pxq © s pval psqq pxqγvalpsq © xγvalpsq

2 ñ 1: For all x P Nmax, ψ psq pxq is greater than or equal to xγvalpsq. First, s pkq � ε

implies s pkq © s pval psqq. This leads to, for all x P Nmax, s pkq pxq © s pval psqq pxq © x, as
ψ psq pxq © xγvalpsq. Then, for all k P N0, s pkq is causal. Consequently, s is causal.

4.3. Periodicity

The concept of periodicity introduced in § 3 forF
Nmax

is extended toF
Nmax,γ

vγw by analogy

with periodicity in Nmax,γvγw.

DeVnition 42 (Periodicity). A series s inFNmax,γ
vγw is said to be periodic if there existN P N,

periodic mappings f1, . . . , fN in FNmax
, n1, . . . , nN in N0, τ1, . . . , τN in N0, and ν in N such

that

s �
N
à

k�1

p∆τkγνq� fkγ
nk

A matrix with entries in FNmax,γ
vγw is said to be periodic if all its entries are periodic.
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4.3. Periodicity

The following proposition investigates the periodicity of the causal projection of a periodic
series.

Proposition 26. Let s be a periodic series in FNmax,γ
vγw. The causal projection of s, denoted

Pr
��

psq, is periodic.

Proof. There existN P N, periodic mappings f1, . . . , fN inF
Nmax

,n1, . . . , nN inN0, τ1, . . . , τN
in N0, and ν in N such that

s �
N
à

k�1

p∆τkγνq� fkγ
nk

If, for all j P Z, s pjq is either equal to ε or non-causal, then Pr
��

psq � ε is periodic.
Otherwise, let J be the least element in N0 such that s pJq is a non-zero causal mapping in
FNmax

. Then,

Pr
��

psq � s pJqγJ `
N
à

k�1

sk

with

sk �

#

p∆τkγνq� fkγ
nk if nk ¥ J

p∆τkγνq�∆Lkτkfkγ
nk�Lkν with Lk � r

J�nk

ν
s if nk   J

Thus, Pr
��

psq is periodic.

Example 19. The series s � f1 `
�

∆2γ
�

�

f2 `
�

∆3γ
�

�

f3 where f1, f2, and f3 are periodic
mappings in FNmax

deVned by

f1 pxq �

$

'

&

'

%

ε if x � ε

3 if x � 0, 1, 2

x if x © 3

f2 pxq �

$

'

&

'

%

ε if x ¨ 2

5 if x � 3, 4

x if x © 5

f3 pxq �

$

'

&

'

%

ε if x ¨ 3

7b 3j if 4b 3j ¨ x   7b 3j with j P N0

J if x � J

is a causal periodic series in FNmax,γ
vγw drawn in Fig. 4.3.
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vγw

Figure 4.3.: Series s � f1 `
�

∆2γ
�

�

f2 `
�

∆3γ
�

�

f3.

4.3.1. Canonical Representative of Periodic Series

In this section, a canonical representative for periodic series in FNmax,γ
vγw is introduced

based on the associated mapping ψ psq in FR
�

Nmax,Nmax,γvγw
�

. The main idea is to use the
existing canonical representative for periodic series in Nmax,γvγw introduced in [22, 23]. First,
the eUect of the periodicity of series s on the mapping ψ psq is investigated in the following
lemma.

Lemma 38. Let s be a series in F
Nmax,γ

vγw. If s is periodic, then

#

�x P Nmax, ψ psq pxq is a periodic series in Nmax,γvγw

DX P N0, Dω P N such that �x © X,ψ psq pωxq � ωψ psq pxq

Proof. There existN P N, periodic mappings f1, . . . , fN inFNmax
,n1, . . . , nN inN0, τ1, . . . , τN

in N0, and ν in N such that

s �
N
à

k�1

p∆τkγνq� fkγ
nk
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4.3. Periodicity

As ψ is residuated, ψ is lower semi-continuous. Hence,

�x P Nmax, ψ psq pxq �
N
à

k�1

ψ
�

p∆τkγνq� fkγ
nk
�

pxq

According to Prop. 11, to prove the periodicity of ψ psq pxq, it is suXcient to prove the peri-
odicity of ψ

�

p∆τkγνq� fkγ
nk
�

pxq. As ψ is lower semi-continuous, Rem. 12 leads to

�x P Nmax, ψ
�

p∆τkγνq� fkγ
nk
�

pxq �
�8

à

j�0

ψ
�

∆jτkγjνfkγ
nk

	

pxq

�

�8

à

j�0

τ
j
kγ
jνψ pfkγ

nk
q pxq

� pτkγ
ν
q

�ψ pfkγ
nk
q pxq

� pτkγ
ν
q

� fk pxqγ
nk

Then, ψ
�

p∆τkγνq� fkγ
nk
�

pxq is a periodic series in Nmax,γvγw. Consequently, ψ psq pxq is
a periodic series in Nmax,γvγw. Furthermore, the mapping fk is a periodic mapping in FNmax

:
there exist Xk P N0 andωk P N such that

�x © Xk, fk pωkxq � ωkfk pxq

Let X �
ÀN

k�1 Xk andω � lcm pω1, . . . ,ωNq. Then,

�x © X, ψ
�

p∆τkγνq� fkγ
nk
�

pωxq � pτkγ
ν
q

� fk pωxqγ
nk

� ω pτkγ
ν
q

� fk pxqγ
nk

� ωψ
�

p∆τkγνq� fkγ
nk
�

pxq

Thus,

�x © X, ψ psq pωxq �
N
à

k�1

ψ
�

p∆τkγνq� fkγ
nk
�

pωxq

�

N
à

k�1

ωψ
�

p∆τkγνq� fkγ
nk
�

pxq

� ωψ psq pxq

This leads to a unique representative in FR
�

Nmax,Nmax,γvγw
�

of a periodic series s in
FNmax,γ

vγw obtained from ψ psq by, Vrst, minimizing ω and, second, minimizing X. In the
following, a canonical representative of s is derived from ψ psq. If ψ psq � ε, then the
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canonical representative of s is ε. Next, the case s � ε is investigated. There exists Y0 P N0
such that ψ psq pY0�{1q � ε and ψ psq pY0q � ε. The mapping Σs from

 

x P Nmax|x © Y0
(

to
QY t�8u is deVned by

Σs pxq � σ pψ psq pxqq

As s is a non-zero periodic series s, ψ psq pJq � Jγvalpsq and Σs pJq � 0.

Lemma 39. Let s be a non-zero periodic series. The mapping Σs is non-increasing.

Proof. Let x1, x2 P Nmax greater than or equal to Y0. Then, ψ psq px1q and ψ psq px2q are
diUerent from ε. Furthermore,

x1 © x2 ñ ψ psq px1q © ψ psq px2q as ψ psq is isotone

ñ ψ psq px1q � ψ psq px1q `ψ psq px2q

ñ σ pψ psq px1qq � min pσ pψ psq px1qq , σ pψ psq px2qqq see Prop. 11

ñ σ pψ psq px1qq ¤ σ pψ psq px2qq

ñ Σs px1q ¤ Σs px2q

Lemma 40. Let s be a non-zero periodic series in F
Nmax,γ

vγw. There exists X P N0 such that
for all x P N0, with x © X, Σs pxq � Σs pXq. Furthermore, a possible choice for X is given in
Lem. 38.

Proof. According to Lem. 38, there exist X P N0 andω P N such that �x © X, ψ psq pωxq �
ωψ psq pxq. For x P N0, such that x © X, x � ωkx1 with k P N0 and X ¨ x1   ωX. Then,
ψ psq pxq � ωkψ psq px1q. This implies Σs pxq � Σs px1q. Furthermore, as ψ psq is isotone,

ψ psq pXq ¨ ψ psq
�

x1
�

¨ ψ psq pωXq � ωψ psq pXq

Therefore, Σs pxq � Σs px1q � Σs pXq.

According to Lem. 39 and Lem. 40, there exist Y0, . . . , YL in Z such that

$

'

&

'

%

ψ psq pY0q � ε and ψ psq pY0�{1q � ε

σ pψ psq pYi�1qq � σ pψ psq pYi�{1qq ¡ σ pψ psq pYiqq with 1 ¤ i ¤ L

�x such that J ¡ x © YL, σ pψ psq pxqq � σ pψ psq pYLqq

By convention, we set YL�1 to J. The canonical representative of ψ psq pxq for x © Y0 is
denoted px ` qx pτxγνxq

�. According to Lem. 38, there exist X P N0 andω P N such that

�x © X, ψ psq pωxq � ωψ psq pxq
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Then,

M � max
x©Y0

val pqxq � max
ωX¡x©Y0

val pqxq

ν1 � lcmx©Y0 νx � lcmωX¡x©Y0 νx

ν1i � max
Yi�1^ωX¡x©Yi

νx with 0 ¤ i ¤ L

τ1i �
ν1

ν1i

�

max
Yi�1^ωX¡x©Yi

τx




with 0 ¤ i ¤ L

For all x, such that Yi�1 ¡ x © Yi, ψ psq pxq admits a representative p̃x ` q̃x
�

τ1iγ
ν1
	

�

with

val pq̃xq �M obtained by developing the Kleene star. Furthermore,

m � min
x©Y0

val pp̃xq � min
ωX¡x©Y0

val pp̃xq

p̃x and q̃x admit the following non-canonical representatives:

p̃x �

#

ε ifm � �8

ÀM�1
l�m s plq pxqγ

l otherwise
and q̃x �

M�ν1�1
à

l�M

s plq pxqγl

The polynomials p, q0, . . . , qL in FNmax,γ
vγw are deVned by

p �

#

ε ifm � �8

ÀM�1
l�m s plqγ

l otherwise

qk �
M�ν1�1
à

l�M

fqk,lγ
l with fqk,l pxq �

#

ε if x   Yk

s plq pxq if x © Yk

As s is a periodic series, s plq with l P Z is a periodic mapping in FNmax
. Then, p and qk are

polynomials inFNmax,γ
vγwwith periodic coeXcients. Therefore, s1 � p`

ÀL
k�0

�

∆τ
1

kγν
1

	

�

qk

is a periodic series in FNmax,γ
vγw.

�x P Nmax, ψ
�

s1
�

pxq � ψ ppq pxq `
L
à

k�0

�

τ1kγ
ν1
	

�

ψ pqkq pxq

Ifm � �8, ψ ppq pxq � ε � p̃x. Otherwise,

�x P Nmax, ψ ppq pxq �
M�1
à

l�m

s plq pxqγl

� p̃x
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Therefore,

�x P Nmax, ψ
�

s1
�

pxq � p̃x `
L
à

k�0

�

τ1kγ
ν1
	

�

ψ pqkq pxq

If x   Y0, ψ ps1q pxq � ε � ψ psq pxq. If Yi ¨ x   Yi�1,

ψ
�

s1
�

pxq � p̃x `
i
à

k�0

�

τ1kγ
ν1
	

�

ψ pqkq pxq

� p̃x `
i
à

k�0

�

τ1kγ
ν1
	

�

�

M�ν1�1
à

l�M

s plq pxqγl

�

� p̃x `
i
à

k�0

�

τ1kγ
ν1
	

�

q̃x

� p̃x ` q̃x

�

τ1iγ
ν1
	

�

� ψ psq pxq

Furthermore, ψ psq pJq � ψ ps1q pJq comes from the lower semi-continuity of ψ psq and
ψ ps1q. Then, s � s1 as ψ is injective. The canonical representative of s is

s � p`
L
à

k�0

�

∆τ
1

kγν
1

	

�

qk

where the canonical representatives of polynomials p, q0, . . . , qL are considered.

Example 20. For the periodic series s deVned in Ex. 19,

ψ psq pxq �

$

'

'

'

'

'

'

&

'

'

'

'

'

'

%

ε if x � ε

3 if x � 0, 1, 2

5 p2γq� if x � 3

3j b 7 p3γq� if 4b 3j ¨ x   7b 3j with j P N0

J if x � J

Then, Y0 � 0 and

Σs pxq �

$

'

'

'

'

&

'

'

'

'

%

�8 if x � 0, 1, 2
1
2
if x � 3

1
3
if 4 ¨ x   J

0 if x � J
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The canonical representative of s is f1 `
�

∆2γ
�

�

f2 `
�

∆3γ
�

�

f3 with

f1 pxq �

$

'

'

'

'

'

'

&

'

'

'

'

'

'

%

ε if x � ε

3 if x � 0, 1, 2

5 if x � 3

7b 3j if 4b 3j ¨ x   7b 3j with j P N0

J if x � J

f2 pxq �

$

'

'

'

'

&

'

'

'

'

%

ε if x   3

5 if x � 3

7b 3j if 4b 3j ¨ x   7b 3j with j P N0

J if x � J

f3 pxq �

$

'

&

'

%

ε if x   4

7b 3j if 4b 3j ¨ x   7b 3j with j P N0

J if x � J

Throughput

Lem. 39 and Lem. 40 allow us to extend the notion of throughput to periodic series in
F
Nmax,γ

vγw.

DeVnition 43 (Throughput). Let s be a non-zero periodic series in FNmax,γ
vγw. The through-

put of s, denoted σ psq, is Σs pXq with X P N0 such that Σs pXq � Σs pxq for x P N0 greater
than or equal to X.

Example 21. For the periodic series s deVned in Ex. 19,

σ psq � Σs p4q �
1

3

Quasi-Causal Periodic Series

The following proposition provides a characterization of quasi-causality for periodic series.

Proposition 27. Let s be a periodic series in FNmax,γ
vγw with the canonical representative

p`
ÀL

k�0 p∆
τkγνq� qk. The following statements are equivalent:

1. s is a quasi-causal series

2. p, q0, . . . , qL are quasi-causal polynomials
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Proof. 1ñ 2: Ifm � �8, p � ε is a quasi-causal polynomial. Otherwise,

�l P Z, p plq �

$

'

&

'

%

ε if l   m

s plq ifm ¤ l  M

s pM� 1q if l ¥M

As s is a quasi-causal series, p is a quasi-causal polynomial. Furthermore,

�l P Z, qk plq �

$

'

&

'

%

ε if l  M

fqk,l ifM ¤ l  M� ν

fqk,M�ν�1 if l ¥M� ν

with

fqk,l pxq �

#

ε if x   Yk

s plq pxq if x © Yk

Mapping fqk,l is quasi-causal, as s is quasi-causal. Then, qk is a quasi-causal polynomial.
2ñ 1: For l P Z,

s plq �

#

p plq if l  M

p plq `
ÀL

k�0 ∆
t

l�M
ν

uτkqk
�

l� t

l�M
ν uν

�

if l ¥M

Therefore, s is quasi-causal.

4.3.2. Calculation with Periodic Series

Next, the behavior of periodic series with respect to operations `, b, ^, �z, and �

{ is inves-
tigated.

Proposition 28 (Sum of periodic series). Let s1 and s2 be two periodic series in F
Nmax,γ

vγw.
Series s1 ` s2 is periodic. If s1 and s2 are diUerent from ε, then

σ ps1 ` s2q � min pσ ps1q , σ ps2qq

Proof. See § A.1.1.

Proposition 29 (Greatest lower bound of periodic series). Let s1 and s2 be two periodic series
in FNmax,γ

vγw. Series s1 ^ s2 is periodic. If s1 and s2 are diUerent from ε, then

σ ps1 ^ s2q � max pσ ps1q , σ ps2qq

Proof. See § A.1.2.

68



4.3. Periodicity

Proposition 30 (Product of periodic series). Let s1 and s2 be two periodic series inFNmax,γ
vγw.

Series s1 b s2 is periodic. If s1 and s2 are diUerent from ε, then

σ ps1 b s2q � min pσ ps1q , σ ps2qq

Proof. See § A.1.3.

Remark 13. According to Prop. 28 and Prop. 30, the set of periodic series in F
Nmax,γ

vγw is a

subdioid of FNmax,γ
vγw, denoted F

per

Nmax,γ
vγw. However, Fper

Nmax,γ
vγw is not complete. But, the

operation ^ is well-deVned on F
per

Nmax,γ
vγw according to Prop.29.

Proposition 31 (Left-division of quasi-causal periodic series). Let s1, s2 be two quasi-causal
periodic series in FNmax,γ

vγw. Series s1 �z
�

s2 is periodic. If s1 and s2 are diUerent from ε,
– if σ ps1q   σ ps2q, then s1 �z

�

s2 � ε

– if σ ps1q � σ ps2q � �8, then s1 �z
�

s2 is either equal to ε or σ
�

s1 �z
�

s2
�

� �8

– if σ ps2q � �8 and σ ps1q ¥ σ ps2q, then σ
�

s1 �z
�

s2
�

� σ ps2q

Proof. See § A.1.4.

Proposition 32 (Kleene star of causal periodic series). The Kleene star of a causal periodic
series is a causal periodic series.

Proof. See § A.1.5.

Remark 14. A direct consequence of the previous proposition is that the dioid of causal peri-
odic series F��,per

Nmax,γ
vγw is rationally closed. However, this dioid is not complete.

The last operation to investigate is the right-division. The set of quasi-causal series in
FNmax,γ

vγw is a complete dioid. Therefore, the product is residuated. s2�{
�

s1 is the greatest
quasi-causal series s such that sb s1 ¨ s2. However, the periodicity of s2�{

�

s1 is not ensured
as shown in the next example.

Example 22. Let us consider s1 �
�

∆γ2
�

�

and s2 � p∆γq� f with

f pxq �

$

'

&

'

%

ε if x � ε

e if x � e

J otherwise

According to (2.3),

s2�{
�

s1 �
©

j¥0

s2�{
�

�

∆jγ2j
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Then, according to (2.11),

�l P Z,
�

s2�{
�

s1
�

plq �
©

j¥0

�

s2�{
�

�

∆jγ2j
		

plq

�

©

j¥0

s2 pl� 2jq �{
�

∆j

By deVnition,
�

s2�{
�

s1
�

plq � ε if l   0. Otherwise,

�l P N0,
�

s2�{
�

s1
�

plq �
©

j¥0

Pr
�

�

∆l�2jf
�

∆j
	

5




As f © Id,

∆l�2jf
�

∆j
	

5

© ∆l�2j
�

∆j
	

5

© ∆l�j © Id

Thus,

�l P N0,
�

s2�{
�

s1
�

plq �
©

j¥0

Fj with Fj � ∆
l�2jf

�

∆j
	

5

Clearly,

Fj pxq �

$

'

&

'

%

ε if x � ε

lj2 if e ¨ x ¨ j

J if x ¡ j

Then,

�l P N0,�x P N0,
�

s2�{
�

s1
�

plq pxq �
©

j¥0

Fj pxq

� lx2

Thus,

�l P N0,
�

s2�{
�

s1
�

plq �
�

p∆γq� g
�

plq with g pxq � x2

Then,

s2�{
�

s1 � p∆γq� g

Therefore, s2�{
�

s1 is not a periodic series in FNmax,γ
vγw, as g is not a periodic mapping in

FNmax
.
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4.3. Periodicity

4.3.3. Subdioid F
per,c

Nmax,γ
vγw

In the following, we restrain ourselves to a subdioid of causal periodic series, denoted
F

per,c

Nmax,γ
vγw, which is closed with respect to the right-division.

DeVnition 44. The subset F
per,c

Nmax,γ
vγw of F

per

Nmax,γ
vγw is deVned as

F
per,c

Nmax,γ
vγw � tεu Y

!

s P F
per

Nmax,γ
vγw|σ psq � σ pψ psq peqq and s is causal

)

Canonical Representative of Series in F
per,c

Nmax,γ
vγw

A series s in F
per,c

Nmax,γ
vγw is a periodic series in FNmax,γ

vγw. Therefore, a canonical repre-

sentative for s is available in § 4.3.1. In the following, particular properties of the canonical
representative of a series s in F

per,c

Nmax,γ
vγw are discussed depending on the value of σ psq.

σ psq � �8: s is a polynomial with the canonical representative

s �
N
à

k�1

fkγ
nk with n1   � � �   nN and fk pxq � J for x � J

σ psq � 0: s is a polynomial with the canonical representative

s �
N
à

k�1

fkγ
nk with n1   � � �   nN and fN � J

0   σ psq   �8: The canonical representative of s has the following form

s � p` p∆τγνq� q

with τ, ν in N and causal polynomials p, q in F��

Nmax,γ
vγw. Furthermore, σ psq � ν

τ , p � ε or

σ ppq � �8, and σ pqq � �8.

Calculation with Series in F
per,c

Nmax,γ
vγw

Next, the behavior of series in F
per,c

Nmax,γ
vγw with respect to operations `, b, ^, �z, and �

{

deVned on FNmax,γ
vγw is investigated.

Proposition 33 (Sum of series in F
per,c

Nmax,γ
vγw). Let s1 and s2 be two series in F

per,c

Nmax,γ
vγw.

Series s1 ` s2 belongs to F
per,c

Nmax,γ
vγw. If s1 and s2 are diUerent from ε, then

σ ps1 ` s2q � min pσ ps1q , σ ps2qq
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Proof. See § A.2.1.

Proposition 34 (Greatest lower bound of series in F
per,c

Nmax,γ
vγw). Let s1 and s2 be two series in

F
per,c

Nmax,γ
vγw. Series s1 ^ s2 belongs to F

per,c

Nmax,γ
vγw. If s1 and s2 are diUerent from ε, then

σ ps1 ^ s2q � max pσ ps1q , σ ps2qq

Proof. See § A.2.2.

Proposition 35 (Product of series in F
per,c

Nmax,γ
vγw). Let s1 and s2 be two series in F

per,c

Nmax,γ
vγw.

Series s1 b s2 belongs to F
per,c

Nmax,γ
vγw. If s1 and s2 are diUerent from ε, then

σ ps1 b s2q � min pσ ps1q , σ ps2qq

Proof. See § A.2.3.

Proposition 36 (Left-division of series in F
per,c

Nmax,γ
vγw). Let s1, s2 be two series in F

per,c

Nmax,γ
vγw.

Series s1 �z
��

s2 belongs to F
per,c

Nmax,γ
vγw. If s1 and s2 are diUerent from ε,

– if σ ps1q   σ ps2q, then s1 �z
��

s2 � ε

– if σ ps1q � σ ps2q � �8, then s1 �z
��

s2 is either equal to ε or σ
�

s1 �z
�

s2
�

� �8

– if σ ps2q � �8 and σ ps1q ¥ σ ps2q, then σ
�

s1 �z
��

s2
�

� σ ps2q

Proof. See § A.2.4.

Proposition 37 (Right-division of series inFper,c

Nmax,γ
vγw). Let s1, s2 be two series inF

per,c

Nmax,γ
vγw.

Series s2�{
��

s1 belongs to F
per,c

Nmax,γ
vγw. If s1 and s2 are diUerent from ε,

– if σ ps1q   σ ps2q, then s2�{
��

s1 � ε

– if σ ps1q � σ ps2q � �8, then s2�{
��

s1 is either equal to ε or σ
�

s2�{
��

s1
�

� �8

– if σ ps2q � �8 and σ ps1q ¥ σ ps2q, then σ
�

s2�{
��

s1
�

� σ ps2q

Proof. See § A.2.5.

4.4. Rationality

In this section, the concept of rationality is extended from FNmax
to FNmax,γ

vγw.

DeVnition 45 (Rationality). A series s in FNmax,γ
vγw is said to be rational if there exists a

Vnite number N of periodic series r1, . . . , rN in Nmax,γvγw such that s belongs to the rational
closure of tε, e, ∆, αr1 , . . . , αrN , γu.

A matrix with entries in FNmax,γ
vγw is said to be rational if all its entries are rational.

In the following proposition, the rationality of causal periodic series is investigated, based
on the rationality of causal periodic mappings (see Prop. 24).
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4.5. Realizability

Proposition 38. A causal periodic series in F
Nmax,γ

vγw is rational.

Proof. Let s be a causal periodic series. If s � ε, s is rational. Otherwise, s is a non-zero
causal periodic series. Then, there exists N P N, non-zero quasi-causal periodic mappings
f1, . . . , fN in F

Nmax
, n1, . . . , nN in N0, τ1, . . . , τN in N0, and ν P N such that

s �
N
à

k�1

p∆τkγνq� fkγ
nk

We deVned Yk by Yk �
�

 

x P Nmax|fk pxq � ε
(

. As fk is a quasi-causal mapping, fk pxq ©
x for x © Yk. In the following, the series s̃ is deVned by

s̃ �
N
à

k�1

pRkγ
νk
q

� gkγ
nk

where

Rk pxq �

#

x if x   Yk

τkx if x © Yk
and gk pxq �

#

x if x   Yk

fk pxq if x © Yk

As Rk and gk are causal periodic mappings in F
Nmax

, they are rational mappings in F
Nmax

according to Prop. 24. Then, s̃ is a rational series. In the following, we prove that s � s̃. As
s is causal,

�x P Nmax, ψ psq pxq �
N
à

k�1

�

pτkγ
ν
q

� fk pxqγ
nk
` xγnk

�

�

N
à

k�1

Mk pxq withMk pxq � pτkγ
ν
q

� fk pxqγ
nk
` xγnk

Clearly,

Mk pxq �

#

xγnk if x   Yk

pτkγ
ν
q

� fk pxqγ
nk if x © Yk

Then,Mk � ψ
�

pRkγ
νk
q

� gkγ
nk
�

. Consequently, ψ psq � ψ ps̃q. This implies s � s̃, as ψ
is injective (see Lem. 33). Thus, s is a rational series.

4.5. Realizability

The concept of realizability is deVned for FNmax,γ
vγw by analogy with the realizability in

Nmax,γvγw.
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DeVnition 46 (Realizability). A matrix S in F
Nmax,γ

vγwm�p is said to be realizable if there

exists a Vnite number N of periodic series r1, . . . , rN in Nmax,γvγw such that S admits a
pB,Cq-representation with respect to tε, e, ∆, αr1 , . . . , αrN , γu where all non-diagonal en-
tries of A belong to tε, e, ∆, γu.

In the following, two lemmas on realizability in F
Nmax,γ

vγw are proved.

Lemma 41. Let S be a matrix in F
Nmax,γ

vγwm�p. The following statements are equivalent:

1. S is realizable

2. there exists a Vnite number N of periodic series r1, . . . , rN in Nmax,γvγw such that S
admits a pB,Cq-representation with respect to tε, e, ∆, αr1 , . . . , αrN , γu

Proof. 1ñ 2 This comes directly from the deVnition of realizability.
2ñ 1 There exists a Vnite number N of periodic series r1, . . . , rN in Nmax,γvγw such that

S admits a pB,Cq-representation with respect to E � tε, e, ∆, αr1 , . . . , αrN , γu. Then, there
exist n P N, A P En�n, B P Bn�p, and C P Bm�n such that S � CA�B. In the following,
we show how to remove a non-diagonal entries of A equal to a α-mapping, denoted αr by
increasing n by 1. Let i, j with i � j such that Aij � αr. The matrix Ã in En�n is deVned
by

Ãkl �

#

ε if k � i and l � j

Akl otherwise

The matrices Â in Epn�1q�pn�1q, B̂ in Bpn�1q�p, and Ĉ in Bm�pn�1q are deVned by the
following block representations:

Â �

�

Ã Ei

EJj αr

�

, B̂ �

�

B

ε

�

, and Ĉ �
�

C ε

	

where Ek denotes the vector in Bn�1 deVned by

pEkqi �

#

e if k � i

ε otherwise

According to Lem. 10,

ĈÂ�B̂ � C
�

Ã` Eiα
�

rE
J

j

	

�

B

� C
�

Ã` αrEiE
J

j

	

�

B as αr � α
�

r and Eiαr � αrEi

� CA�B as Ã` αrEiE
J

j � A

� S
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Hence, Â, B̂, and Ĉ form a pB,Cq-representation with respect to E of matrix S. Therefore,
repeating the previous process leads to a pB,Cq-representation with respect to E of matrix S
where all non-diagonal entries of A belong to tε, e, ∆, γu.

Lemma 42. Let S be a matrix in FNmax,γ
vγwm�p. The following statements are equivalent:

1. S is realizable

2. all entries of S are realizable

Proof. Let us consider the following statements:

1. S is realizable

2. there exists a Vnite number N of periodic series r1, . . . , rN in Nmax,γvγw such that S
admits a pB,Cq-representation with respect to tε, e, ∆, αr1 , . . . , αrN , γu

3. there exists a Vnite numberN of periodic series r1, . . . , rN inNmax,γvγw such that each
entry of S admits a pB,Cq-representation with respect to tε, e, ∆, αr1 , . . . , αrN , γu

4. all entries of S are realizable

According to Lem. 41, 1 � 2 and 3 � 4. Furthermore, according to Prop. 7, 2 � 3. Hence,
1� 4.

4.6. The Fundamental Theorem in FNmax,γ
vγw

Using the deVnitions presented before, the fundamental theorem in Nmax,γvγw is extended
to F

Nmax,γ
vγw.

Theorem 9. Let S be a matrix in F
Nmax,γ

vγwm�p. The following statements are equivalent:

1. S is causal and periodic

2. S is rational

3. S is realizable

Proof. As causality, periodicity, rationality, and realizability of a matrix come down to causal-
ity, periodicity, rationality, and realizability of its entries. It is suXcient to consider the scalar
case. Let s be a series in FNmax,γ

vγw.
1ñ 2: s is causal and periodic, then s is rational according to Prop. 38.
2ñ 1: s is rational, then s is causal and periodic: tε, e, ∆, αr1 , . . . , αrN , γu � F

��,per

Nmax,γ
vγw

and F��,per

Nmax,γ
vγw is rationally closed.

2� 3: Using Th. 7 and Lem. 41, the following statements are equivalent:

1. s is rational

2. there exists a Vnite number N of periodic series r1, . . . , rN in Nmax,γvγw such that s
belongs to the rational closure of tε, e, ∆, αr1 , . . . , αrN , γu
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3. there exists a Vnite number N of periodic series r1, . . . , rN in Nmax,γvγw such that s
admits a pB,Cq-representation with respect to tε, e, ∆, αr1 , . . . , αrN , γu

4. s is realizable
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5
Modeling

In this chapter, the modeling of pmax,�q-systems with partial synchronization by recur-
sive equations in the pmax,�q-algebra is addressed. Let us Vrst brieWy recall the structure of
pmax,�q-systems with partial synchronization drawn in Fig. 5.1. A pmax,�q-system with
partial synchronization is split into a main system and a secondary system such that there
exist only standard synchronizations between events in the same system and partial synchro-
nization of events in the secondary system by events in the main system. The modeling of
pmax,�q-systems with partial synchronization is widely based on an analogy with the mod-
eling of timed event graphs, e.g., [1]. The following results have been partly published in
[18, 19]. The modeling approaches presented in this chapter are illustrated with Ex. 23.

Main System

Secondary System

Figure 5.1.: A schematic view of a pmax,�q-system with partial synchronization
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5. Modeling

Example 23. This example deals with a supply chain, where intermodal containers are shut-
tling back and forth between warehouses A1 and B1. The supply chain is divided in three
sections:

1. a road transport section between warehouse A1 and train station A

2. a rail transport section between train stations A and B

3. a road transport section between warehouse B1 and train station B

This system is drawn in Fig. 5.2, where the solid loop represents the train line, the dashed
loops represent the road transport sections, and the dotted loop summarizes the complete
supply chain. The characteristics of the train line and of the supply chain are now made

Train station BTrain station A

Warehouse A1 Warehouse B1

Figure 5.2.: The supply chain and the train line

explicit. Two trains are shuttling back and forth between train stationsA and B. Initially, one
train is in train station A and the other is in train station B. The travel time between train
stations A and B is ten units of time. A train stays at least two units of time in a train station
before returning. Due to safety practices, the number of trains on each railroad track shall not
exceed one. A single container, initially in warehouse A1, is shuttling back and forth between
warehouses A1 and B1. The duration of each road transport section (between train station A
and warehouse A1 or between train station B and warehouse B1) is estimated to Vve units
of time. To allow loading and unloading, the container stays at least three units of time in a
warehouse before returning.

In the following, the train line and the supply chain are modeled by discrete event systems
ruled by synchronization. The model of the train line is based on the following events:

uA (resp. uB) authorization for train departure from train station A (resp. B)

dA (resp. dB) train departure from train station A (resp. B)

aA (resp. aB) train arrival in train station A (resp. B)

yA (resp. yB) notiVcation of train arrival in train station A (resp. B)

The previous description of the train line corresponds to the following synchronizations:
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– for all k ¥ 0, occurrence k of event aA (resp. aB) occurs at least ten units of time after
occurrence k of event dB (resp. dA)

– for all k ¥ 1, occurrence k of event dA (resp. dB) occurs at least two units of time after
occurrence k� 1 of event aA (resp. aB)

– for all k ¥ 1, occurrence k of event dA (resp. dB) occurs after occurrence k� 1 of event
aB (resp. aA)

– for all k ¥ 0, occurrence k of event dA (resp. dB) occurs after occurrence k of event uA
(resp. uB)

– for all k ¥ 0, occurrence k of event yA (resp. yB) occurs after occurrence k of event aA
(resp. aB)

Then, the behavior of the train line is ruled by standard synchronizations (i.e., the train line
is a pmax,�q-linear system). The model of the supply chain is based on the following events:

uA1
(resp. uB1

) authorization for container departure from warehouse A1 (resp. B1)

dA1
(resp. dB1

) container departure (by truck) from warehouse A1 (resp. B1)

aA1
(resp. aB1

) container arrival (by truck) in warehouse A1 (resp. B1)

yA1
(resp. yB1

) notiVcation of container arrival in warehouse A1 (resp. B1)

dcA (resp. dcB) container departure (by train) from train station A (resp. B)

acA (resp. acB) container arrival (by train) in train station A (resp. B)

The previous description of the supply chain includes the following standard synchronizations:
– for all k ¥ 0, occurrence k of event dcA (resp. dcB) occurs at least Vve units of time

after occurrence k of event dA1
(resp. dB1

)
– for all k ¥ 1, occurrence k of event dA1

occurs at least three units of time after occur-
rence k� 1 of event aA1

– for all k ¥ 0, occurrence k of event dB1
occurs at least three units of time after occurrence

k of event aB1

– for all k ¥ 0, occurrence k of event aA1
(resp. aB1

) occurs at least Vve units of time after
occurrence k of event acA (resp. acB)

– for all k ¥ 0, occurrence k of event acA (resp. acB) occurs at least ten units of time
after occurrence k of event dcB (resp. dcA)

– for all k ¥ 0, occurrence k of event dA1
(resp. dB1

) occurs after occurrence k of event
uA1

(resp. uB1
)

– for all k ¥ 0, occurrence k of event yA1
(resp. yB1

) occurs after occurrence k of event
aA1

(resp. aB1
)

So far, the container/truck interactions (in the road transport sections) and the container/train
interactions (in the rail transport section) have been neglected. While this hypothesis makes
sense for the container/truck interactions (e.g., suXciently many trucks are available to deliver
containers), the container/train interactions have to be taken into account. To do so, the
following partial synchronizations are used:

– event dcA (resp. dcB) can only occur when event dA (resp. dB) occurs
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– event acA (resp. acB) can only occur when event aA (resp. aB) occurs
Therefore, the complete system is a pmax,�q-system with partial synchronization, where the
main system corresponds to the train line and the secondary system corresponds to the supply
chain.

