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Abstract

An extension to an algorithm of R.A. Cuninghame-Green and K. Zimmer-
mann for solving equations with residuated functions is presented. This ex-
tension relies on the concept of weak residuation and in the so called “strong
property”. It is shown that a contextualization of this method to tropical
linear equations, which will be denoted as Primal Method (in constrast with
the Dual Method, another algorithm described in literature), generates a
non-decreasing sequence which converges to the smallest solution inside a
special semimodule. It is also shown the connections of this method with
previously published works.

Keywords: Tropical Algebra, Weak Residuation, Semimodule, Equations,
Kleene Closure

1. Introduction

Tropical Algebra (also known as the Max-Plus Algebra), is the semiring1

Tmax = {Z ∪ {−∞},⊕,⊗} (1)

in which ⊕ is the maximum and ⊗ is the traditional sum. It is usual, as
well, to denote the neutral element of the sum, −∞, as ε. It is also usual to
define the complete dioid Tmax augmented with the element∞, here denoted
as >. It is also defined >⊗ ε = ε⊗> = ε. As in the traditional algebra, the

1Usually, the name is used to denote the isomorphic dioid Min-Plus.



symbol ⊗ is usually omitted. The dual dioid Tmin in which the maximum
is swapped with the minimum is also defined (that is, replace ∧ with ⊕,
residuations with dual residuations and swap the roles of > and ε).

It is assumed from now on that the reader is familiar with this algebra
basics and also with the concepts of residuation, dual residuation, Kleene
Closure ( Baccelli et al. (1992)) and semimodules ( Cohen et al. (2004)).
Results and identities which are common but not very straightforward will
be given in footnotes. The tropical identity matrix of appropriate order is
denoted by I, and ◦\ is used to denote the left residuation of the product. The
pointwise infimum is denoted by ∧. By analogy with the traditional algebra,
if A is a matrix and α a scalar, A◦/α will be the pointwise scalar residuation
of the entries of A by α. A∗ =

⊕∞
i=0A

i and ρ(A) are, respectively, the Kleene
Closure and spectral radius of A. It is also defined a matrix composed entirely
of ε and >, of convenient dimension, as ε and >, respectively. Finally, a
matrix is said to be upper bounded (resp. lower bounded) if all the entries
are different from > (resp. ε). The image of a matrix M is the (tropical)
linear span of the columns of M .

An important problem in the tropical algebra concerns the solution of
two-sided linear equations

Ex = Dx. (2)

Cuninghame-Green and Zimmermann (2001) introduced a general iter-
ative algorithm for solving equations of the form

f(x) = g(y) (3)

when f and g are residuated functions. A specialization of this algorithm
to the linear tropical equation Ax = By can be adapted to the (equivalent)
equation Ex = Dx. Then, it has the important property of generating a
non-increasing sequence which converges to the greatest solution x smaller
or equal than the initial condition x0.

Algorithms for solving tropical linear equations can also solve their affine
counterparts Rp⊕ r = Sp⊕ s, by introducing an auxiliary scalar variable y
(see Cuninghame-Green and Butkovic (2003))

Rp⊕ ry = Sp⊕ sy. (4)

Equation (4) is linear in the extended vector x = (pT 99
9 y)T if one sets
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E = (R 99
9 r) and D = (S 99
9 s). If one employs Cuninghame-Green and

Zimmerman method with the initial condition p[0] = p0 and y[0] = 0, the
p vector will converge to a solution - provided that one such that p � p0

exists - and y will remain equal to 0. Due to the algorithm properties, the
resulting solution will be the greatest one of the original affine equation which
is smaller than p0. Thus - provided that the solution set is not empty - the
greatest solution of an affine tropical equation exists and can be found using
the greatest possible initial condition p[0] = >.

However, in general, the smallest solution does not exist. This is a conse-

quence to the fact that the product in Tn×mmax is not dually residuated (in gen-
eral). Affine equations appear in some control applications (see Gonçalves
et al. (2012)), and it may be desirable that these solutions be small and sparse
(full of null ε entries). This motivates the research for a method which return
small solutions. Since seeking for the smallest solution is futile in general,
one can weaken the problem asking for a solution inside a special set. As an
example, a special semimodule S can be considered. Then, according to this
constraint, the proposed problem may have a smallest solution.

