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1. INTRODUCTION

The industrial manufacturing systems are frequently
event-driven systems and their closed-loop control is worth
of interest in order to react to disturbances modifying
their behaviours. Among these discrete event systems
there exists a subclass of system involving synchronization
and delay phenomena for which an efficient control the-
ory has been developed during the last decade (Schutter
et al., 2019; Maia et al., 2005; Lhommeau et al., 2005;
Shang et al., 2016; Heidergott et al., 2006; Cohen et al.,
1998). Synchronization phenomena appear when meeting
between events is needed, e.g. an event starts when all the
preceding events are finished. Delay phenomena appear
when transportation operation or manufacturing activities
need a duration to be achieved, e.g. the event representing
a finishing time of a task is equal to its starting time plus
the duration of the operation. Although these phenomena
lead to a non-linear model in conventional algebra they ad-
mit a linear model formulated in some idempotent semir-
ings, the most popular being the max-plus algebra, where
the max operation is the sum of the algebraic structure and
the classical addition has to be considered as the product.
It must be noticed that these systems and their linear
models correspond exactly to the Timed Event Graphs
(TEGs) which are a subclass of Petri nets where each place
has exactly one upstream and one downstream transition
and all arcs have weight equal to 1. The time is associated
to places and represents the duration a token has to stay in
a place before to contribute to the firing of a downstream
transition. This graphical model is popular since suitable
for engineer depicting the behaviour of a manufacturing
system. This paper proposes a methodology and a specific
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software to help the engineers to synthesize and implement
a closed-loop control of these systems by tacking advantage
of the efficient existing control strategies. By starting from
a TEG description of the system and a desired behaviour
also given as a TEG named reference model, a method
is proposed to obtain the algebraic model of the system
and of the reference model, then a software is proposed
to give automatically the code to implement in a Supervi-
sory Control and Data Acquisition (SCADA) system. The
engineer will have to choose the control strategy which
will be implemented among different strategies, namely
the disturbance decoupling problem, the model match-
ing problem, the observer-based controller. They have for
common point to yield an optimal control law according
to the just-in-time criterion which aims to delay as much
as possible the occurrence of event input while achieving
the specific goal of the control strategy. This criterion is
quite usual in industry since it leads to produce only the
necessary quantity of raw materials and then to reduce as
much as possible the useless stock.

In this paper we will recall the observer-based controller
strategy in order to illustrate the methodology used in the
software. It is organized as follows: First, the algebraic
tools necessary to synthesize the control law are recalled,
then in section 3 the method to obtain the algebraic model
of the system is presented, this section presents an original
description which allows the software to obtain automati-
cally an explicit model. The observer-based control strat-
egy which aims to match a reference model is presented in
section 4. The software architecture and the methodology
adopted are illustrated in section 5, which presents an
implementation on a flexible automated system available
at University of Angers.



2. MATHEMATICAL BACKGROUND

An idempotent semiring S is an algebraic structure with
two internal operations denoted by ⊕ and ⊗. The opera-
tion ⊕ is associative, commutative and idempotent, that
is, a ⊕ a = a. The operation ⊗ is associative (but not
necessarily commutative) and distributive on the left and
on the right with respect to ⊕. The neutral elements of
⊕ and ⊗ are represented by ε and e respectively, and ε is
an absorbing element for the law ⊗ (∀a ∈ S, ε ⊗ a = a ⊗
ε = ε). As in classical algebra, the operator ⊗ will be often
omitted in the equations, moreover, ai = a ⊗ ai−1 and
a0 = e. In this algebraic structure, a partial order relation
is defined by a � b⇔ a, therefore an idempotent semiring
S is a partially ordered set (see (Baccelli et al., 1992;
Heidergott et al., 2006) for an exhaustive introduction).
An idempotent semiring S is said to be complete if it is
closed for infinite ⊕-sums and if ⊗ distributes over infinite
⊕-sums. In particular > =

⊕
x∈S x is the greatest element

of S (> is called the top element of S).