5.1. Conventions

5.1.1. Input, Output, and State Events

By analogy with pmax,�q-linear systems, the event set of a pmax,�q-system with partial
synchronization is partitioned into

input events events source of (standard or partial) synchronizations, but not subject to
(standard or partial) synchronizations

output events events subject to (standard or partial) synchronizations, but not source of
(standard or partial) synchronizations

state events events both subject to and source of (standard or partial) synchronizations

Events, which are neither subject to nor source of (standard or partial) synchronizations, are
neglected, as we focus on interactions between events. In the rest of this thesis, we consider
pmax,�q-systems with partial synchronization, where:

– the sets of input, output, or state events in the main and secondary system are not empty
– there are only partial synchronizations between state events
– there exist no standard synchronizations of output events by input events
– the main and the secondary system are structurally controllable: each state event is

aUected by at least one input event belonging to the same system
– the main and the secondary system are structurally observable: each state event aUects

at least one output event belonging to the same system
In practice, these assumptions are either fulVlled or can be fulVlled by adding or deleting
events. Furthermore, the following convention for the notation is applied. Parameters in
the main system are denoted with subscript 1, while parameters in the secondary system are
denoted with subscript 2. The numbers of input, output, and state events are respectively
denoted bym, p, and n and input, output, and state events are respectively denoted by u, y,
and x. Finally, integer subscripts are used to distinguish events of the same kind in the main
or secondary system.

Example 24. In Ex. 23, the set of events is partitioned into
– input events uA, uB, uA1

, and uB1

– state events dA, dB, aA, aB, dA1
, dB1

, aA1
, aB1

, dcA, dcB, acA, and acB
– output events yA, yB, yA1

, and yB1

A valid notation is summarized in Tab. 5.1 and Tab. 5.2. Only this notation is considered in
the following for this example. In this case, n1 � 4, n2 � 8, andm1 � m2 � p1 � p2 � 2.
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uA uB dA aB dB aA yB yA

u1,1 u1,2 x1,1 x1,2 x1,3 x1,4 y1,1 y1,2

Table 5.1.: Notation for events in the main system

uA1
uB1

dA1
dcA acB aB1

dB1
dcB acA aA1

yB1
yA1

u2,1 u2,2 x2,1 x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8 y2,1 y2,2

Table 5.2.: Notation for events in the secondary system

5.1.2. Petri Net Representation

For the graphical representation of pmax,�q-systems with partial synchronization, the
convention valid for pmax,�q-linear systems is extended to take into account partial syn-
chronizations. Events corresponds to bars and standard synchronizations to circles. For
example, the standard synchronization “for all k ¥ 3, occurrence k of event e2 occurs at
least Vve units of time after occurrence k � 3 of event e1” is drawn in Fig. 5.3. Further-

5
e1 e2

Figure 5.3.: Graphical representation of a standard synchronization

more, partial synchronizations are represented by dashed arrows. For example, the partial
synchronization “event e2 can only occur when event e1 occurs” is drawn in Fig. 5.4. Due to
visual resemblance with Petri nets, the obtained graphical representation is called Petri net
representation.

Example 25. The Petri net representation associated with Ex. 23 is given in Fig. 5.5.

5.1.3. Earliest Functioning Rule

Partial and standard synchronizations only specify conditions enabling occurrences of
events, but never force an event to occur. Therefore, a pmax,�q-system with partial synchro-
nization is not deterministic: a predeVned behavior of the input events may lead to diUerent
behaviors for the state and output events. The only requirement is that these behaviors are
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e1

e2

Figure 5.4.: Graphical representation of a partial synchronization

admissible with respect to standard and partial synchronizations composing the considered
system.

In this thesis, we only consider a particular behavior for pmax,�q-systems with partial
synchronization, namely the behavior under the earliest functioning rule. The earliest func-
tioning rule states that each state or output event occurs as soon as possible. Under the
earliest functioning rule, a pmax,�q-system with partial synchronization is deterministic: a
predeVned behavior of the input events leads to a unique behavior for the state and output
events. This fundamental property is formally proven in § 5.2.3.

In practice, the earliest functioning rule is often suitable, as standard and partial synchro-
nizations express conditions on the occurrence of events. Then, as soon as the conditions are
met, the associated event shall occur.

5.2. Dater Representation

In this section, we derive a model for pmax,�q-systems with partial synchronization based
on daters. A suitable algebraic structure to express this model is the pmax,�q-algebra Rmax.
Furthermore, we present a method, based on this model, to compute the output induced by a
predeVned input.

5.2.1. Daters

To capture the timed dynamics of a discrete event system, a mapping, called dater, is as-
sociated with each event such that the dater gives the times of occurrences of the considered
event. From now on, we consider daters from Z to Rmax and no distinctions are made in the
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5

2 2

10

10

5 5

5

Train Station AWarehouse A1 Train Station B Warehouse B1

u2,1 x2,1 x2,2 x2,3 x2,410

10

x2,5x2,6x2,7x2,8y2,2

y1,2

u1,1 x1,1

x1,4
x1,3

x1,2

u1,2

y1,1

y1,1

u2,2

3 3

Figure 5.5.: Petri net representation of the supply chain and of the train line

notation between an event and its associated dater. Hence, for an event d, d pkq denotes the
time of occurrence k of event d. This leads to the following interpretation for daters:

d pkq � ε: Occurrence k of event d occurs at t � �8. By convention, occurrence k (with
k   0) of an event always occurs at t � �8.

d pkq P R�0 : Occurrence k of event d occurs at time d pkq. By convention, events are re-
quired to occur either at t ¥ 0 or at t � �8.

d pkq � J: Occurrence k of event d never occurs.

Furthermore, occurrence k� 1 of event d occurs after occurrence k of event d. Therefore, as
the order in Rmax coincides with the standard order,

�k P Z, d pk� 1q © d pkq

Thus, a dater is isotone. The previous discussion leads to a formal deVnition for daters.

DeVnition 47 (Dater). A dater, denoted d, is an isotone mapping from Z to Rmax such that
d pkq � ε for k   0. The set of daters is denoted D.

According to Rem. 3, D is endowed with an operation ` and an order ¨ induced by the
operation ` and the order ¨ in the dioid Rmax.
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Remark 15. It is also possible to see daters as formal power series inRmax,γvγw (i.e., as isotone
formal power series in γ with coeXcients in Rmax). This allows us to denote daters by formal
power series. Furthermore, this introduces an operationb over daters. However, this operation
is not useful in the following.

5.2.2. Expressing Synchronizations with Daters

In the following, standard and partial synchronizations are expressed in terms of daters.
This leads to an algebraic representation for pmax,�q-systems with partial synchronization.

Expressing Standard Synchronizations with Daters

Standard synchronization “for all k ¥ l, occurrence k of event e2 occurs at least τ units of
time after occurrence k� l of event e1” corresponds to the following inequality in Rmax:

�k P Z, e2 pkq © τe1 pk� lq

Furthermore, the eUect of several standard synchronizations on a single event is also ex-
pressed by a single inequality in Rmax. For example, standard synchronizations “for all
k ¥ l1, occurrence k of event e2 occurs at least τ1 units of time after occurrence k � l1
of event e1,1” and “for all k ¥ l2, occurrence k of event e2 occurs at least τ2 units of time
after occurrence k� l2 of event e1,2” are both expressed by a single inequality in Rmax:

�k P Z, e2 pkq © τ1e1,1 pk� l1q ` τ2e1,2 pk� l2q

Therefore, matrix inequalities in Rmax are suitable to express standard synchronizations.
The standard synchronizations between events in the main system are summarized by

#

x1 pkq ©
ÀL1

i�0A1,ix1 pk� iq ` B1,iu1 pk� iq

y1 pkq ©
ÀL1

i�0C1,ix1 pk� iq
(5.1)

where x1, u1, and y1 respectively correspond to the vectors of daters associated with state,
input, and output events in the main system and L1 denotes the greatest parameter l over
all standard synchronizations in the main system. Furthermore, matrices A1,i, B1,i, and

C1,i belong respectively to R
n1�n1

max , R
n1�m1

max , and R
p1�n1

max . The entries of these matrices are
given by the standard synchronizations in the main system. In the same way, the standard
synchronizations between events in the secondary system are summarized by

#

x2 pkq ©
ÀL2

i�0A2,ix2 pk� iq ` B2,iu2 pk� iq

y2 pkq ©
ÀL2

i�0C2,ix2 pk� iq
(5.2)

where x2, u2, and y2 respectively correspond to the vectors of daters associated with state,
input, and output events in the secondary system and L2 denotes the greatest parameter l
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over all standard synchronizations in the secondary system. Furthermore, matricesA2,i, B2,i,

and C2,i respectively belong to R
n2�n2

max , R
n2�m2

max , and R
p2�n2

max . The entries of these matrices
are given by the standard synchronizations in the secondary system.

To simplify (5.1) and (5.2), the event set of the considered pmax,�q-system with partial
synchronization is extended by adding state events. This allows us to come down to a Vrst-
order recursion in (5.1) and (5.2). The theoretical validity of this step is ensured by Lem. 43.

Lemma 43. Let l P N. In a pmax,�q-system with partial synchronization, the following
synchronizations are equivalent:

1. “for all k ¥ l, occurrence k of event e2 occurs at least τ units of time after occurrence
k� l of event e1”

2. “for all k ¥ l�1, occurrence k of event e2 occurs at least τ units of time after occurrence
k�1�l of event ei” and “for all k ¥ 1, occurrence k of event ei occurs after occurrence
k � 1 of event e1” where state event ei only appears in the two previous standard
synchronizations

3. “for all k ¥ 1, occurrence k of event e2 occurs after occurrence k � 1 of event ei”
and “for all k ¥ l � 1, occurrence k of event ei occurs at least τ units of time after
occurrence k� l� 1 of event e1” where state event ei only appears in the two previous
standard synchronizations

Proof. Only 1� 2 is checked, as 1� 3 can be obtained in the same way.
1ñ 2: Let us consider an event ei only subject to the following standard synchronization:

for all k ¥ 1, occurrence k of event ei occurs after occurrence k� 1 of event e1. Then,

�k P Z, ei pkq © e1 pk� 1q

It remains to prove that the system includes the standard synchronization: “for all k ¥ l� 1,
occurrence k of event e2 occurs at least τ units of time after occurrence k � 1 � l of event
ei”. Event ei is only subject to this standard synchronization. Hence, according to the earliest
functioning rule,

�k P Z, ei pkq � e1 pk� 1q

Therefore,

�k P Z, e2 pkq © τe1 pk� lq � τei pk� l� 1q

Then, in terms of standard synchronizations, “for all k ¥ l � 1, occurrence k of event e2
occurs at least τ units of time after occurrence k� 1� l of event ei”.
2 ñ 1: Conversely, the two standard synchronizations “for all k ¥ l � 1, occurrence k

of event e2 occurs at least τ units of time after occurrence k � 1 � l of event ei” and “for

87



5. Modeling

all k ¥ 1, occurrence k of event ei occurs after occurrence k� 1 of event e1” correspond, in
terms of daters, to

�k P Z, e2 pkq © τei pk� l� 1q and ei pkq © e1 pk� 1q

This implies, as the product is isotone in a dioid,

�k P Z, e2 pkq © τe1 pk� lq

The previous inequality corresponds to the standard synchronization “for all k ¥ l, occur-
rence k of event e2 occurs at least τ units of time after occurrence k� l of event e1”.

According to Lem. 43, the diUerent synchronization relations between events e1 and e2
pictured in Fig. 5.6 are equivalent.

e1 τ e2

(a)

e1 e2ei τ

(b)

e1 τ e2ei

(c)

Figure 5.6.: Equivalent synchronizations if no other synchronizations aUect event ei

By using repetitively Lem. 43, it is possible to set all entries of A1,i and A2,i for i ¥
2 and of B1,i, C1,i, B2,i, and C2,i for i ¥ 1 to ε by adding state events. This leads to
a simpliVed representations for standard synchronizations in the main system and in the
secondary system respectively given in (5.3) and (5.4).

#

x1 pkq © A1,0x1 pkq `A1,1x1 pk� 1q ` B1,0u1 pkq

y1 pkq © C1,0x1 pkq
(5.3)

#

x2 pkq © A2,0x2 pkq `A2,1x2 pk� 1q ` B2,0u2 pkq

y2 pkq © C2,0x2 pkq
(5.4)
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In the following, only these representations are considered.

Example 26. For the pmax,�q-system with partial synchronization introduced in Ex. 23, the
following matrix inequalities are obtained:

$
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Expressing Partial Synchronizations with Daters

Partial synchronization “event e2 can only occur when event e1 occurs” is expressed by the
following condition on daters:

�k P Z, e2 pkq P A pe1q with A pe1q � te1 pjq |j P Zu Y tJu

The element J is included in A pe1q to model the non-occurrence of event e2. Thus, ε and
J always belong to A pe1q. The eUect of several partial synchronizations on a single event
is easily expressed by an intersection of sets. For example, partial synchronizations “event e2
can only occur when event e1,1 occurs” and “event e2 can only occur when event e1,2 occurs”
correspond to

�k P Z, e2 pkq P A pe1,1q XA pe1,2q

To model partial synchronizations in a pmax,�q-system with partial synchronization, we
Vrst recall that, as mentioned in § 5.1.1, only partial synchronizations of state events in the
secondary system by state events in the main system are considered. Then, a subset of Rmax,
denoted Ai, is associated with each state event x2,i in the secondary system. Let us denote
Xi the set of state events in the main system synchronizing event x2,i. Then,Ai is deVned by

Ai �

#

Rmax if Xi � H

�

xPXi
A pxq otherwise

(5.5)

Hence, the partial synchronizations in a pmax,�q-system with partial synchronization are
expressed by the following condition

�k P Z,�i, x2,i pkq P Ai

Example 27. For the example introduced in Ex. 23,

A1 � A4 � A5 � A8 � Rmax

A2 � A px1,1q and A3 � A px1,2q

A6 � A px1,3q and A7 � A px1,4q

Algebraic Representation of a pmax,�q-system with Partial Synchronization by

Daters

The main system is represented by

#

x1 pkq © A1,0x1 pkq `A1,1x1 pk� 1q ` B1,0u1 pkq

y1 pkq © C1,0x1 pkq
(5.6)
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The secondary system is represented by

$

'

&

'

%

x2 pkq © A2,0x2 pkq `A2,1x2 pk� 1q ` B2,0u2 pkq

y2 pkq © C2,0x2 pkq

�i, x2,i pkq P Ai

(5.7)

In (5.7), the Vrst two equations represent the standard synchronizations in the secondary
system and the third equation represents the partial synchronization of state events in the
secondary system by state events in the main system. Then, the main system aUects the
secondary system through the sets Ai which, according to (5.5), depend on the behavior of
the state events in the main system.

5.2.3. Input-Output Behavior

In the following, a method is presented to compute the response of a pmax,�q-system with
partial synchronization induced by a predeVned input speciVed by daters. As the secondary
system does not aUect the main system, we Vrst focus on the main system. Second, we
investigate the secondary system under a predeVned behavior of the main system.

Main System

The synchronizations aUecting the main system are summarized in (5.6). By convention,
x1 pkq and y1 pkq have all entries equal to ε for k   0. This choice is valid according to (5.6).
As the behavior under the earliest functioning rule is considered, the time of occurrence
k ¥ 0 of state events (i.e., x1 pkq) is given by the least solution of

#

x © A1,0x`A1,1x1 pk� 1q ` B1,0u1 pkq

x © x1 pk� 1q

These two inequalities can be lumped into a single inequality.

x © A1,0x` pA1,1 ` Idq x1 pk� 1q ` B1,0u1 pkq

Therefore, according to Th. 5,

x1 pkq � A
�

1,0 pA1,1 ` Idq x1 pk� 1q `A
�

1,0B1,0u1 pkq

Furthermore, as the behavior under the earliest functioning rule is considered, the time of
occurrence k ¥ 0 of output events (i.e., y1 pkq) is given by the least solution of

#

x © C1,0x1 pkq

x © y1 pk� 1q
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This leads directly to y1 pkq � C1,0x1 pkq ` y1 pk� 1q. This expression can be simpliVed by
noticing that, for l in N0,

C1,0x1 pkq ` y1 pk� lq � C1,0x1 pkq ` C1,0x1 pk� lq ` y1 pk� l� 1q

� C1,0 px1 pkq ` x1 pk� lqq ` y1 pk� l� 1q

� C1,0x1 pkq ` y1 pk� l� 1q as x1 pkq © x1 pk� lq

Then, as y1 p�1q � ε,

y1 pkq � C1,0x1 pkq ` y1 pk� 1q � C1,0x1 pkq ` y1 p�1q � C1,0x1 pkq

As, according to (2.7), x1 pkq � A�1,0x1 pkq, the main system is described by

#

x1 pkq � A1x1 pk� 1q ` B1u1 pkq

y1 pkq � C1x1 pkq
(5.8)

where A1 � A�1,0 pA1,1 ` IdqA�1,0, B1 � A
�

1,0B1,0, and C1 � C1,0A
�

1,0. As mentioned in the
introduction, the main system is a pmax,�q-linear system. This is not surprising, as the main
system is only subject to standard synchronizations.

Remark 16. Equation (5.8) leads to an isotone input-output mapping from Dm1 to Dp1 , de-
noted H1 and deVned by H1 pu1q � y1.

Remark 17. The structural controllability of the main system means that each row of A�1B1

contains at least one non-zero entry or, equivalently, each row of
�

Àn1�1
j�0 A

j
1

	

B1 contains

at least one non-zero entry.
The structural observability of the main system means that each column of C1A�1 contains

at least one non-zero entry or, equivalently, each column ofC1
�

Àn1�1
j�0 A

j
1

	

contains at least
one non-zero entry.

Secondary System

The synchronizations aUecting the secondary system are summarized in (5.7). By conven-
tion, x2 pkq and y2 pkq have all entries equal to ε for k   0. This choice is valid according to
(5.7). As the behavior under the earliest functioning rule is considered, the time of occurrence
k ¥ 0 of state events (i.e., x2 pkq) is given by the least solution of

$

'

&

'

%

x © A2,0x`A2,1x2 pk� 1q ` B2,0u2 pkq

�i, xi P Ai

x © x2 pk� 1q
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where the setsAi are obtained from the behavior of the main system. As in the main system,
it is possible to lump the Vrst and the third equations. This leads to

#

x © A2,0x` pA2,1 ` Idq x2 pk� 1q ` B2,0u2 pkq

�i, xi P Ai

Due to partial synchronizations, it is not possible to directly use Th. 5 to calculate x2 pkq.
However, using a reasoning very similar with [1, § 2.5.3], we can assume that A2,0 is strictly
lower triangular by deleting state events, lumping state events, and adding input events. This
allows us to get rid of the implicit terms by writing the Vrst inequality componentwise. This
leads to

�i,

#

xi ©
Ài�1

j�1 pA2,0qij xj ` ppA2,1 ` Idq x2 pk� 1q ` B2,0u2 pkqqi

xi P Ai

To compute x2 pkq, the mappingΦi from Rmax to Rmax is introduced. Formally, mappingΦi
is deVned by

�x P Rmax, Φi pxq �
©

tz P Ai|z © xu

As J P Ai, mapping Φi is well deVned. Then, Φi pxq is the least element in Ai greater than
or equal to x. Therefore,

�i, x2,i pkq � Φi

�

i�1
à

j�1

pA2,0qij x2,j pkq ` ppA2,1 ` Idq x2 pk� 1q ` B2,0u2 pkqqi

�

In practice, the entries of x2 pkq have to be computed in a speciVc order (i.e., for i from
1 to n2). For the output events, a reasoning similar to the one for the main system gives
y2 pkq � C2x2 pkq with C2 � C2,0. Thus, the secondary system is described by

#

x2 pkq � H px2 pk� 1q , u2 pkqq

y2 pkq � C2x2 pkq
(5.9)

where the mapping H from R
n2

max � R
m2

max to R
n2

max is deVned by

H px, uqi � Φi

�

i�1
à

j�1

pA2,0qijH px, uqj ` ppA2,1 ` Idq x` B2,0uqi

�

(5.10)

Remark 18. Equation (5.9) leads to an isotone input-output mapping from Dm2 to Dp2 , de-
noted H2,u1 and deVned by H2,u1 pu2q � y2. Due to partial synchronization, this mapping
depends on the input of the main system u1. Then, this leads to an input-output mapping H
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5. Modeling

for the complete pmax,�q-system with partial synchronization. Mapping H is deVned from
Dm1

�Dm2 to Dp1 �Dp2 by

H pu1, u2q � py1, y2q � pH1 pu1q ,H2,u1 pu2qq

Mapping H might be not isotone with respect to the canonical order as shown in Ex. 28.

Example 28. Let us consider the pmax,�q-system with partial synchronization drawn in
Fig. 5.7. The input uI is deVned by

u2

x2

y2

x1,2x1,1 1 y1u1,1

u1,2

Figure 5.7.: A simple pmax,�q-system with partial synchronization

uI1,1 pkq �

$

'

&

'

%

ε for k   0

e for k � 0

J for k ¡ 0

uI1,2 pkq �

$

'

&

'

%

ε for k   0

2 for k � 0

J for k ¡ 0

uI2 pkq �

$

'

&

'

%

ε for k   0

1 for k � 0

J for k ¡ 0

The output induced by uI is

yI1 pkq �

$

'

&

'

%

ε for k   0

2 for k � 0

J for k ¡ 0

yI2 pkq �

#

ε for k   0

J for k ¥ 0

The input uII is deVned by

uII1,1 pkq �

$

'

&

'

%

ε for k   0

1 for k � 0

J for k ¡ 0

uII1,2 � u
I
1,2 uII2 � u

I
2
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5.2. Dater Representation

The output induced by yII is

yII1 � y
I
1 yII2 pkq �

$

'

&

'

%

ε for k   0

1 for k � 0

J for k ¡ 0

Then, uI ¨ uII, but yI ¡ yII. Hence, the input-output mapping H associated with this
system is not isotone.

Example 29. For the example introduced in Ex. 23, the output induced by

u1,1 pkq � u1,2 pkq � u2,1 pkq � u2,2 pkq �

$

'

&

'

%

ε for k   0

e for 0 ¤ k   15

J for k ¥ 15

is computed. The main system is described by

$

'

'

'

'

'

'

'

'

'

&

'

'

'

'

'

'

'

'

'

%

x1 pkq �

�

�

�

�

�

�

10 e 12 2

20 10 22 12

12 2 10 e

22 12 20 10

�

Æ

Æ

Æ

Æ



x1 pk� 1q `

�

�

�

�

�

�

e ε

10 ε

ε e

ε 10

�

Æ

Æ

Æ

Æ



u1 pkq

y1 pkq �

�

10 e ε ε

ε ε 10 e

�

x1 pkq

This leads to

y1,1 pkq � y1,2 pkq �

$

'

&

'

%

ε for k   0

10b 12k for 0 ¤ k   15

J for k ¥ 15

Furhtermore, the sets Ai necessary for the dynamics of the secondary system are

A1 � A4 � A5 � A8 � Rmax

A2 � A6 � tε, e, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168,Ju

A3 � A7 � tε, 10, 22, 34, 46, 58, 70, 82, 94, 106, 118, 130, 142, 154, 166, 178,Ju
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5. Modeling

The output of the secondary system is given by

y2,1 pkq �

$

'

&

'

%

ε for k   0

27b 48k for 0 ¤ k   4

J for k ¥ 4

y2,2 pkq �

$

'

&

'

%

ε for k   0

51b 48k for 0 ¤ k   3

J for k ¥ 3
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6
Optimal Control

In this chapter, optimal control for pmax,�q-systems with partial synchronization is ad-
dressed. An output reference representing a deadline for output events is given. The aim of
this approach is to enforce the just-in-time behavior: input events occur as late as possible
while inducing an output respecting, as much as possible, the output reference. In practice,
this objective is very interesting: for a transportation network, departures are delayed as
much as possible while ensuring the schedule. Other criteria are presented in [20], but are
not investigated in this thesis. Next, this control strategy is only investigated when the prior-
ity is given to the main system over the secondary system: the optimal input is Vrst computed
for the main system and, second, for the secondary system under a predeVned behavior of
the main system. In many applications, this assumption makes sense as the main system is
shared by many independent secondary systems. Then, it might not be wise to operate the
main system only to satisfy a single secondary system. This conVguration might correspond
to Ex. 23, if the train line is shared by many supply chains.

In the following, optimal feedforward control and its closed-loop version, namely model
predictive control, are successively presented. Our approach is based on an analogy with
results obtained for pmax,�q-linear systems: optimal feedforward control and model pre-
dictive control for pmax,�q-linear systems have been respectively developed in [9, 31] and
in [20, 34]. The following results have been partly published in [18, 19]. To illustrate these
control approaches, the results are applied to Ex. 23.
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6. Optimal Control

6.1. Optimal Feedforward Control

In optimal feedforward control, the output reference is given over a Vnite horizon and the
input ensuring the just-in-time behavior is computed oYine. The output reference for the
main (resp. secondary) system is speciVed by a predeVned vector of daters z1 P Dp1 (resp.
z2 P Dp2). Furthermore, the restriction to a Vnite horizon means that there exists K P N0
such that, for all k ¥ K, z1 pkq � J and z2 pkq � J. To respect the output reference,
the occurrences of output events should occur before or at the dates speciVed by the output
reference. Formally, this requirement corresponds to y1 ¨ z1 and y2 ¨ z2. Hence, the Vnite
horizon assumption means that the output reference is constraining for the Vrst K occurrences
of output events. The optimal inputs u�1 for the main system and u�2 for the secondary system
are selected to enforce the just-in-time behavior (i.e., input events occur as late as possible
while inducing an output respecting the output reference). As the priority is given to the
main system over the secondary system, u�1 is computed by neglecting the secondary system
and, then, u�2 is computed under the behavior of the main system induced by u�1 .

Main System

The main system is described by

#

x1 pkq � A1x1 pk� 1q ` B1u1 pkq

y1 pkq � C1x1 pkq

The optimal input u�1 is selected to enforce the just-in-time behavior (i.e., input events occur
as late as possible while inducing an output respecting the output reference). Therefore, u�1
corresponds to the greatest vector of daters inducing an output less than or equal to the output
reference z1. Hence, u�1 is given by the greatest solution in Dm1of

#

x1 pkq � A1x1 pk� 1q ` B1u1 pkq

z1 pkq © C1x1 pkq
(6.1)

As z1 pkq � J for k ¥ K, u�1 pkq � J for k ¥ K. Therefore, it remains to determine the value
of u�1 pkq for 0 ¤ k   K. In the following, we denote ζ1 pkq the least upper bound of x1 pkq
in (6.1). Obviously, ζ1 pkq � J for k ¥ K, as z1 pkq � J for k ¥ K. Furthermore, as the only
conditions on ζ1 pkq expressed by (6.1) are z1 pkq © C1ζ1 pkq and ζ1 pk� 1q © A1ζ1 pkq,
ζ1 pkq is given by the backward recursive equation

ζ1 pkq � A1 �zζ1 pk� 1q ^C1 �zz1 pkq

This relation allows us to calculate ζ1 pkq for 0 ¤ k   K. Furthermore, the single condition
on u1 pkq induced by (6.1) is ζ1 pkq © B1u1 pkq. Therefore, u1 pkq ¨ B1 �zζ1 pkq. AsA1 © Id,
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6.1. Optimal Feedforward Control

the condition ζ1 pk� 1q © A1ζ1 pkq implies ζ1 pk� 1q © ζ1 pkq. Then, as the left-division
by B1 is isotone,

B1 �zζ1 pk� 1q © B1 �zζ1 pkq

Therefore, taking u�1 pkq � B1 �zζ1 pkq is a valid choice. Hence, the optimal input u�1 pkq for
0 ¤ k   K is given by

#

ζ1 pkq � C1 �zz1 pkq ^A1 �zζ1 pk� 1q

u�1 pkq � B1 �zζ1 pkq
with ζ1 pKq � J (6.2)

Secondary System

The secondary system is described by
#

x2 pkq � H px2 pk� 1q , u2 pkqq

y2 pkq � C2x2 pkq

The mapping H from R
n2

max � R
m2

max to R
n2

max is deVned by

H px, uqi � Φi

�

i�1
à

j�1

pA2,0qijH px, uqj ` ppA2,1 ` Idq x` B2,0uqi

�

where Φi pxq �
�

tz P Ai|z © xu with set Ai depending on the behavior of the main sys-
tem.

The optimal input u�2 is selected to enforce the just-in-time behavior (i.e., input events
occur as late as possible while inducing an output respecting the output reference). Therefore,
u�2 corresponds to the greatest vector of daters inducing an output less than or equal to the
output reference z2. Hence, u�2 is given by the greatest solution in Dm2 of

#

x2 pkq � H px2 pk� 1q , u2 pkqq

z2 pkq © C2x2 pkq
(6.3)

As z2 pkq � J for k ¥ K, u�2 pkq � J for k ¥ K. Therefore, it remains to determine the
value of u�2 pkq for 0 ¤ k   K. Before solving this problem, some properties of the mappings
Φi and H are formalized.

Lemma 44. Let A be a Vnite subset of Rmax such that tε,Ju � A. The mapping Φ deVned
by

�x P Rmax, Φ pxq �
©

tz P A|z © xu

is residuated and its residual is given by

�x P Rmax, Φ7

pxq �
à

tz P A|z ¨ xu
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6. Optimal Control

Proof. This proof is based on Th. 1. Let us denote Ψ the mapping from Rmax to Rmax deVned
by

�x P Rmax, Ψ pxq �
à

tz P A|z ¨ xu

As ε and J belong to A, mappingsΦ and Ψ are well deVned. Furthermore, mappingsΦ and
Ψ are isotone. Finally, as A is Vnite, Φ pxq and Ψ pxq always belong to A. Then,

�x P Rmax, pΨ �Φq pxq � Φ pxq © x

pΦ � Ψq pxq � Ψ pxq ¨ x

This leads to Ψ �Φ © Id and Φ � Ψ ¨ Id. Hence, according to Th. 1, Φ is residuated and its
residual is Ψ.

Remark 19. Lem. 44 does not hold anymore when A is not Vnite. Consider the set A deVned

by

A �

"

2�
1

n
|n P N

*

Then, Φ p

À

xPA xq � Φ p2q � J, but
À

xPAΦ pxq � 2. Then, according to Th. 3, Φ is not

residuated.

Lemma 45. Let H be the mapping deVned in (5.10) and z P R
n2

max. If all mappings Φi are

residuated, the inequality H px, uq ¨ z admits a greatest solution denoted pF pzq , G pzqq

deVned by

F pzq � pA2,1 ` Idq �zR and G pzq � B2,0 �zR

where Ri � Φ
7

i priq and ri � zi ^
�n2

j�i�1 pA2,0qji �zRj.

Proof. First, we prove that H px, uq ¨ z � H px, uq ¨ r. As, by deVnition of r, r ¨

z, H px, uq ¨ r implies H px, uq ¨ z. Conversely, we reason by induction over index i
decreasing from n2 to 1. For i � n2, as rn2

� zn2
, H px, uqn2

¨ zn2
implies H px, uqn2

¨

rn2
. For 1 ¤ i   n2, we assume that H px, uqj ¨ rj for i   j ¤ n2. Then,

�j with i   j ¤ n2, H px, uqj ¨ rj

ñ �j with i   j ¤ n2,
j�1
à

k�1

pA2,0qjkH px, uqk ¨ Rj

ñ �j with i   j ¤ n2, H px, uqi ¨ pA2,0qji �zRj

ñ H px, uqi ¨

n2
©

j�i�1

pA2,0qji �zRj
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6.1. Optimal Feedforward Control

As H px, uq ¨ z,

H px, uqi ¨ zi ^

n2
©

j�i�1

pA2,0qji �zRj � ri

This completes the induction. Therefore,

H px, uq ¨ z

� H px, uq ¨ r

� �i,
i�1
à

j�1

pA2,0qijH px, uqj ` ppA2,1 ` Idq x` B2,0uqi ¨ Ri

Furthermore, as H px, uq ¨ r,

i�1
à

j�1

pA2,0qijH px, uqj ¨
i�1
à

j�1

pA2,0qij rj

¨

i�1
à

j�1

pA2,0qij

�

pA2,0qij �zRi

	

¨ Ri

Hence,

H px, uq ¨ z

� �i, ppA2,1 ` Idq x` B2,0uqi ¨ Ri

� pA2,1 ` Idq x` B2,0u ¨ R

� x ¨ pA2,1 ` Idq �zR and u ¨ B2,0 �zR

Therefore, the inequality H px, uq ¨ z admits a greatest solution pF pzq , G pzqq given by

F pzq � pA2,1 ` Idq �zR and G pzq � B2,0 �zR

In the following, we denote ζ2 pkq the least upper bound of x2 pkq in (6.3). Obviously,
ζ2 pkq � J for k ¥ K, as z2 pkq � J for k ¥ K. Furthermore, the only conditions on ζ2 pkq
expressed by (6.3) are z2 pkq © C2ζ2 pkq and ζ2 pk� 1q © H pζ2 pkq , u2 pk� 1qq. Besides,
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6. Optimal Control

as the main system is structurally controllable,

�k ¥ K� n1, x�1 pkq ©
n1�1
à

j�0

A
j
1B1u

�

1 pk� jq

©

n1�1
à

j�0

A
j
1B1J

©

�

n1�1
à

j�0

A
j
1B1

�

J

© J according to Rem. 16

Therefore, x�1 pkq � J for k ¥ K � n1. Hence, for all state event x2,i, either the sets Ai
associated with Φi is Vnite or Φi � Id. In both cases, according to Lem. 44, mapping Φi is
residuated. Hence, according to Lem. 45, ζ2 pkq is given by the backward recursive equation

ζ2 pkq � F pζ2 pk� 1qq ^ C2 �zz2 pkq

This relation allows us to calculate ζ2 pkq for 0 ¤ k   K. Furthermore, the single con-
dition on u2 pkq induced by (6.3) is ζ2 pkq © H pζ2 pk� 1q , u2 pkqq. Therefore, u2 pkq ¨
G pζ2 pkqq. As the mapping F is isotone, ζ2 pk� 1q © ζ2 pkq. Then, as the mapping G is
isotone,

G pζ2 pk� 1qq © G pζ2 pkqq

Therefore, taking u�2 pkq � G pζ2 pkqq is a valid choice. Hence, the optimal input u�2 pkq for
0 ¤ k   K is given by

#

ζ2 pkq � C2 �zz2 pkq ^ F pζ2 pk� 1qq

u�2 pkq � G pζ2 pkqq
with ζ2 pKq � J (6.4)

Remark 20. The previous control strategy consists in Vnding the greatest, according to a

speciVc order denoted ¨L, solution of

H pu1, u2q ¨ pz1, z2q

where z1 (resp. z2) denotes the vector of daters associated with the output reference for the

main (resp. secondary) system. The order ¨L corresponds to a lexicographic order based on

the partition in main system and secondary system, i.e.,

�

uI1, u
I
2

	

¨L

�

uII1 , u
II
2

	

�

$

'

&

'

%

uI1   u
II
1

or

uI1 � u
II
1 and uI2 ¨ u

II
2
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6.1. Optimal Feedforward Control

The inequality H pu1, u2q ¨ pz1, z2q admits a greatest, according to ¨L, solution. But, in
Ex. 28, uI ¨L u

II, but yI ¡ yII. Then, mapping H is not isotone.
Furthermore, the inequalityH pu1, u2q ¨ pz1, z2q might not admit a greatest, according to

¨, solution, as shown in Ex. 30. Hence, the speciVc order¨L has not only a practical meaning,
but ensures also the existence of a unique optimal input.