To this end, the concept of weak residuation and strong residuation for an
element will be introduced. Then, one can weaken the requirement of residu-
ated functions f and g in Cuninghame-Green and Zimmermann (2001), and
instead require that f and g has a weak residuation which have the strong
property for a previously found solution. Thus, one can use this general al-
gorithm in the dual dioid Tmin (so the minimum becomes the maximum and
� becomes �) and obtain a method for generating other solutions, which
are “small”, to the tropical affine equation. In fact, the method can find the
smallest inside a particular semimodule S using a special initial condition.
So, the proposed method uses an already known solution for finding others
with a special property.

The aforementioned method, which will be called Primal Method here-
after, is closely related to the specialization of the Cuninghame-Green method
for equations of the form Ex = Dx, which will be called in this paper Dual
Method. It is also closely related - and this will be explicitly addressed latter
in Subsection 3.5- to the cellular decomposition of Develin and Sturmfels
(2004), the mean payoff games and the algorithms presented in Truffet
(2010), Lorenzo and de la Puente (2011) and Gaubert et al. (2012) .

Equation (2) has also been studied in several other works other than the
previously mentioned ones.. Baccelli et al. (1992) provides a method for find-
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ing solutions using the symmetrized tropical algebra, which introduces a weak
form of subtraction (in a weak inequality, the balance) and therefore allows
analogous algorithms from traditional algebra to be adapted to the problem.
Following this idea, many algorithms were also discussed in Gaubert (1992).
Butkovic and Hegedüs (1984) provided a method, the Elimination Method,
which can generate the entire set of solutions by solving the system of equa-
tions row-by-row. As a consequence of this method, it was proved that this
set has a finite (albeit possibly very large) representation. Using concepts of
residuation, Cuninghame-Green and Butkovic (2003) proposes the Alternat-
ing Method, which generates a non-increasing sequence (after the first step)
which converges to a solution. Butkovic and Zimmermann (2006) provided
an algorithm for finding a single solution, the Stepping Stone Method. It
works by checking at each step which of the equalities holds and the ones
which does not. Then, it decreases the values of the current vector in a way
that the non-achieved equalities began to hold and the ones that already do
continues holding. Akian et al. (2010) shows that the existence of a non-
trivial solution is related to the problem of solving mean payoff games. The
Tropical Double-Description Method in Allamigeon et al. (2010) is concep-
tually similar to the one proposed in Butkovic and Hegedüs (1984), being
capable of generating the entire set of solutions by solving the system row-
by-row. It uses, however, a more elaborated approach for solving each row
equation, using the concept of extreme rays. This leads to a more compact
representation of the intermediate solutions set and thus the method has a
substantially better average complexity than the Elimination Method. Fi-
nally, the analogue of Equation (2) to the interval of dioids was established
in Hardouin et al. (2009) and the related problem of solving inequations of
the form Ax � x � B◦\x in Brunsch et al. (2012).

In summary, the contributions of this paper are:
(i) An extension of the algorithm presented in Cuninghame-Green and

Zimmermann (2001), considering the concepts of weak residuation and the
strong property for it, which is presented in Section 2.

(ii) A method for generating solutions to tropical linear equations, the
Primal Method, which is presented in Section 3. This method is a contex-
tualization of the the aforementioned extension to tropical linear equations.
It is also discussed the similarities of this method with previously published
works.
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2. Solving equations with weak residuated functions

In Cuninghame-Green and Zimmermann (2001), an algorithm was pro-
posed for solving Equation (3), when f and g are residuated. It can be
implemented by computing the sequences

x[k + 1] = f ](g(y[k])) ∧ x[k];

y[k + 1] = g](f(x[k])) ∧ y[k] (5)

(6)

for an initial x[0], y[0], in which f ] and g] are the residuation for f and for
g, respectively.

Using a similar reasoning, the following sequence can be derived, which
converges to a solution of f(x) = g(x):

x[k + 1] = f ](g(x[k])) ∧ g](f(x[k])) ∧ x[k]. (7)

This algorithm can be extended if the residuation is relaxed to a weaker
form.

Definition 2.1. (Weak residuation) A non-decreasing function f is said to
have a weak residuation if there is a non-decreasing function f \ such that

f(f \(x)) � x ∀x. (8)

�

For a given function, there exists many weak residuations, and as the
name implies, the requirement in Equation (8) by itself is not very useful.
So, it is important to introduce another definition.

Definition 2.2. (Weak residuation with strong property) For an element z,
a weak residuation f \z with the additional property

f \z(f(z)) � z (9)

is said to have the strong property for z.
�

5



Remember that the usual residuation is such that f(f ](x)) � x and
f ](f(x)) � x, both holding for all x. Then, clearly, the usual residuation is
a weak residuation which is strong for any element z. It is also important to
remark that one can, in analogy, define weak dual residuations with a strong
property with an element. These kind of residuations will be used later on
this paper.