Theorem 1. [see Baccelli et al. (1992), th. 4.75] The im-
plicit inequality x � ax⊕b as well as the equation x = ax⊕
b defined over S, admit x = a∗b as the least solution, where
a∗ =

⊕
i∈N

ai (Kleene star operator).

Definition 1. (Residual and residuated mapping). An or-
der preserving mapping f : D → E , where D and E are
partially ordered sets, is a residuated mapping if for all
y ∈ E there exists a greatest solution for the inequality
f(x) � y (hereafter denoted f ](y)). Obviously, if equality
f(x) = y is solvable, f ](y) yields the greatest solution.
The mapping f ] is called the residual of f and f ](y) is the
optimal solution of the inequality.

Example 1. Mappings Λa : x 7→ a⊗ x and Ψa : x 7→ x⊗ a
defined over an idempotent semiring S are both residuated
(Baccelli et al. (1992), p. 181). Their residuals are order
preserving mappings denoted respectively by Λ]a(x) = a◦\x
and Ψ]

a(x) = x◦/a. This means that a◦\b (resp. b◦/a) is
the greatest solution of the inequality a ⊗ x � b (resp.
x⊗ a � b).

The set of n×n matrices with entries in S is an idempotent
semiring. The sum, the product and the residuation of
matrices are defined after the sum, the product and the
residuation of scalars in S, i.e.,

(A⊗B)ik =
⊕

j=1...n

(aij ⊗ bjk) (1)

(A⊕B)ij = aij ⊕ bij , (2)

(A ◦\B)ij =
∧

k=1..n

(aki ◦\bkj) , (B◦/A)ij =
∧

k=1..n

(bik◦/ajk). (3)

The identity matrix of Sn×n is the matrix with entries
equal to e on the diagonal and to ε elsewhere. This identity
matrix will also be denoted e, and the matrix with all its
entries equal to ε will also be denoted ε.

Example 2. (max,plus) algebra: Zmax = (Z∪{−∞,+∞},
max,+) is a complete idempotent semiring such that a⊕
b = max(a, b), a ⊗ b = a + b, a ∧ b = min(a, b) with

ε = −∞, e = 0, and > = +∞. The order � is total and

corresponds to the natural order 6. By extension Zn×nmax

is a semiring of matrices with entries in Zmax. Matrix

ε ∈ Zn×mmax will be such that all its entries are equal to

ε ∈ Zmax, matrix e ∈ Zn×nmax will be such that all the entries
are equal to ε ∈ Zmax except the diagonal entries which
are equal to e ∈ Zmax.

Example 3. (min,plus) algebra: Zmin = (Z ∪ {−∞,+∞},
min,+) is a complete idempotent semiring such that a⊕
b = min(a, b), a ⊗ b = a + b, a ∧ b = max(a, b) with
ε = +∞, e = 0, and > = −∞. The order � is total and
corresponds to the inverse of the natural order ( i.e. , 2 � 1.

Semiring of matrices Zn×nmin is a semiring of matrices with
entries in Zmin.

Example 4. (Matrix operations in Zmax). Given three ma-
trices with entries in Zmax,

A =

[
1 4
5 3
ε 2

]
, B =

[
3 3
2 4
7 1

]
, and C =

[
ε 4
1 3

]
we get

A⊕B =

[
1 4
5 3
ε 2

]
⊕

[
3 3
2 4
7 1

]
=

[
3 4
5 4
7 2

]

A⊗ C =

[
1 4
5 3
ε 2

]
⊗
[
ε 4
1 3

]
=

[
5 7
4 9
3 5

]

Considering the relation A⊗X � B with

A =

[
1 2
3 4
5 ε

]
and B =

[
6
7
8

]

being matrices with entries in Zmax. As the max-plus
multiplication corresponds to the classical addition, its
residual corresponds to conventional subtraction, i.e. ,
1 ⊗ x � 4 admits the solution set X = {x|x � 1◦\4} with
1◦\4 = 4 − 1 = 3 being the greatest solution of this set.
Applying the rules of residuation in max-plus algebra to
the relation A⊗X � B results in:

A◦\B =

[
1◦\6 ∧ 3◦\7 ∧ 5◦\8
2◦\6 ∧ 4◦\7 ∧ ε◦\8

]
=

[
3
3

]
Matrix A◦\B = [3 3]

T
is the greatest solution for X which

ensures A⊗X � B. Indeed,

A⊗ (A◦\B) =

[
1 2
3 4
5 ε

]
⊗
[
3
3

]
=

[
5
7
8

]
�

[
6
7
8

]
= B.

Remark 1. Note that residuation achieves equality if a
solution exists.



3. SYSTEM MODELING

3.1 Dioid Max
in [[γ, δ]]

DioidMax
in [[γ, δ]] (see (Baccelli et al., 1992; Hardouin et al.,

2018) is formally the quotient dioid of B[[γ, δ]] (the set of
formal power series in two commutative variables γ and
δ, with Boolean coefficients and with exponents in Z), by
the equivalence relation xRy ↔ γ∗(δ−1)∗x = γ∗(δ−1)∗y.
Dioid Max

in [[γ, δ]] is complete.

AsMax
in [[γ, δ]] is a quotient dioid, an element ofMax

in [[γ, δ]]
may admit several representatives in B[[γ, δ]]. The repre-
sentative which is minimal with respect to the number of
terms is called the minimum representative.

A simple geometrical interpretation of the previous equiv-
alence relation is available in the (γ, δ)-plane. Consider a
monomial γkδt ∈ B[[γ, δ]], its south-east cone is defined as
{(k′, t′)|k′ > k and t′ 6 t}. The south-east cone of a series
in B[[γ, δ]] is defined as the union of the south-east cones
associated with the monomials composing the considered
series. For two elements s1 and s2 in B[[γ, δ]], s1Rs2 (i.e., s1
and s2 are equal inMax

in [[γ, δ]]) is equivalent to the equality
of their south-east cones. Direct consequences of previous
geometrical interpretation are:

• simplification rules in Max
in [[γ, δ]]

γk ⊕ γt = γmin(k,t) and δk ⊕ δt = δmax(k,t) (4)

• a simple formulation of the order relation for mono-
mials

γnδt � γn
′
δt

′
⇔ n > n′ and t 6 t′

A simple interpretation of the variable γ and δ for daters
is available:

• multiplying a series s by γ is equivalent to shifting
the argument of the associated dater function by -1.
• multiplying a series s by δ is equivalent to shifting

the values of the associated dater function by 1

Example 5. Consider the series s = γδ2 ⊕ γ3δ3 ⊕ γ4δ1

represented by dots in Fig. 1. The minimum representative
of s in Max

in [[γ, δ]] is γδ2 ⊕ γ3δ3. This result could be
obtained using the simplification rules (4). Besides,

s =
⊕
k60

γkδ−∞ ⊕
⊕
k=1,2

γkδ2 ⊕
⊕
k>3

γkδ3

Therefore, the dater ds associated with s is given by

ds(k) =


−∞ if k 6 0

2 if k = 1, 2

3 if k > 3

Fig. 1. s and its south-east cone (hatched)

3.2 Linear state-space representation of TEG inMax
in [[γ, δ]]

From now on, we only consider TEG with at most one
place from a transition to another transition. This assump-
tion is not restrictive, as it is always possible to transform
any TEG in an equivalent TEG with at most one place
from a transition to another transition. The dynamics of
a TEG may be captured by associating each transition
with a series s ∈ Max

in [[γ, δ]], where ds(k) is defined as the
time of firing k of the transition. Therefore, for TEG, γ
is a shift operator in the event domain, where an event is
interpreted as the firing of the transition, and δ is a shift
operator in the time domain.

The transitions of a TEG are divided into three categories:

• state transitions (x1, ..., xn): transitions with at least
one input place and one output place.