Example 30. Let us consider the pmax,�q-system with partial synchronization drawn in
Fig. 6.1. The following output reference is considered.

u2

x2

y2

x1,2x1,1 1 y1u1

Figure 6.1.: A simple pmax,�q-system with partial synchronization

z1 pkq �

$

'

&

'

%

ε for k   0

2 for k � 0

J for k ¡ 0

z2 pkq �

$

'

&

'

%

ε for k   0

e for k � 0

J for k ¡ 0

The incomparable inputs uI and uII deVned by

uI1 pkq �

$

'

&

'

%

ε for k   0

1 for k � 0

J for k ¡ 0

uI2 pkq �

#

ε for k   1

J for k ¥ 1

uII1 pkq � u
II
2 pkq �

$

'

&

'

%

ε for k   0

e for k � 0

J for k ¡ 0

induce outputs less than or equal to z. However, the input uI `uII does not lead to an output
less than or equal to the reference output. Hence, the inequality H pu1, u2q ¨ pz1, z2q does
not admit a greatest solution with respect to ¨.
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6. Optimal Control

Example 31. In the following, optimal feedforward control is applied to Ex. 23. The output
reference z1 for the main system is deVned as

z1,1 pkq � z1,2 pkq �

$

'

&

'

%

ε for k   0

10b 20k for 0 ¤ k   20

J for k ¥ 20

This leads to the following optimal input u�1 for the main system.

u�1,1 pkq � u
�

1,2 pkq �

$

'

&

'

%

ε for k   0

20k for 0 ¤ k   20

J for k ¥ 20

The output induced by u�1 , denoted y
�

1 , is equal to z1. Hence, y
�

1 ¨ z1. Under this speciVc
behavior of the main system, the optimal input for the secondary system is computed. The
considered output reference, denoted z2, is deVned as

z2,1 pkq �

$

'

&

'

%

ε for k   0

20b 80k for 0 ¤ k   5

J for k ¥ 5

and z2,2 pkq �

$

'

&

'

%

ε for k   0

55b 80k for 0 ¤ k   5

J for k ¥ 5

This leads to the following optimal input u�2 for the secondary system.

u�2,1 pkq �

$

'

&

'

%

ε for k   1

75b 80k�1 for 1 ¤ k   5

J for k ¥ 5

and u�2,2 pkq �

$

'

&

'

%

ε for k   0

35b 80k for 0 ¤ k   5

J for k ¥ 5

The output induced by u�2 , denoted y
�

2 , is

y�2,1 pkq

$

'

&

'

%

ε for k   1

95b 80k�1 for 1 ¤ k   5

J for k ¥ 5

and y�2,2 pkq �

$

'

&

'

%

ε for k   0

55b 80k for 0 ¤ k   5

J for k ¥ 5

Clearly, y�2 ¨ z2.

6.1.1. Feasibility

In the previous reasoning, the practical implementation of the optimal input has not been
considered. This aspect may cause a problem: in Ex. 31, the optimal input leads to a Vrst
occurrence of input event u2,1 at t � �8, but this requirement cannot be met in practice,
as the system starts at t � 0. To tackle this problem, the notion of realizability for daters is
introduced.
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6.1. Optimal Feedforward Control

DeVnition 48 (Realizable dater). A dater d is said to be realizable if, for all k P N0, d pkq © e.
The least realizable dater, denoted r, is deVned by

r pkq �

#

ε for k   0

e for k ¥ 0

A vector of daters is said to be realizable if all its entries are realizable.

Intuitively, a realizable dater is a dater which can be implemented in practice as the timed
behavior of an event. In the following, we require the optimal input to be realizable. This
comes at a price: the output reference cannot be respected in general. In Ex. 31, requiring
the optimal input to be realizable leads to u�2,1 p0q © e. Then, the realizable optimal input
cannot be less than or equal to the optimal input computed in Ex. 31. Hence, the output of
the secondary system cannot be less than or equal to the output reference z2. This illustrates
the need for relaxing the output reference to obtain a realizable optimal input. To formalize
this condition, the notion of feasibility for an output reference is introduced.

DeVnition 49 (Feasibility). In a pmax,�q-system with partial synchronization, an output
reference is said to be feasible if the associated optimal input is realizable.

Hence, the problem is to Vnd a feasible output reference z̃, partitioned in output reference
z̃1 for the main system and output reference z̃2 for the secondary system, greater than or equal
to the original output reference z. Furthermore, as the behavior of the system should respect
as much as possible the original output reference, we require z̃ to be the least feasible output
reference greater than or equal to z. In the following, the problem of Vnding an appropriate
output reference is Vrst addressed for the main system and, then, for the secondary system
under a predeVned behavior of the main system.

Main System

Let w1 be an output reference for the main system. The feasibility of w1 is equivalent
to an optimal input associated with w1 greater than or equal to u1 where u1 is the vector
in Dm1 with entries equal to r. As H1 is isotone, this implies w1 © H1 pu1q. Conversely,
w1 © H1 pu1q implies that the optimal input associated with w1 is greater than or equal to
u1. Therefore,

w1 is feasible� w1 © H1 pu1q

Hence, the least feasible output reference z̃1 greater than or equal to z1 is given by

z̃1 � H1 pu1q ` z1

With the method developed before, the calculation ofH1 pu1q requires an inVnite amount of
time. However, as the original output reference z1 is deVned over a Vnite event horizon, z̃1
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6. Optimal Control

is also deVned over the same Vnite event horizon and can be computed in a Vnite amount of
time. The realizable optimal input ũ�1 is obtained from the feasible output reference z̃1 using
the method developed before.

Secondary System

The previous approach can be directly transposed to the secondary system. Then, ũ�2 is
obtained from the relaxed output reference z̃2 � z2 `H2,ũ�

1
pu2q, where u2 is the vector in

Dm2 with entries equal to r, by using the method developed before.

Example 32. The previous method is applied in Ex. 31 to obtain a realizable optimal input.

The problem is already solved for the main system, as u�1 is realizable. However, for the

secondary system, u�2 is not realizable. Hence, the output reference z2 deVned by

z2,1 pkq �

$

'

&

'

%

ε for k   0

20b 80k for 0 ¤ k   5

J for k ¥ 5

and z2,2 pkq �

$

'

&

'

%

ε for k   0

55b 80k for 0 ¤ k   5

J for k ¥ 5

is not feasible and has to be relaxed. The least feasible output reference greater than or equal

to z2, denoted z̃2, is deVned by

z̃2,1 pkq �

$

'

&

'

%

ε for k   0

35b 80k for 0 ¤ k   5

J for k ¥ 5

and z2,2 pkq �

$

'

&

'

%

ε for k   0

75b 80k for 0 ¤ k   5

J for k ¥ 5

This leads to a realizable optimal input ũ�2 for the secondary system where

ũ�2,1 pkq �

$

'

&

'

%

ε for k   0

15b 80k for 0 ¤ k   5

J for k ¥ 5

and ũ�2,2 pkq �

$

'

&

'

%

ε for k   0

55b 80k for 0 ¤ k   5

J for k ¥ 5

The output induced by ũ�2 , denoted ỹ
�

2 , is equal to z̃2. Hence, ỹ
�

2 ¨ z̃2. However, ỹ
�

2 is not less

than or equal to z2.

6.1.2. Characterization with Cost Functions

The aim of this section is to characterize with cost functions the optimality criterion de-
veloped in § 6.1.1. First, two particular cost functions are introduced. The Vrst cost function,
denoted J1,1 for the main system and J1,2 for the secondary system, corresponds to the tardi-
ness criterion and is deVned by

J1,i pyiq �

pi̧

j�1

K�1̧

k�0

max pyi,j pkq � zi,j pkq , 0q with i P t1, 2u
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6.1. Optimal Feedforward Control

In the tardiness criterion, a penalty is paid for delays with respect to the output reference zi.
The second cost function, denoted J2,1 for the main system and J2,2 for the secondary system,
corresponds to the just-in-time criterion

J2,i pyiq � �

mi̧

j�1

K�1̧

k�0

ui,j pkq with i P t1, 2u

In the just-in-time criterion, a penalty is paid when input events are brought forward.
In the following, an optimal control approach based on these cost functions is investigated.

The problem is, Vrst, solved for the main system and, second, for the secondary system under
a predeVned behavior of the main system. For each system, the tardiness criterion is Vrst
minimized. Then, among all inputs optimal with respect to the tardiness criterion, an input
optimal with respect to the just-in-time criterion is selected. In practice, this approach makes
sense: the objective is to respect the output reference (i.e., the schedule) and, under this con-
dition, it might also be interesting to ensure just-in-time behavior (i.e., delay the departures).

To avoid a cumbersome discussion over inVnite costs, we assume that the reference output
z and y (i.e., the response to the least realizable input u) take value in R�0 over the Vnite
event horizon of length K. In practice, this assumption is not restrictive.

Main System

The Vrst step consists in Vnding the optimal cost for the tardiness criterion. Formally, this
corresponds to solving the following optimization problem:

minimize J1,1 py1q

subject to
$

'

&

'

%

x1 pkq � A1x1 pk� 1q ` B1u1 pkq

y1 pkq � C1x1 pkq

u1 pk� 1q © u1 pkq

for 0 ¤ k   K

x1 p�1q � ε, u1 p0q © e, u1 pKq � J

(6.5)

As yI1 © yII1 implies J1,1
�

yI1
�

¥ J1,1
�

yII1
�

, it is suXcient to Vnd the least output y1 in (6.5).
Furthermore, as the input-output mapping H1 associated with the main system is isotone, it
is suXcient to Vnd the least input uK1 admissible with respect to (6.5). The entries of the input
uK1 are all equal to eK deVned by

eK pkq �

$

'

&

'

%

ε for k   0

e for 0 ¤ k   K

J for k ¥ K
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6. Optimal Control

Thus, the optimal cost in (6.5), denoted Jopt1,1 , is given by J1,1
�

yK
1

	

where yK
1
� H1

�

uK1
�

. By

assumption, Jopt1,1 is Vnite. The second step consists in solving

minimize J1,2 pu1q

subject to
$

'

&

'

%

x1 pkq � A1x1 pk� 1q ` B1u1 pkq

y1 pkq � C1x1 pkq

u1 pk� 1q © u1 pkq

for 0 ¤ k   K

J1,1 py1q � J
opt
1,1

x1 p�1q � ε, u1 p0q © e, u1 pKq � J

(6.6)

Since y1 © y1, for 0 ¤ k   K and 1 ¤ j ¤ p1,

max py1,j pkq � z1,j pkq , 0q ¥ max
�

y
1,j
pkq � z1,j pkq , 0

	

Hence, as Jopt1,1 is Vnite, J1,1 pu1q � J
opt
1,1 is equivalent to, for 0 ¤ k   K and 1 ¤ j ¤ p1,

max py1,j pkq � z1,j pkq , 0q � max
�

y
1,j
pkq � z1,j pkq , 0

	

If z1,j pkq ¥ y1,j pkq,

max py1,j pkq � z1,j pkq , 0q � max
�

y
1,j
pkq � z1,j pkq , 0

	

� max py1,j pkq � z1,j pkq , 0q � 0

� y1,j pkq ¤ z1,j pkq

Otherwise, if z1,j pkq   y1,j pkq,

max py1,j pkq � z1,j pkq , 0q � max
�

y
1,j
pkq � z1,j pkq , 0

	

� max py1,j pkq � z1,j pkq , 0q � y1,j pkq � z1,j

� y1,j pkq � y1,j pkq

� y1,j pkq ¤ y1,j pkq

108



6.1. Optimal Feedforward Control

Thus, J1,1 pu1q � J
opt
1,1 is equivalent to y1 ¨ z̃1, where z̃1 is the least feasible output reference

greater than or equal to z1. Hence, (6.6) is equivalent to

minimize J1,2 pu1q

subject to
$

'

&

'

%

x1 pkq � A1x1 pk� 1q ` B1u1 pkq

z̃1 pkq © C1x1 pkq

u1 pk� 1q © u1 pkq

for 0 ¤ k   K

x1 p�1q � ε, u1 p0q © e, u1 pKq � J

(6.7)

As uI1 © u
II
1 implies J1,2

�

uI1
�

¤ J1,2
�

uII1
�

, the optimal cost in (6.6) is reached for the optimal
input obtained in § 6.1.1. Therefore, the optimal input computed in § 6.1.1 is optimal with
respect to the just-in-time criterion under an optimal cost for the tardiness criterion.

Secondary System

The previous approach is directly transposed to the secondary system under a predeVned
behavior of the main system. Hence, for the secondary system, the optimal input obtained
in § 6.1.1 is optimal with respect to the just-in-time criterion under an optimal cost for the
tardiness criterion.

Remark 21. In optimal control or model predictive control [20], the cost function has some-

times the form J1 pyq � βJ2 puq where

– J1 is a cost function quantifying the tracking error

– J2 is a cost function quantifying the input eUort

– β is an element in R�0 representing the trade-oU between the cost functions J1 and J2. In

practice, β is often selected small but strictly positive.

The objective is to compute the input u minimizing the overall cost function according to

the dynamics of the system. Intuitively, our problem for the main system or the secondary

system is similar, but the parameter β is assumed to be inVnitesimal.

6.1.3. Complexity

The computation time of the optimal input for the main system is obtained by solving the
backward recursive relation (6.2) over the event horizon of length K. As the computation
time associated with each step is constant with respect to the length K of the event horizon,
the computation time of the optimal input for the main system is linear with the length K of
the event horizon. The computation time of the optimal input for the secondary system is
obtained by solving the backward recursive relation (6.4) over the event horizon of length K.
However, the computation time associated with each step may not be constant with respect
to the length K of the event horizon, as the computation ofΦ7

i pxq for x P Rmax (necessary for
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6. Optimal Control

the mappings F and G) may depend on the length K of the event horizon. But, it is possible
to come down to a constant time in average over occurrence index k by reusing information
from the previous step. Hence, the computation time of the optimal input for the secondary
system is linear with the length K of the event horizon. Therefore, the computation time
of the optimal input for a pmax,�q-system with partial synchronization is linear with the
length K of the event horizon.

To compute the realizable optimal input, it is only necessary to precede the solving of the
backward recursive relation by the solving of a forward recursive relation over the event
horizon of length K. The aim of this preliminary step is to relax the output reference. Using
a reasoning similar to the one presented before, the computation time associated with this
preliminary step is linear with the length K of the event horizon. Hence, the computation
time of the realizable optimal input for a pmax,�q-system with partial synchronization is
linear with the length K of the event horizon.

Example 33. Let us consider Ex. 23 with the output reference

z1,1 pkq � z1,2 pkq �

$

'

&

'

%

ε for k   0

10b 20k for 0 ¤ k   K

J for k ¥ K

z2,1 pkq � z2,2 pkq �

$

'

&

'

%

ε for k   0

20b 80k for 0 ¤ k   K

J for k ¥ K

A Scilab simulation leads to the following results for the computation time of the realizable
optimal input.

K 64 128 256

Computation time (in s) 1.39 2.59 5.04

As expected, the computation time is linear with the length K of the event horizon.

6.2. Model Predictive Control

Model predictive control (MPC) consists in a closed-loop version of optimal feedforward
control. At each time step, an output reference for the next K occurrences of each output
event is considered. Based on this output reference, an optimal input is computed with a
method similar to the one presented in § 6.1.1. Then, this optimal input is used to implement
occurrences of input events during the next time step. The main diXculty in comparison with
optimal feedforward control is the consideration of the history of the system. The advantage
of this control approach is the ability to take into account changes in the output reference
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6.2. Model Predictive Control

(e.g., changes in the schedule) and perturbations. The drawback is the cost associated with
the online computation of the optimal input and the additional communication network nec-
essary to update information online.

Let us now examine the precise timing of this control approach. At time t, the behavior of
the system before time t and the behavior of the input events over the time interval rt, t� 1r
are known. Based on this information and on the output reference, an optimal input is com-
puted using a method similar to the one presented in § 6.1.1. As this step has to be done during
the time interval rt, t� 1r, the associated computation time is crucial: a computation time
linear with the length K of the event horizon is achieved. Then, the computed optimal input
is used to determine the behavior of the input events over the time interval rt� 1, t� 2r.
Hence, the information necessary to start again the process at time t� 1 is available at time
t� 1. In practice, the occurrence times of input events during the time interval r0, 1r has to
be guessed or computed oYine, as they cannot come from the previous step.

The link between the time domain and the event domain is formalized, for event e, by the
parameter Kt,e deVned as the index of the Vrst occurrence of event e after or at time t. At
time t, e pkq is known for k   Kt,e, as it corresponds to a past occurrence of event e, and
e pkq © t for k ¥ Kt,e. Furthermore, as the behavior of an input event, denoted v, over the
time interval rt, t� 1r is known at time t, v pkq is known, at time t, for k   Kt�1,v. The
output reference considered at time t, denoted zt, is deVned by

ztj pkq �

$

'

&

'

%

yj pkq for k   Kt,yj
zj pkq ` t for Kt,yj ¤ k   Kt,yj � K

J for k ¥ Kt,yj � K

where z is the required output reference.
In the following, a method to compute the optimal input at time t is presented. As before,

the problem is Vrst solved for the main system by neglecting the secondary system and,
second, for the secondary system under a predeVned behavior of the main system.

Main System

The main system is described by
#

x1 pkq � A1x1 pk� 1q ` B1u1 pkq

y1 pkq � C1x1 pkq

The output reference associated, at time t, with the main system, denoted zt1, is deVned by

zt1,j pkq �

$

'

&

'

%

y1,j pkq for k   Kt,y1,j
z1,j pkq ` t for Kt,y1,j ¤ k   Kt,y1,j � K

J for k ¥ Kt,y1,j � K
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6. Optimal Control

The Vrst task consists in identifying the occurrences of input and state events in the main
system aUecting the next K occurrences of output events in the main system. Let us consider
state event x1,j and output event y1,i. In the following discussion, two cases are distinguished.

First case: Kt,y1,i ¤ Kt,x1,j . Due to the structure of the model, y1,i pkq is not aUected by
x1,j plq for l ¡ k. Hence, as Kt,y1,i � K� 1   Kt,x1,j � K, the next K occurrences of output
event y1,i are not aUected by occurrences k of state event x1,j with k ¥ Kt,x1,j � K. Thus, to
capture the inWuence of state event x1,j on the next K occurrences of output event y1,i, it is
suXcient to predict the behavior of state event x1,j over Kt,x1,j ¤ k   Kt,x1,j � K.

Second case: Kt,y1,i ¡ Kt,x1,j . Due to the model,

�l P N0, y1,i pKt,y1,i � 1q ©
�

C1A
l
1

	

ij
x1,j pKt,y1,i � l� 1q

Thus, for 0 ¤ l ¤ Kt,y1,i � Kt,x1,j � 1,
�

C1A
l
1

�

ij
� ε, as y1,i pKt,y1,i � 1q   t and

x1,j pKt,y1,i � 1� lq © x1,j
�

Kt,x1,j
�

© t. Therefore, y1,i pkq is not aUected by x1,j plq for
l ¡ k � Kt,y1,i � Kt,x1,j . Thus, to capture the inWuence of state event x1,j on the next K
occurrences of output event y1,i, it is suXcient to predict the behavior of state event x1,j over
Kt,x1,j ¤ k   Kt,x1,j � K.

A similar reasoning can be applied to input events. Let us consider input event u1,j and
output event y1,i. To capture the inWuence of input event u1,j on the next K occurrences of
output event y1,i, it is suXcient to predict the behavior of input event u1,j over Kt,u1,j ¤ k  
Kt,u1,j � K.

A direct consequence of the previous discussion is that the predicted state, input, and
output of the main system, denoted x̂1, û1, and ŷ1, are considered over a Vnite event horizon
of length K and set to J after this horizon. Hence,

x̂1,i pkq �

#

x1,i pkq for k   Kt,x1,i
J for k ¥ Kt,x1,i � K

û1,i pkq �

#

u1,i pkq for k   Kt�1,u1,i
J for k ¥ Kt,u1,i � K

ŷ1,i pkq �

#

y1,i pkq for k   Kt,y1,i
J for k ¥ Kt,y1,i � K

As occurrences of input events over time interval rt, t� 1r have been determined with this
method, Kt�1,u1,i ¤ Kt,u1,i � K. If Kt�1,u1,i � Kt,u1,i � K, no occurrences of input events
during the time interval rt� 1, t� 2r are required and the process is completed. Hence, only
the case Kt�1,u1,i   Kt,u1,i � K is investigated.
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6.2. Model Predictive Control

The problem is then to eXciently Vll in the event window with unknown entries for each
dater. To solve this problem, a method similar to the one presented in § 6.1.1 is used. Notice
that x̂1, û1, and ŷ1 may not represent a valid future behavior of the system, but they will be
selected such that they respect its dynamics for the event occurrences aUecting the next K
occurrences of output events.

The Vrst step consists in Vnding the least feasible output reference greater than or equal to
zt1, denoted z̃

t
1. The least realizable input, denoted û

t
1, is deVned by

ût1,i pkq �

$

'

&

'

%

u1,i pkq for k   Kt�1,u1,i
1t for Kt�1,u1,i ¤ k   Kt,u1,i � K

J for k ¥ Kt,u1,i � K

The state induced by û1,i, denoted x̂1,i, is calculated by using the recurrence relation

x1 pkq � A1x1 pk� 1q ` B1u1 pkq

A naive approach consists in computing this relation for Kt,x1 ¤ k   Kt,x1 � K, where

Kt,x1 � min pKt,x1,i|1 ¤ i ¤ n1q and Kt,x1 � max pKt,x1,i|1 ¤ i ¤ n1q. However, as Kt,x1�
Kt,x1 might not be bounded, the computation time associated with this problem might grow
to inVnity. A better approach is to compute x̂1 pkq only when at least one of its entries
is unknown. This computation has to be done according to increasing occurrence indices,
i.e., the event windows with unknown entries have to be Vlled from left to right. Using this
approach, the computation time to obtain x̂1 is linear with the length K of the event horizon.
The trick of computing only the needed value to Vll in the event windows with unknown
entries is used redundantly for model predictive control and allows us to obtain an overall
computation time linear with the length K of the event horizon. Then, the unknown entries
of ŷ

1
, the output induced by û1 are computed using y1 pkq � C1x1 pkq. Once again, ŷ1 pkq

is computed only when at least one of its entries is unknown. This allows us to compute the
least feasible output reference z̃t1, given by z̃t1 � zt1 ` ŷ1. The computation time associated
with this step is linear with the length K of the event horizon.

The second step consists in calculating the optimal input associated with output reference
z̃t1. Using a similar reasoning, the predicted least upper bound for state events, denoted ζ̂1, is
partly known, i.e.,

ζ̂1,i pkq �

#

x1,i pkq for k   Kt,x1,i
J for k ¥ Kt,x1,i � K

To Vll in the event window with unknown entries, the recursive relation

ζ1 pkq � A1 �zζ1 pk� 1q ^ C1 �zz1 pkq

is considered. However, as for the calculation of x̂1, ζ̂1 pkq is only computed when at least
one of its entries is unknown to maintain a computation time linear with the length K of the
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event horizon. This computation has to be done according to decreasing occurrence indices,
i.e., the event windows with unknown entries have to be Vlled from right to left. Finally, the
optimal input is given by the relation u�1 pkq � B1 �zζ1 pkq. To maintain a computation time
linear with the length K of the event horizon, û1 pkq is computed only when at least one of its
entries is unknown. The computation time associated with this step is linear with the length
K of the event horizon.

Secondary System

The secondary system is described by
#

x2 pkq � H px2 pk� 1q , u2 pkqq

y2 pkq � C2x2 pkq

The output reference associated, at time t, with the main system, denoted zt2, is deVned by

zt2,j pkq �

$

'

&

'

%

y2,j pkq for k   Kt,y2,j
z2,j pkq ` t for Kt,y2,j ¤ k   Kt,y2,j � K

J for k ¥ Kt,y2,j � K

The Vrst task consists in identifying the occurrences of input and state events in the sec-
ondary system aUecting the next K occurrences of output events in the secondary system.
As the only synchronizations between events in the secondary system are standard synchro-
nizations, it is possible to discard partial synchronizations for this task and apply the method
used for the main system. Hence, to capture the inWuence of state event x2,j (resp. input
event u2,j) on the next K occurrences of output event y2,i, it is suXcient to predict the be-
havior of state event x2,j (resp. input event u2,j) over Kt,x2,j ¤ k   Kt,x2,j � K (resp.
Kt,u2,j ¤ k   Kt,u2,j � K).

The remaining part of optimal input calculation consists in adapting the method developed
in § 6.1 to the moving event horizon. This problem is very similar to the one solved for
the main system and is not discussed further. The computation time associated with the
calculation of the optimal input for the secondary system under a predeVned behavior of the
main system is linear with the length K of the event horizon. Hence, the overall computation
time to compute the optimal input at time t is linear with the length K of the event horizon.

Remark 22. A formulation of the previous control approach with cost functions is direct by
using the characterization of optimal feedforward control in terms of cost functions developed
in § 6.1.2. Furthermore, in standard MPC, a prediction horizon Kp is considered, but the

input is only optimized over a control horizon Ku ¤ Kp. This lowers the computation time

associated with the optimization problem solved online. In our approach, due to backward

recursive relations, K � Kp � Ku and it is not possible to choose Ku   Kp. However,

reducing the computational time might be unnecessary, as the computation time to solve

online the optimization problem is linear with the length K of the prediction horizon.
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Example 34. The example introduced in Ex. 23 (i.e., the supply chain) is considered with a

simulation time horizon T � 800 and a prediction event horizon of length K � 4 (unless

otherwise speciVed).

Reference case: The output references are given by

z1,1 pkq � z1,2 pkq �

#

ε if k   0

15b 20k if k ¥ 0

z2,1 pkq �

#

ε if k   0

20b 80k if k ¥ 0
and z2,2 pkq �

#

ε if k   0

55b 80k if k ¥ 0

The input provided by MPC is

u1,1 pkq � u1,2 pkq �

$

'

&

'

%

ε if k   0

5b 20k if 0 ¤ k   40

J if k ¥ 40

u2,1 pkq �

$

'

&

'

%

ε if k   0

20b 80k if 0 ¤ k   10

J if k ¥ 10

and u2,2 pkq �

$

'

&

'

%

ε if k   0

60b 80k if 0 ¤ k   10

J if k ¥ 10

This input corresponds to the optimal input obtained with the method presented in § 6.1.1 by
truncating the output reference at k � 40 and forcing the input events to occur after or at

time t � 1 (this last condition is required by the timing of MPC). Hence, the length of the

prediction horizon is suXcient to predict the behavior of the system.

Complexity analysis: The reference case is run with diUerent lengths K for the predic-

tion horizon. A Scilab implementation leads to the following computation time to solve the
optimization problem for a single time step.

K 4 8 16

Computation time (in s) 2.05 4.09 8.18

As expected, the computation time is linear with the length K of the prediction horizon.

Change in the output reference: Output reference z1 starts with a throughput of one
train every 20 units of time. At t � 200, the throughput is suddenly increased to one train
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every 15 units of time. Output reference z2 is the same than in the reference case. The input

provided by MPC is

u1,1 pkq � u1,2 pkq �

$

'

'

'

'

'

'

&

'

'

'

'

'

'

%

ε if k   0

5b 20k if 0 ¤ k   10

201b 12k�10 if 10 ¤ k   16

275b 15k�16 if 16 ¤ k   52

J if k ¥ 52

u2,1 pkq �

$

'

'

'

'

'

'

&

'

'

'

'

'

'

%

ε if k   0

20b 80k if 0 ¤ k   3

232 if k � 3

285b 60k�4 if 4 ¤ k   13

J if k ¥ 13

and u2,2 pkq �

$

'

'

'

'

'

'

&

'

'

'

'

'

'

%

ε if k   0

60b 80k if 0 ¤ k   2

208 b 48k�2 if 2 ¤ k   4

315 b 60k�4 if 4 ¤ k   13

J if k ¥ 13

After t � 200, the main system operates at the maximal throughput (i.e., one train every
12 units of time) to catch up with the new output reference. Afterwards, the main system
takes the correct throughput (i.e., one train every 15 units of time). But, the secondary system
drifts: the throughput increases to one container every 60 units of times after the change in
the output reference instead of staying at one container every 80 units of time. This is due to
a prediction horizon too short with respect to the new throughput of the train line. Indeed, if
we consider a prediction horizon of length K � 5. The input u1 remains the same, but u2 is
given by

u2,1 pkq �

$

'

'

'

'

'

'

'

'

'

'

'

&

'

'

'

'

'

'

'

'

'

'

'

%

ε if k   0

20b 80k if 0 ¤ k   3

232 if k � 3

315b 75k�4 if 4 ¤ k   6

480b 75k�6 if 6 ¤ k   9

720b 75k�9 if 9 ¤ k   11

J if k ¥ 11

and u2,2 pkq �

$

'

'

'

'

'

'

'

'

'

'

'

&

'

'

'

'

'

'

'

'

'

'

'

%

ε if k   0

60b 80k if 0 ¤ k   2

208 if k � 2

270 b 75k�3 if 3 ¤ k   5

435 b 75k�5 if 5 ¤ k   8

675 b 75k�8 if 8 ¤ k   10

J if k ¥ 10

With a longer prediction horizon, the throughput of the secondary systems remains at one
train every 80 units of time after the change in the output reference.

Perturbation: The reference case is considered, but a perturbations delays the third occur-
rence of event x1,4 (i.e., the arrival in train station B) until t � 80. This might be caused by
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an unexpected mechanical breakdown. The input provided by MPC is

u1,1 pkq � u1,2 pkq �

$

'

'

'

'

'

'

'

'

'

'

'

&

'

'

'

'

'

'

'

'

'

'

'

%

ε if k   0

5b 20k if 0 ¤ k   2

82b 10k�2 if 2 ¤ k   4

106b 10k�4 if 4 ¤ k   6

130 if k � 6

145b 20k�7 if 7 ¤ k   40

J if k ¥ 40

u2,1 pkq �

$

'

'

'

'

'

'

&

'

'

'

'

'

'

%

ε if k   0

20 if k � 0

125 if k � 1

200 b 80k�2 if 2 ¤ k   10

J if k ¥ 10

and u2,2 pkq �

$

'

'

'

'

&

'

'

'

'

%

ε if k   0

89 if k � 0

160b 80k�1 if 1 ¤ k   10

J if k ¥ 10

After the perturbation at t � 80, the main system operates at the maximal throughput
(i.e., one train every 12 units of time) to catch up with the output reference. The secondary
system takes these changes in the behavior of the main system into account.
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Operatorial Representation

In this chapter, operatorial representation for pmax,�q-systems with partial synchroniza-
tion is addressed. The principle of operatorial representation is to model the dynamics of the
system by mappings over daters. This approach has been successfully applied to pmax,�q-
linear systems [1, 8, 22, 32] and extended to take into account event batching [10, 15, 16].
The main outcome of operatorial representation for pmax,�q-linear systems is a concept
equivalent to transfer function matrices in standard control theory. Furthermore, a handy
mathematical representation for the class of operators appearing in pmax,�q-linear systems
is provided by the dioid Nmax,γvγw recalled in § 2.7. Unfortunately, an operatorial represen-
tation for pmax,�q-systems with partial synchronization does not exist. However, it is still
possible to capture some dynamics using this method. In particular, an operatorial representa-
tion for the secondary system under a predeVned behavior of the main system is obtained. In
the following, such systems are called pmax,�q-systems subject to partial synchronization.
Notice that a pmax,�q-linear system is a pmax,�q-system subject to partial synchroniza-
tion, as a pmax,�q-linear system corresponds to a secondary system, which is not subject
to any partial synchronizations. Hence, pmax,�q-systems subject to partial synchronization
form a larger class of systems than pmax,�q-linear systems. A suitable algebraic structure
for this operatorial representation is the dioid FNmax,γ

vγw introduced in § 4. In practice,
pmax,�q-systems subject to partial synchronization appear when the input of the main sys-
tem is known and perturbations aUecting the main system are unlikely. Hence, the dynamics
of the main system can be neglected and predetermined synchronizing daters are considered
in partial synchronizations. From now on, we assume that the considered discrete event sys-
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7. Operatorial Representation

tems are time-driven (i.e., events only occur at clock ticks). This assumption is also made in
operatorial representation for pmax,�q-linear systems and allows us to only consider stan-
dard synchronizations with a time delay τ P N0 (while, previously, τ P R�0 ) and daters in
Nmax,γvγw. In this chapter, the presented results are mainly illustrated with Ex. 35 described
below.

Example 35. This example deals with a one-way road fromA toC viaB. The road is equipped
with two traXc lights in B and in C. The traXc light B allows other users such as pedestrians
or trains to cross the road, but is not regulating an intersection with another road. There-
fore, a vehicle entering the road in A passes through B and leaves the road in C. Next, the
characteristics of the road are made explicit. The travel time from A to B or from B to C
is ten units of time. The capacity of each section (i.e., from A to B or from B to C) is three
vehicles. When the traXc light is green, at most one vehicle can pass the traXc light per unit
of time. Furthermore, the behavior of the traXc lights is known: each traXc light is green for
t P Im pdq Y tJu where d �

�

e` 1γ` 2γ2
� �

6γ3
�

�

. Initially, no vehicles are on the road.
In the following, the system is modeled by a discrete event system ruled by synchronization.

The model is based on the following events:

u a vehicle arrives on the road

x1, x2, x3 a vehicle passes respectively through A, B, C

y a vehicle leaves the road

The previous description of the system corresponds to the following synchronizations:
– for all k ¥ 0, occurrence k of event x2 (resp. x3) occurs at least ten units of time after

occurrence k of event x1 (resp. x2)
– for all k ¥ 1, occurrence k of event x2 (resp. x3) occurs at least one unit of time after

occurrence k� 1 of event x2 (resp. x3)
– for all k ¥ 3, occurrence k of event x1 (resp. x2) occurs after occurrence k � 3 of event
x2 (resp. x3)

– for all k ¥ 0, occurrence k of event x1 (resp. y) occurs after occurrence k of event u
(resp. x3)

– for all k ¥ 0, occurrence k of event x2 (resp. x3) can only occur at t P Im pdq Y tJu

A graphical representation of the road is given in Fig. 7.1. The dynamics of the main sys-
tem (i.e., the traXc lights) is completely neglected and the partial synchronizations are only
using the predeVned dater d as behavior of the synchronizing events. Hence, this system is a
pmax,�q-system subject to partial synchronization.

7.1. Algebraic DeVnition of Operatorial Representation

In the following, a general presentation of operatorial representation is done. Daters have
been deVned in § 5.2.1 as isotone mappings from Z to Nmax (not to Rmax, as a time-driven
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10 10

1 1

A B C

x1u x2 x3 y

d d

Figure 7.1.: Petri net representation of the road equipped with traXc lights

dynamics is assumed) equal to ε over tk P Z|k   0u. The set of daters is denoted D. Let us
now formally deVne operators.

DeVnition 50 (Operator). An operator is a residuated mapping over the set of daters.

Example 36 (Operator γ). A particular operator is the shift in the event domain denoted γ
and deVned by

�d P D,�k P Z, γ pdq pkq � d pk� 1q

The residual of the operator γ, denoted γ7, is deVned by

�d P D,�k P Z, γ7 pdq pkq �

#

ε for k   0

d pk� 1q for k ¥ 0

Proposition 39. The set of operators, denoted O, endowed with the operations ` and b
deVned by

�o1, o2 P O, �d P D, po1 ` o2q pdq � o1 pdq ` o2 pdq

o1 b o2 � o1 � o2

is a complete dioid.