Now, the residuated requirement in the algorithm presented in Cuninghame-
Green and Zimmermann (2001) can be replaced by weak residuated with a
residuation which is strong for a solution z of the equation. If z is lower
bounded, the fact that z is a solution guarantees the convergence to a lower
bounded solution.

Proposition 2.1. (Convergence with weak residuation with a strong prop-
erty for a solution): The sequence generated by Equation (7) with initial
condition x[0] � z converges to a lower bounded solution of Equation (3) if
weak residuation functions with the strong property to a lower bounded solu-
tion z are used (that is, switching f ], g] to f \, g\, respectively, in Equation
(7)).

Proof 2.1. It is straightforward to see that the sequence generated by Equa-
tion (7) is non-increasing (due to the minimum with x[k]). Therefore, it
either degenerates to the trivial solution ε or stabilizes.

Suppose it stabilizes, thus

x � f \z(g(x));

x � g\z(f(x)). (10)

Then, using Equation (8) (that is, after applying f and g in both sides
of the top and bottom inequalities of Equation (10), respectively)

f(x) � g(x);

g(x) � f(x). (11)

and thus it stabilizes to a solution.
The concern is that this solution can be the trivial one, ε. This is ad-

dressed by the fact that z has the strong residuation property with a lower
bounded solution z. Thus, by Equation (9)
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f \z(f(z)) � z ⇒ f \z(g(z)) � z (12)

where the fact that f(z) = g(z) was used. Then, also

g\z(f(z)) � z. (13)

And thus, combining Equations (12) and (13)

z = f \z(g(z)) ∧ g\z(f(z)) ∧ z. (14)

Then, z is a fixed point for the iteration map in Equation (7). Then, the
function

h(x) = f \z(g(x)) ∧ g\z(f(x)) ∧ x (15)

is monotonic. As x[0] � z, by induction and using Equation (14), it can be
shown that x[k] � z. Thus, as z is lower bounded, the sequence will converge
to a lower bounded solution.
�

Remark 2.1. When the residuated functions f(x) = Ex, and g(x) = Dx
(that is, one is dealing with Equation (2)) are used in the original algorithm
of Cuninghame-Green and K. Zimmermann, the resulting algorithm is iter-
ations of the function

h(x) = E◦\(Dx) ∧D◦\(Ex) ∧ x (16)

on an initial x[0] = x0.
This algorithm is well known and has been exploited in literature. For

example, Equation (16) appears in V.Dhingra and Gaubert (2006) and then
in Gaubert and Sergeev (2010), in connection with mean payoff games (that
will be discussed in Subsection 3.5). It is also related to the Alternating
Method of Cuninghame-Green and Butkovic (2003).

This method enjoys many important properties, such as for example gen-
erating a non-increasing sequence x[k] which converges to the greatest solu-
tion of Equation (2) smaller or equal than x0 (see Cuninghame-Green and
Zimmermann (2001)). This method will be denoted in this paper by Dual
Method, in contrast with one that will be presented further that share many
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(almost) dualized properties with them (and also the same origin, as a partic-
ular case of the proposed extended algorithm in Proposition 2.1), the Primal
Method.
�

3. The Primal Method

As a contextualization of the proposed extended algorithm, the Primal
Method will be presented. It concerns tropical linear equations of the form
Equation (2). First, the method will be established with independent con-
cepts. Then, the connection with the extended algorithm will be given.

It will be assumed from now on that the matrices E and D have their
entries only in Tmax, so no > entries is allowed. This is a weak assumption
that permits to avoid some technicalities concerning the expression >⊗ ε in
the proposed results.

3.1. Introduction

The Primal Method will be presented by a sequence of definitions and
propositions.

Definition 3.1. (Dominance) A dominance is a mapping Υ : {1, 2, ..., n} 7→
{1, 2, ..,m}. �

The reason behind this name will be clear later.