• input transitions (u1, ...up): transitions with at least
one output place, but no input places.

• output transitions (y1, ...ym): transitions with at least
one input place, but no output places.

Under the earliest functioning rule (i.e., state and output
transitions fire as soon as they are enabled), with respect
to a place with initially m tokens and holding time t,
the influence of its upstream transition on its downstream
transition is a positive shift in the time domain of t time
units and a negative shift in the event domain of m events.
The complete shift operator is coded by the monomial
γmδt inMax

in [[γ, δ]]. Therefore, consider the place upstream
from transition ti and downstream from transition tj , the
influence of transition tj on transition ti is coded by the
monomial fij inMax

in [[γ, δ]] defined by fij = γmijδτij where
mij is the initial number of tokens in the place and τij is
the holding time of the place.

Consequently, a TEG admits a linear state-space represen-
tation in Max

in [[γ, δ]].

{
x = Ax⊕Bu⊕Rw
y = Cx

where x ∈ Max
in [[γ, δ]]n is the state, u ∈ Max

in [[γ, δ]]p the
input, y ∈ Max

in [[γ, δ]]m the output and w ∈ Max
in [[γ, δ]]n

the additive perturbation of the state. The perturbation
w models, for example, unexpected failure, delays or
uncertain parameters such as task duration and matrix
R how these perturbations affect the inner states, in the
sequel R is assumed to be the Identity matrix. A ∈
Max

in [[γ, δ]]n×n, B ∈ Max
in [[γ, δ]]n×p, C ∈ Max

in [[γ, δ]]m×n

and R ∈Max
in [[γ, δ]]n×n are matrices with monomial entries

describing the influence of transitions on each other.

According to Theorem 1, under the earliest functioning
rule, the input-output (resp. perturbation-output) transfer
function matrix H (resp. G) of the system is equal to
CA∗B (resp. CA∗).

y = CA∗Bu⊕ CA∗q = Hu⊕Gq (5)

Therefore, the condition for holding the maximization
(preserving the input-output and perturbation-output be-
haviors) is rephrased in terms of transfer function matri-
ces. The conditions is now to preserve the input-output
and perturbation-output transfer function matrices.



When an element s of Max
in [[γ, δ]] is used to code informa-

tion concerning a transition of a TEG, then a monomial
γkδt with k, t > 0 may be interpreted as ”at most k events
occur strictly before time t” (i.e., ds(K) > t). An element
of s of Max

in [[γ, δ]], used to code a transfer relation between
two transitions of a TEG (e.g., an entry of H), is causal
(i.e., no anticipation in the time/event domain: all expo-
nents are non-negative) and periodic (i.e., s = p⊕qr∗ with
polynomials p, q and a monomial r 6= e). For a periodic
series s with r = γνδτ , its asymptotic slope σ(s) is defined
as ν/τ .

Fig. 2. TEG example

Example 6. Let us consider a manufacturing system de-
picted by the TEG given in Fig. 2. The transition labeled
u represents the inputs of raw material, it is transported
during 2 time units to a machine with 2 treatment spots.
Its input is labelled x1, the processing time is equal to
5, and the machine’s output is labeled x2. The processed
part is then transported out of the system during 3 time
units, the transition y represents when the part is out of
the production line. Before accepting a new raw part, the
machine must be cleaned, this operation spends 7 time
units. The model is then given by

Ã =

[
ε γ2δ7

δ5 ε

]
B̃ =

[
δ2

ε

]
C̃ =

[
ε δ3

]
It must be noticed that this system can be realized in a
straightforward way in (max, +) or (min, +) form:

x1(k) = max(2 + u(k),

7 + x2(k − 2))

x2(k) =5 + x1(k)

y(k) =3 + x2(k),

x1(t) = min(u(t− 2),

2 + x2(t− 7))

x2(t) =x1(t− 5)

y(t) =x2(t− 3),

where xi(k) represents the firing date of part k and xi(t)
represents the number of firing occurred till the time
t. These both systems are implicit equations. In order
to obtain an explicit model we introduce an original
procedure. We propose to split the system in the following

way Ã = Ar ⊕Ad ⊕Ag where

• if nij 6= 0 and tij 6= 0, (Ar)ij = Ãij = γnijδtij else
(Ar)ij = ε

• if tij = 0, (Ag)ij = Ãij = γnij else (Ag)ij = ε

• if nij = 0, (Ad)ij = Ãij = δtij else (Ad)ij = ε

In the present example:

Ag =

(
ε ε
ε ε

)
Ad =

(
ε ε
δ5 ε

)
Ar =

(
ε γ2δ7

ε ε

)

Knowing that x = Ãx ⊕ B̃u separating the matrix Ã we
have:

x = (Ad ⊕Ag ⊕Ar)x⊕ B̃u
x = (Ad ⊕Ag)x⊕Arx⊕ B̃u

Using Theorem 1

x = (Ad ⊕Ag)∗Arx⊕ (Ad ⊕Ag)∗B̃u

Knowing that, we have A = (Ad⊕Ag)∗Ar and B = (Ad⊕
Ag)

∗B̃ and these matrices generate a model in the form

{
x = Ax⊕Bu
y = Cx

Which can be realized in an explicit form whether in
(max,+) or (min, +)

(Ad ⊕Ag) =

(
ε ε
δ5 ε

)
⇒ (Ad ⊕Ag)∗ =

(
e ε
δ5 e

)

A = (Ad ⊕Ag)∗Ar =

(
ε γ2δ7

ε γ2δ12

)
and for the input

B = (Ad ⊕Ag)∗B̃ =

(
δ2

δ7

)
,

this leads to the following explicit model

x1(k) = max(2 + u(k),

7 + x2(k − 2))

x2(k) = max(7 + u(k),

12 + x2(k − 2))

y(k) =3 + x2(k)

x1(k) = min(u(t− 2),

2 + x2(t− 7))

x2(k) = min(u(t− 7),

2 + x2(t− 12))

y(k) =x2(t− 3)

These matrices A and B can be programmed into a
software without realization problems. The system can
be solved by considering Theorem 1, (see Eq. (5)) and

the transfer matrix y = Hu is given by H = C̃Ã∗B̃ =
CA∗B = δ10(γ2δ12)∗. This computation can be easily be
performed by using the library MinMaxgd available as
a C++ library or alternatively thanks to a web interface
(Cottenceau et al. (2006); Cândido et al. (2017)).

4. OBSERVER BASED CONTROLLER

This section presents how to implement an efficient control
strategy for dynamical systems considered in the previous
section. The control strategy proposed is depicted in Fig.
3. It is inspired from the observer based control for classical
linear systems (Hardouin et al., 2018, 2010).

The motivation to control the input of these systems is
to decide when the operator should start to achieve an



objective, e.g. when do you start the departure of a pro-
cessing operator in order to achieve the customer demand.
Hence, the aim is to design a controller able to decide
when the system should start to work in order to achieve a
desired behavior. Classically, a popular production policy
is to design a just-in-time policy, that is, to start as late as
possible while ensuring the customer demand. It minimizes
the internal stock while keeping the performance.

x=Ax + Bu + Rw

y=Cx{
      

System

w

yuv

A

x y
y

B C

M

L Observer

Controller
x

P

Fig. 3. Observer-based Controller architecture

The design goal is to get controllers M and P (see Fig.
3) which are matrices ensuring that the control input
u = P (v⊕Mx̂) be the greatest ( i.e. the one which delays
as much as possible the input) in order to achieve a given
objective, the reference input v. Signal x̂ is either the real
state of the system, (x̂ = x if the state is measurable), or
an estimation x̂ observed thanks to an observer, inspired
from the Luenberger observer (Luenberger (1971)). This
estimator is given by

x̂ = Ax̂⊕Bu⊕ L(ŷ ⊕ y). (6)

Where L is an observer matrix to be designed. It is fed by
the measured output y of the system and ensures that the
real system output be possible to compute the estimator x̂,
especially that disturbance w feeding the system through
matrix R. This observer based controller is then a feedback
control strategy. The goal is to design P,M,L in order to
achieve a desired behavior denoted Gref .