Proof. As D is a complete dioid (a possible product to obtain a dioid is the Cauchy product),
this proposition is a direct consequence of Prop. 5.
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7. Operatorial Representation

According to § 2.4, matrices of operators are endowed with operations ` and b. Fur-
thermore, the set of square matrices with entries in O is a complete dioid. The following
deVnition gives a meaning to matrices of operators.

DeVnition 51 (Matrix of operators). Let O P Om�n. Matrix O denotes a mapping from Dn

to Dm deVned by

�d P Dn, O pdqi �
n
à

j�1

Oij pdjq

Lemma 46. Let O P Om�n. Mapping O is residuated.

Proof. Obviously, mapping O is isotone. Let z P Dm.

O pxq ¨ z� �i, O pxqi ¨ zi

� �i, j, Oij pxjq ¨ zi

� �i, j, xj ¨ O
7

ij pziq

� �j, xj ¨

m
©

i�1

O
7

ij pziq

Therefore, the inequality O pxq ¨ z admits a greatest solution. Hence, mapping O is residu-
ated.

Finally, the previous deVnitions allow us to formalize what is meant by operatorial repre-
sentation.

DeVnition 52 (Operatorial representation). Let S be a discrete event system ruled by synchro-
nization, such that its event set is partitioned into n state events, denoted x1, . . . , xn,m input
events, denoted u1, . . . , um, and p output events, denoted y1, . . . , yp. The system S admits
an operatorial representation if there exist A P On�n, B P On�m, and C P Op�n such that
the admissible behaviors are characterized by

#

x © A pxq ` B puq

y © C pxq

7.1.1. Transfer Function Matrix

In the following, an input-output mapping, called transfer function matrix by analogy
with standard control theory, is derived from the operatorial representation. This reasoning
is based on an analogy with Th. 5. The Vrst step consists in Vnding the least (as the earliest
functioning rule is considered) solution of

x © A pxq ` B puq
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7.1. Algebraic DeVnition of Operatorial Representation

Let us consider the vector of daters A�B puq. This is a solution, as

A pA�B puqq ` B puq � A

�

�8

à

k�0

AkB puq

�

` B puq

�

�8

à

k�0

Ak�1B puq ` B puq as A is lower semi-continuous

� A�B puq

Furthermore, by induction, we prove that x © AkB puq for all k P N0. For k � 0, x © B puq,
as x © A pxq ` B puq. Let us now assume that, for k ¥ 0, x © AkB puq. Then,

x © A pxq ` B puq

© A

�

AkB puq
	

as A is isotone

© Ak�1B puq

This completes the induction. Hence, for all k P N0, x © AkB puq. Thus, x © A�B puq.
Consequently, the least solution of x © A pxq ` B puq is A�B puq. This leads directly to a
transfer function matrix, denotedH, such that y © H puq whereH � CA�B.

Remark 23. AsH is residuated,H is isotone. Therefore, in general, operatorial representation
is not suitable to represent pmax,�q-systems with partial synchronization, as the associated
input-output mapping is not necessarily isotone (see Ex. 28).

7.1.2. Composition Operators

In the following, a particular class of operators, namely composition operators, is deVned
based on the dioidFNmax

introduced in § 3. First, a lemma provides the theoretical foundation
to the deVnition of composition operators.

Lemma 47. Let f be a mapping over Nmax. The following statements are equivalent:

1. mapping Lf, deVned by Lf pdq � f � d for d P D, is an operator

2. mapping f is residuated

Proof. 1ñ 2: Let d be a dater. As Lf pdq is a dater,

f pεq � f pd p�1qq � Lf pdq p�1q � ε

Furthermore, let X � Nmax. We associate to each element x in Nmax a dater dx in D such
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7. Operatorial Representation

that dx p0q � x. Then,

f

�

à

xPX

x

�

� f

�

à

xPX

dx p0q

�

� Lf

�

à

xPX

dx

�

p0q

�

à

xPX

Lf pdxq p0q as Lf is lower semi-continuous

�

à

xPX

f pxq

Hence, f is lower semi-continuous. According to Th. 3, f is residuated.
2ñ 1: Let d be a dater. The Vrst step consists in proving that Lf pdq is a dater. Obviously,

Lf pdq is a mapping from Z to Nmax. For k   0,

Lf pdq pkq � f pd pkqq � f pεq � ε as f is residuated

Furthermore, as mappings f and d are isotone, Lf pdq � f � d is also isotone. Hence, Lf is a
mapping over daters. It remains to check that Lf is residuated. Let us deVne the mapping g
over D by

�d P D,�k P Z, g pdq pkq �

#

ε for k   0

f7 pd pkqq for k ¥ 0

Mapping g is obviously an isotone mapping over D. Furthermore,

�d P D,�k P Z, pg � Lfq pdq pkq �

#

ε for k   0

f7 pf pd pkqqq for k ¥ 0

pLf � gq pdq pkq �

#

ε for k   0

f
�

f7 pd pkqq
�

for k ¥ 0

As f7 � f © IdNmax
and f � f7 ¨ IdNmax

,

�d P D, pg � Lfq pdq © d and pLf � gq pdq ¨ d

Hence, g � Lf © IdD and Lf � g ¨ IdD . Therefore, according to Th. 1, Lf is residuated.

DeVnition 53 (Composition operator). An operator o is said to be a composition operator if
there exists a mapping f P FNmax

such that o � Lf.

A composition operator simply composes a dater by a given mapping in FNmax
. Lem. 47

shows that composition operators are operators and that only composition by mappings in
FNmax

leads to operators.
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7.1. Algebraic DeVnition of Operatorial Representation

Example 37 (Operator δ). A particular composition operator is the shift in the time domain
denoted δ and deVned by L∆. The mapping ∆ in F

Nmax
has previously been introduced in § 3.2

and is deVned by

�x P Nmax, ∆ pxq � 1x

The following lemma investigates the algebraic structure of the set of composition opera-
tors.

Lemma 48. The set of composition operators, denoted OC, is a complete subdioid of O. Fur-
thermore, OC and FNmax

are isomorphic.

Proof. First, we prove that OC is a complete subdioid of O. The operator ε (resp. e) is equal
to Lε (resp. Le). Hence, ε (resp. e) belongs to OC. Let L � OC. For o in L, fo denotes a
mapping in F

Nmax
such that o � Lfo . Then,

�d P D,�k P Z,

�

à

oPL

o

�

pdq pkq �
à

oPL

o pdq pkq

�

à

oPL

fo pd pkqq

� F pd pkqq where F �
à

oPL

fo

� LF pdq pkq as F belongs to FNmax

Therefore,
À

oPL o belongs to OC. Thus, OC is closed under inVnite sum. Furthermore, for
the composition operators Lf1 and Lf2 ,

�d P D, pLf1 b Lf2q pdq � pf1 b f2q � d

� Lf1bf2 pdq

Hence, as f1 b f2 belongs to F
Nmax

, OC is closed for the product. Thus, OC is a complete
subdioid of O.

Second, we prove that the mappingΦ, deVned by Φ pfq � Lf, is an homomorphism from
the dioid FNmax

to the dioid OC. First of all,

Φ pεq � Lε � ε andΦ peq � Le � e

Furthermore, for f1, f2 P FNmax
,

�d P D,�k P Z, Φ pf1 ` f2q pdq pkq � Lf1`f2 pdq pkq

� pf1 ` f2q pd pkqq

� f1 pd pkqq ` f2 pd pkqq

� Lf1 pdq pkq ` Lf2 pdq pkq

� pLf1 ` Lf2q pdq pkq

� pΦ pf1q `Φ pf2qq pdq pkq
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�d P D,�k P Z, Φ pf1 b f2q pdq pkq � Lf1bf2 pdq pkq

� f1 pf2 pd pkqqq

� Lf1 pf2 � dq pkq

� Lf1 pLf2 pdqq pkq

� pLf1 b Lf2q pdq pkq

� pΦ pf1q bΦ pf2qq pdq pkq

Hence, Φ pf1 ` f2q � Φ pf1q ` Φ pf2q and Φ pf1 b f2q � Φ pf1q b Φ pf2q. Thus, Φ is an
homomorphism.

Finally, it remains to prove thatΦ is bijective. By deVnition,Φ is surjective. The injectivity
of Φ is shown by the following reasoning. Let f1, f2 in F

Nmax
and consider a set of daters

 

dx|x P Nmax

(

such that, for all x P Nmax, dx p0q � x. Then,

Φ pf1q � Φ pf2q ñ �x P Nmax,Φ pf1q pdxq p0q � Φ pf2q pdxq p0q

ñ �x P Nmax, Lf1 pdxq p0q � Lf2 pdxq p0q

ñ �x P Nmax, f1 pdx p0qq � f2 pdx p0qq

ñ �x P Nmax, f1 pxq � f2 pxq

ñ f1 � f2

An interesting property of composition operators is presented in the following lemma.

Lemma 49. The operator γ commutes with all composition operators.

Proof. Let Lf be a composition operator associated with a mapping f in F
Nmax

.

�d P D,�k P Z, pγb Lfq pdq pkq � Lf pdq pk� 1q

� f pd pk� 1qq

� f pγ pdq pkqq

� Lf pγ pdqq pkq

� pLf b γq pdq pkq

Hence, γb Lf � Lf b γ.

The next proposition shows the interest of the dioid F
Nmax,γ

vγw to represent a particular
class of operators.

Proposition 40. The complete dioid spanned by OC
Y tγu, denoted OC,γ, is isomorphic to

FNmax,γ
vγw.
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Proof. The complete dioid spanned by OC
Y tγu corresponds to the least complete dioid

containing OC
Y tγu. According to Lem. 49, an element o in OC,γ can be written as

o �
�8

à

k�0

okγ
k where ok P OC

Furthermore, as γ ¨ e, γ� � e. Hence,

o � γ�o �
�8

à

k�0

�

k
à

j�0

ok

�

γk �
�8

à

k�0

oγ,kγ
k

where oγ,k �
Àk

j�0 ok belongs to OC. The previous notation leads directly to a bijective

mappingΦ from OC,γ to OC
γ vγw deVned by

�o P OC,γ,�k P Z, Φ poq pkq � oγ,k

Furthermore,

Φ pεq � ε andΦ peq � e

�o1, o2 P OC,γ, Φ po1 ` o2q � Φ po1q `Φ po2q

�o1, o2 P OC,γ, Φ po1 b o2q � Φ po1q bΦ po2q

Hence, Φ is an isomorphism and the dioids Oc,γ and OC
γ vγw are isomorphic. According to

Lem. 48, OC and F
Nmax

are isomorphic. Thus, OC,γ and F
Nmax,γ

vγw are isomorphic.

In the following, we only consider operatorial representation where the entries of A, B,
and C belong to OC,γ. This allows us to transpose these matrices in FNmax,γ

vγw and to apply
the tools developed in § 4.

Impulse Response

In the following, an interpretation in terms of system theory is given to the mappingψ psq
associated with series s in F

Nmax,γ
vγw. Let us Vrst recall that ψ psq is a mapping from Nmax

to Nmax,γvγw deVned by

�x P Nmax, ψ psq pxq �
�8

à

k�0

s pkq pxqγk

Let us consider a SISO discrete event system with an operatorial representation where
the entries of A, B, and C belong to FNmax,γ

vγw. As FNmax,γ
vγw is a complete dioid, H �

CA�B is a series in FNmax,γ
vγw. For pmax,�q-linear systems and pmax,�q-systems with
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partial synchronization, an impulse for an event corresponds to all occurrences k ¥ 0 of the
considered event at time 0 and is modeled by the dater e deVned by

e pkq �

#

ε for k   0

e for k ¥ 0

Hence, for the considered SISO system,

H peq �
�8

à

k�0

H peq pkqγk

�

�8

à

k�0

�

�8

à

j�0

H pjqγj

�

peq pkqγk

�

�8

à

k�0

�8

à

j�0

H pjq pe pk� jqqγk

�

�8

à

k�0

k
à

j�0

H pjq peqγk

�

�8

à

k�0

H pkq peqγk

� ψ pHq peq

Thus, the impulse response is directly given by ψ pHq peq. In the same way, the dater
ψ pHq pxq with x P N0 corresponds to the output induced when all occurrences k ¥ 0 of
the input event are at time x.

In the following, we discuss how to use the previous results to compute the output induced
by input u. The transfer function H of a pmax,�q-linear system is both event-invariant
(i.e., γH � Hγ) and time-invariant (i.e., δH � Hδ). Therefore, the input induced by u is
equal to the pmax,�q-convolution of the impulse response and the inputu. However, transfer
functions in F

Nmax,γ
vγw are still event-invariant, but, in general, they are not time-invariant.

Therefore, the output induced by u cannot be simply obtained by pmax,�q-convoluting the
impulse response and the input u. Next, a method to calculate the output induced by input
u in this more general case is presented. First, as u belongs to Nmax,γvγw, it is possible to
associate to u a series U � Φ puq in FNmax,γ

vγw (see § 4.1). Then, according to Lem. 35,
U peq � u. Hence,

H puq � pHUq peq � ψ pHUq peq

Therefore, if we are able to calculate the seriesHU in FNmax,γ
vγw, the output induced by u is

easily obtained.
A generalization of the previous discussion to the MIMO case is straightforward.
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7.2. Operatorial Representation for pmax,�q-linear Systems

In the following, the operatorial representation for pmax,�q-linear system is recalled. Let
us consider the standard synchronization “for all k ¥ l, occurrence k of event e2 occurs at
least τ units of time after occurrence k � l of event e1”. This corresponds to the following
inequality in Nmax:

�k P Z, e2 pkq © τe1 pk� lq

Rewriting this relation with the operators γ and δ leads to e2 ©
�

δτγl
�

pe1q. Furthermore,
the combinations of several standard synchronizations on the same event can be expressed
by the operation ` over daters and operators. For example, standard synchronizations “for
all k ¥ l1, occurrence k of event e2 occurs at least τ1 units of time after occurrence k� l1 of
event e1,1” and “for all k ¥ l2, occurrence k of event e2 occurs at least τ2 units of time after
occurrence k� l2 of event e1,2” are both expressed by a single inequality:

e2 ©
�

δτ1γl1
	

pe1,1q `
�

δτ2γl2
	

pe1,2q

Therefore, a pmax,�q-linear system admits an operatorial representation. Furthermore, as
the entries of matrices A, B, and C belong to OC,γ, it is possible to obtain an operato-
rial representation in F

Nmax,γ
vγw. An additional simpliVcation is to rewrite this operatorial

representation in Nmax,γvγw, as the entries of A, B, and C belong to F∆,γvγw. Hence, the
fundamental theorem in Nmax,γvγw recalled in § 2.7.4 leads to important results concerning
pmax,�q-linear systems. The transfer function matrixH of a pmax,�q-linear system is given
by CA�B. Matrices A, B, and C are rational. Then, according to Th. 6, A� is rational. Hence,
the transfer function matrixH is rational. Consequently, according to the fundamental theo-
rem in Nmax,γvγw, the transfer function matrixH is periodic. Conversely, letM be a periodic
matrix in Nmax,γvγw

m�p. According to the fundamental theorem in Nmax,γvγw, matrix M is
realizable, i.e., , there exist n P N, A P tε, e, 1, γun�n, B P Bn�p, and C P Bm�n such that
M � CA�B. Hence,M corresponds to the transfer function matrix of the system described
by the operatorial representation

#

x © A pxq ` B puq

y © C pxq

This system is pmax,�q-linear as operators e, γ, and 1 (i.e., δ) respectively correspond to the
following standard synchronizations:

– for all k ¥ 0, occurrence k of event e2 occurs after occurrence k of event e1
– for all k ¥ 1, occurrence k of event e2 occurs after occurrence k� 1 of event e1
– for all k ¥ 0, occurrence k of event e2 occurs at least one unit of time after occurrence
k of event e1
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Furthermore, the results on calculation with periodic series in Nmax,γvγw and the software
tools presented in § 2.7 are helpful to compute transfer function matrices and outputs induced
by periodic inputs for pmax,�q-linear systems.

Example 38. To illustrate operatorial representation of pmax,�q-linear systems, let us con-
sider the train line in Ex. 23 recalled in Fig. 7.2.

2 2

10

10

y1,2

u1,1 x1,1

x1,4
x1,3

x1,2

u1,2

y1,1

Figure 7.2.: Petri net representation of the train line

This system is a pmax,�q-linear system and its operatorial representation in OC,γ is

$

'

'

'

'

'

'

'

'

'

&

'

'

'

'

'

'

'

'

'

%

x1 ©

�

�

�

�

�

�

ε γ ε δ2γ

δ10 ε ε ε

ε δ2γ ε γ

ε ε δ10 ε

�

Æ

Æ

Æ

Æ



px1q `

�

�

�

�

�

�

e ε

ε ε

ε e

ε ε

�

Æ

Æ

Æ

Æ



pu1q

y1 ©

�

ε e ε ε

ε ε ε e

�

px1q

Then, its operatorial representation in FNmax,γ
vγw is

$

'

'

'

'

'

'

'

'

'

&

'

'

'

'

'

'

'

'

'

%

x1 ©

�

�

�

�

�

�

ε γ ε ∆2γ

∆10 ε ε ε

ε ∆2γ ε γ

ε ε ∆10 ε

�

Æ

Æ

Æ

Æ



px1q `

�

�

�

�

�

�

e ε

ε ε

ε e

ε ε

�

Æ

Æ

Æ

Æ



pu1q

y1 ©

�

ε e ε ε

ε ε ε e

�

px1q
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Finally, its operatorial representation in Nmax,γvγw is

$

'

'

'

'

'

'

'

'

'

&

'

'

'

'

'

'

'

'

'

%

x1 ©

�

�

�

�

�

�

ε γ ε 2γ

10 ε ε ε

ε 2γ ε γ

ε ε 10 ε

�

Æ

Æ

Æ

Æ



px1q `

�

�

�

�

�

�

e ε

ε ε

ε e

ε ε

�

Æ

Æ

Æ

Æ



pu1q

y1 ©

�

ε e ε ε

ε ε ε e

�

px1q

The transfer function matrix (or impulse response) of the considered pmax,�q-linear sys-
tem, denoted H1, is given by

H1 �

�

p10` 20γq
�

24γ2
�

�

�

22γ ` 32γ2
� �

24γ2
�

�

�

22γ` 32γ2
� �

24γ2
�

�

p10 ` 20γq
�

24γ2
�

�

�

As expected, the transfer function matrix H1 is periodic. Let us consider the particular input
u1 deVned by u1,1 � u1,2 � e`20γ2 p15γq

�. The output y1 induced by input u1 is given by

y1 � H1 pu1q � H1 b u1 �

�

10` 22γ ` 34γ2 ` 46γ3 ` 60γ4 p15γq�

10` 22γ ` 34γ2 ` 46γ3 ` 60γ4 p15γq�

�

Notice that the notation is slightly ambiguous, asH1 corresponds both to the transfer func-
tion matrix (i.e., a matrix of operators) and to the impulse response (i.e., a matrix of daters).

7.3. Operatorial Representation for pmax,�q-systems Subject to

Partial Synchronization

In the following, the operatorial representation for pmax,�q-systems subject to partial
synchronization is introduced. Standard synchronizations are modeled using the operators γ
and δ, as it was done for pmax,�q-linear systems. The main diXculty is to represent partial
synchronizations by operators. This problem is solved by using the α-mappings introduced
in § 3.5. As a reminder, the α-mapping associated with a dater d, denoted αd, is a mapping
in F

Nmax
deVned by

�x P Nmax, αd pxq �
©

tz © x|z P Im pdq Y tJuu
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7. Operatorial Representation

Let x be an event and d be a predetermined dater.

event x is subject to a partial synchronization by dater d

� �k P Z, x pkq P Im pdq Y tJu

� �k P Z, x pkq � αd px pkqq

� �k P Z, x pkq © αd px pkqq as αd © Id

� x © αd � x

� x © Lαd
pxq as αd P FNmax

Therefore, partial synchronizations are modeled by composition operators based on α-
mappings. As before, a combination of several (standard and/or partial) synchronizations af-
fecting the same event boils down to a single inequality by using the operations` over daters
and operators. This leads to an operatorial representation in OC,γ for pmax,�q-systems sub-
ject to partial synchronization. As shown in Prop. 40, this operatorial representation can be
written in FNmax,γ

vγw.

Example 39. The operatorial representation in OC,γ associated with Ex. 35 is

$

'

'

'

'

&

'

'

'

'

%

x ©

�

�

�

ε γ3 ε

δ10 Lαd
` δγ γ3

ε δ10 Lαd
` δγ

�

Æ



pxq `

�

�

�

e

ε

ε

�

Æ



puq

y ©
�

ε ε e

	

pxq

In FNmax,γ
vγw, the operatorial representation becomes

$

'

'

'

'

&

'

'

'

'

%

x ©

�

�

�

ε γ3 ε

∆10 αd ` ∆γ γ3

ε ∆10 αd ` ∆γ

�

Æ



pxq `

�

�

�

e

ε

ε

�

Æ



puq

y ©
�

ε ε e

	

pxq

The dater d represents the behavior of the traXc lights and is known.

7.3.1. Periodic Case

In the following, only the particular case where the predeVned daters in partial synchro-
nizations are periodic is considered. Then, according to Prop. 23, the α-mappings associated
with partial synchronizations are periodic. Hence, the entries of A, B, and C are causal pe-
riodic series in FNmax,γ

vγw. This leads to an interpretation in terms of system theory for the
fundamental theorem in FNmax,γ

vγw introduced in § 4.6. The transfer function matrix of the
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system is H � CA�B. Matrices A, B, and C are rational. Then, according to Th. 6, A� is
rational. Hence, the transfer function matrix H is rational. Consequently, according to the
fundamental theorem in F

Nmax,γ
vγw, the transfer function matrix H is causal and periodic.

Conversely, letM be a causal and periodic matrix inF
Nmax,γ

vγwm�p. According to the funda-
mental theorem in F

Nmax,γ
vγw, matrixM is realizable. Hence, there exists a Vnite numberN

of periodic series r1, . . . , rN in Nmax,γvγw such that S admits a pB,Cq-representation with re-
spect to tε, e, ∆, αr1 , . . . , αrN , γu where all non-diagonal entries ofA belong to tε, e, ∆, γu.
Therefore, M corresponds to the transfer function matrix of the system described by the
operatorial representation

#

x © A pxq ` B puq

y © C pxq

This system is a pmax,�q-system subject to partial synchronization. Indeed, entries of A, B,
and C equal to operators e, γ, or ∆ (i.e., δ) respectively correspond to the following standard
synchronizations:

– for all k ¥ 0, occurrence k of event e2 occurs after occurrence k of event e1
– for all k ¥ 1, occurrence k of event e2 occurs after occurrence k� 1 of event e1
– for all k ¥ 0, occurrence k of event e2 occurs at least one unit of time after occurrence
k of event e1

Furthermore, the entries of A corresponding to a α-mapping are diagonal and correspond
to partial synchronization of the event by a predeVned periodic dater. This interpretation
makes clear the necessity of forcing the α-mappings to be on the diagonal of matrix A in the
deVnition of realizability.

Moreover, the results on calculation with periodic series in F
Nmax,γ

vγw introduced in § 4

are helpful to compute transfer function matrices and outputs induced by periodic inputs for
pmax,�q-systems subject to partial synchronization. In the following, several examples are
discussed.

Example 40. The transfer function of the pmax,�q-system subject to partial synchronization
introduced in Ex. 35 (i.e., a one-way road equipped with two traXc lights) is given by

H �

�

∆12γ3
	

�

�

f1 ` f2γ` f3γ
2
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7. Operatorial Representation

where

f1 pxq �

$

'

&

'

%

x if x P tε,Ju

24b 6k if 6k ¨ x   5b 6k with k P N0

30b 6k if x � 5b 6k with k P N0

f2 pxq �

$

'

'

'

'

&

'

'

'

'

%

x if x P tε,Ju

25b 6k if 6k ¨ x   4b 6k with k P N0

30b 6k if x � 4b 6k with k P N0

31b 6k if x � 5b 6k with k P N0

f3 pxq �

$

'

'

'

'

'

'

&

'

'

'

'

'

'

%

x if x P tε,Ju

26b 6k if 6k ¨ x   3b 6k with k P N0

30b 6k if x � 3b 6k with k P N0

31b 6k if x � 4b 6k with k P N0

32b 6k if x � 5b 6k with k P N0

As expected, the transfer functionH is causal and periodic. A graphical representation of the
transfer function H is drawn in Fig. 7.3. The transfer function leads directly to the impulse
response of the system (i.e., the output induced by an inVnity of vehicles arriving at t � 0).

H peq � ψ pHq peq �
�

24` 25γ ` 26γ2
	�

12γ3
	

�

Let us consider the periodic input u equal to e ` γ3 p6γq�. This input models the arrival
of four vehicles at t � 0 and of one vehicle at t � 6k with k P N. In F∆,γvγw, input u
corresponds to the series U deVned by

U � e`
�

∆6γ
	

�

γ3

Then,

HU �f1 ` f2γ` f3γ
2
` ∆12f1γ

3
` ∆12f2γ

4
` ∆12f3γ

5
` ∆24f1γ

6

` ∆24f2γ
7
`

�

∆24f3 ` ∆
30f1

	

γ8 `
�

∆6γ
	

�

∆36f1γ
9

Hence, the output induced by u is given by

H puq � HU peq

� ψ pHUq peq

� 24` 25γ` 26γ2 ` 36γ3 ` 37γ4 ` 38γ5 ` 48γ6 ` 49γ7 ` 54γ8 p6γq�
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7.3. Operatorial Representation for pmax,�q-systems Subject to Partial Synchronization

Figure 7.3.: Transfer function of the road equipped with traXc lights

Example 41. In this example, operatorial representation in FNmax,γ
vγw is used to calculate

outputs induced by periodic inputs for pmax,�q-systems with partial synchronization. We
consider the pmax,�q-system with partial synchronization presented in Ex. 23 (i.e., the supply
chain). The periodic input is deVned by

u1,1 � u1,2 � e` 20γ
2
p15γq�

u2,1 � u2,2 � p90γq�

The main system is a pmax,�q-linear system and the output y1 induced by input u1 has
already been computed in Ex. 38. Furthermore, this input leads to the following daters for the
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7. Operatorial Representation

state events in the main system.

x1 �

�

�

�

�

�

�

e` 12γ ` 24γ2 ` 36γ3 ` 50γ4 p15γq�

10` 22γ` 34γ2 ` 46γ3 ` 60γ4 p15γq�

e` 12γ ` 24γ2 ` 36γ3 ` 50γ4 p15γq�

10` 22γ` 34γ2 ` 46γ3 ` 60γ4 p15γq�

�

Æ

Æ

Æ

Æ



Hence, under this behavior of the main system, the secondary system corresponds to a pmax,�q-
system subject to partial synchronization. The transfer function matrix, denoted H2, of this
pmax,�q-system subject to partial synchronization is given by

H2 �

�

f11 `
�

∆60γ
�

�

f1γ f12γ`
�

∆60γ
�

�

∆30f2γ
2

f21 `
�

∆60γ
�

�

∆30f1γ f22 `
�

∆60γ
�

�

f2γ

�

where

f11 pxq �

$

'

'

'

'

'

'

'

'

'

&

'

'

'

'

'

'

'

'

'

%

x if x P tε,Ju

27 if e ¨ x   8

39 if 8 ¨ x   20

51 if 20 ¨ x   32

65 if 32 ¨ x   46

80 b 15k if 46b 15k ¨ x   61b 15k with k P N0

f12 pxq �

$

'

'

'

'

'

'

'

'

'

'

'

&

'

'

'

'

'

'

'

'

'

'

'

%

x if x P tε,Ju

39 if x � e

51 if 1 ¨ x   13

65 if 13 ¨ x   25

80 if 25 ¨ x   37

95 if 37 ¨ x   51

110 b 15k if 51b 15k ¨ x   66b 15k with k P N0

f21 pxq �

$

'

'

'

'

'

'

'

'

'

&

'

'

'

'

'

'

'

'

'

%

x if x P tε,Ju

51 if e ¨ x   8

65 if 8 ¨ x   20

80 if 20 ¨ x   32

95 if 32 ¨ x   46

110 b 15k if 46b 15k ¨ x   61b 15k with k P N0
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f22 pxq �

$

'

'

'

'

'

'

'

'

'

'

'

&

'

'

'

'

'

'

'

'

'

'

'

%

x if x P tε,Ju

15 if x � e

27 if 1 ¨ x   13

39 if 13 ¨ x   25

51 if 25 ¨ x   37

65 if 37 ¨ x   51

80b 15k if 51b 15k ¨ x   66b 15k with k P N0

f1 pxq �

$

'

'

'

'

'

'

'

'

'

&

'

'

'

'

'

'

'

'

'

%

x if x P tε,Ju

80 if e ¨ x   8

95 if 8 ¨ x   20

110 if 20 ¨ x   32

125 if 32 ¨ x   46

140 b 15k if 46b 15k ¨ x   61b 15k with k P N0

f2 pxq �

$

'

'

'

'

'

'

'

'

'

'

'

&

'

'

'

'

'

'

'

'

'

'

'

%

x if x P tε,Ju

65 if x � e

80 if 1 ¨ x   13

95 if 13 ¨ x   25

110 if 25 ¨ x   37

125 if 37 ¨ x   51

140 b 15k if 51b 15k ¨ x   66b 15k with k P N0

The impulse response of this pmax,�q-system subject to partial synchronization is given by

H2 peq �

�

ψ pH2,11q peq `ψ pH2,12q peq

ψ pH2,21q peq `ψ pH2,22q peq

�

�

�

27` 80γ p60γq�

51` 110γ p60γq�

�

Next, we compute the response of this pmax,�q-system subject to partial synchronization to
the input u2. The matrix with entries in F∆,γvγw associated with u2, denoted U2, is given by

U2 �

�

�

∆90γ
�

�

�

∆90γ
�

�

�

Then,

H2U2 �

�

f11 `
�

∆90γ
�

�

f11∆
90γ

f21 `
�

∆90γ
�

�

f21∆
90γ

�
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7. Operatorial Representation

Hence,

H2 pu2q � H2U2 peq

�

�

ψ ppH2U2q1q peq

ψ ppH2U2q2q peq

�

�

�

27` 110γ p90γq�

51` 140γ p90γq�

�

Example 42. In the previous example, transfer function matrices have entries in the dioid
F

per,c

Nmax,γ
vγw. In terms of system theory, this means that the throughput of an impulse response

does not depend on the occurring time t P N0 of the impulse. In the following, we present
a pmax,�q-system subject to partial synchronization where the throughput of an impulse
response depends on the occurring time t P N0 of the impulse. Let us consider the pmax,�q-
system subject to partial synchronization drawn in Fig. 7.4.

x1

u y

d2 = e⊕ 1 (2γ)∗

d1 = (2γ)∗

x2

Figure 7.4.: Petri net representation of a pmax,�q-system subject to partial synchronization exhibiting
impulse responses with diUerent throughputs
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7.3. Operatorial Representation for pmax,�q-systems Subject to Partial Synchronization

The corresponding operatorial representation in F
Nmax,γ

vγw is

$

'

'

&

'

'

%

x ©

�

αd1 γ

e αd2

�

pxq `

�

ε

e

�

puq

y ©
�

ε e

	

This leads to the transfer function H deVned by

H � e`
�

∆2γ
	

�

f with f pxq �

$

'

'

'

'

&

'

'

'

'

%

ε if x   1

1 if x � 1

1b 2k if 2k ¨ x   2k�1 with k P N

J if x � J

A graphical representation of H is drawn in Fig. 7.5. For an impulse occurring at t � 0,

Figure 7.5.: Transfer function H � e`
�

∆2γ
�

�

f

the throughput of the induced output is �8, while, for an impulse occurring at t P N, the
throughput of the induced output is 2.
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8
Model Reference Control

In this chapter, model reference control for pmax,�q-systems with partial synchronization
is addressed. A model reference representing a desired transfer function matrix is given. The
aim of this approach is to modify the transfer function matrix of the system to match as
closely as possible the model reference. A prerequisite for this approach is the existence of
transfer function matrices. Hence, model reference control cannot be applied to pmax,�q-
systems with partial synchronization. However, it makes sense for pmax,�q-linear systems
and pmax,�q-systems subject to partial synchronization, as transfer function matrices are
provided by the operatorial representations in Nmax,γvγw and in FNmax,γ

vγw. For pmax,�q-
linear systems, model reference control has been widely investigated [12, 14, 25, 30]. In the
following, we investigate how to extend these results to pmax,�q-systems subject to partial
synchronization. We mainly focus on adding preVlters and feedbacks to modify the transfer
function matrix of the system. However, more sophisticated control structures already de-
veloped for pmax,�q-linear systems could be adapted to pmax,�q-systems subject to partial
synchronization in the same way.

The fundamental diUerence between optimal control and model reference control is that
optimal control acts by applying a particular input while model reference control modiVes the
dynamics of the system. Hence, model reference control does not contain any requirement
on the input. In many applications, the input is not a degree of freedom, but depends on
external factors. In Ex. 35, the arrival of vehicles (i.e., the input) is not a degree of freedom,
but depends on the overall traXc. Therefore, optimal control is not suitable for this case, but
model reference control leads to interesting results presented in the following.
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8. Model Reference Control

8.1. PreVlter

Let us consider a pmax,�q-system subject to partial synchronization with a transfer func-
tion matrix H in F

Nmax,γ
vγwp�m. A preVlter P in F

Nmax,γ
vγwm�m is added ahead of the

system. The model reference is speciVed by the matrix G in F
Nmax,γ

vγwp�m. The problem
formulation is summarized in Fig. 8.1.

P H

G

v u y

Figure 8.1.: Model reference control with preVlter

The transfer function matrix of the overall system isHP . Indeed,

y � H puq � H pP pvqq � HP pvq

The aim of model reference control is to match as closely as possible the model reference
G. This is formalized by Vnding the greatest solution P of HP ¨ G. Then, G represents a
least upper bound for the admissible behavior of the overall system. Furthermore, taking the
greatest solution maximizes the input u � P pvq of the original system (i.e., delays as much
as possible the occurrences of input events). As the dioid F

Nmax,γ
vγw is complete, the greatest

solution, denoted Pmax, of HP ¨ G is given by

Pmax � H �

zG

The previous reasoning is not constructive and does not lead to a practical implementation
of Pmax. In practice, the preVlter can only use information from the past to compute occur-
rences of input events. Hence, the preVlter P is required to be causal. Furthermore, if H and
G are causal periodic matrices (forH, this means considering periodic synchronizing daters),

Pmax � Pr
��

pPmaxq � H �

z

��

G
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8.1. PreVlter

Hence, Prop. 26 and Prop. 31 give an algorithm to compute Pmax and ensure that Pmax is peri-
odic. Thus, according to the fundamental theorem in F

Nmax,γ
vγw, Pmax is realizable (i.e., Pmax

can be seen as the transfer function matrix of a pmax,�q-system subject to partial synchro-
nization). This leads to a practical implementation of Pmax.

Remark 24 (Neutral preVlter). An interesting particular case consists in choosing G � H.
Then, Pmax � H �

z

��

H. In the literature, this preVlter is called neutral preVlter as it does not
modify the transfer function matrix of the system, i.e., HPmax � H.