Definition 3.2. (Matrix generated by the dominance) Let E ∈ Tn×mmax and
Υ be a dominance. The matrix W(Υ, E) ∈ Tn×mmax is defined as the matrix
constructed in the following way:

{W(Υ, E)}ij ≡ Eij if Υ(i) = j;

{W(Υ, E)}ij ≡ ε otherwise. (17)

�

The matrix W(Υ, E) generated by a dominance is simply a matrix con-
structed from E, such that all rows have at most one non-null entry, and the
only (possible) non-null entry on row i is exactly j = Υ(i).
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Property 3.1. (Dual residuation) The map x 7→ W(Υ, E)x is dually resid-
uated if all rows of the matrix have exactly one non-null entry (by Definition
3.2, it can have one or zero non-null entries). This means that there ex-
ists a matrix, that will be denoted by W[(Υ, E) ∈ Tm×nmax , such that for any
x ∈ Tmmax, y ∈ Tnmax

W(Υ, E)x � y⇐⇒ x � W[(Υ, E)y. (18)

�

Remark 3.1. Hereafter, it will be assumed, without loss of generality, that
all rows of the matrix W(Υ, E) have at least one non-null entry (it is row
G-astic, see Butkovic and Hegedüs (1984)). The same must hold in regard to
W(Υ, D). It will be discussed later why this assumption is not restrictive. �

It can be seen, by inspection, that this matrix W[(Υ, E) is simply obtained
by switching the sign of all non-null entries and transposing the resulting
matrix. Thus, one introduces the following definitions.

Definition 3.3. (Dual residuation matrix) If W(Υ, E) ∈ Tn×mmax has one non-
null entry per row, then it is defined by W[(Υ, E) as the matrix obtained by
W(Υ, E) by switching the sign of all non-null entries and transposing the
result.�

Definition 3.4. (Induced dominance) A dominance Υz
E can be induced by

a vector z in a matrix E as follows

Υz
E(i) ≡ arg max

j
{

m⊕
j=1

Eijzj}. (19)

with the additional constraint that, for all i, if j = Υz
E(i) then Eij 6= ε.

�

Remark 3.2. Note that an induced dominance exists on a given matrix E if
and only if it is row G-astic. Otherwise, the additional constraint that Eij 6= ε
cannot hold. This constraint guarantees that W(Υz

E, E) is row G-astic (as
assumed without loss of generality in Remark 3.1). Then, if one considers
only induced dominances, the assumption that without loss of generality one
can assume W(Υ, E) as row G-astic can be transferred to the assumption that
without loss of generality E is row G-astic. The same must hold in regard to
D. This will be addressed further. �
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A given vector z can induce multiple dominances, since two or more
indexes can lead to the maximum values, as in the sum 2 ⊕ 1 ⊕ 2 in which
the first and third entry achieve the greatest value. Thus, in this case, Υz is
multiple-defined and can be any of those dominances.

Property 3.2. Now the meaning of the label “dominance” can be made
clear. If Υz

E is an induced dominance from a given z, then it can be shown
by inspection that

Ez = W(Υz
E, E)z. (20)

Thus, the mapping Υz
E maps to each row the dominating index in the

product Ez in this row (see Equation (19)).
�

In addition:

Property 3.3. It is straightforward by the structure of the matrix W(Υ, E)
that, for any Υ

E � W(Υ, E). (21)

�

Definition 3.5. (H matrix) Let E,D ∈ Tn×mmax , z ∈ Tmmax and Υz
E,Υ

z
D be

induced dominances. Then, the H matrix is defined as

H(E,D,Υz
E,Υ

z
D) ≡ W[(Υz

E, E)D ⊕W[(Υz
D, D)E. (22)

�

The H matrix has an important property.

Proposition 3.1. (Obtaining solutions) Any linear combination x of columns

of H(E,D,Υz
E,Υ

z
D)∗ ∈ Tm×mmax is a solution to the equation Ex = Dx.

Proof 3.1. Let x = H(E,D,Υz
E,Υ

z
D)∗y. Due to Kleene Closure properties,

this is equivalent to the following statement 2

2 If x = H∗y, then H∗x = H∗H∗y = H∗y since H∗H∗ = H∗ holds for Kleene Closures.
Thus x = H∗x, and it can be stated that x � H∗x � Hx.

10



x � H(E,D,Υz
E,Υ

z
D)x. (23)

Which is equivalent to:

x � W[(Υz
E, E)Dx;

x � W[(Υz
D, D)Ex. (24)

Due to the fact that the maps are dually residuated (Property 3.1), this
is equivalent to

W(Υz
E, E)x � Dx;

W(Υz
D, D)x � Ex. (25)

By using Property 3.3, it can be deduced that Ex � Dx and Dx � Ex.
Then, the statement is proved.
�

Proposition 3.1, however, does not guarantee that the Kleene Closure of
H(E,D,Υz

E,Υ
z
D) will be upper bounded (thats why the matrix is, generally,

in the complete dioid ∈ Tm×mmax ). Indeed, dominances Υz
E,Υ

z
D in which the

closure is a matrix full of >’s can be chosen. One must note that these are
degenerate solutions, but solutions nonetheless.