By solving Eq. 6 x̂ is given by

x̂ = Ax̂⊕Bu⊕ L(Cx⊕ Cx̂)

= (A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCA∗Rw

by repeating in u, the control is:

u = P (v ⊕Mx̂)

= P (M(A⊕ LC)∗BP )∗v

⊕ PM((A⊕ LC)∗BPM)∗(A⊕ LC)∗LCA∗Rw

The development are given in (Hardouin et al. (2010)) and
lead to the optimal design

Popt = (CA∗B)◦\Gref (7)

Lopt = ((A∗B)◦/(CA∗B)) ∧ ((A∗R)◦/(CA∗R)) (8)

Mopt = Popt◦\Popt◦/(A∗BPopt) (9)

4.1 Example

In our sample system, showed in Fig. 2, since it does
not have many inner states or inputs and outputs, these
calculations can be done by hand and drawn. UsingGref =
CA∗B, we are able to calculate Popt = (CA∗B)◦\(CA∗B)
knowing that (CA∗B) = δ10(γ2δ12)∗ we obtain

Popt = δ10(γ2δ12)∗◦\δ10(γ2δ12)∗ = (γ2δ12)∗

the equality holds since a∗◦\a∗ = a∗ (see Baccelli et al.
(1992)) which yields that (γ2δ12)∗◦\(γ2δ12)∗ = (γ2δ12)∗.

With the result of Popt we are able to calculate Mopt

Mopt = (γ2δ12)∗◦\(γ2δ12)∗◦/

(
δ2

δ7

)
⊗ (γ2δ12)∗

Mopt =
(
δ−2 δ−7

)
⊗ (γ2δ12)∗

Obviously it is not possible to implement a controller
that has negative exponents (this controller would be non-
causal), hence the solution is to pick only the causal
projection. To do this, imagine a Cartesian plane where
gamma is the x axis and delta the y axis. Now we put
the points according to the desired series, for example
γ−4δ−1 ⊕ γ−2δ2 ⊕ γ2δ3 ⊕ γ4δ4.

Fig. 4. Gamma-delta plane representation of series
γ−4δ−1⊕γ−2δ2⊕γ2δ3⊕γ4δ4 and its causal projection
δ2 ⊕ γ2δ3 ⊕ γ4δ4.

It is clear that, using the south-east cone presented in
section 2 all the points in the drawing must be inside the
north-east quadrant for the series to be realizable. This
way, the causal projection is the biggest area possible, in
a way that all its corners are inside this quadrant, and is
contained in the original area. For our example, it would
be δ2 ⊕ γ2δ3 ⊕ γ4δ4, as showed in Fig. 4

Using the same reasoning in Mopt we get the following
causal series:

Pr+(Mopt) =
(
γ2δ10 γ2δ5

)
⊗ (γ2δ12)∗

Finally the observer needs to be calculated



L1 =

(
δ2

δ7

)
⊗ (γ2δ12)∗◦/δ10 ⊗ (γ2δ12)∗ =

(
δ−8

δ−3

)
⊗ (γ2δ12)∗

L2 =

(
e γ2δ7

δ5 e

)
⊗(γ2δ12)∗◦/

(
δ8

δ3

)
⊗(γ2δ12)∗ =

(
γ2δ4

δ−3

)
⊗(γ2δ12)∗

Then L = L1 ∧ L2 :

L =

(
γ2δ4

δ−3

)
⊗ (γ2δ12)∗ ⇒ Pr+(L) =

(
γ2δ4

γ2δ9

)
⊗ (γ2δ12)∗.

Since all the matrices entries are causal, all these con-
trollers are realizable, and thus they can be implemented.