Example 43. In the following, the neutral preVlter, denoted Pmax, for the pmax,�q-system
subject to partial synchronization introduced in Ex. 35 (i.e., a one-way road equipped with two
traXc lights) is computed. The transfer functionH of this system has already been computed
in Ex. 40. Hence,

Pmax � H �

z

��

H �

�

∆12γ3
	

�

�

p1 ` p2γ` p3γ
2
	

with

p1 pxq �

$

'

'

'

'

'

'

&

'

'

'

'

'

'

%

x if x P tε,Ju

2b 6k if 6k ¨ x   3b 6k with k P N0

3b 6k if x � 3b 6k with k P N0

4b 6k if x � 4b 6k with k P N0

8b 6k if x � 5b 6k with k P N0

p2 pxq �

$

'

'

'

'

&

'

'

'

'

%

x if x P tε,Ju

3b 6k if 6k ¨ x   3b 6k with k P N0

4b 6k if x � 3b 6k with k P N0

9b 6k if 4b 6k ¨ x   6k�1 with k P N0

p3 pxq �

$

'

&

'

%

x if x P tε,Ju

4b 6k if 6k ¨ x   3b 6k with k P N0

10b 6k if 3b 6k ¨ x   6k�1 with k P N0

A graphical representation of the neutral preVlter Pmax is drawn in Fig. 8.2. Furthermore,
a realization of Pmax as pmax,�q-system subject to partial synchronization is provided in
Fig. 8.3.

Example 44. In the following, the neutral preVlter, denoted Pmax, for the pmax,�q-system
subject to partial synchronization introduced in Ex. 42 is computed. Notice that the considered
transfer function H fulVlls H � H�. Hence, Vnding the neutral preVlter Pmax consists in
Vnding the greatest solution ofH�P ¨ H�. Consequently, Pmax � H�

� H.
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8. Model Reference Control

Figure 8.2.: Neutral preVlter for the road equipped with traXc lights

8.2. Feedback

Let us consider a pmax,�q-system subject to partial synchronization with a transfer func-
tion matrix H in FNmax,γ

vγwp�m. An output feedback F in FNmax,γ
vγwm�p is added. The

model reference is speciVed by the matrix G in FNmax,γ
vγwp�m. The problem formulation is

summarized in Fig. 8.4.
As y � H puq and u � F pyq ` v, output y corresponds to the least solution of

y � HF pyq `H pvq

Hence, the transfer function matrix of the overall system is pHFq
�

H.
The aim of model reference control is to match as closely as possible the model reference

G. This is formalized by Vnding the greatest solution F of pHFq
�

H ¨ G. Then, G represents
a least upper bound for the admissible behavior of the overall system. Furthermore, taking
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8.2. Feedback

12

1

2

x4

u

x1

x2

x3

v

d1

d2

d3

d1 =
(

2⊕ 3γ ⊕ 4γ2
)(

6γ3
)∗

d2 = (2⊕ 3γ)
(

6γ2
)∗

d3 = 2 (6γ)∗

Figure 8.3.: Realization of the neutral preVlter for the road equipped with traXc lights

the greatest solution maximizes the input u � F pyq ` v of the original system (i.e., delays
as much as possible the occurrences of input events). Obviously, this problem may have no
solution, e.g., if G is not greater than or equal to H. Using the reasoning developed in [14],
this problem is solved for the class of model reference G deVned by

G �

!

G P F
Nmax,γ

vγwp�m|DA P F
Nmax,γ

vγwm�m such that G � HA�

)

Y

!

G P FNmax,γ
vγwp�m|DA P FNmax,γ

vγwp�p such that G � A�H

)

and the greatest solution, denoted Fmax, is given by

Fmax � H �

zG�{H

The previous reasoning is not constructive and does not lead to a practical implementa-
tion of Fmax. In practice, the feedback can only use information from the past to compute
occurrences of input events. Hence, the feedback F is required to be causal. In the following,
we only consider the case of a transfer function matrix H in F

per,c

Nmax,γ
vγwm�p and a reference

model G in F
per,c

Nmax,γ
vγwm�p such that G � HA� with A in F

Nmax,γ
vγwp�p. Then,

pHFq
�

H ¨ G � pHFq
�

¨ G�{
��

H as pHFq
� is causal

Furthermore, as entries of G and H belong to F
per,c

Nmax,γ
vγwm�p, entries of G�{

��

H belong to

F
per,c

Nmax,γ
vγwm�p according to Prop. 37. As G © XH � G © XG,

G�{
��

H � G�{
��

G

Furthermore, as XG ¨ G ñ X2G ¨ G,
�

G�{
��

H
�

�

�

�

G�{
��

G
�

�

� G�{
��

G � G�{
��

H
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8. Model Reference Control

H

F

yv

G

u

w

Figure 8.4.: Model reference control with output feedback

Hence,

pHFq
�

¨ G�{
��

H � HF ¨ G�{
��

H

� F ¨ H �

z

��

G�{
��

H

Therefore, according to Prop. 36, Fmax � H �

z

��

G�{
��

H belongs to F
per,c

Nmax,γ
vγwp�m. Thus,

according to the fundamental theorem inFNmax,γ
vγw, Fmax is realizable (i.e.,Fmax can be seen

as the transfer function matrix of a pmax,�q-system subject to partial synchronization). This
leads to a practical implementation of Fmax. Using a similar reasoning, it is possible to deal
with a reference model G in F

per,c

Nmax,γ
vγwm�p such that G � A�H with A in F

Nmax,γ
vγwm�m.

Then, for a pmax,�q-system subject to partial synchronization with a transfer function ma-
trix H in F

per,c

Nmax,γ
vγwm�p, we provide an algorithm to compute and realize the feedback for a

model reference G in Gper,c with

Gper,c
�

!

G P F
per,c

Nmax,γ
vγwp�m|DA P FNmax,γ

vγwm�m such that G � HA�

)

Y

!

G P F
per,c

Nmax,γ
vγwp�m|DA P F

Nmax,γ
vγwp�p such that G � A�H

)

Remark 25 (Neutral feedback). An interesting particular case consists in choosing G � H.
Then, Fmax � H �

z

��

H�

{

��

H. In the literature, this feedback is called neutral feedback as
it does not modify the transfer function matrix of the system, i.e., pHFmaxq

�

H � H. Notice
that if H belongs to Fper,c

Nmax,γ
vγwp�m, then model reference G � H belongs to Gper,c.

Example 45. In the following, the neutral feedback, denoted Fmax, for the pmax,�q-system
subject to partial synchronization introduced in Ex. 35 (i.e., a one-way road equipped with two
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8.2. Feedback

traXc lights) is computed. The transfer functionH of this system has already been computed
in Ex. 40 and belongs to Fper,c

Nmax,γ
vγw. Hence, we can compute and realize the feedback Fmax.

Thus,

Fmax � H �

z

��

H�

{

��

H �

�

∆12γ3
	

�

�

p1 ` p2γ` p3γ
2
	

γ6

with

p1 pxq �

$

'

'

'

'

'

'

&

'

'

'

'

'

'

%

x if x P tε,Ju

26 if e ¨ x   21

26b 6k if 21b 6k ¨ x   25b 6k with k P N0

27b 6k if x � 25b 6k with k P N0

28b 6k if x � 26b 6k with k P N0

p2 pxq �

$

'

'

'

'

&

'

'

'

'

%

x if x P tε,Ju

27 if e ¨ x   20

27b 6k if 20b 6k ¨ x   25b 6k with k P N0

28b 6k if x � 25b 6k with k P N0

p3 pxq �

$

'

&

'

%

x if x P tε,Ju

28 if e ¨ x   19

28b 6k if 19b 6k ¨ x   25b 6k with k P N0

A graphical representation of the neutral feedback Fmax is drawn in Fig. 8.5. Furthermore,
a realization of Fmax as pmax,�q-system subject to partial synchronization is provided in
Fig. 8.6.

Example 46. In the following, the neutral feedback, denoted Fmax, for the pmax,�q-system
subject to partial synchronization introduced in Ex. 42 is computed. As H does not belong to
F

per,c

Nmax,γ
vγw, no algorithms has been providing to compute FNmax,γ

vγw. However, as H � H�,

Vnding the neutral feedback Fmax consists in Vnding the greatest solution of pH�Fq
�

H�

¨

H�. Consequently, Fmax � H�

� H.
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8. Model Reference Control

Figure 8.5.: Neutral feedback for the road equipped with traXc lights

12

d1

d2

d3

y

x1 x2

x3

x4

x5

w

2

3

4

d1 =
(

24⊕ 25γ ⊕ 26γ2
)(

6γ3
)∗

d2 = (24⊕ 25γ)
(

6γ2
)∗

d3 = 24 (6γ)∗

Figure 8.6.: Realization of the neutral feedback for the road equipped with traXc lights
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9
Conclusion

In the literature, discrete event systems ruled only by standard synchronization (e.g., for
all k ¥ l, occurrence k of event e2 occurs at least τ units of time after occurrence k �
l of event e1) are widely considered [1, 6, 26]. These systems are called pmax,�q-linear
systems, as they admit a linear state-space representation in the pmax,�q-algebra. Many
applications for pmax,�q-linear systems are found in the Velds of manufacturing systems and
transportation networks. Based on an analogy with standard control theory, modeling and
control strategies have been developed for pmax,�q-linear systems such as transfer function
matrix [1, 8, 22, 32], optimal feedforward control [9, 31] , model reference control [14, 30],
and model predictive control [20, 34]. In this work, we extend these tools to a class of discrete
event systems ruled by standard synchronization and partial synchronization (e.g., event e2
can only occur when, not after, event e1 occurs). Partial synchronization often appears in
transportation networks. For example, a vehicle can cross an intersection only when the
associated traXc light is green or a user can take a bus only when a bus is at the bus stop.

The Vrst contribution relates to pmax,�q-systems with partial synchronization, i.e., dis-
crete event systems split into a main system and a secondary system such that there exist only
standard synchronizations between events in the same system and partial synchronizations of
events in the secondary system by events in the main system. A modeling in the pmax,�q-
algebra based on daters is introduced for pmax,�q-systems with partial synchronization.
Furthermore, predicting the output induced by a predeVned input corresponds to solving a
recursive equation in the event domain. This leads to an input-output mapping for pmax,�q-
systems with partial synchronization. The main diUerence between pmax,�q-linear systems

149



9. Conclusion

and pmax,�q-systems with partial synchronization is that the input-output mapping asso-
ciated with a pmax,�q-system with partial synchronization may not be isotone. Therefore,
operatorial representation (used to get transfer function matrices for pmax,�q-linear sys-
tems) cannot be extended to pmax,�q-systems with partial synchronization. Hence, transfer
function matrices are not available to model pmax,�q-systems with partial synchronization.
Concerning the control of pmax,�q-systems with partial synchronization, optimal feedfor-
ward control has been extended. The aim of this control approach is to respect an output
reference (i.e., ensure that output events meet a deadline) under the just-in-time condition
(i.e., input events occur as late as possible). This problem is reformulated in terms of cost
functions and the optimal input is computed when priority is given to the main system over
the secondary system (i.e., the performance of the main system is never degraded only to
improve the performance of the secondary system). Model predictive control is also ex-
tended to pmax,�q-systems with partial synchronization. This control approach consists in
a closed-loop version of optimal feedforward control. For each time step, the optimal input is
computed over a prediction horizon, but only the occurrences of input events in the next time
step are applied to the system. The main advantage of model predictive control in comparison
with optimal feedforward control is the ability to take into account changes in the output ref-
erence and perturbations. The main disadvantage is the computational cost associated with
the online calculation of the optimal input. In the selected approach, this computational cost
is linear with the length of the prediction horizon. Model reference control is not extended
to pmax,�q-system with partial synchronization, as transfer function matrices are not avail-
able. The previous methods are illustrated with a supply chain for containers using a rail
transport section. Therefore, a container can only leave a train station by train when a train
is leaving the train station. Hence, the train line corresponds to the main system and the
supply chain corresponds to the secondary system. As the train line may be shared by several
supply chains, it makes sense not to degrade the performance of the train line only to improve
the performance of a single supply chain.

The second contribution relates to pmax,�q-systems subject to partial synchronization,
i.e., pmax,�q-systems with partial synchronization where the behavior of the main system
is predeVned. Hence, a pmax,�q-system subject to partial synchronization corresponds to
a pmax,�q-linear system, where occurrence times of events belong to predeVned sets. All
techniques developed for pmax,�q-systems with partial synchronization are available for
pmax,�q-systems subject to partial synchronization. Furthermore, operatorial representation
is extended and leads to transfer function matrices for pmax,�q-systems subject to partial
synchronization. A suitable dioid to express these transfer function matrices is F

Nmax,γ
vγw, a

dioid of isotone formal power series in γ with residuated mappings over Nmax as coeXcients.
A major achievement is the fundamental theorem in F

Nmax,γ
vγw which provides methods to

compute transfer function matrices and to Vnd pmax,�q-systems subject to partial synchro-
nization associated with a predeVned transfer function matrix. Then, model reference control
is extended to pmax,�q-systems subject to partial synchronization. The aim of this approach
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is to match a model reference by modifying the dynamics of the system. In particular, mod-
iVcations induced by preVlters and feedbacks are investigated. The results are obtained by
analogy with model reference control for pmax,�q-linear systems. But, for feedbacks, some
additional assumptions have to be made on the transfer function matrix and the model ref-
erence. The previous methods are illustrated with a road equipped with traXc lights. As the
behavior of the traXc lights is predetermined, this system corresponds to a pmax,�q-system
subject to partial synchronization.

An ambitious goal for future work is to develop a theory for discrete event systems ruled by
standard and partial synchronizations instead of considering only speciVc structures. Getting
handy transfer function matrices for this class of systems might be tricky, as a reasoning based
on operatorial representation is not possible. It is also of interest to investigate the dual in the
event domain of partial synchronization. Then, the class of systems dual to pmax,�q-systems
subject to partial synchronization leads to transfer function matrices which are formal power
series in δ. Similarities between such systems and weight-balanced timed event graphs or
time-varying pmax,�q-systems, investigated in [15, 16], are expected.
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A
Proofs

A.1. Calculation with Periodic Series in FNmax,γ
vγw

A.1.1. Sum of Periodic Series

Proposition 41 (Sum of periodic series). Let s1 and s2 be two periodic series in FNmax,γ
vγw.

Series s1 ` s2 is periodic. If s1 and s2 are diUerent from ε, then

σ ps1 ` s2q � min pσ ps1q , σ ps2qq

Proof. For i P t1, 2u, there existNi P N, periodic mappings fi,1, . . . , fi,Ni
inF

Nmax
, ni,1, . . . , ni,Ni

in N0, τi,1, . . . , τi,Ni
in N0, and νi in N such that

si �
Ni
à

k�1

p∆τi,kγνiq� fi,kγ
ni,k

Let us deVne ν,m1, andm2 by

ν � lcm pν1, ν2q � m1ν1 � m2ν2

Then,

�i t1, 2u , si �
Ni
à

k�1

mi�1
à

l�0

p∆miτi,kγνq� ∆lτi,kfi,kγ
ni,k�lνi
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A. Proofs

Therefore, by deVnition, s1` s2 is a periodic series. Besides, according to Lem. 38, there exist
X1, X2 P N0 andω1,ω2 P N such that

�x © X1, ψ ps1q pω1xq � ω1ψ ps1q pxq

�x © X2, ψ ps2q pω2xq � ω2ψ ps2q pxq

Therefore, with X � X1 ` X2 andω � lcm pω1,ω2q,

�x © X, ψ ps1 ` s2q pωxq � ωψ ps1q pxq `ωψ ps2q pxq

� ωψ ps1 ` s2q pxq

According to Def. 43 and Lem. 40,

σ ps1 ` s2q � σ pψ ps1 ` s2q pXqq

� σ pψ ps1q pXq `ψ ps2q pXqq

� min pσ pψ ps1q pXqq , σ pψ ps2q pXqqq

� min pσ ps1q , σ ps2qq

A.1.2. Greatest Lower Bound of Periodic Series

Before starting with the proof of Prop. 29, two intermediate lemmas are introduced to
handle the degenerated cases.

Lemma 50. Let f1 and f2 be two mappings in FNmax
and n1, n2 P N0.

f1γ
n1
^ f2γ

n2
� pf1 ^ f2qγ

maxpn1,n2q

Proof.

�k P Z, pf1γ
n1
q pkq �

#

ε if k   n1

f1 if k ¥ n1
and pf2γ

n2
q pkq �

#

ε if k   n2

f2 if k ¥ n2

Hence,

pf1γ
n1
^ f2γ

n2
q pkq � pf1γ

n1
q pkq ^ pf2γ

n2
q pkq

�

#

ε if k   max pn1, n2q

f1 ^ f2 if k ¥ max pn1, n2q

Thus, f1γn1
^ f2γ

n2
� pf1 ^ f2qγ

maxpn1,n2q.
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A.1. Calculation with Periodic Series in FNmax,γ
vγw

Lemma 51. Let f1 be a periodic mapping in F
Nmax

, s2 be a periodic series in F
Nmax,γ

vγw, and

n1 in N0. Series f1γ
n1
^ s2 is periodic.

Proof. As s2 is a periodic series inFNmax,γ
vγw, there existN inN, periodic mappings f2,1, . . . , f2,N

in F
Nmax

, n2,1, . . . , n2,N in N0, τ1, . . . , τN in N0, and ν in N such that

s2 �
N
à

k�1

p∆τkγνq� f2,kγ
n2,k

As F
Nmax,γ

vγw is a distributive dioid,

f1γ
n1
^ s2 �

N
à

k�1

�

f1γ
n1
^ p∆τkγνq� f2,kγ

n2,k
�

Therefore, according to Prop. 28, to prove the periodicity of f1γn1
^s2, it is suXcient to show

that s is a periodic series, where s � f1γn1
^ p∆τγνq� f2γ

n2 with periodic mappings f1, f2
in F

Nmax
, n1, n2 P Z, ν P N, and τ P N0. Furthermore, as, for all L in N,

f1γ
n1
^ p∆τγνq� f2γ

n2
�

L�1
à

l�0

�

f1γ
n1
^ ∆lτf2γ

n2�lν
	

`

�

f1γ
n1
^ p∆τγνq�∆Lτf2γ

n2�Lν
	

Therefore, according to Prop. 28, it is suXcient to consider the case where n2 ¥ n1.
If f1 or f2 is equal to ε, then s � ε is a periodic series. The case τ � 0 has been solved in

Lem. 50. In the following, we assume that f1, f2 are non-zero mappings and τ ¡ 0. For all
k P Z,

pf1γ
n1
q pkq �

#

ε if k   n1

f1 if k ¥ n1

�

p∆τγνq� f2γ
n2
�

pkq �

#

ε if k   n2

∆jτf2 if n2 � jν ¤ k   n2 � pj� 1qν with j P N0

Then, for all k P Z,

s pkq �

#

ε if k   n2

f1 ^ ∆
jτf2 if n2 � jν ¤ k   n2 � pj� 1qν with j P N0

Furthermore, as f1 and f2 are non-zero mappings, Y1 �
�

 

x P Nmax|f1 pxq ¡ ε
(

and Y2 �
�

 

x P Nmax|f2 pxq ¡ ε
(

belong to N0. According to Prop. 1,

�j P N0,
�

f1 ^ ∆
jτf2

	

pxq �

#

ε if x   Y

f1 pxq ^ τ
jf2 pxq if x © Y
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with Y � Y1 ` Y2. By decomposing f1 in a sum of two periodic mappings in F
Nmax

, we can
assume that either f1 pxq � J for all x P N0 or f1 pY1q � J.

If f1 pxq � J for all x P N0, f1 pxq is Vnite for all x P N0 greater than or equal to Y. Then
there exists K P N0 such that

�j ¥ K,�x © Y, f1 pxq ^ τ
jf2 pxq � f1 pxq

Thus,

s �
K
à

j�0

�

f1 ^∆
jτf2

	

γn2�jν

Hence, s is a periodic series.
Otherwise, f1 pY1q � J. This leads to

�

f1 ^∆
jτf2

	

pxq �

#

ε if x   Y

τjf2 pxq if x © Y

Then,

f1 ^ ∆
jτf2 � ∆

jτf̃2 with f̃2 pxq �

#

ε if x   Y

f2 pxq if x © Y

Thus,

s � p∆τγνq� f̃2γ
n2

Hence, s is a periodic series.

Proposition 42 (Greatest lower bound of periodic series). Let s1 and s2 be two periodic series
in F

Nmax,γ
vγw. Series s1 ^ s2 is periodic. If s1 and s2 are diUerent from ε, then

σ ps1 ^ s2q � max pσ ps1q , σ ps2qq

Proof. s1 and s2 are periodic series in FNmax,γ
vγw. For i P t1, 2u, there existNi P N, periodic

mappings fi,1, . . . , fi,Ni
in FNmax

, ni,1, . . . , ni,Ni
in N0, τi,1, . . . , τi,Ni

in N0, and νi in N

such that

si �
Ni
à

k�1

p∆τi,kγνiq� fi,kγ
ni,k

As FNmax,γ
vγw is distributive,

s1 ^ s2 �
N1
à

k�1

p∆τ1,kγν1q� f1,kγ
n1,k

^

N2
à

j�1

p∆τ2,jγν2q� f2,jγ
n2,j

�

N1
à

k�1

N2
à

j�1

p∆τ1,kγν1q� f1,kγ
n1,k

^ p∆τ2,jγν2q� f2,jγ
n2,j
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According to Prop. 28, it is suXcient to show that

s1 � p∆τ1γν1q� f1γ
n1
^ p∆τ2γν2q� f2γ

n2

is a periodic series. The degenerated cases are considered in Lem. 51. Therefore, in the
following, we assume that τ1 and τ2 are strictly greater than 0 and that f1 and f2 are non-
zero periodic mappings. Furthermore, ν,m1,m2, T1, and T2 are deVned by

ν � lcm pν1, ν2q � m1ν1 � m2ν2, T1 � m1τ1, and T2 � m2τ2

Then,

�i P t1, 2u , p∆τiγνiq� fiγ
ni
�

mi�1
à

l�0

�

∆Tiγν
	

�

∆lτifiγ
ni�lνi

This leads to

s1 �
m1�1
à

l�0

m2�1
à

j�0

�

∆T1γν
	

�

∆lτ1f1γ
n1�lν1

^

�

∆T2γν
	

�

∆jτ2f2γ
n2�jν2

Consequently, it is suXcient to show that

s �
�

∆T1γν
	

�

f1γ
n1
^

�

∆T2γν
	

�

f2γ
n2

is a periodic series. From now on, we assume that n2 ¥ n1. Then, for k P Z,

s pkq �
��

∆T1γν
	

�

f1γ
n1

	

pkq ^
��

∆T2γν
	

�

f2γ
n2

	

pkq

�

$

'

&

'

%

ε if k   n2

∆pK�jqT1f1 ^ ∆
jT2f2 if n2 � jν ¤ k   n1 � pK� 1� jqν with j P N0

∆pK�j�1qT1f1 ^ ∆
jT2f2 if n1 � pK� 1� jqν ¤ k   n2 � pj� 1qν with j P N0

withK � t

n2�n1

ν u. Furthermore, as f1 and f2 are non-zeromappings, Y1 �
�

 

x P Nmax|f1 pxq ¡ ε
(

and Y2 �
�

 

x P Nmax|f2 pxq ¡ ε
(

belong to N0. According to Prop. 1, for j P N0,

�

∆pK�jqT1f1 ^ ∆
jT2f2

	

pxq �

#

ε if x   Y

T
K�j
1 f1 pxq ^ T

j
2f2 pxq if x © Y

�

∆pK�j�1qT1f1 ^ ∆
jT2f2

	

pxq �

#

ε if x   Y

T
K�j�1
1 f1 pxq ^ T

j
2f2 pxq if x © Y

with Y � Y1 ` Y2.
Let us deVne mappings f̃1 and f̃2 in FNmax

by

f̃1 pxq �

#

ε if x   Y

f1 pxq if x © Y
and f̃2 pxq �

#

ε if x   Y

f2 pxq if x © Y
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First Case: T1 ¡ T2. By decomposing f2 in a sum of two periodic mappings in F
Nmax

, we
can assume that either f2 pxq � J for all x P N0 or f2 pY2q � J.

If f2 pxq � J for all x P N0, f2 pxq belongs to N0 for all x in N0 greater than or equal to Y.
Then, there exists L P N0 such that

�j ¥ L,�x © Y, T
K�j
1 f1 pxq ^ T

j
2f2 pxq � T

j
2f2 pxq

Then,

�j ¥ L, ∆pK�jqT1f1 ^∆
jT2f2 � ∆

jT2 f̃2

Therefore,

s �
�8

à

j�0

�

∆pK�jqT1f1 ^ ∆
jT2f2

	

γn2�jν
`

�8

à

j�0

�

∆pK�j�1qT1f1 ^ ∆
jT2f2

	

γn1�pK�1�jqν

� p`
�8

à

j�L

∆jT2 f̃2γ
n2�jν

� p`
�

∆T2γν
	

�

∆LT2 f̃2γ
n2�Lν

where p is the polynomial deVned by

p �
L�1
à

j�0

�

∆pK�jqT1f1 ^ ∆
jT2f2

	

γn2�jν
`

L�1
à

j�0

�

∆pK�j�1qT1f1 ^ ∆
jT2f2

	

γn1�pK�1�jqν

Hence, s is a periodic series.
Otherwise, f2 pY2q � J. Then,

�j P N0,
�

∆pK�jqT1f1 ^ ∆
jT2f2

	

pxq �

#

ε if x   Y

T
K�j
1 f1 pxq if x © Y

�

∆pK�j�1qT1f1 ^ ∆
jT2f2

	

pxq �

#

ε if x   Y

T
K�j�1
1 f1 pxq if x © Y

Thus,

�j P N0, ∆pK�jqT1f1 ^ ∆
jT2f2 � ∆

pK�jqT1 f̃1

∆pK�j�1qT1f1 ^ ∆
jT2f2 � ∆

pK�j�1qT1 f̃1
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Consequently,

s �
�8

à

j�0

�

∆pK�jqT1f1 ^ ∆
jT2f2

	

γn2�jν
`

�8

à

j�0

�

∆pK�j�1qT1f1 ^ ∆
jT2f2

	

γn1�pK�1�jqν

�

�8

à

j�0

∆pK�jqT1 f̃1γ
n2�jν

`

�8

à

j�0

∆pK�j�1qT1 f̃1γ
n1�pK�1�jqν

�

�

∆T1γν
	

�

∆KT1 f̃1γ
n2
`

�

∆T1γν
	

�

∆pK�1qT1 f̃1γ
n1�pK�1qν

Hence, s is a periodic series.

Second Case: T2 ¡ T1. By decomposing f1 in a sum of two periodic mappings in FNmax
,

we can assume that either f1 pxq � J for all x P N0 or f1 pY1q � J.
If f1 pxq � J for all x P N0, f1 pxq belongs to N0 for all x in N0 greater than or equal to Y.

Then, there exists L P N0 such that

�j ¥ L,�x © Y, T
K�j�1
1 f1 pxq ^ T

j
2f2 pxq � T

K�j�1
1 f1 pxq

Then,

�j ¥ L, ∆pK�j�1qT1f1 ^ ∆
jT2f2 � ∆

pK�j�1qT1 f̃1

Therefore,

s �
�8

à

j�0

�

∆pK�jqT1f1 ^ ∆
jT2f2

	

γn2�jν
`

�8

à

j�0

�

∆pK�j�1qT1f1 ^ ∆
jT2f2

	

γn1�pK�1�jqν

� p`
�8

à

j�L

∆pK�jqT1 f̃1γ
n2�jν

`

�8

à

j�L

∆pK�j�1qT1 f̃1γ
n1�pK�1�jqν

� p`
�

∆T1γν
	

�

∆pK�LqT1 f̃1γ
n2�Lν

`

�

∆T1γν
	

�

∆pK�L�1qT1 f̃1γ
n1�pK�1�Lqν

where p is the polynomial deVned by

p �
L�1
à

j�0

�

∆pK�jqT1f1 ^ ∆
jT2f2

	

γn2�jν
`

L�1
à

j�0

�

∆pK�j�1qT1f1 ^ ∆
jT2f2

	

γn1�pK�1�jqν

Hence, s is a periodic series.
Otherwise, f1 pY1q � J.

�j P N0

�

∆pK�jqT1f1 ^ ∆
jT2f2

	

pxq �

#

ε if x   Y

T
j
2f2 pxq if x © Y

�

∆pK�j�1qT1f1 ^ ∆
jT2f2

	

pxq �

#

ε if x   Y

T
j
2f2 pxq if x © Y
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Thus,

�j P N0, ∆pK�jqT1f1 ^ ∆
jT2f2 � ∆

jT2 f̃2

∆pK�j�1qT1f1 ^ ∆
jT2f2 � ∆

jT2 f̃2

Consequently,

s �
�8

à

j�0

�

∆pK�jqT1f1 ^ ∆
jT2f2

	

γn2�jν
`

�8

à

j�0

�

∆pK�j�1qT1f1 ^ ∆
jT2f2

	

γn1�pK�1�jqν

�

�8

à

j�0

∆jT2 f̃2γ
n2�jν

`

�8

à

j�0

∆jT2 f̃2γ
n1�pK�1�jqν

�

�

∆T2γν
	

�

f̃2γ
n2

Hence, s is a periodic series.

Third Case: T1 � T2 � T . According to Lem. 24,

∆pK�jqTf1 ^ ∆
jTf2 � ∆

jT
�

∆KTf1 ^ f2

	

∆pK�j�1qTf1 ^ ∆
jTf2 � ∆

jT
�

∆pK�1qT f1 ^ f2

	

Then,

s �
�8

à

j�0

�

∆pK�jqTf1 ^ ∆
jTf2

	

γn2�jν
`

�8

à

j�0

�

∆pK�j�1qT f1 ^ ∆
jTf2

	

γn1�pK�1�jqν

�

�

∆Tγν
	

�

�

∆KTf1 ^ f2

	

γn2
`

�

∆Tγν
	

�

�

∆pK�1qT f1 ^ f2

	

γn1�pK�1qν

Hence, s is a periodic series.

Throughput Series s1 and s2 are assumed to be diUerent from ε. According to Lem. 38,
there exist X1, X2 P N0 andω1,ω2 P N such that

�x © X1, ψ ps1q pω1xq � ω1ψ ps1q pxq

�x © X2, ψ ps2q pω2xq � ω2ψ ps2q pxq

According to Lem. 34,

�x © X, ψ ps1 ^ s2q pωxq � ωψ ps1q pxq ^ωψ ps2q pxq
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with X � X1 ` X2 andω � lcm pω1,ω2q. Then, for all x © X, as Nmax is a selective dioid,

�k P Z, ψ ps1 ^ s2q pωxq pkq � ωψ ps1q pxq pkq ^ωψ ps2q pxq pkq

� ω pψ ps1q pxq pkq ^ψ ps2q pxq pkqq

� ω pψ ps1q pxq ^ψ ps2q pxqq pkq

� ωψ ps1 ^ s2q pxq pkq

Consequently,

�x © X, ψ ps1 ^ s2q pωxq � ωψ ps1 ^ s2q pxq

According to Def. 43 and Lem. 40,

σ ps1 ^ s2q � σ pψ ps1 ^ s2q pXqq

� σ pψ ps1q pXq ^ψ ps2q pXqq

� max pσ pψ ps1q pXqq , σ pψ ps2q pXqqq

� max pσ ps1q , σ ps2qq

A.1.3. Product of Periodic Series

Before starting with the proof of Prop. 30, two intermediate lemmas are introduced. The
next lemma gives a simple expression of the throughput of a non-zero periodic series s in
FNmax,γ

vγw without using the slicing mapping ψ.

Lemma 52. Let s be a non-zero periodic series such that s �
ÀN

k�1 p∆
τkγνkq� fkγ

nk with

N in N, non-zero periodic mappings f1, . . . , fN in F
Nmax,γ

vγw, n1, . . . , nN in N0, τ1, . . . , τN
in N0, and ν1, . . . , νN in N.

σ psq �

#

0 if there exists k and x P N0 such that fk pxq � J

min1¤k¤N
�

νk
τk

	

otherwise

Proof. If there exist k and x P N0 such that fk pxq � J,

σ psq ¤ σ pψ psq pxqq � 0

Then, σ psq � 0.
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Otherwise, we assume that mapping fk is periodic with respect to Xk P N0 and ωk P N.
Let X �

ÀN
k�1 Xk, according to Lem. 40 and Prop. 28,

σ psq � σ pψ psq pXqq

� σ

�

N
à

k�1

pτkγ
νk
q

� fk pXqγ
nk

�

� min
1¤k¤N

σ
�

pτkγ
νk
q

� fk pXqγ
nk
�

� min
1¤k¤N

νk

τk
as fk pXq P N0

Lemma 53. Let s be a series in F
Nmax,γ

vγw such that s � fγn p∆τγνq� with a periodic
mapping f in F

Nmax
, n P N0, ν P N, and τ P N0. Then, s can be written under the form

s � p`
�

∆τ
1

γν
1

	

�

q

with p, q polynomials with coeXcients of the form f∆jτ where j P N0, τ1 in N0, and ν1 in N

such that ν
1

τ1 �
ν
τ .

Proof. If τ � 0, s � fγn and the result holds.
If τ � 0, f is, by assumption, periodic with respect to X P N0 and ω P N. Then, there

exists K ¥ 0 such that Kτ ¥ X. Let τ1 � lcm pτ,ωq � mτ and ν1 � mν. Then,

s �
K�1
à

l�0

f∆lτγn�lν ` f
�

∆τ
1

γν
1

	

�

∆KτγKν�n

�

m�1
à

l�0

∆lτγlν

�

According to Lem. 29, f
�

∆τ
1

γν
1

	

�

∆Kτ �
�

∆τ
1

γν
1

	

�

f∆Kτ. Consequently,

s �
K�1
à

l�0

f∆lτγn�lν `
�

∆τ
1

γν
1

	

�

�

m�1
à

l�0

f∆pK�lqτγn�pK�lqν

�

� p`
�

∆τ
1

γν
1

	

�

q

Proposition 43 (Product of periodic series). Let s1 and s2 be two periodic series inFNmax,γ
vγw.

Series s1 b s2 is periodic. If s1 and s2 are diUerent from ε, then

σ ps1 b s2q � min pσ ps1q , σ ps2qq
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Proof. For i P t1, 2u, there existNi P N, periodic mappings fi,1, . . . , fi,Ni
inF

Nmax
, ni,1, . . . , ni,Ni

in N0, τi,1, . . . , τi,Ni
in N0, and νi in N such that

si �
Ni
à

k�1

p∆τi,kγνiq� fi,kγ
ni,k

Then,

s1 b s2 �
N1
à

k�1

N2
à

j�1

sk,j with sk,j � p∆τ1,kγν1q� f1,k p∆
τ2,jγν2q� f2,jγ

n1,k�n2,j

According to Prop. 28, to prove that s1 b s2 is a periodic series, it is suXcient to show that
sk,j is a periodic series. According to Lem. 53,

f1,kγ
n1,k�n2,j

p∆τ2,jγν2q� � pk,j `
�

∆
τ12,jγν

1

2,j

	

�

qk,j

with τ12,j P N0 and ν12,j P N such that
ν12,j
τ1
2,j

�

ν2
τ2,j

and pk,j, qk,j polynomials with periodic

coeXcients of the form f1,k∆lτ2,j where l P N0. Then,

sk,j � p∆τ1,kγν1q� pk,jf2,j ` p∆τ1,kγν1q�
�

∆τ
1

2,jγν
1

2,j

	

�

qk,jf2,j

Besides, by using results from Nmax,γvγw,

p∆τ1,kγν1q�
�

∆τ
1

2,jγν
1

2,j

	

�

� p1k,j `
�

∆τ
2

k,jγν
2

k,j

	

�

q1k,j

where p1k,j, q
1

k,j are polynomials in F∆,γvγw, τ2k,j P N0, and ν2k,j P N such that

ν2k,j

τ2k,j
� min

�

ν1

τ1,k
,
ν12,j

τ12,j

�

� min

�

ν1

τ1,k
,
ν2

τ2,j




Hence,

sk,j � p∆τ1,kγν1q� pk,jf2,j ` p
1

k,jqk,jf2,j `
�

∆τ
2

k,jγν
2

k,j

	

�

q1k,jqk,jf2,j

is a periodic series. Thus, s1 b s2 is a periodic series.

Throughput If s1 and s2 are non-zero periodic series, we can assume that f1,k and f2,j are
non-zero periodic mappings. Then, sk,j are non-zero periodic series. According to Prop. 28,

σ ps1 b s2q � min
k,j
σ psk,jq
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If there exist k (or j) and x P N0 such that f1,k pxq � J (or f2,j pxq � J), then, according
to Lem. 52, σ psk,jq � 0. Consequently,

σ ps1 b s2q � 0 � min pσ ps1q , σ ps2qq

Otherwise, according to Lem. 52,

�k, j, σ psk,jq � min

�

ν1

τ1,k
,
ν2

τ2,j




Then,

σ ps1 b s2q � min
k,j

�

min

�

ν1

τ1,k
,
ν2

τ2,j





� min

�

min
k

�

ν1

τ1,k




,min
j

�

ν2

τ2,j





Hence, according to Lem. 52, σ ps1 b s2q � min pσ ps1q , σ ps2qq.

A.1.4. Left-Division of Quasi-Causal Periodic Series

The set of quasi-causal series in FNmax,γ
vγw is a complete dioid. Therefore, the product

is residuated. s1 �z
�

s2 is the greatest quasi-causal series s such that s1 b s ¨ s2. In the
following, the periodicity of s1 �z

�

s2 is investigated when s1 and s2 are periodic series. Next,
two intermediate lemmas are proved.

Lemma 54. Let s be a quasi-causal periodic series inF
Nmax,γ

vγw and let f be a non-zero quasi-
causal periodic mapping in F

Nmax
. For n P N0, pfγnq �z

�

s is a periodic series in F
Nmax,γ

vγw.
Furthermore,

– if s � ε or σ pfγnq   σ psq, then pfγnq �z
�

s � ε.
– if σ pfγnq � σ psq � �8, then pfγnq �z

�

s � ε or σ
�

pfγnq �z
�

s
�

� σ psq.
– if σ psq � �8 and σ pfγnq ¥ σ psq, then σ

�

pfγnq �z
�

s
�

� σ psq.

Proof. According to (2.10),

�l P Z,
�

pfγnq �z
�

s
�

plq �

#

ε if l   0

f �z
�

s pl� nq if l ¥ 0

The particular case s � ε is Vrst addressed.

�l P N0,
�

pfγnq �z
�

s
�

plq � f �z
�

ε

As f is a non-zero mapping, for all Z P N0, there exists z © Z such that f pzq ¡ ε. Con-
sequently, according to Prop. 21, f �z

�

ε � ε. Thus, pfγnq �z
�

s � ε. pfγnq �z
�

s is a periodic
series.
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From now on, we assume that s � ε. Then, according to Prop. 27, there exist N P N,
non-zero quasi-causal periodic mappings f1, . . . , fN in F

Nmax
, n1, . . . , nN in N0, τ1, . . . , τN

in N0, and ν in N such that

s �
N
à

k�1

p∆τkγνq� fkγ
nk

The following notations are introduced:

m � max

�

0, min
1¤k¤N

pnk � nq




andM � max
1¤k¤N

p0, nk � nq

Yf �
©

 

x P Nmax|f pxq ¡ ε
(

and Zf �
©

 

x P Nmax|f pxq � J

(

Yk �
©

 

x P Nmax|fk pxq ¡ ε
(

and Zk �
©

 

x P Nmax|fk pxq � J

(

Then,

�

pfγnq �z
�

s
�

plq �

$

&

%

ε if l   m

f �z
�

�

ÀN
k�1 ∆

t

l�n�nk
ν

uτkfk

	

if l ¥M

In the following, four cases are distinguished.

First Case: σ psq � σ pfγnq � �8. According to Lem. 52, τk � 0. This leads to

�l ¥M,
�

pfγnq �z
�

s
�

plq � f �z
�

f̃ with f̃ �
N
à

k�1

fk

Therefore, pfγnq �z
�

s �
ÀM

l�m

�

pfγnq �z
�

s
�

plqγl is a periodic series. Furthermore, as f is a
non-zero quasi-causal mapping and σ psq � �8,

�x P N0,
�

f �z
�

f̃
	

pxq ¨ f7
�

f̃ pxq
	

¨ Yf ` 1f̃ pxq where f̃ pxq � J

Therefore, for x P N0,
�

f �z
�

f̃
	

pxq � J. Consequently, pfγnq �z
�

s is either equal to ε or

σ
�

pfγnq �z
�

s
�

� �8 � σ psq.

Second Case: σ psq ¡ 0 and σ pfγnq � 0. As σ psq ¡ 0, for all l P Z and x P N0,
s plq pxq � J. Furthermore, σ pfγnq � 0 implies Zf P N0. Then, if x � J, f7 pxq ¨ Zf�{1.
This leads to

�l P Z,�x P N0,
�

pfγnq �z
�

s
�

plq pxq ¨ f7 ps pl� nq pxqq ¨ Zf�{1

As
�

pfγnq �z
�

s
�

plq is a quasi-causal mapping,
�

pfγnq �z
�

s
�

plq � ε. Thus, pfγnq �z
�

s � ε

and pfγnq �z
�

s is a periodic series.
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Third Case: σ psq � σ pfγnq � 0. σ pfγnq � 0 implies Zf P N0. According to Lem. 21,

�l ¥M,
�

pfγnq �z
�

s
�

plq � Pr
�

pf �zs pl� nqq

� Pr
�

�

N
à

k�1

f �z
�

∆t
l�n�nk

ν
uτkfk

	

�

If τk � 0, then Lk �M and

�l ¥ Lk, f �z
�

∆t
l�n�nk

ν
uτkfk

	

� f �zfk

If τk ¡ 0, there exists Lk ¥M such that

τ
t

Lk�n�nk
ν

u

k fk pYkq © f pZf�{1q

Then,

�l ¥ Lk,�x P N0,
�

f �z
�

∆t
l�n�nk

ν
uτkfk

		

pxq � f7
�

τ
t

l�n�nk
ν

u

k fk pxq




�

$

'

&

'

%

f7 pεq if x   Yk

Zf�{1 if Zk ¡ x © Yk

J if x © Zk

In both cases (i.e., τk � 0 or τk ¡ 0), f �z
�

∆t
l�n�nk

ν
uτkfk

	

does not depend on l for l ¥ Lk.

Therefore,

�l ¥ Lk, f �z
�

∆t
l�n�nk

ν
uτkfk

	

� f �z
�

∆t
Lk�n�nk

ν
uτkfk

	

Consequently,

pfγnq �z
�

s �
L
à

l�m

�

pfγnq �z
�

s
�

plqγl with L � max
1¤k¤N

Lk

Hence, pfγnq �z
�

s is a periodic series. Furthermore, as σ psq � 0, there exists X P N0 such
that s pL� nq pXq � J. Then,

ppfγnq �zsq pLq pXq � f7 ps pL� nq pXqq � f7 pJq � J

Therefore, �x © X, ppfγnq �zsq pLq pxq © x. Consequently,

�

pfγnq �z
�

s
�

pLq pXq � ppfγnq �zsq pLq pXq � J

Thus, σ
�

pfγnq �z
�

s
�

� 0.
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Fourth Case: σ psq � �8 and σ pfγnq � �8. Let K � tk|τk ¡ 0u and K0 �

tk|τk � 0u.

�l ¥M, s pl� nq � f̃`
à

kPK

∆t
l�n�nk

ν
uτkfk with f̃ �

à

kPK0

fk

Then, according to Lem. 20 and Lem. 21,

�l ¥M, ppfγnq �zsq plq � f �zf̃`
à

kPK

f �z
�

∆t
l�n�nk

ν
uτkfk

	

� PrR
�

f7 b f̃
	

`

à

kPK

PrR
�

f7 b∆t
l�n�nk

ν
uτkfk

	

For k P K,

�

f7 b ∆t
l�n�nk

ν
uτkfk

	

pxq �

$

&

%

f7 pεq if x   Yk

f7
�

τ
t

l�n�nk
ν

u

k fk pxq




if x © Yk

Then, f7 b ∆t
l�n�nk

ν
uτkfk � fε ` fk,l with

�x P Nmax, fε pxq � f
7

pεq and fk,l pxq �

$

&

%

ε if x   Yk

f7
�

τ
t

l�n�nk
ν

u

k fk pxq




if x © Yk

This leads to, according to Lem. 19,

�l ¥M, ppfγnq �zsq plq � PrR
�

f7 b f̃` fε

	

`

à

kPK

PrR pfk,lq

fk,l pεq � ε and fk,l is isotone. Furthermore,

�x P N0, τ
t

l�n�nk
ν

u

k fk pxq   f pRq with R P N0

is absurd, as σ pfγnq � �8 and fk is a non-zero quasi-causal mapping. Then, for all R P

N0, there exists x P N0 such that fk,l pxq © R. Then,
À

nPN fk,l pnq � J � fk,l pJq.
Consequently, according to Lem. 16, fk,l is residuated. Hence,

�l ¥M, ppfγnq �zsq plq � PrR
�

f7 b f̃` fε

	

`

à

kPK

fk,l

Moreover, as f (resp. fk) is periodic with respect to X (resp. Xk) andω (resp. ωk), there exists
L1 ¥M such that

�k P K,�x © Yk, τ
t

L1�n�nk
ν

u

k fk pxq © f pxq

167



A. Proofs

Then, for l ¥ L1, fk,l is quasi-causal. Therefore,

�l ¥ L1,
�

pfγnq �z
�

s
�

plq � Pr
�

pppfγnq �zsq plqq

� Pr
�

�

PrR
�

f7 b f̃` fε

	

`

à

kPK

fk,l

�

� Pr
�

�

PrR
�

f7 b f̃` fε

	

`

à

kPK

fk,L1 `
à

kPK

fk,l

�

� Pr
�

�

PrR
�

f7 b f̃` fε

	

`

à

kPK

fk,L1

�

`

à

kPK

fk,l

�

�

pfγnq �z
�

s
�

pL1q `
à

kPK

fk,l

Consequently,

pfγnq �z
�

s �
L1
à

l�m

�

pfγnq �z
�

s
�

plqγl `
à

kPK

�8

à

l�L1

fk,lγ
l

Furthermore, there exists L ¥ L1 such that

�k P K, τ
t

L�n�nk
ν

u

k fk pYkq © f pXq

Then, for x P N0 and l ¥ L, if x   Yk, fk,l�ων pxq � ε and, if x © Yk, according to Lem. 30,

fk,l�ων pxq � f
7

�

τωk τ
t

l�n�nk
ν

u

k fk pxq




� τωk fk,l pxq

Hence, fk,l�ων � ∆ωτkfk,l for l ¥ L. Thus,

pfγnq �z
�

s �
L
à

l�m

�

pfγnq �z
�

s
�

plqγl `
à

kPK

p∆ωτkγωνq�

�

ων�1
à

l�0

fk,L�lγ
L�l

�

According to Prop. 21, for l ¥ L, fk,l is a periodic (with respect to X ` Xk and lcm pω,ωkq)
mapping. Thus, pfγnq �z

�

s is a periodic series. Furthermore, if σ psq � 0, a reasoning similar
to the third case leads to σ

�

pfγnq �z
�

s
�

� 0. Otherwise, K is not empty. For l P N0 with
m ¤ l ¤ L,

�x P Nmax,
�

pfγnq �z
�

s
�

plq pxq ¨
N
à

k�1

Yk ` 1s pl� nq pxq
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and, for l P N0 with 0 ¤ l   ων,

�x P Nmax, fk,L�l pxq ¨ Yk ` 1τ
t

L�l�n�nk
ν

u

k fk pxq

Then, the values of the previous mappings for x � J are diUerent from J. Furthermore, the
mappings fk,L�l are, by deVnition, non-zero. Consequently, according to Lem. 52,

σ
�

pfγnq �z
�

s
�

� min
kPK

ν

τk
� σ psq

Lemma 55. Let s be a quasi-causal periodic series in F
Nmax,γ

vγw and let ν, τ P N. Series

p∆τγνq� �

z

�

s is periodic. Furthermore,
– if s � ε or σ psq ¡ σ

�

p∆τγνq�
�

then p∆τγνq� �

z

�

s � ε

– if σ psq ¤ σ
�

p∆τγνq�
�

then σ
�

p∆τγνq� �

z

�

s
�

� σ psq

Proof. The particular case s � ε is considered. As p∆τγνq� �

z

�

s ¨ e �z
�

s ¨ s, p∆τγνq� �

z

�

s �

ε. Hence, series p∆τγνq� �

z

�

s is periodic.
From now on, we assume that s � ε. Then, according to Prop. 27, there exist N P N,

non-zero quasi-causal periodic mappings f1, . . . , fN in F
Nmax

, n1, . . . , nN in N0, τ1, . . . , τN
in N0, and ν1 in N such that

s �
N
à

k�1

p∆τkγν1q� fkγ
nk

According to (2.3),

p∆τγνq� �

z

�

s �
©

j¥0

�

∆jτγjν
	

�

z

�

s

Then,

�l P Z,
�

p∆τγνq� �

z

�

s
�

plq �
©

j¥0

∆jτ �z
�

s pl� jνq

The following notations are introduced:

m � min
1¤k¤N

nk andM � max
1¤k¤N

nk

If l   m,
�

p∆τγνq� �

z

�

s
�

plq ¨ s plq � ε. This leads to
�

p∆τγνq� �

z

�

s
�

plq � ε. Otherwise,

�

p∆τγνq� �

z

�

s
�

plq �
©

R¡j¥0

∆jτ �z
�

s pl� jνq ^
©

j¥R

∆jτ �z
�

�

N
à

k�1

∆
t

l�jν�nk
ν1

uτkfk

�

with R � r

M�m
ν

s. The set K is deVned by

K �

"

k|Dx P N0, fk pxq � J or
ν

τ
¥

ν1

τk

*

In the following, two cases are distinguished.
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First Case: σ psq ¡ σ
�

p∆τγνq�
�

(or equivalently K � H). For l ¥ m,

©

j¥R

∆jτ �z
�

�

N
à

k�1

∆
t

l�jν�nk
ν1

uτkfk

�

�

©

j¥R

Pr
�

�

N
à

k�1

∆jτ �z

�

∆
t

l�jν�nk
ν1

uτkfk




�

¨

©

j¥R

�

N
à

k�1

∆jτ �z

�

∆
t

l�jν�nk
ν1

uτkfk




�

For l ¥ m and x P N0,

�

∆jτ �z

�

∆
t

l�jν�nk
ν1

uτkfk





pxq �
�

∆jτ
	

7

�

τ
t

l�jν�nk
ν1

u

k fk pxq

�

�

�

τ
t

l�jν�nk
ν1

u

k fk pxq

�

�

{τj

To show that p∆τγνq� �

z

�

s � ε, it is suXcient to show that, for all l ¥ m and for all x in N0,
there exists j ¥ R such that

�k, τ
t

l�jν�nk
ν1

u

k fk pxq   τ
j

It is suXcient to show that, for all l ¥ m and for all x P N0, there exists L ¥ r

R
ν1
s such that

�k, τ
Lν�t

l�nk
ν1

u

k fk pxq   τ
Lν1

Let us denote Kx � tk|fk pxq � εu. If Kx � H, the previous equation holds for all j ¥ R.
Otherwise, as fk pxq � J, the previous equation is equivalent in the standard algebra to

�k P Kx, Lντk � t

l� nk

ν1
uτk � fk pxq   Lν1τ

� �k P Kx, L pν1τ� ντkq ¡ t

l� nk

ν1
uτk � fk pxq

As K � H, ν1τ� ντk ¡ 0. Then, the previous equation is equivalent to

L ¥ L̃ � max
kPKx

�

t

t

l�nk

ν1
uτk � fk pxq

ν1τ� ντk
u� 1, r

R

ν1
s

�

This inequality proves the existence of a suitable parameter L. Hence, for l ¥ m,
�

p∆τγνq� �

z

�

s
�

plq �

ε. Thus, p∆τγνq� �

z

�

s � ε is a periodic series.
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Second Case: σ psq ¤ σ
�

p∆τγνq�
�

(or equivalently K � H). Let Y be deVned by

Y �
©

#

x P Nmax|
à

kPK

fk pxq ¡ ε

+

Let us deVne the quasi-causal periodic series s̃ by

s̃ �
N
à

k�1

p∆τkγν1q� f̃kγ
nk with f̃k pxq �

#

ε if x   Y

fk pxq if x © Y

Clearly, σ psq � σ ps̃q. In the following, it is shown that p∆τγνq� �

z

�

s � p∆τγνq� �

z

�

s̃. A
suXcient condition is to show that p∆τγνq� �

zs � p∆τγνq� �

zs̃.
For l   m,

�

p∆τγνq� �

zs
�

plq � ε �
�

p∆τγνq� �

zs̃
�

plq.
For l ¥ m and x   Y, a reasoning similar to the Vrst case (i.e., K � H) leads to

�

p∆τγνq� �

zs
�

plq pxq � ε. Furthermore,
�

p∆τγνq� �

zs̃
�

plq pxq ¨ s̃ plq pxq � ε

Then,
�

p∆τγνq� �

zs̃
�

plq pxq is also equal to ε.
For l ¥ m and x © Y,

�

p∆τγνq� �

zs
�

plq pxq �
©

j¥0

�

∆jτ
	

7

ps pl� jνq pxqq

�

©

j¥0

�

∆jτ
	

7

ps̃ pl� jνq pxqq

�

�

p∆τγνq� �

zs̃
�

plq pxq

Hence, p∆τγνq �zs � p∆τγνq �zs̃. Next the periodicity of p∆τγνq �z
�

s̃ is investigated. As
before, if l ¥ m,

�

p∆τγνq� �

z

�

s̃
�

plq �
©

R¡j¥0

∆jτ �z
�

s̃ pl� jνq ^
©

j¥R

∆jτ �z
�

�

N
à

k�1

∆
t

l�jν�nk
ν1

uτk f̃k

�

By deVnition of K, there exists J ¥ R such that

�j ¥ J,
N
à

k�1

∆
t

l�jν�nk
ν1

uτk f̃k �
à

kPK

∆
t

l�jν�nk
ν1

uτk f̃k

Consequently, for l ¥ m,

�

p∆τγνq� �

z

�

s̃
�

plq �
©

J¡j¥0

∆jτ �z
�

s̃ pl� jνq ^
©

j¥J

∆jτ �z
�

�

à

kPK

∆
t

l�jν�nk
ν1

uτk f̃k

�

171



A. Proofs

∆jτ �z
�

�

à

kPK

∆
t

l�jν�nk
ν1

uτk f̃k

�

� Pr
�

�

à

kPK

∆jτ �z

�

∆
t

l�jν�nk
ν1

uτk f̃k




�

Then,

�k P K, ∆pj�ν1qτ �z

�

∆
t

l�pj�ν1qν�nk
ν1

uτk f̃k




� ∆pj�ν1qτ �z

�

∆ντk∆
t

l�jν�nk
ν1

uτk f̃k




� ∆jτ �z

�

∆ντk�ν1τ∆
t

l�jν�nk
ν1

uτk f̃k




Hence, as τν ¤
τk
ν1

for k P K,

�k P K, ∆pj�ν1qτ �z

�

∆
t

l�pj�ν1qν�nk
ν1

uτk f̃k




© ∆jτ �z

�

∆
t

l�jν�nk
ν1

uτk f̃k




Therefore,

©

j¥J

∆jτ �z
�

�

N
à

k�1

∆
t

l�jν�nk
ν1

uτk f̃k

�

�

J�ν1�1
©

j�J

∆jτ �z
�

�

N
à

k�1

∆
t

l�jν�nk
ν1

uτk f̃k

�

Thus, for l ¥ m,

�

p∆τγνq� �

z

�

s
�

plq �
�

p∆τγνq� �

z

�

s̃
�

plq �

J�ν1�1
©

j�0

��

∆jτγjν
	

�

z

�

s̃
	

plq

Then,

pγν∆τq� �

z

�

s �

J�ν1�1
©

j�0

�

∆jτγjν
	

�

z

�

s̃

Consequently, according to Lem. 54 and Prop. 29, p∆τγνq� �

z

�

s is a periodic series and

σ
�

p∆τγνq� �

z

�

s
�

� σ ps̃q � σ psq

Proposition 44 (Left-division of quasi-causal periodic series). Let s1, s2 be two quasi-causal
periodic series in FNmax,γ

vγw. s1 �z
�

s2 is a periodic series. If s1 and s2 are diUerent from ε,
– if σ ps1q   σ ps2q, then s1 �z

�

s2 � ε.
– if σ ps1q � σ ps2q � �8, then s1 �z

�

s2 is either equal to ε or σ
�

s1 �z
�

s2
�

� �8.
– if σ ps2q � �8 and σ ps1q ¥ σ ps2q, then σ

�

s1 �z
�

s2
�

� σ ps2q.
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Proof. If s1 � ε, s1 �z
�

s2 � J is a periodic series. Otherwise, according to Prop. 27, there exist
N P N, non-zero quasi-causal periodic mappings f1, . . . , fN, n1, . . . , nN in N0, τ1, . . . , τN
in N0, and ν in N such that

s1 �
N
à

k�1

p∆τkγνq� fkγ
nk

According to (2.3) and (2.5),

s1 �z
�

s2 �

N
©

k�1

pfkγ
nk
q

�

z

�

�

p∆τkγνq� �

z

�

s2
�

Then, using Lem. 54, Lem. 55, and Prop. 29, s1 �z
�

s2 is a periodic series. Next, the result on
the throughput is checked. Three cases are distinguished.

First Case: σ ps1q   σ ps2q.
There exists k such that σ

�

p∆τkγνq�
�

  σ ps2q or σ pfkγnk
q   σ ps2q. Consequently,

according to Lem. 54 and Lem. 55, s1 �z
�

s2 � ε.

Second Case: σ ps1q � σ ps2q � �8.
For all k, τk � 0. Then,

s1 �z
�

s2 �

N
©

k�1

pfkγ
nk
q

�

z

�

s2

Thus, according to Lem. 54, s1 �z
�

s2 is either equal to ε or σ
�

s1 �z
�

s2
�

� �8.

Third Case: σ ps2q � �8 and σ ps1q ¥ σ ps2q.
Then, according to Lem. 54 and Lem. 55, for all k,

σ
�

pfkγ
nk
q

�

z

�

�

p∆τkγνq� �

z

�

s2
��

� σ ps2q

Thus, σ
�

s1 �z
�

s2
�

� σ ps2q

A.1.5. Kleene Star of Causal Periodic Series

Causal Polynomial

In the following, we prove that the Kleene star of a causal polynomial with periodic coef-
Vcients is a periodic series.
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Lemma 56. Let p be a non-zero causal polynomial in F
Nmax,γ

vγw such that all its coeXcients
are periodic with respect to Xp P N0 andωp P N. Then,

�R P N,

Xp�R�1
à

l�0

pl �

Xp
à

l�0

pl `

�

R
à

l�0

p̃l

�

pXp�1

where

�l P Z, p̃ plq pxq �

#

ε if x   Xp

p plq pxq if x © Xp

Proof. The canonical representative of p is denoted

p �
N
à

i�1

fiγ
ni

with N in N, non-zero causal periodic mappings f1, . . . , fN in FNmax,γ
vγw, and n1, . . . , nN

in N0. By assumption, fk is periodic with respect to Xp in N0 andωp in N. Furthermore,

p̃ �
N
à

i�1

f̃iγ
ni with f̃i pxq �

#

ε if x   Xp

fi pxq if x © Xp

This lemma is shown by induction on R. First, the initial step (i.e., R � 1) is proved. The
aim is to show that

Xp�2
à

l�0

pl �

Xp�1
à

l�0

pl ` p̃pXp�1

By deVnition, p © p̃. Therefore,

Xp�2
à

l�0

pl ©

Xp�1
à

l�0

pl ` p̃pXp�1

Conversely,

pXp�2
¨

Xp�1
à

l�0

pl ` p̃pXp�1
ñ

Xp�2
à

l�0

pl ¨

Xp�1
à

l�0

pl ` p̃pXp�1

Therefore, it is suXcient to show that

�x P Nmax, ψ
�

pXp�2
	

pxq ¨ ψ

�

Xp�1
à

l�0

pl ` p̃pXp�1

�

pxq

174



A.1. Calculation with Periodic Series in FNmax,γ
vγw

As

�x P Nmax, ψ
�

pXp�2
	

pxq �
N
à

i1�1

. . .
N
à

iXp�2�1

�

Xp�2
â

j�1

fij

�

pxqγ
°Xp�2

j�1
nij

it is suXcient to show that

�i1, . . . , iXp�2,�x P Nmax,

�

Xp�2
â

j�1

fij

�

pxqγ
°Xp�2

j�1
nij

¨ ψ

�

Xp�1
à

l�0

pl ` p̃pXp�1

�

pxq

Depending on the values of
�

ÂXp�2
j�2 fij

	

pxq, several cases are distinguished.

If
�

ÂXp�2
j�2 fij

	

pxq � ε, then

�

Xp�2
â

j�1

fij

�

pxqγ
°Xp�2

j�1
nij

� ε ¨ ψ

�

Xp�1
à

l�0

pl ` p̃pXp�1

�

pxq

If
�

ÂXp�2

j�2 fij

	

pxq © Xp, then, according to the deVnition of p̃,

�

Xp�2
â

j�1

fij

�

pxq �

�

f̃i1 b

Xp�2
â

j�2

fij

�

pxq

Therefore,
�

Xp�2
â

j�1

fij

�

pxqγ
°Xp�2

j�1
nij

¨ ψ
�

p̃pXp�1
	

pxq ¨ ψ

�

Xp�1
à

l�0

pl ` p̃pXp�1

�

pxq

Otherwise, e ¨
�

ÂXp�2
j�2 fij

	

pxq   Xp. As fij is non-zero and causal, fij © Id. Then,

e ¨ fiXp�2
pxq ¨ � � � ¨

�

Xp�2
â

j�2

fij

�

pxq   Xp

Therefore, there exists K with 2 ¤ K ¤ Xp�2 such that

�

Xp�2
â

j�2

fij

�

pxq �

�

Xp�2
â

j�2,j�K

fij

�

pxq
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Besides, due to the causality of p, niK ¥ 0. Therefore,
�

Xp�2
â

j�1

fij

�

pxqγ
°Xp�2

j�1 nij
¨

�

Xp�2
â

j�1,j�K

fij

�

pxqγ
°Xp�2

j�1,j�K nij

¨ ψ
�

pXp�1
	

pxq

¨ ψ

�

Xp�1
à

l�0

pl ` p̃pXp�1

�

pxq

Henceforth, the result holds for R � 1. Second, the inductive step is proved. It is assumed
that, for a given R P N,

Xp�R�1
à

l�0

pl �

Xp
à

l�0

pl `

�

R
à

l�0

p̃l

�

pXp�1

Next, the equality is checked for R� 1.

Xp�R�2
à

l�0

pl � e` p

�

Xp�R�1
à

l�0

pl

�

�

Xp�2
à

l�0

pl `

�

R
à

l�1

pp̃l

�

pXp�1

�

Xp�1
à

l�0

pl ` p̃pXp�1
`

�

R
à

l�1

pp̃l

�

pXp�1 using the results for R � 1

Furthermore, due to the deVnition of p̃, pp̃ � p̃2. Thus,

Xp�R�2
à

l�0

pl �

Xp
à

l�0

pl `

�

R�1
à

l�0

p̃l

�

pXp�1

This achieves the induction.

Lemma 57. Let p be a non-zero causal polynomial in FNmax,γ
vγw such that all its coeXcients

are periodic with respect to Xp P N0 andωp P N. Then,

p� �

Xp
à

l�0

pl ` p̃�pXp�1

where

�l P Z, p̃ plq pxq �

#

ε if x   Xp

p plq pxq if x © Xp
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Proof. It is a direct consequence of the previous lemma by considering R approaching �8.

In the next lemma, the periodicity of p� is investigated where p is a non-zero quasi-causal
polynomial with periodic coeXcients fulVlling some additional properties.

Lemma 58. Let p be a non-zero quasi-causal polynomial in F
Nmax,γ

vγw such that all its coef-

Vcients are periodic with respect to Xp in N0 andωp in N and

�l P Z,�x   Xp, p plq pxq � ε

Then, p� is a periodic series in FNmax,γ
vγw.

Proof. The canonical representative of p is denoted

p �
N
à

i�1

fiγ
ni

with N in N, non-zero causal periodic mappings f1, . . . , fN in F
Nmax,γ

vγw, and n1   � � �  

nN in N0. By assumption, fk is periodic with respect to Xp in N0 andωp in N and fk pxq � ε
for x   Xp. Obviously,

�k P N, pk �
N
à

i1�1

. . .
N
à

ik�1

k
â

j�1

fijγ
nij

Then,

�k P N,�x P Nmax, ψ
�

pk
	

pxq �
N
à

i1�1

. . .
N
à

ik�1

�

k
â

j�1

fij

�

pxqγ
°k

j�1 nij

For a mapping f in FNmax
, the set of Vxed points of f, denoted Vx pfq, is deVned by Vx pfq �

 

x P Nmax|f pxq � x
(

. In the following, two cases are distinguished depending on the sets of
Vxed points of the coeXcients of p.

First Case:
�N
i�1 Vx pfiq � tε,Ju. There exists one Vxed point b shared by all mappings

fi such that Xp ¨ b   ωpXp. Due to the periodicity of fi, ω
j
pb with j P N0 is also a Vxed

point.

ψ
�

pωp�1
	

pxq �
N
à

i1�1

. . .
N
à

iωp�1�1

�

ωp�1
â

j�1

fij

�

pxqγ
°ωp�1

j�1
nij

177



A. Proofs

In the following, we prove that pωp
© pωp�1, or equivalently for all x P Nmax,ψ ppωp

q pxq ©

ψ
�

pωp�1
�

pxq. For x   Xp,

ψ ppωp
q pxq � ε � ψ

�

pωp�1
	

pxq

For x © Xp, we reason on the monomials composing ψ
�

pωp�1
�

pxq. If x � J, as niωp�1
¥

0,
�

ωp�1
â

j�1

fij

�

pJqγ
°ωp�1

j�1
nij

� Jγ
°ωp�1

j�1
nij

¨ Jγ
°ωp

j�1
nij

¨ ψ ppωp
q pJq

Otherwise, B is deVned as the least Vxed point greater than or equal to x. Clearly, B   ωpx.
Then, as fi pxq © x for x © Xp,

x ¨ fiωp�1
pxq ¨ � � � ¨

�

ωp�1
â

j�1

fij

�

pxq ¨ B   ωpx

Therefore, there exists K such that
�

ωp�1
â

j�1

fij

�

pxq �

�

ωp�1
â

j�1,j�K

fij

�

pxq

As niK ¥ 0,
�

ωp�1
â

j�1

fij

�

pxqγ
°ωp�1

j�1 nij
¨

�

ωp�1
â

j�1,j�K

fij

�

pxqγ
°ωp�1

j�1,j�K nij
¨ ψ ppωp

q pxq

Consequently, pωp�1
¨ pωp . Thus, p� is a periodic series equal to

Àωp

l�0 p
l.

Second Case:
�N
i�1 Vx pfiq � tε,Ju. As f1   � � �   fN, Vx pfNq � tε,Ju.

First, we show that the calculation of p� reduces to the calculation of p̃� where p̃ is a non-
zero quasi-causal polynomial in F

Nmax,γ
vγw such that all its coeXcients are periodic with

respect to Xp in N0 andωp in N and
#

�l P Z,�x   Xp, p̃ plq pxq � ε

�l ¥ val pp̃q , Vx pp̃ plqq � tε,Ju

Let us consider the sequence ppmqm¥0 of non-zero quasi-causal polynomials pm such that
all their coeXcients are periodic with respect to Xp in N0 andωp in N and

�l P Z,�x   Xp, pm plq pxq � ε

The canonical representative of pm is denoted pm �

ÀNm

i�1 fm,iγ
nm,i where mappings fm,i

are, by assumption, periodic with respect to Xp and ωp. The sequence ppmqm¥0 is deVned
by the following algorithm:
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1. Initialization: set p0 to p and setm to 0

2. While Vx pfm,1q � tε,Ju, set pm�1 to pfm,1γnm,1
q

�

�

ÀNm

i�2 fm,iγ
nmi

	

and set m to

m� 1

As Vx pfm,1q � tε,Ju, pfm,1γnm,1
q

� is a polynomial with periodic coeXcients. Therefore,
pm�1 is a polynomial with periodic coeXcients. According to (2.8),

p�m � p�m�1 pfm,1γ
nm,1

q

�

Then, as Vx pfm,1q � tε,Ju, to show the periodicity of p�m, it is suXcient to prove the peri-
odicity of p�m�1. Therefore, to show that the calculation of p� boils down to the calculation
of p̃�, it is suXcient to check that the previous algorithm stops after a Vnite number of steps
(i.e., there exists M P N0 such that Vx pfM,1q � tε,Ju), as Vx pfM,1q � tε,Ju implies
Vx pfM,iq � tε,Ju. Obvious properties of the sequence ppmqm¥0 are

�m P N0, val ppm�1q � nm�1,1 � nm,2 ¡ nm,1 � val ppmq (A.1)

�m P N0,�l   m, fm,1 � pm pnm,1q © pl pnm,1q (A.2)

According to (A.1), there exists M P N0 such that val ppMq ¥ n0,N0
. Then, according to

(A.2), fM,1 © p0 pval ppMqq � f0,N0
. As Vx pf0,N0

q is equal to tε,Ju, Vx pfM,1q is equal to
tε,Ju. Therefore, in the following, we only consider a non-zero quasi-causal polynomial p
such that all its coeXcients are periodic with respect to Xp in N0 andωp in N and

#

�l P Z,�x   Xp, p plq pxq � ε

�l ¥ val ppq , Vx pp plqq � tε,Ju

Second, some work is done using condition Vx pfiq � tε,Ju to consider only a subclass of
polynomials.

p� � ppωp
q

�

�

ωp�1
à

l�0

pl

�

with

pωp
�

N
à

i1�1

. . .
N
à

iωp�1

ωp
â

j�1

fijγ
nij

�

Nωp
à

i�1

fωp,iγ
nωp,i

where the last expression denotes the canonical representative of pωp . Clearly,

val ppωp
q � nωp,1 � ωpn1 and fωp,1 � f

ωp

1
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As f1 does not admit any Vxed point, f
ωp

1 pXpq © ωpXp. Furthermore, as fωp,i�1 © fωp,i,
fωp,i pXpq © ωpXp. Therefore, in the following, we investigate the periodicity of p� with a
non-zero quasi-causal polynomial p such that all its coeXcients are periodic with respect to
Xp in N0 andωp in N and

#

�l P Z,�x   Xp, p plq pxq � ε

�l ¥ val ppq , p plq pXpq © ωpXp

The canonical representative of p is denoted p �
ÀN

i�1 fiγ
ni with N in N, non-zero causal

periodic mappings f1, . . . , fN in FNmax,γ
vγw, and n1   � � �   nN in N0. By assumption, fk is

periodic with respect to Xp in N0 andωp in N, fk pxq � ε for x   Xp, and fk pXpq © ωpXp.
Finally, the periodicity of p� is obtained by analogy with [15]. If fN pXpq � J, then,

�l ¥ nN, p� plq � fN and, for l   nN, the coeXcients of p� can be obtained by developing
the expression. Then, p� is a polynomial with periodic coeXcients: p� is a periodic series.
Otherwise, fi pXpq belongs to N0. It is easy to check that

fi �

ωp�1
à

k�0

∆fipkXpq∇

�

∆k�Xp

	

7

where ∇ is a periodic mapping in FNmax
deVned by

∇ pxq �

#

ε if x � ε

t

x
ωp

u

ωp if x © e

Therefore, polynomial p can be written under the form

p �
M
à

k�1

∆mk∇ p∆rkq7 γnk

Then,

�k P N, pk �
M
à

i1�1

. . .
M
à

ik�1

k
â

j�1

∆
mij∇

�

∆
rij
�

7

γ
nij

By noticing that

�j, k P N0,
�

∆k
	

7

∆j � ∆j�k if j ¥ k and∇∆j∇ � ∆
t

j
ωp

uωp
∇

we obtain

�k ¥ 2,
k
â

j�1

∆
mij∇

�

∆
rij
�

7

� ∆mi1∆K∇ p∆ril q
7
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with

K �

k�1̧

j�1

t

mij�1
� rij

ωp
uωp

The conditionmij�1
¥ rij is ensured by the hypothesis fi pXpq © ωpXp. Then, a matrix φ

in F∆,γvγw
M�M is deVned by

rφsij � ∆
t

mj�ri
ωp

uωp
γni

This leads to

�k ¥ 3, pk �
M
à

i1�1

. . .
M
à

ik�1

k
â

j�1

∆
mij∇

�

∆
rij
�

7

γ
nij

�

M
à

i1�1

. . .
M
à

ik�1

∆mi1

�

k�1
â

j�1

∆
t

mij�1
�rij

ωp
uωp
γ
nij

�

∇ p∆rik q
7

γnik

�

M
à

i1�1

. . .
M
à

ik�1

∆mi1

�

k�1
â

j�1

φijij�1

�

∇ p∆rik q
7

γnik

�

M
à

i1�1

M
à

ik�1

∆mi1

�

M
à

i2�1

. . .
M
à

ik�1�1

k�1
â

j�1

φijij�1

�

∇ p∆rik q
7

γnik

�

M
à

I�1

M
à

J�1

∆mI

�

φk�1
	

IJ
∇ p∆rJq7 γnJ

Therefore,

p� � e` p` p2 `
�8

à

k�3

pk

� e` p` p2 `
�8

à

k�3

M
à

I�1

M
à

J�1

∆mI

�

φk�1
	

IJ
∇ p∆rJq7 γnJ

� e` p` p2 `
M
à

I�1

M
à

J�1

∆mI

�

φ2φ�
	

IJ
∇ p∆rJq7 γnJ

As φ� is periodic, p� is a periodic series.