To convert the gamma-delta elements into min-plus or
max-plus equations, we propose to split the series s = p⊕
qr∗ in the following way : first we define ζk = qr∗ thus
s = p ⊕ ζk. By using Theorem 1, we get the relation
ζk = rζk ⊕ q. In our example x̂ = Ax̂ ⊕ Bu ⊕ Ly, for
example sake, let us focusing on the first state we obtain,
x̂1 = γ2δ7x2 ⊕ δ2u⊕ γ2δ4 ⊗ (γ2δ12)∗y. Hence in this case
p = γ2δ7x2 ⊕ δ2u, q = γ2δ4y and r = γ2δ12. By using
the formula we just found, x̂1 = γ2δ7x2 ⊕ δ2u ⊕ ζ1 and
ζ1 = γ2δ12ζ1 ⊕ γ2δ4y. Thanks to this expression it is
straightforward to put these equations in min-plus or max-
plus implicit equations. For simplicity, min-plus will be
used because updating the system periodically, in our case
each 500ms, is easier than when events occur. The min-plus
equation for x̂1 is x̂1 = min(2 + x̂2(t − 7), u(t − 2), ζ1(t))
knowing that ζ1(t) = min(2 + ζ1(t − 12), 2 + y(t − 4)).
These equations can be easily programmed into a software,
since they only require data storage to use the time delays
properly.

5. REAL SYSTEM APPLICATION

In this section, we are interested in applying this method
in the real system, depicted in Fig. 5, which is located in
Polytech Angers, France.

The system has 2 separated sections, a faster loop and
a slower loop as shown in Fig. 5. The slower loop has 6
buttons that do not let the pallets pass while the faster
loop has only 4. All the buttons have sensors just before
them, as it can be seen in Fig. 6. The pallet’s size is
such that if they are waiting the button, the sensor will
stay active. Each section (between two buttons) has a
defined maximum number of pallets. The travel times were
measured 10 times, and the time used is the average of
them.

Fig. 5. Slower Loop

Fig. 6. Button and Sensor

Each button (labelled B1 to B10), the travel time and the
maximum number of pallets are represented in Fig. 7. It is
important to notice that there are 3 pallets waiting for B1,
2 waiting for B5 and 1 waiting for B6, as initial conditions
of the system.

Fig. 7. Buttons, travel times (in sec) and pallet limit

The system is programmed to activate the buttons when
there is one pallet waiting for it (the sensor is active),
there is at least one space left for the path and at least
one control token available. Especially for B3 and B10,
there is a forced synchronization, meaning that B3 and
B10 will always activate at the same time, requiring 2
control tokens, one free space between B10 and B5 and

Fig. 8. Modeling 1 Fig. 9. Modeling 2

Fig. 10. Final path Model



1 pallet waiting for B3 and another waiting for B10. It
is worth mentioning that after each consecutive activation
of any button, it will wait for 2 seconds until it activates
again.

Now the first step is to put this system in a Petri net
model. We will analyze the section between B4 and B1
and then apply the same reasoning to the other sections.
Since each button changes the state of the system, we have
the first two inner states, each one with one associated
input because of the control tokens as shown in Fig. 8.
Then we will need one place for each empty slot in the
section, and since 2 pallets cannot be in the same place,
these places must have only one token at a time. Besides
the tokens, the timings for each place has to be 2 seconds,
since the button will only activate 2 seconds after its
previous activation, but the sum of all the places between
the buttons has to be the total travelling time, using these
conditions we have the second step of the model in Fig.
9. It is worth mentioning that the initial pallets are the
tokens into (P1), (P2) and (P3) so the token in (P1) can
activate B1 instantaneously.

To summarize the model so far, the token in P1 will
activate the B1 transition, meaning that the button will
go down and the pallet will enter the path between B1 and
B2. After that, the two other pallets will begin moving and
wait for the 2 seconds to pass, what explains the 2 seconds
travelling time in the model. The last condition that is
missing is the total number of pallets for each section.
Since for the section B4 to B1 only 3 pallets are allowed,
and all the three are already in it, so we have the final
model represented in Fig. 10.