Proposition 45. The Kleene star of a causal polynomial with periodic coeXcients is a periodic

series.
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Proof. Let p be a causal polynomial in F
Nmax,γ

vγw with periodic coeXcients. If p � ε, then
p� � e is a periodic series. Otherwise, we can Vnd Xp P N0 and ωp P N such that all
coeXcients of p are periodic with respect to Xp andωp. Then, according to Lem. 57,

p� �

Xp�1
à

l�0

pl ` p̃�pXp�2

where

�l P Z, p̃ plq pxq �

#

ε if x   Xp

p plq pxq if x © Xp

As p̃ fulVlls the condition of Lem. 58, p̃� is a periodic series. Thus, p� is a periodic series.

Causal Periodic Series

In the following, we prove that the Kleene star of a causal periodic series is a causal periodic
series.

Proposition 46. The Kleene star of a causal periodic series is a causal periodic series.

Proof. Let s be a causal periodic series in FNmax,γ
vγw. Its canonical representative has the

following form:

s � p`
N
à

k�1

�

∆τkγν
1

	

�

qk

Furthermore, we deVne X P N0 andω P N such that all coeXcients of q1, . . . , qN and p are
periodic with respect to X andω.
s� is causal, as the dioid of causal series is a complete subdioid of F

Nmax,γ
vγw. It remains

to show that s� is periodic.
The proof is done by induction on N. The initial step N � 0 corresponds to the polyno-

mial case, which has been solved in Prop. 45. For the inductive step, it is assumed that the
proposition holds for N� 1 with N P N.

If τN � 0, s� is a periodic series according to the induction hypothesis. If τN ¡ 0, there
exists L ¥ 0 such that LτN ¥ X. τ and ν are deVned by τ � lcm pω, τNq � mτN, and
ν � mν1. Then, s is rewritten using the parameters L, τ, and ν.

s � s1 ` p∆τγνq� q
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with

s1 � p`
L�1
à

l�0

∆lτNqNγ
lν1
`

N�1
à

k�1

�

∆τkγν
1

	

�

qk

�

à

kPsuppγps1q

fs1,kγ
k

q �
m�1
à

l�0

∆pL�lqτNqNγ
pL�lqν1

�

à

kPsuppγpqq

fq,kγ
k

According to (2.8),

s� �
�

s�1 p∆
τγνq� q

�

�

s�1

Consider a series d in tε, e, s1, ∆τγνu
�. d is causal as s1 and ∆τγν are causal. Besides,

the following notation for d is considered:

d �
à

kPsuppγpdq

fd,kγ
k

Then,

�k P Z,�x P Nmax, ps1∆
τγνdqq pkq pxq �

à

pi,j,lqPS

pfs1,i∆
τfd,jfq,lq pxq

where S � tpi, j, lq P supp ps1q � supp pdq � supp pqq |i� j� l� ν � ku

By deVnition, fq,l pxq is either equal to ε or greater than or equal to LτN. Then, as fd,j is
causal, pfd,jfq,lq pxq is either equal to ε or greater than or equal to LτN. Due to the periodicity
of fs1,i and to the fact that ω divides τ,

à

pi,j,lqPS

fs1,i∆
τfd,jfq,l �

à

pi,j,lqPS

∆τfs1,ifd,jfq,l

Therefore, for all series d in tε, e, s1, γν∆τu
�, s1∆τγνdq � ∆τγνs1dq. Then, according to

Lem. 3,

s�1 p∆
τγνq� q � ps1 ` ∆

τγνq� q

Consequently, according to (2.9),

s� �
�

ps1 ` ∆
τγνq� q

�

�

s�1

�

�

e` ps1 ` γ
ν∆τ ` qq� q

�

s�1

Using the induction hypothesis, s� is a periodic series.
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A.2. Calculation with Series in F
per,c

Nmax,γ
vγw

A.2.1. Sum of Series in F
per,c

Nmax,γ
vγw

Proposition 47 (Sum of series in F
per,c

Nmax,γ
vγw). Let s1 and s2 be two series in F

per,c

Nmax,γ
vγw.

s1 ` s2 belongs to F
per,c

Nmax,γ
vγw. If s1 and s2 are diUerent from ε, then

σ ps1 ` s2q � min pσ ps1q , σ ps2qq

Proof. According to Prop. 28, it remains to show that s1 ` s2 belongs to F
per,c

Nmax,γ
vγw. If s1

or s2 is equal to ε, then s1 ` s2 obviously belongs to F
per,c

Nmax,γ
vγw. Otherwise, according to

Lem. 34,

ψ ps1 ` s2q peq � ψ ps1q peq `ψ ps2q peq

ñ σ pψ ps1 ` s2q peqq � min pσ pψ ps1q peqq , σ pψ ps2q peqqq

ñ σ pψ ps1 ` s2q peqq � min pσ ps1q , σ ps2qq

ñ σ pψ ps1 ` s2q peqq � σ ps1 ` s2q

A.2.2. Greatest Lower Bound of Series in F
per,c

Nmax,γ
vγw

Proposition 48 (Greatest lower bound of series in F
per,c

Nmax,γ
vγw). Let s1 and s2 be two series in

F
per,c

Nmax,γ
vγw. s1 ^ s2 belongs to F

per,c

Nmax,γ
vγw. If s1 and s2 are diUerent from ε, then

σ ps1 ^ s2q � max pσ ps1q , σ ps2qq

Proof. According to Prop. 29, it remains to show that s1 ^ s2 belongs to F
per,c

Nmax,γ
vγw. If s1

or s2 is equal to ε, then s1 ^ s2 obviously belongs to F
per,c

Nmax,γ
vγw. Otherwise, according to

Lem. 34,

ψ ps1 ^ s2q peq � ψ ps1q peq ^ψ ps2q peq

ñ σ pψ ps1 ^ s2q peqq � max pσ pψ ps1q peqq , σ pψ ps2q peqqq

ñ σ pψ ps1 ^ s2q peqq � max pσ ps1q , σ ps2qq

ñ σ pψ ps1 ^ s2q peqq � σ ps1 ^ s2q
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A.2.3. Product of Series in F
per,c

Nmax,γ
vγw

Proposition 49 (Product of series in F
per,c

Nmax,γ
vγw). Let s1 and s2 be two series in F

per,c

Nmax,γ
vγw.

s1 b s2 belongs to F
per,c

Nmax,γ
vγw. If s1 and s2 are diUerent from ε, then

σ ps1 b s2q � min pσ ps1q , σ ps2qq

Proof. According to Prop. 30, it remains to show that s1 b s2 belongs to F
per,c

Nmax,γ
vγw. If s1

or s2 is equal to ε, then s1 b s2 obviously belongs to F
per,c

Nmax,γ
vγw. Otherwise, according to

Lem. 34,

ψ ps1 b s2q peq �
à

jPZ

ψ ps1q pψ ps2q peq pjqqγ
j

In the following, two cases are discussed depending on σ ps2q.

First Case: σ ps2q � 0 or σ ps2q � �8.
s2 is a polynomial with the canonical representative

s2 �
N
à

k�1

fkγ
nk with n1   � � �   nN

Then,

ψ ps1 b s2q peq �
N
à

k�1

ψ ps1q pfk peqqγ
nk

This leads to

σ pψ ps1 b s2q peqq � min
1¤k¤N

pσ pψ ps1q pfk peqqqq

�

#

σ ps1q if σ ps2q � �8

0 if σ ps2q � 0

� min pσ ps1q , σ ps2qq

� σ ps1 b s2q

Second Case: 0   σ ps2q   �8.
As s1 is a periodic series in FNmax,γ

vγw, there exist, according to Lem. 38, X P N0 and
ω P N such that

�x © X, ψ ps1q pωxq � ωψ ps1q pxq
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Furthermore, asψ ps2q peq is a periodic series with σ pψ ps2q peqq � σ ps2q, there exist K, τ, ν
in N such that

$

'

&

'

%

ψ ps2q peq pKq © X

�k ¥ K, ψ ps2q peq pk� νq � τψ ps2q peq pkq
ν
τ � σ ps2q andω divides τ

Then,

ψ ps1 b s2q peq �
à

jPZ

ψ ps1q pψ ps2q peq pjqqγ
j

�

à

j K

ψ ps1q pψ ps2q peq pjqqγ
j

` pτγνq�

�

ν�1
à

k�0

ψ ps1q pψ ps2q peq pK� kqqγ
K�k

�

Thus,

σ pψ ps1 b s2q peqq � min
�

σ ps1q ,
ν

τ

	

� min pσ ps1q , σ ps2qq

� σ ps1 b s2q

A.2.4. Left-Division of Series in F
per,c

Nmax,γ
vγw

The set of causal series in F
Nmax,γ

vγw is a complete dioid. Therefore, the product is resid-
uated. s1 �z

��

s2 is the greatest causal series s such that s1 b s ¨ s2. In the following, we
investigate whether s1 �z

��

s2 belongs to F
per,c

Nmax,γ
vγw when s1 and s2 belong to F

per,c

Nmax,γ
vγw.

The periodicity of s1 �z
��

s2 is ensured by Prop. 26 and Prop. 31. Next, two intermediate
lemmas are proved.

Lemma 59. Let s be a series in F
per,c

Nmax,γ
vγw and let f be a non-zero causal periodic mapping

in F
Nmax

. For n P N0, pfγnq �z
��

s is a series in F
per,c

Nmax,γ
vγw. Furthermore,

– if s � ε or σ pfγnq   σ psq, then pfγnq �z
��

s � ε.
– if σ pfγnq � σ psq � �8, then pfγnq �z

��

s � ε or σ
�

pfγnq �z
��

s
�

� σ psq.
– if σ psq � �8 and σ pfγnq ¥ σ psq, then σ

�

pfγnq �z
��

s
�

� σ psq.

Proof. pfγnq �z
��

s is causal by deVnition and periodic (see Prop. 26 and Prop. 31). Therefore,
it remains to check the results on the throughput and that either pfγnq �z

��

s � ε or

σ
�

pfγnq �z
��

s
�

� σ
�

ψ
�

pfγnq �z
��

s
�

peq
�
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According to (2.10),

�l P Z,
�

pfγnq �z
��

s
�

plq �

#

ε if l   0

f �z
��

s pl� nq if l ¥ 0

The remaining of the proof is divided in four cases.

First case: s � ε or σ pfγnq   σ psq.
Obviously, pfγnq �z

��

s ¨ pfγnq �z
�

s. Then, according to Prop. 31, pfγnq �z
��

s � ε.

Second case: σ psq � σ pfγnq � �8.
The canonical representative of s is denoted

s �
N
à

k�1

fkγ
nk with n1   � � �   nN

For l ¥M � max p0, nN � nq,
�

pfγnq �z
��

s
�

plq � f �z
��

fN

Then,

pfγnq �z
��

s �
M
à

l�0

�

pfγnq �z
��

s
�

plqγl

If f �z
��

fN � ε, then pfγnq �z
��

s � ε. Otherwise, as f �z
��

fN ¨ fN and f �z
��

fN is a
non-zero causal mapping,

σ
�

pfγnq �z
��

s
�

� σ
�

ψ
�

pfγnq �z
��

s
�

peq
�

� �8

Third case: σ psq � 0.
The canonical representative of s is denoted

s �
N
à

k�1

fkγ
nk with n1   � � �   nN and fN � J

For l ¥M � max p0, nN � nq,
�

pfγnq �z
��

s
�

plq � f �z
��

J � J

Then,

pfγnq �z
��

s �
M�1
à

l�0

�

pfγnq �z
��

s
�

plqγl `JγM

Therefore,

σ
�

pfγnq �z
��

s
�

� σ
�

ψ
�

pfγnq �z
��

s
�

peq
�

� 0
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Fourth case: 0   σ psq   �8 and σ pfγnq � �8.
The canonical representative of s is denoted p ` p∆τγνq� q with τ, ν in N and causal

polynomials p, q in F
Nmax,γ

vγw with the canonical representatives

p �

Np
à

k�1

fp,kγ
np,k and q �

Nq
à

k�1

fq,kγ
nq,k

Let us considerM � max
�

0, np,Np � n,nq,Nq � n
�

.

�l ¥M, s pl� nq � fp `

Nq
à

k�1

∆t
l�n�nq,k

ν
uτfq,k with fp �

Np
à

k�1

fp,k

Then, according to Lem. 20 and Lem. 21,

�l ¥M, ppfγnq �zsq plq � f �zfp `

Nq
à

k�1

f �z

�

∆t
l�n�nq,k

ν
uτfq,k




� PrR
�

f7 b fp
�

`

Nq
à

k�1

PrR
�

f7 b ∆t
l�n�nq,k

ν
uτfq,k




� PrR
�

f7 b fp
�

`

Nq
à

k�1

PrR pfk,lq

with

�x P Nmax, fk,l pxq �

$

&

%

ε if x � ε

f7
�

τt
l�n�nq,k

ν
ufq,k pxq




if x � ε

fk,l pεq � ε and fk,l is isotone. Furthermore,

�x P Nmax, f7
�

τt
l�n�nq,k

ν
ufq,k pxq




© f7 pf pxqq © x

Then, as σ pfγnq � �8,
À

nPN fk,l pnq � J � fk,l pJq. Consequently, according to Lem. 16,
fk,l is residuated. Hence,

�l ¥M, ppfγnq �zsq plq � PrR
�

f7 b fp
�

`

Nq
à

k�1

fk,l

Moreover, as mapping f (resp. fk) is causal and periodic with respect to X (resp. Xk) and ω
(resp. ωk), there exists L1 ¥M such that

�k, τt
L1�n�nq,k

ν
ufq,k © f
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Then, for l ¥ L1, fk,l is causal. Therefore,

�l ¥ L1,
�

pfγnq �z
��

s
�

plq � Pr
��

pppfγnq �zsq plqq

� Pr
��

�

PrR
�

f7 b fp
�

`

Nq
à

k�1

fk,l

�

� PrR
�

f7 b fp
�

`

Nq
à

k�1

fk,l

Consequently,

pfγnq �z
��

s �
L1
à

l�0

�

pfγnq �z
��

s
�

plqγl `

Nq
à

k�1

�8

à

l�L1

fk,lγ
l

Furthermore, there exists L ¥ L1 such that

�k, τt
L�n�nq,k

ν
ufq,k peq © f pXq

Then, for x P N0 and l ¥ L, according to Lem. 30,

fk,l�ων pxq � f
7

�

τωτt
l�n�nq,k

ν
ufq,k pxq




� τωfk,l pxq

Hence, fk,l�ων � ∆ωτfk,l for l ¥ L. Thus,

pfγnq �z
��

s �
L
à

l�0

�

pfγnq �z
��

s
�

plqγl ` p∆ωτγωνq�

�

Nq
à

k�1

ων�1
à

l�0

fk,L�lγ
L�l

�

For l P N0 with l ¤ L,

�x P Nmax,
�

pfγnq �z
��

s
�

plq pxq ¨ 1s pl� nq pxq

and, for 0 ¤ l   ων,

�x P Nmax, fk,L�l pxq ¨ 1τ
t

L�l�n�nq,k
ν

ufq,k pxq

Then, the values of the previous mappings for x � J are diUerent from J. Furthermore, the
mappings fk,L�l are, by deVnition, non-zero and causal. Consequently,

σ
�

pfγnq �z
��

s
�

� σ
�

ψ
�

pfγnq �z
��

s
�

peq
�

�

ν

τ
� σ psq
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Lemma 60. Let s be a series in F
per,c

Nmax,γ
vγw and let ν, τ P N. p∆τγνq� �

z

��

s belongs to

F
per,c

Nmax,γ
vγw. Furthermore,

– if s � ε or σ psq ¡ σ
�

p∆τγνq�
�

, then p∆τγνq� �

z

��

s � ε.
– if σ psq ¤ σ

�

p∆τγνq�
�

, then σ
�

p∆τγνq� �

z

��

s
�

� σ psq.

Proof. p∆τγνq� �

z

��

s is causal by deVnition and periodic (see Prop. 26 and Prop. 31). There-
fore, it remains to check the results on the throughput and that either p∆τγνq� �

z

��

s � ε

or

σ
�

p∆τγνq� �

z

��

s
�

� σ
�

ψ
�

p∆τγνq� �

z

��

s
�

peq
�

The remaining of the proof is divided in three cases.

First case: s � ε or σ psq ¡ σ
�

p∆τγνq�
�

.
Obviously, p∆τγνq� �

z

��

s ¨ p∆τγνq� �

z

�

s. Then, according to Prop. 31, p∆τγνq� �

z

��

s �

ε.

Second case: σ psq � 0.
The canonical representative of s is denoted

s �
N
à

k�1

fkγ
nk with n1   � � �   nN and fN � J

According to (2.3),

p∆τγνq� �

z

��

s �
©

j¥0

�

∆jτγjν
	

�

z

��

s

Duo to causality,
�

p∆τγνq� �

z

��

s
�

plq � ε for l   0. Furthermore,

�l P N0,
�

p∆τγνq� �

z

��

s
�

plq �
©

j¥0

∆jτ �z
��

s pl� jνq

�

©

J¥j¥0

∆jτ �z
��

s pl� jνq with J � r

nN

ν
s

Then,

p∆τγνq� �

z

��

s �
©

J¥j¥0

�

∆jτγjν
	

�

z

��

s

According to Prop. 34 and Lem. 59,

σ
�

p∆τγνq� �

z

��

s
�

� σ
�

ψ
�

p∆τγνq� �

z

��

s
�

peq
�

� 0
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Third case: 0   σ psq ¤ σ
�

p∆τγνq�
�

.
The canonical representative of s is denoted p` p∆τ1γν1q� q with τ1, ν1 in N and causal

polynomials p, q in F
Nmax,γ

vγw with the canonical representatives

p �

Np
à

k�1

fp,kγ
np,k and q �

Nq
à

k�1

fq,kγ
nq,k

Then, there exists L ¥ nq,Nq such that

�l ¥ L, s plq �

Nq
à

k�1

∆
t

l�nq,k
ν1

uτ1fq,k

Therefore,

�l P N0,
�

p∆τγνq� �

z

��

s
�

plq �
©

R¡j¥0

∆jτ �z
��

s pl� jνq ^
©

j¥R

∆jτ �z
��

�

N1
à

k�1

∆
t

l�jν�nq,k
ν1

uτ1fq,k

�

with J � r

L
ν s. Furthermore,

�k, ∆pj�ν1qτ �z

�

∆
t

l�pj�ν1qν�nq,k
ν1

uτ1fq,k




� ∆pj�ν1qτ �z

�

∆ντ1∆
t

l�jν�nk
ν1

uτ1fq,k




� ∆jτ �z

�

∆ντ1�ν1τ∆
t

l�jν�nq,k
ν1

uτ1fq,k




Hence, as τν ¤
τ1
ν1
,

�k, ∆pj�ν1qτ �z

�

∆
t

l�pj�ν1qν�nq,k
ν1

uτ1fq,k




© ∆jτ �z

�

∆
t

l�jν�nq,k
ν1

uτ1fq,k




Therefore,

©

j¥J

∆jτ �z
��

�

Nq
à

k�1

∆
t

l�jν�nq,k
ν1

uτ1fq,k

�

�

J�ν1�1
©

j�J

∆jτ �z
��

�

N
à

k�1

∆
t

l�jν�nq,k
ν1

uτ1fq,k

�

Thus,

�l P N0,
�

p∆τγνq� �

z

��

s
�

plq �

J�ν1�1
©

j�0

��

∆jτγjν
	

�

z

��

s
	

plq

Then,

pγν∆τq� �

z

��

s �

J�ν1�1
©

j�0

�

∆jτγjν
	

�

z

��

s
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Consequently, according to Lem. 59 and Prop. 34,

σ
�

p∆τγνq� �

z

��

s
�

� σ
�

ψ
�

p∆τγνq� �

z

��

s
�

peq
�

� 0

Proposition 50 (Left-division of series in F
per,c

Nmax,γ
vγw). Let s1, s2 be two series in F

per,c

Nmax,γ
vγw.

s1 �z
��

s2 belongs to F
per,c

Nmax,γ
vγw. If s1 and s2 are diUerent from ε,

– if σ ps1q   σ ps2q, then s1 �z
��

s2 � ε.
– if σ ps1q � σ ps2q � �8, then s1 �z

��

s2 is either equal to ε or σ
�

s1 �z
��

s2
�

� �8.
– if σ ps2q � �8 and σ ps1q ¥ σ ps2q, then σ

�

s1 �z
��

s2
�

� σ ps2q.

Proof. If s1 � ε, s1 �z
��

s2 � J belongs to F
per,c

Nmax,γ
vγw. Otherwise, there exist N P N, non-

zero causal periodic mappings f1, . . . , fN, n1, . . . , nN in N0, τ1, . . . , τN in N0, and ν in N

such that

s1 �
N
à

k�1

p∆τkγνq� fkγ
nk

According to (2.3) and (2.5),

s1 �z
��

s2 �

N
©

k�1

pfkγ
nk
q

�

z

��

�

p∆τkγνq� �

z

��

s2
�

Then, using Lem. 59, Lem. 60, and Prop. 34, s1 �z
��

s2 belongs to F
per,c

Nmax,γ
vγw. Next, the result

on the throughput is checked. Three cases are distinguished.

First Case: σ ps1q   σ ps2q.
As s1 �z

��

s2 ¨ s1 �z
�

s2, s1 �z
��

s2 � ε according to Prop. 31.

Second Case: σ ps1q � σ ps2q � �8.
For all k, τk � 0. Then,

s1 �z
��

s2 �

N
©

k�1

pfkγ
nk
q

�

z

��

s2

Thus, according to Lem. 59 and Prop. 34, s1 �z
��

s2 is either equal to ε or σ
�

s1 �z
��

s2
�

� �8.

Third Case: σ ps2q � �8 and σ ps1q ¥ σ ps2q.
Then, according to Lem. 59 and Lem. 60, for all k,

σ
�

pfkγ
nk
q

�

z

��

�

p∆τkγνq� �

z

��

s2
��

� σ ps2q

Thus, according to Prop. 34, σ
�

s1 �z
��

s2
�

� σ ps2q.
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A.2.5. Right-Division of Series in F
per,c

Nmax,γ
vγw

The set of causal series in FNmax,γ
vγw is a complete dioid. Therefore, the product is resid-

uated. s2�{
��

s1 is the greatest causal series s such that s b s1 ¨ s2. In the following, we
investigate whether s2�{

��

s1 belongs to F
per,c

Nmax,γ
vγw when s1 and s2 belong to F

per,c

Nmax,γ
vγw.

Next, two intermediate lemmas are proved.

Lemma 61. Let s be a series in F
per,c

Nmax,γ
vγw and let f be a non-zero causal periodic mapping

in F
Nmax

. For n P N0, s�{
��

pfγnq belongs to Fper,c

Nmax,γ
vγw. Furthermore,

– if s � ε or σ pfγnq   σ psq, then s�{
��

pfγnq � ε.
– if σ pfγnq � σ psq � �8, then s�{

��

pfγnq � ε or σ
�

s�{
��

pfγnq
�

� σ psq.
– if σ pfγnq � �8 and σ psq � �8, then σ

�

s�{
��

pfγnq
�

� σ psq.

Proof.

�

s�{
��

pfγnq
�

plq �

#

ε if l   0

s pl� nq �{
��

f if l ¥ 0

First Case: s � ε.
As f is a non-zero causal mapping,

�l P N0,
�

s�{
��

pfγnq
�

plq � ε�{
��

f ¨ ε

Then, s�{
��

pfγnq � ε belongs to Fper,c

Nmax,γ
vγw.

Second Case: σ psq � σ pfγnq � �8.
The canonical representative of s is denoted

s �
N
à

k�1

fkγ
nk with n1   � � �   nN

For l ¥M � max p0, nN � nq,
�

s�{
��

pfγnq
�

plq � fN�{
��

f

Then,

s�{
��

pfγnq �
M
à

l�0

�

s�{
��

pfγnq
�

plqγl

If fN�{
��

f � ε, then s�{
��

pfγnq � ε. Otherwise, as fN�{
��

f ¨ fN and fN�{
��

f is a non-zero
causal mapping,

σ
�

s�{
��

pfγnq
�

� σ
�

ψ
�

s�{
��

pfγnq
�

peq
�

� �8

Thus, s�{
��

pfγnq belongs to Fper,c

Nmax,γ
vγw.
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Third case: σ psq ¡ 0 and σ pfγnq � 0.
If
�

s�{
��

pfγnq
�

plq � ε, then
�

s�{
��

pfγnq
�

plq © e by causality. Thus,

s pl� nq © s pl� nq �{
��

ff © f

This is absurd as σ psq ¡ 0 and σ pfγnq � 0. Then,

�l P N0,
�

s�{
��

pfγnq
�

plq � ε

Consequently, s�{
��

pfγnq � ε belongs to Fper,c

Nmax,γ
vγw.

Fourth case: σ psq � 0.
The canonical representative of s is denoted

s �
N
à

k�1

fkγ
nk with n1   � � �   nN and fN � J

For l ¥M � max p0, nN � nq,

�

s�{
��

pfγnq
�

plq � fN�{
��

f � J

Then,

s�{
��

pfγnq �
M�1
à

l�0

�

s�{
��

pfγnq
�

plqγl `JγM

Thus, s�{
��

pfγnq belongs to Fper,c

Nmax,γ
vγw and σ

�

s�{
��

pfγnq
�

� 0.

Fifth case: σ pfγnq � �8 and �8 ¡ σ psq ¡ 0.
The canonical representative of s is denoted p ` p∆τγνq� q with τ, ν in N and causal

polynomials p, q in F
Nmax,γ

vγw with the canonical representatives

p �

Np
à

k�1

fp,kγ
np,k and q �

Nq
à

k�1

fq,kγ
nq,k

Let us considerM � max
�

0, np,Np � n,nq,Nq � n
�

.

�l ¥M, s pl� nq � fp `

Nq
à

k�1

∆t
l�n�nq,k

ν
uτfq,k with fp �

Np
à

k�1

fp,k
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Then, according to Lem. 18,

�l ¥M, ps�{ pfγnqq plq � s pl� nq �{f

� fp b f
5

`

Nq
à

k�1

∆t
l�n�nq,k

ν
uτfq,k b f

5

� f̃`

Nq
à

k�1

fk,l

with f̃ � fp b f
5 and fk,l � ∆

t

l�n�nq,k
ν

uτfq,k b f
5. Clearly, fk,l�ν � ∆τfk,l. As σ pfγnq �

�8, according to Lem. 31, f5 is a non-zero periodic mappings. Then, mapping fk,l is periodic.
Furthermore, as f5 pxq © e for x © e, there exists L ¥ M such that, for all k, fk,L is causal.
Then,

�l ¥ L,
�

s�{
��

pfγnq
�

plq � f̃`

Nq
à

k�1

fk,l

Consequently,

s�{
��

pfγnq �
L
à

l�0

�

s�{
��

pfγnq
�

plqγl `

Nq
à

k�1

�8

à

l�L

fk,lγ
l

�

L
à

l�0

�

s�{
��

pfγnq
�

plqγl ` p∆τγνq�

�

Nq
à

k�1

ν�1
à

j�0

fk,L�jγ
L�j

�

Then, s�{
��

pfγnq is a causal periodic series. Furthermore, the previous expression leads to

σ
�

s�{
��

pfγnq
�

� σ
�

ψ
�

s�{
��

pfγnq
�

peq
�

�

ν

τ
� σ psq

Then, s�{
��

pfγnq belongs to Fper,c

Nmax,γ
vγw.

Lemma 62. Let s be a series in F
per,c

Nmax,γ
vγw and let ν, τ P N. s�{

��

p∆τγνq� belongs to

F
per,c

Nmax,γ
vγw. Furthermore,

– if s � ε or σ psq ¡ σ
�

p∆τγνq�
�

, then s�{
��

p∆τγνq� � ε.
– if σ psq ¤ σ

�

p∆τγνq�
�

, then σ
�

s�{
��

p∆τγνq�
�

� σ psq.

Proof. According to (2.3),

s�{
��

p∆τγνq� �
©

j¥0

s�{
��

�

∆jτγjν
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Then,

�l P Z,
�

s�{
��

p∆τγνq�
�

plq �

#

ε if l   0
�

j¥0 s pl� jνq �{��∆
jτ

In the rest of this proof, Vve cases are distinguished.

First Case: s � ε.

s�{
��

p∆τγνq� ¨ s � ε

Then, s�{
��

p∆τγνq� � ε belongs to Fper,c

Nmax,γ
vγw.

Second Case: σ psq ¡ σ
�

p∆τγνq�
�

�

ν
τ .

As F��

Nmax,γ
vγw is a complete dioid, s�{

��

p∆τγνq� exists.

s�{
��

p∆τγνq� �
�8

à

k�0

gkγ
k with gk P F��

Nmax

Then,

�k P N0, ψ
�

gkγ
k
p∆τγνq�

	

peq ¨ ψ psq peq

For k P N0, gk � ε implies γk pτγνq ¨ ψ psq peq. Then,
ν

τ
¥ σ pψ psq peqq � σ psq

This contradicts the assumption. Therefore, gk � ε. Consequently, s�{
��

p∆τγνq� � ε

belongs to Fper,c

Nmax,γ
vγw.

Third Case: σ psq � 0.
The canonical representative of s s is denoted

s �
N
à

k�1

fkγ
nk with n1   � � �   nN and fN � J

Then,

�l P N0,
�

s�{
��

p∆τγνq�
�

plq �
©

j¥0

s pl� jνq �{
��

∆jτ

�

©

R¡j¥0

s pl� jνq �{
��

∆jτ

�

�

©

R¡j¥0

s�{
��

�

∆jτγjν
	

�

plq
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with R � r

nN

ν
s. Due to causality, this equality also holds for l   0. Therefore,

s�{
��

p∆τγνq� �
©

R¡j¥0

s�{
��

�

∆jτγjν
	

Then, according to Lem. 61 and Prop. 34, s�{
��

p∆τγνq� belongs toFper,c

Nmax,γ
vγw and its through-

put is equal to σ psq.

Fourth Case: σ
�

p∆τγνq�
�

�

ν
τ ¡ σ psq ¡ 0.

The canonical representative of s is denoted

s � p` p∆τ1γν1q� q

with τ1, ν1 in N and p, q causal polynomials in FNmax,γ
vγw. Furthermore the canonical

representative of q is denoted
ÀN

k�1 fkγ
nk with non-zero causal periodic (with respect to Xk

andωk) mappings in FNmax
. The condition σ

�

p∆τγνq�
�

¡ σ psq implies ντ1 ¡ τν1.
Let us denote X � max1¤k¤N Xk and ω � lcm1¤k¤Nωk. Consider K in N such that ν1

divides Kν andω divides Kτ. According to (2.3),

s�{
��

�

∆KτγKν
	

�

�

©

j¥0

s�{
��

�

∆jKτγjKν
	

Then,

�l P N0,
�

s�{
��

�

∆KτγKν
	

�

	

plq �
©

j¥0

�

s�{
��

�

∆jKτγjKν
		

plq

�

©

j¥0

s pl� jKνq �{
��

∆jKτ

Furthermore, there exists L ¥ max1¤k¤N nk such that

�l ¥ L, s plq �
N
à

k�1

∆
t

l�nk
ν1

uτ1fk

Then, for l P N0,
�

s�{
��

�

∆KτγKν
	

�

	

plq �
©

R¡j¥0

s pl� jKνq �{
��

∆jKτ

^

©

j¥R

Pr
��

�

N
à

k�1

∆

�

t

l�nk
ν1

u�jν1
	

τ1fk

�

∆jKτ
	

5

�

where R � r

L
Kν s and ν

1

�

Kν
ν1
.
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For j ¥ R, the mapping Fj in F
Nmax

is deVned by

Fj �
N
à

k�1

∆

�

t

l�nk
ν1

u�jν1
	

τ1fk

�

∆jKτ
	

5

Consider J P N. For x   τjK,

Fj�J pxq �
N
à

k�1

τJν
1

1 τ
t

l�nk
ν1

u�jν1

1 fk peq

� τJν
1

1 Fj pxq

© Fj pxq

For x © Xτpj�JqK,

Fj�J pxq �
N
à

k�1

τJν
1

1 τ
t

l�nk
ν1

u�jν1

1 fk

�

τpj�JqK �zx
	

©

N
à

k�1

τJKτ
t

l�nk
ν1

u�jν1

1 fk

�

τpj�JqK �zx
	

as Kτ   τ1ν
1

©

N
à

k�1

τ
t

l�nk
ν1

u�jν1

1 fk

�

τjK �zx
	

asω divides Kτ and τpj�JqK �zx © X

© Fj pxq

Therefore,

Fj�J © Fj

� �x with Xτpj�JqK ¡ x © τjK, Fj�J pxq © Fj pxq

�

$

&

%

�x with X ¡ x © e,

ÀN
k�1 τ

Jν1

1 τ
t

l�nk
ν1

u�jν1

1 fk pxq ©
ÀN

k�1 τ
t

l�nk
ν1

u�jν1

1 fk
�

τJKx
�

A suXcient condition is

�k, τJν
1

1 τ
jν1�t

l�nk
ν1

u

1 fk peq © τ
jν1�t

l�nk
ν1

u

1 τKJfk pXq asω divides Kτ

As σ psq ¡ 0, this equation can be written in standard algebra.

�k, J
�

ν1τ1 � Kτ
�

¥ fk pXq � fk peq

A suXcient condition is

�k, J
�

ν1τ1 � Kτ
�

¥ fk pXq � fk peq

198



A.2. Calculation with Series in F
per,c

Nmax,γ
vγw

As ν1τ1 ¡ Kτ, a suXcient condition is

J ¥ max
1¤k¤N

�

fk pXq � fk peq

ν1τ1 � Kτ
, 1




� J̃

Consequently, �j ¥ R, Fj�J̃ © Fj. Then, �j ¥ R, Pr��
�

Fj�J̃

	

© Pr
��

pFjq. Therefore,

�l P N0,
�

s�{
��

�

∆KτγKν
	

�

	

plq �
©

R¡j¥0

s pl� jKνq �{
��

∆jKτ ^
©

R�J̃¡j¥R

Pr
��

pFjq

�

©

R�J̃¡j¥0

s pl� jKνq �{
��

∆jKτ

�

�

�

©

R�J̃¡j¥0

s�{
��

�

∆jKτγjKν
	

�



plq

This equality also holds for l   0. Thus,

s�{
��

�

∆KτγKν
	

�

�

©

R�J̃¡j¥0

s�{
��

�

∆jKτγjKν
	

According to Lem. 61 and Prop. 34, s�{
��

�

∆KτγKν
�

�

belongs toFper,c

Nmax,γ
vγw andσ

�

s�{
��

�

∆KτγKν
�

�

	

�

σ psq. Furthermore, as

s�{
��

p∆τγνq� �

K�1
©

k�0

�

s�{
��

�

∆KτγKν
	

�

	

�

{

��

�

∆kτγkν
	

According to Lem. 61 and Prop. 34, s�{
��

p∆τγνq� belongs toFper,c

Nmax,γ
vγw and σ

�

s�{
��

p∆τγνq�
�

�

σ psq.

Fifth Case: ν
τ � σ

�

p∆τγνq�
�

� σ psq ¡ 0.
The canonical representative of s is denoted

s � p` p∆τ1γν1q� q

with τ1, ν1 in N and p, q causal polynomials in F
Nmax,γ

vγw. Furthermore the canonical

representative of q is denoted
ÀN

k�1 fkγ
nk with non-zero causal periodic (with respect to Xk

andωk) mappings in F
Nmax

. The condition σ
�

p∆τγνq�
�

� σ psq implies ντ1 � τν1.
Let us denote X � max1¤k¤N Xk and ω � lcm1¤k¤Nωk. Consider K in N such that ν1

divides Kν,ω divides Kτ, and X   Kτ. According to (2.3),

s�{
��

�

∆KτγKν
	

�

�

©

j¥0

s�{
��

�

∆jKτγjKν
	

199



A. Proofs

Then,

�l P N0,
�

s�{
��

�

∆KτγKν
	

�

	

plq �
©

j¥0

�

s�{
��

�

∆jKτγjKν
		

plq

�

©

j¥0

s pl� jKνq �{
��

∆jKτ

Furthermore, there exists L ¥ max1¤k¤N nk such that

�l ¥ L, s plq �
N
à

k�1

∆
t

l�nk
ν1

uτ1fk

Then, for l P N0,
�

s�{
��

�

∆KτγKν
	

�

	

plq �
©

R¡j¥0

s pl� jKνq �{
��

∆jKτ

^

©

j¥R

Pr
��

�

N
à

k�1

∆

�

t

l�nk
ν1

u�jν1
	

τ1fk

�

∆jKτ
	

5

�

where R � r

L
Kν
s and ν1 � Kν

ν1
.

For j ¥ R and l P N0, the mapping Fl,j in F
Nmax

is deVned by

Fl,j �
N
à

k�1

∆

�

t

l�nk
ν1

u�jν1
	

τ1fk

�

∆jKτ
	

5

Fl,j is a periodic mapping in FNmax
. In the following, L̃ is deVned by

L̃ �
©

tl P N0|Fl,R is causalu

Clearly, L̃ ¤ n1, as

Fn1,R © ∆
Rν1τ1f1

�

∆RKτ
	

5

© ∆RKτ
�

∆RKτ
	

5

as f1 is causal and
ν

τ
�

ν1

τ1

© Id

Therefore, L̃ ¤ n1.
For L̃ ¡ l ¥ 0, there exists a in N0 such that Fl,R paq   a. Then,

Fl,R�J

�

aτJK
	

�

N
à

k�1

τJν
1

1 τ
t

l�nk
ν1

u�Rν1

1 fk

�

�

∆RKτ
	

5

paq




� τJKFl,R paq as
ν

τ
�

ν1

τ1

  aτJK
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Therefore,

�

s�{
��

�

∆KτγKν
	

�

	

plq
�

aτJK
	

¨ Fl,R�J

�

aτJK
	

  aτJK

Thus, by causality, for L̃ ¡ l ¥ 0,

�

s�{
��

�

∆KτγKν
	

�

	

plq � ε

For l ¥ L̃, �j ¥ R,

�x P Nmax, Fl,j pxq �
N
à

k�1

τKpj�Rqτ
Rν1�t

l�nk
ν1

u

1 fk

�

�

∆RKτ
	

5

�

�

∆pj�RqKτ
	

5

pxq





� τpj�RqKFl,R

�

�

∆pj�RqKτ
	

5

pxq




© τpj�RqK
�

∆pj�RqKτ
	

5

pxq

© x

Thus, Fl,j is causal. This implies that, for l ¥ L̃,

�

s�{
��

�

∆KτγKν
	

�

	

plq �
©

R¡j¥0

s pl� jKνq �{
��

∆jKτ ^Gl

where Gl �
�

j¥R Fl,j . Clearly, Gl is causal and

Gl�ν1 �
©

j¥R

Fl�ν1,j �
©

j¥R

∆τ1Fl,j � ∆
τ1Gl

In the following, it is shown that Gl is periodic. ConsiderJ ¡ x © XτKR. There exists J ¥ R
such that XτpJ�1qK ¡ x © XτJK. Then,

Gl pxq �
©

j¥R

N
à

k�1

τ
t

l�nk
ν1

u�jν1

1 fk

�

�

∆jKτ
	

5

pxq




�

N
à

k�1

τ
t

l�nk
ν1

u�pJ�2qν1

1 fk peq ^
N
à

k�1

τ
t

l�nk
ν1

u�pJ�1qν1

1 fk

�

�

∆pJ�1qKτ
	

5

pxq




^

N
à

k�1

τ
t

l�nk
ν1

u�Rν1

1 fk

�

�

∆RKτ
	

5

pxq
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as τpJ�2qK ¡ x and ω divides Kτ. Then, Gl
�

τKx
�

� τKGl pxq for x © XτKR. Therefore, Gl
is periodic. Furthermore, GL̃ ¨ � � � ¨ GL̃�ν1 � ∆

τ1GL̃. Then, for l ¥ L̃,

Gl �

�

p∆τ1γν1q�

�

ν1�1
à

k�0

GL̃�kγ
L̃�k

��

plq

Consequently, for l ¥ L̃,

�

s�{
��

�

∆KτγKν
	

�

	

plq �

�

©

R¡j¥0

s�{
��

�

∆jKτγjKν
	

^ p∆τ1γν1q�

�

ν1�1
à

k�0

GL̃�kγ
L̃�k

��

plq

Due to the results obtained for 0 ¤ l   L̃ and to quasi-causality, this equation also holds for
l   L̃. Then,

s�{
�

�

∆KτγKν
	

�

�

©

R¡j¥0

s�{
�

�

∆jKτγjKν
	

^ s1

with s1 � p∆τ1γν1q�
�

Àν1�1
k�0 GL̃�kγ

L̃�k
	

. Clearly, s1 belongs to F
per,c

Nmax,γ
vγw and σ ps1q �

σ psq. Then, according to Lem. 61 and Prop. 34, s�{
��

�

∆KτγKν
�

�

belongs to F
per,c

Nmax,γ
vγw and

σ
�

s�{
��

�

∆KτγKν
�

�

	

� σ psq. Furthermore, as

s�{
��

p∆τγνq� �

K�1
©

k�0

�

s�{
��

�

∆KτγKν
	

�

	

�

{

��

�

∆kτγkν
	

According to Lem. 61 and Prop. 34, s�{
��

p∆τγνq� belongs toFper,c

Nmax,γ
vγw andσ

�

s�{
��

p∆τγνq�
�

�

σ psq.

Proposition 51 (Right-division of series in Fper,c

Nmax,γ
vγw). Let s1, s2 be two series in F

per,c

Nmax,γ
vγw.

s2�{
��

s1 belongs to F
per,c

Nmax,γ
vγw. If s1 and s2 are diUerent from ε,

– if σ ps1q   σ ps2q, then s2�{
��

s1 � ε.
– if σ ps1q � σ ps2q � �8, then s2�{

��

s1 is either equal to ε or σ
�

s2�{
��

s1
�

� �8.
– if σ ps2q � �8 and σ ps1q ¥ σ ps2q, then σ

�

s2�{
��

s1
�

� σ ps2q.

Proof. If s1 � ε, s2�{
��

s1 � J belongs to F
per,c

Nmax,γ
vγw. Otherwise, there exist N P N, non-

zero causal periodic mappings f1, . . . , fN, n1, . . . , nN in N0, τ1, . . . , τN in N0, and ν in N

such that

s1 �
N
à

k�1

p∆τkγνq� fkγ
nk
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According to (2.3) and (2.5),

s2�{
��

s1 �

N
©

k�1

�

s2�{
��

pfkγ
nk
q

�

{

��

p∆τkγνq�
�

Then, using Lem. 61, Lem. 62, and Prop. 34, s2�{
��

s1 belongs to F
per,c

Nmax,γ
vγw. Next, the result

on the throughput is checked. Three cases are distinguished.

First Case: σ ps1q   σ ps2q.
There exists k such that σ

�

p∆τkγνq�
�

  σ ps2q or σ pfkγnk
q   σ ps2q. Consequently,

according to Lem. 61 and Lem. 62, s2�{
��

s1 � ε.

Second Case: σ ps1q � σ ps2q � �8.
For all k, τk � 0. Then,

s2�{
��

s1 �

N
©

k�1

s2�{
��

pfkγ
nk
q

Thus, according to Lem. 61 and Prop. 34, s2�{
��

s1 is either equal to ε or σ
�

s2�{
��

s1
�

� �8.

Third Case: σ ps2q � �8 and σ ps1q ¥ σ ps2q.
Then, according to Lem. 61 and Lem. 62, for all k,

σ
��

s2�{
��

pfkγ
nk
q

�

�

{

��

p∆τkγνq�
�

� σ ps2q

Thus, according to Prop. 34, σ
�

s2�{
��

s1
�

� σ ps2q.
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B
Modeling with Counters

Discrete event systems only ruled by standard synchronization (i.e., pmax,�q-linear sys-
tems) are modeled by linear equations in the pmax,�q-algebra, when daters are used to
describe the dynamics. But, such systems can also be modeled by linear equations in the
pmin,�q-algebra, when counters are used to describe the dynamics. In the following, we
investigate the modeling of pmax,�q-systems with partial synchronization by counters. The
goal is to Vnd a pmin,�q-equations describing the dynamics of pmax,�q-systems with partial
synchronization (i.e., equations in the pmin,�q-algebra similar to (5.8) and (5.9)).

B.1. Mathematical Preliminaries

In the following, some concepts useful in the following are introduced.

DeVnition 54 (Antitone mapping). Let f : E Ñ F with E and F ordered sets. Mapping f is

said to be antitone if

�x, y P E, x ¨ yñ f pxq © f pyq

Next, the pmin,�q-algebra is recalled.

Example 47 (Dioid Nmin). The set N0 Y t�8u endowed with min as addition and � as

multiplication is a complete dioid denoted Nmin. Its zero element ε is equal to �8, its unit

element e and its top element J are both equal to 0. The order induced by ` is the dual of
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the standard order in N0. Clearly, Nmin is selective and commutative. This dioid (along with

other dioids using min as addition and � as multiplication) is often called pmin,�q-algebra
in the literature.

B.2. Counter Representation

In this section, we derive a model for pmax,�q-systems with partial synchronization based
on counters. A suitable algebraic structure to express this model is the pmin,�q-algebraNmin.
Furthermore, we present a method based on this model to compute the output induced by a
predeVned input.

Remark 26. In the counter representation, we assume that the considered discrete event sys-

tem is time-driven (i.e., events only occur at clock ticks). In particular, this forces us to only

consider standard synchronizations with a time-delay τ P N0 (while τ P R�0 in the dater

representation).

B.2.1. Counters

To capture the timed dynamics of a discrete event system, a mapping, called counter, is
associated with each event such that the counter gives the number of occurrences of the con-
sidered event before or at a particular time instant. From now on, we consider counters from
Z to Nmin and no distinctions are made in the notation between an event and its associated
counter. Hence, for an event c, c ptq denotes the number of occurrences of event c before or
at time t. This leads to the following interpretation for counters:

c ptq � e: No occurrences of event c occur before or at time t.

c ptq P N: Exactly c ptq occurrences of event c occur before or at time t.

c ptq � ε: An inVnity of occurrences of event c occurs before or at time t and no occurrences
of event c occur strictly after time t.

According to the standard order in N0, the number of occurrences of event c before or at
time t is less than or equal to the number of occurrences of event c before or at time t � 1.
Then, as the order in Nmin is the dual of the standard order in N0, the number of occurrences
of event c before or at time t is, according to the order in Nmin, greater than or equal to the
number of occurrences of event c before or at time t� 1. Therefore,

�t P Z, c ptq © c pt� 1q

Hence, a counter is antitone. Furthermore, as for dater representation, we assume that an
event either occurs at t � �8 or at t ¥ 0. This leads to the following condition for counters.

�t   0, c ptq � c pt� 1q

The previous discussion leads to a formal deVnition for counters.
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DeVnition 55 (Counter). A counter, denoted c, is an antitone mapping from Z to Nmin such
that c ptq � c pt� 1q for t   0. The set of counters is denoted C.

According to Rem. 3, C is endowed with an operation ` and an order ¨ induced by the
dioid structure of Nmin.

Remark 27. A dater (i.e., a mapping fromZ toNmax, as a time-driven dynamics is considered)
or a counter is suXcient to fully describe the timed behavior of an event. Hence, it is possible
to convert a dater into a counter or, conversely, a counter into a dater. For dater d and counter
c associated with the same event, these relations are expressed by

�t P Z, c ptq � max tk P Z|d pk� 1q ¨ tu

�k P Z, d pkq � min tt P Z|c ptq ¨ 1ku

with the convention minH � �8.

Example 48. Let us consider the dater d deVned by

d pkq �

$

'

'

'

'

'

'

&

'

'

'

'

'

'

%

ε if k   0

5 if k � 0

7 if 1 ¤ k   4

15 if k � 4

J if k ¥ 5

The corresponding counter c is deVned by

c ptq �

$

'

'

'

'

&

'

'

'

'

%

0 if t   5

1 if 5 ¤ t   7

4 if 7 ¤ t   15

5 if t ¥ 15

B.2.2. Expressing Synchronizations with Counters

In the following, standard and partial synchronizations are expressed in terms of counters.
This leads to an algebraic representation based on counters for pmax,�q-systems with partial
synchronization.

Expressing Standard Synchronizations with Counters

Standard synchronization “for all k ¥ l, occurrence k of event e2 occurs at least τ units
of time after occurrence k � l of event e1” is reformulated as, in the standard algebra, “at
all time instant t P Z, the number of occurrences of event e2 before or at time t is less than
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or equal to the number of occurrences of event e1 before or at time t � τ incremented by
l”. As the order in Nmin is the dual of the standard order, this corresponds to the following
inequality in Nmin:

�t P Z, e2 ptq © le1 pt� τq

Furthermore, the eUect of several standard synchronizations on a single event is also ex-
pressed by a single inequality inNmin. For example, standard synchronizations “for all k ¥ l1,
occurrence k of event e2 occurs at least τ1 units of time after occurrence k� l1 of event e1,1”
and “for all k ¥ l2, occurrence k of event e2 occurs at least τ2 units of time after occurrence
k� l2 of event e1,2” are both expressed by a single inequality in Nmin:

�t P Z, e2 ptq © l1e1,1 pt� τ1q ` l2e1,2 pt� τ2q

Therefore, matrix inequalities in Nmin are suitable to express standard synchronizations.
The standard synchronizations between events in the main system are summarized by

#

x1 ptq ©
ÀT1

i�0A1,ix1 pt� iq ` B1,iu1 pt� iq

y1 ptq ©
ÀT1

i�0C1,ix1 pt� iq
(B.1)

where x1, u1, and y1 respectively correspond to the vectors of counters associated with state,
input, and output events in the main system and T1 denotes the greatest parameters τ over
all standard synchronizations in the main system. Furthermore, matrices A1,i, B1,i, and

C1,i belong respectively to N
n1�n1

min , N
n1�m1

min , and N
p1�n1

min . The entries of these matrices are
given by the standard synchronizations in the main system. In the same way, the standard
synchronizations between events in the secondary system are summarized by

#

x2 ptq ©
ÀT2

i�0A2,ix2 pt� iq ` B2,iu2 pt� iq

y2 ptq ©
ÀT2

i�0C2,ix2 pt� iq
(B.2)

where x2, u2, and y2 respectively correspond to the vectors of counters associated with state,
input, and output events in the secondary system and T2 denotes the greatest parameters τ
over all standard synchronizations in the secondary system. Furthermore, matrices A2,i, B2,i,

and C2,i respectively belong to N
n2�n2

min , N
n2�m2

min , and N
p2�n2

min . The entries of these matrices
are given by the standard synchronizations in the secondary system.

To simplify (B.1) and (B.2), the event set of the considered pmax,�q-system with partial
synchronization is extended by adding state events. This allows us to come down to a Vrst-
order recursion in (B.1) and (B.2). The theoretical validity of this step is ensured by Lem. 63.

Lemma 63. Let τ P N. In a pmax,�q-system with partial synchronization, the following

synchronizations are equivalent:

1. “for all k ¥ l, occurrence k of event e2 occurs at least τ units of time after occurrence

k� l of event e1”
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2. “for all k ¥ l, occurrence k of event e2 occurs at least τ�1 units of time after occurrence

k � l of event ei” and “for all k ¥ 0, occurrence k of event ei occurs at least one unit

of time after occurrence k of event e1” where state event ei only appears in the two

previous standard synchronizations

3. “for all k ¥ 0, occurrence k of event e2 occurs at least one unit of time after occurrence

k of event ei” and “for all k ¥ l, occurrence k of event ei occurs at least τ � 1 units

of time after occurrence k� l of event e1” where state event ei only appears in the two

previous standard synchronizations

Proof. Only 1� 2 is checked, as 1� 3 can be obtained in the same way.
1ñ 2: Let us consider an event ei only subject to the following standard synchronization:

for all k ¥ 0, occurrence k of event ei occurs at least one unit of time after occurrence k of
event e1. Then,

�t P Z, ei ptq © e1 pt� 1q

Event ei is only subject to this standard synchronization. Hence, according to the earliest
functioning rule,

�t P Z, ei ptq � e1 pt� 1q

Therefore,

�t P Z, e2 ptq © le1 pt� τq � lei pt� τ� 1q

Then, in terms of standard synchronizations, “for all k ¥ l, occurrence k of event e2 occurs
at least τ� 1 units of time after occurrence k� l of event ei”.
2 ñ 1: Conversely, the two standard synchronizations “for all k ¥ l, occurrence k of

event e2 occurs at least τ � 1 units of time after occurrence k � l of event ei” and “for all
k ¥ 0, occurrence k of event ei occurs at least one unit of time after occurrence k of event
e1” correspond, in terms of counters, to

�t P Z, e2 ptq © lei pt� τ� 1q and ei ptq © e1 pt� 1q

This implies, as the product is isotone in a dioid,

�t P Z, e2 ptq © le1 pt� τq

The previous inequality corresponds to the standard synchronization “for all k ¥ l, occur-
rence k of event e2 occurs at least τ units of time after occurrence k� l of event e1”.

According to Lem. 63, the diUerent synchronization relations between events e1 and e2
pictured in the following Vgure are equivalent.
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e1 e25

(a)

e1 e2ei 41

(b)

e1 e2ei4 1

(c)

Equivalent synchronizations if no other synchronizations aUect event ei

By using repetitively Lem. 63, it is possible to set all entries of A1,i and A2,i for i ¥ 2 and
of B1,i, C1,i, B2,i, and C2,i for i ¥ 1 to ε by adding state events. This leads to simpliVed rep-
resentations for standard synchronizations in the main system and in the secondary system
respectively given in (B.3) and (B.4).

#

x1 ptq © A1,0x1 ptq `A1,1x1 pt� 1q ` B1,0u1 ptq

y1 ptq © C1,0x1 ptq
(B.3)

#

x2 ptq © A2,0x2 ptq `A2,1x2 pt� 1q ` B2,0u2 ptq

y2 ptq © C2,0x2 ptq
(B.4)

In the following, only these representations are considered.

Example 49. For the pmax,�q-system with partial synchronization introduced in Ex. 23
(i.e., the supply chain), the number of state events, obtained after state-space extension,
amounts to 24 state events in the main system and 46 state events in the secondary system.
Due to size restriction, the matrices appearing in (B.3) and (B.4) are not made explicit.

Expressing Partial Synchronizations with Counters

Partial synchronization “event e2 can only occur when event e1 occurs” is expressed by the
following condition on counters:

�t P Z, e1 ptq � e1 pt� 1q ñ e2 ptq � e2 pt� 1q
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The eUect of several partial synchronizations on a single event is easily expressed by a logical
OR. For example, partial synchronizations “event e2 can only occur when event e1,1 occurs”
and “event e2 can only occur when event e1,2 occurs” correspond to

�t P Z, pe1,1 ptq � e1,1 pt� 1q or e1,2 ptq � e1,2 pt� 1qq ñ e2 ptq � e2 pt� 1q

To model partial synchronizations in a pmax,�q-system with partial synchronization, we
Vrst recall that, as mentioned in § 5.1.1, only partial synchronizations of state events in the
secondary system by state events in the main system are considered. Then, a mapping from
N0 to t0, 1u, denoted αi, is associated with each state event x2,i in the secondary system.
Let us denote Xi the set of state events in the main system synchronizing event x2,i. Then,
mapping αi is deVned by

αi ptq �

#

0 if t   0 or Dx P Xi|x ptq � x pt� 1q

1 otherwise
(B.5)

If αi ptq � 1, the partial synchronizations aUecting state event x2,i authorize occurrences at
time t. Otherwise, if αi ptq � 0, the partial synchronizations aUecting state event x2,i forbid
occurrences at time t. Hence, the partial synchronizations in a pmax,�q-system with partial
synchronization are expressed by the following condition

�t P Z,�i, αi ptq � 0ñ x2,i ptq � x2,i pt� 1q

Algebraic Representation of a pmax,�q-system with Partial Synchronization by

Counters

The main system is represented by

#

x1 ptq © A1,0x1 ptq `A1,1x1 pt� 1q ` B1,0u1 ptq

y1 ptq © C1,0x1 ptq
(B.6)

The secondary system is represented by

$

'

&

'

%

x2 ptq © A2,0x2 ptq `A2,1x2 pt� 1q ` B2,0u2 ptq

y2 ptq © C2,0x2 ptq

�i, αi ptq � 0ñ x2,i ptq � x2,i pt� 1q

(B.7)

In (B.7), the Vrst two equations represent the standard synchronizations in the secondary
system and the third equation represents the partial synchronization of state events in the
secondary system by state events in the main system. Then, the main system aUects the
secondary system through the mappingsαi which, according to (B.5), depend on the behavior
of the state events x1 in the main system.
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B.2.3. Input-Output Behavior

In the following, a method is presented to compute the response of a pmax,�q-system
with partial synchronization induced by a predeVned input speciVed by counters. As the
secondary system does not aUect the main system, we Vrst focus on the main system. Second,
we consider the response of the secondary system under a predeVned behavior of the main
system.

Main System

The presented method is very similar to the one used for dater representation in § 5.2.3.
However, some additional steps are necessary as counters are antitone (while daters are iso-
tone). The synchronizations aUecting the main system are summarized in (B.6). Under the
earliest functioning rule, we are interested in the greatest, according to the standard order,
number of occurrences of state events before or at time t. Thus, as the canonical order in
Nmin is the dual of the standard order, we are actually interested in least solutions. Hence,
the number of occurrences of state events occurring before or at time t (i.e., x1 ptq) is given
by the least solution of

$

'

&

'

%

x © A1,0x`A1,1x1 pt� 1q ` B1,0u1 ptq

t   0ñ x � x1 pt� 1q

x1 pt� 1q © x

First, a candidate solution x̃1 ptq is found by neglecting the condition x1 pt� 1q © x. Second,
we check that this candidate solution fulVlls the omitted condition. For t   0, x̃1 ptq �
x̃1 pt� 1q by assumption. Hence, x̃1 ptq is given by the least solution of

x © pA1,0 `A1,1q x` B1,0u1 ptq

According to Th. 5, this leads to

�t   0, x̃1 ptq � pA1,0 `A1,1q
� B1,0u1 p�1q as u1 p�1q � u1 ptq

For t ¥ 0, x̃1 ptq is given by the least solution of

x © A1,0x`A1,1x̃1 pt� 1q ` B1,0u1 ptq

According to Th. 5, this candidate solution is given by

x̃1 ptq � A
�

1,0A1,1x̃1 pt� 1q `A
�

1,0B1,0u1 ptq

These choices ensure that, if the candidate solution is a solution, it is the least solution.
Finally, the condition x̃1 pt� 1q © x̃1 ptq is checked. For t   0, the property holds, as
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x̃1 ptq � x̃1 pt� 1q. For t ¥ 0, we reason by induction. First, we prove the initial step
(i.e., x̃1 p�1q © x̃1 p0q). As A1,0 `A1,1 © A1,0 and u1 p�1q © u1 p0q,

x̃1 p�1q � pA1,0 `A1,1q
� B1,0u1 p�1q © A

�

1,0B1,0u1 p0q

Furthermore,

A�1,0A1,1x̃1 p�1q � A
�

1,0A1,1 pA1,0 `A1,1q
� B1,0u1 p�1q

� A�1,0A1,1 pA
�

1,0A1,1q
�

A�1,0B1,0u1 p�1q according to (2.8)

¨ A�1,0A1,1 pA
�

1,0A1,1q
�

A�1,0B1,0u1 p�1q `A
�

1,0B1,0u1 p�1q

¨ pA�1,0A1,1q
�

A�1,0B1,0u1 p�1q

¨ pA1,0 `A1,1q
� B1,0u1 p�1q according to (2.8)

¨ x̃1 p�1q

Hence, x̃1 p�1q © A�1,0A1,1x̃1 p�1q ` A
�

1,0B1,0u1 p0q � x̃1 p0q. Second, we assume that
x̃1 pt� 1q © x̃1 ptq. As the product is isotone in a dioid and u1 is composed of counters,
A�1,0A1,1x̃1 pt� 1q © A

�

1,0A1,1x̃1 ptq and A
�

1,0B1,0u1 ptq © A
�

1,0B1,0u1 pt� 1q. Hence,

�t P N0, x̃1 ptq � A
�

1,0A1,1x̃1 pt� 1q `A
�

1,0B1,0u1 ptq

© A�1,0A1,1x̃1 ptq `A
�

1,0B1,0u1 pt� 1q

© x̃1 pt� 1q

Consequently, the candidate solution x̃1 ptq is a solution. Thus, the state behavior of the main
system is given by

x1 ptq �

#

pA1,0 `A1,1q
� B1,0u1 p�1q if t   0

A�1,0A1,1x1 pt� 1q `A
�

1,0B1,0u1 ptq if t ¥ 0

The number of occurrences of output events before or at time t (i.e., y1 ptq) is given by the
least solution of

#

x © C1,0x1 ptq

y1 pt� 1q © x

As for the state events, we Vrst ignored the condition y1 pt� 1q © x. This leads to a candi-
date solution ỹ1 ptq � C1,0x1 ptq. Second, we check that the condition ỹ1 pt� 1q © ỹ1 ptq

is fulVlled for the candidate solution. As the product is isotone in a dioid and x1 is composed
of counters,

ỹ1 pt� 1q � C1x1 pt� 1q © C1x1 ptq � ỹ1 ptq

213



B. Modeling with Counters

Hence, the candidate solution ỹ1 ptq is a solution. Then, y1 ptq � C1,0x1 ptq. Thus, by
noticing that x1 ptq � A�1,0x1 ptq for all t P Z, the main system is described by

$

'

&

'

%

x1 ptq �

#

x1,� if t   0

A1x1 pt� 1q ` B1u1 ptq if t ¥ 0

y1 ptq � C1x1 ptq

(B.8)

where x1,� � pA1,0 `A1,1q
� B1,0u1 p�1q, A1 � A�1,0A1,1A

�

1,0, B1 � A�1,0B1,0, and C1 �
C1,0A

�

1,0.

Secondary System

The synchronizations aUecting the secondary system are summarized in (B.7). By analogy
with the main system, the number of occurrences of state events occurring before or at time
t (i.e., x2 ptq) is given by the least solution of

$

'

&

'

%

x © A2,0x`A2,1x2 pt� 1q ` B2,0u2 ptq

�i, αi ptq � 0ñ xi � x2,i pt� 1q

x2 pt� 1q © x

where the mappings αi are obtained from the behavior of the main system. Notice that, as
αi ptq � 0 for t   0, the condition added for partial synchronizations imply xi � x2,i pt� 1q
for t   0. For t   0, the solution is obtained using a reasoning similar to the one for the
main system.

�t   0, x2 ptq � pA2,0 `A2,1q
� B2,0u2 p�1q

In the following, we only consider the case t ¥ 0. Due to partial synchronizations, it is not
possible to directly use Th. 5 to Vnd x2 ptq. However, using a reasoning very similar with [1,
§ 2.5.3], we can assume thatA2,0 is strictly lower triangular by deleting state events, lumping
state events, and adding input events. This allows us to get rid of the implicit terms by writing
the Vrst inequality componentwise. This leads to, for all i,

xi ©
i�1
à

j�1

pA2,0qij xj ` pA2,1x2 pt� 1q ` B2,0u2 ptqqi (B.9a)

αi ptq � 0ñ xi � x2,i pt� 1q (B.9b)

x2,i pt� 1q © xi (B.9c)

Let us consider a candidate solution z deVned by

zi �

#

x2,i pt� 1q if αi ptq � 0
Ài�1

j�1 pA2,0qij zj ` pA2,1x2 pt� 1q ` B2,0u2 ptqqi if αi ptq � 1

214



B.2. Counter Representation

Next, we prove that the candidate solution z is the least solution of (B.9). For a particular i
between 1 and n2, we assume that the components j   i of z are known. Then, it remains to
prove that zi is the least solution of (B.9).

Case 1: αi ptq � 0. According to (B.9b), zi � x2,i pt� 1q is the single valid solution.
Then, if this is a solution, this is the least solution. Obviously, if zi � x2,i pt� 1q, (B.9c)
holds. It remains to check (B.9a). As x2,j pt� 1q © zj for j   i, x2 pt� 2q © x2 pt� 1q, and
u2 pt� 1q © u2 ptq,

zi � x2,i pt� 1q

©

i�1
à

j�1

pA2,0qij x2,j pt� 1q ` pA2,1x2 pt� 2q ` B2,0u2 pt� 1qqi

©

i�1
à

j�1

pA2,0qij zj ` pA2,1x2 pt� 1q ` B2,0u2 ptqqi

Case 2: αi ptq � 1. Equation (B.9a) holds and ensures that, if zi is a solution, zi is the least
solution. As αi ptq � 1, (B.9b) does not express any conditions on zi. It remains to check
(B.9c). As x2,j pt� 1q © zj for j   i, x2 pt� 2q © x2 pt� 1q, and u2 pt� 1q © u2 ptq,

zi �
i�1
à

j�1

pA2,0qij zj ` pA2,1x2 pt� 1q ` B2,0u2 ptqqi

¨

i�1
à

j�1

pA2,0qij x2,j pt� 1q ` pA2,1x2 pt� 2q ` B2,0u2 pt� 1qqi

¨ x2,i pt� 1q

Thus, x2 ptq is given by z. In practice, the entries of x2 ptq have to be computed in a
speciVc order (i.e., for i from 1 to n2). For the output events, a reasoning similar to the one
for the main system gives y2 ptq � C2x2 ptq with C2 � C2,0. Thus, the secondary system is
described by

#

x2 ptq � H px2 pt� 1q , u2 ptq , tq

y2 ptq � C2x2 ptq
(B.10)

where the mapping H from R
n2

max � R
m2

max � Z to R
n2

max is deVned as follows, for i from 1 to
n2,

H px, u, tqi �

$

'

&

'

%

�

pA2,0 `A2,1q
� B2,0u2 p�1q

�

i
if t   0

xi if αi ptq � 0 and t ¥ 0
Ài�1

j�1 pA2,0qijH px, u, tqj ` pA2,1x` B2,0uqi otherwise

(B.11)
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Remark 28. The results on optimal control developed in § 6 could also be obtained using

counters. In particular, counters lead to an easier implementation for MPC with a prediction

horizon in the time domain: the counter representation is suitable for online simulations, as

the iteration in (B.8) and in (B.10) is done in the time domain. With dater representation,

online simulation is also possible, but more complicated, as it is necessary to navigate be-

tween time instants and event occurrences. However, the price of counter representation is the

restriction to time-driven dynamics, while dater representation is able to model event-driven

dynamics.

Example 50. For the example introduced in Ex. 23, the output induced by

u1,1 ptq � u1,2 ptq � u2,1 ptq � u2,2 ptq �

#

e for t   0

5 for t ¥ 0

is computed. For the main system, this leads to

y1,1 ptq � y1,2 ptq �

$

'

'

'

'

'

'

'

'

'

&

'

'

'

'

'

'

'

'

'

%

e for t   10

1 for 10 ¤ t   22

2 for 22 ¤ t   34

3 for 34 ¤ t   46

4 for 46 ¤ t   58

5 for t ¥ 58

Furthermore, the mappings αi necessary for the dynamics of the secondary system are

α1 ptq � α4 ptq � α5 ptq � α8 ptq �

#

0 if t   0

1 if t ¥ 0

α2 ptq � α6 ptq �

#

1 if t P t0, 12, 24, 36, 48u

0 otherwise

α3 ptq � α7 ptq �

#

1 if t P t10, 22, 34, 46, 58u

0 otherwise

The output of the secondary system is given by

y2,1 ptq �

#

e for t   27

1 for t ¥ 27

y2,2 ptq �

#

e for t   51

1 for t ¥ 51

As expected, these results conVrm the results obtained in Ex. 29 for a similar input, but ex-
pressed with daters.
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