If we replicate this reasoning to all sections combined
and knowing that before every button we have a sensor
indicating the pallet is there, this means the sensors are the
outputs of the system, we get the final model represented
in Fig. 11.

We can achieve the system’s matrices as proposed in
section 3.1, where A0 will be split into Ag, Ad and Ar to
make the model implementable using the same procedure
discussed in section 3. The next step is to use these
3 matrices to calculate Popt, Lopt and Mopt thanks to
Eqs. (7-9). All the calculus needed to achieve the final
controller were obtained by using the software MinmaxGD
(Cottenceau et al., 2006). After executing, this software
gave us the matrices just like the ones presented in section
4.1.

Transforming those matrices in code is extremely laborious
and can lead to unexpected errors. Knowing that, a soft-
ware has been developed to make the calculus and write a
C code directly (see Freitas and Hardouin (2017)), using
the method shown at the end of section 4.1. The generated
code was then executed into a PC that supervises the real
system. The PLCs ensure that the system will comport as
specified and provide data for the supervisory system. The
code works in a way that it reads the outputs provided by
the PLCs, updates the input control tokens consequently
updating the input and thus updating the amount of
control tokens available for the buttons, then updates the
observer for the user to know if the system is comporting
adequately every 500 ms.

Fig. 11. Complete Model (Gonçalves, 2015)

6. RESULTS

In this section we are going to discuss the effects of having
implemented the control into the real system. Since the
only place that can occur pallet accumulation is in B4
and B10 and the loop containing B4 is faster, it is the
only place that can have accumulation. Our chosen Gref
was the system’s transfer function, that means, we chose
to maintain the original output, but to delay as much
as possible the buttons activations in order to reduce
stocking. Knowing that, the objective of the controller is
to reduce the stocking in B4 without changing the original
output. To illustrate the performance of the controller we
focus on measurements of x7 state.

It must be mentioned that the travelling times are not
deterministic, hence we focus on the difference between x7
state with and without control, sometimes this difference
is positive and sometimes negative. In Fig. 12 it is possible
to see the time evolution of this difference. As expected,
the difference is insignificant principally because x7 is the
number of times the state has been activated, which is
a number that increases over time. The mean value of
the difference is -0.1342, very close to 0, showing that all
outputs would have been maintained if the system was
perfectly deterministic.

The next topic will be the stocking difference. For this mat-
ter the PLCs is programmed to measure x4’s information,
this way the stock is calculated using stock(t) = x4(t) −
x7(t). The result can be seen in Fig. 13.

This pattern keeps repeating for the whole simulation. As
it is possible to see, the controlled system has at maximum
2 pallets in stock, while the not controlled (natural) system



Fig. 12. Difference between x7 with (Natural) and without
controller (Controlled)

Fig. 13. Stock Evolution with and without control

has 3. This result makes sense, since our aim is to maintain
the outputs, in this case, for output y2 to be maintained,
the system has to activate B2 at least twice, resulting in
a minimum stock of 2. Calculating the mean stock, we get
1.6550 pallets for the natural system, and 1.3175 for the
controlled one, meaning a 20.4% stock reduction.

7. CONCLUSION

In this paper we propose and present a way to implement
in an efficient way controllers for max-plus linear systems.
Freely available software tools yield automatically the code
for implementation in a SCADA system. In the real exam-
ple presented, the just-in-time control implemented has
reduced the useless internal stocks by 20%, which illus-
trates the interest of this kind of production policy. The
engineers can use this methodology to adapt the control
to their specific systems in an easy way. A user-friendly
interface will be develop soon in order to help them to
select the control strategy they want to implement among
the different available possibilities (Observer-based control
(Hardouin et al., 2018), Disturbance Decoupling Problem
(Shang et al., 2016), Robust control (Lhommeau et al.,
2005), Stabilization thanks to Feedback Control (Cot-
tenceau et al., 2001), Model Predictive Control (Schutter
and Boom, 2001)).
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