The next Proposition ensures how dominances that guarantee at least
partial upper boundedness of the Kleene Closure can be chosen, thus guar-
anteeing that non-trivial solutions are found.

Proposition 3.2. (Upper bounded Kleene Closure) Let z be an upper bounded
solution of Ex = Dx. Then, for all the rows j in which z is non-null, the
jth column of the matrix H(E,D,Υz

E,Υ
z
D)∗ is upper bounded.

Proof 3.2. By hypothesis

Ez = Dz. (26)

Using Property 3.2, on the left side

W(Υz
E, E)z = Dz. (27)
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Then

W(Υz
E, E)z � Dz. (28)

Using Property 3.1

z � W[(Υz
E, E)Dz. (29)

Similarly

z � W[(Υz
D, D)Ez. (30)

And then, by summing the statements in Equations (29) and (30)

z � H(E,D,Υz
E,Υ

z
D)z. (31)

Using the property of Kleene Closures 3, Equation (31) is equivalent to

z = H(E,D,Υz
E,Υ

z
D)∗z. (32)

And then the conclusion of the Proposition can be clear: if the jth entry
of z is non-null and z is upper bounded, then necessarily the jth column of
H(E,D,Υz

E,Υ
z
D)∗ must be upper bounded. Otherwise, one cannot draw any

conclusion.
�

Propositions 3.1 and 3.2 together constitute a method for computing
more solutions from the equation Ex = Dx from a given known one z. First,
find z (using any method). Then, find the dominance induced by z and then
compute H(E,D,Υz

E,Υ
z
D)∗. This procedure is what is denoted by Primal

Method.

Algorithm 3.1. Primal Method for tropical linear equations

1. Solve Equation (2), using any method, obtaining a solution

z;

3 If x � Hx, by pre-multiplying by H one concludes that Hx � H2x and thus x � H2x.
By induction, x � Hkx for any natural k. By adding all these inequalities for all k,
x � H∗x. Since H∗x � x, one can finally conclude that x = H∗x. Further, by Footnote
2, x = H∗y for some y.
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2. Use this solution to induce dominances, Υz
E,Υ

z
D (see Definition

3.4);

3. Construct the matrix H(E,D,Υz
E,Υ

z
D), as in Definition 3.5;

4. Any linear combination of columns of H(E,D,Υz
E,Υ

z
D)∗ is a solution.

�

Remark 3.3. It was mentioned in Remark 3.2 that, without loss of general-
ity, one can assume both E and D row G-astic . No generality is lost because,
if this is not the case, it is possible to rewrite the equation removing these
rows and appropriate columns/corresponding entries in E,D and x (these
will be fixed to ε) such that the new system has this property. If both rows of
E and D are null, they can be removed without any problem. If it is only in
E or D, say the ith of D, there is a situation

m⊕
j=1

Eijxj = ε (33)

and then, for all j such that Eij 6= ε necessarily xj = ε. These variables can
be set to ε, then they can be removed from the vector x along with the ith row
and jth column of both E and D. One can proceed in that way till there is
nothing to remove and no row in E or D is null.
�

3.2. Connection with the extended Cuninghame-Green and Zimmerman al-
gorithm

The Dual Method (a specialization of the Cuninghame-Green and Zim-
merman algorithm to linear equations, see Remark 2.1) is an iterative algo-
rithm. Regardless of the method used to compute the Kleene Closure, the
Primal Method as presented is not iterative. However, one can note that
z = H(E,D,Υz

E,Υ
z
D)∗x0 can be implemented by the sequence

x[k + 1] = (H(E,D,Υz
E,Υ

z
D)⊕ I)x[k], (34)

for the initial x[0] = x0. Then, the Primal Method can also be seen (im-
plemented) as an iterative method. This is not the most computationally
efficient way to implement it, since computing powers of (A ⊕ I) is not the
best algorithm for computing A∗.
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If the dioid is swapped from Tmax to Tmin, the usual residuation in the
dual dioid is just the dual residuation in the original dioid (to avoid confusion,
everything will be nominated by the reference of Tmax). Then, it can be seen
that the map f(x) = Ex has a weak dual residuation with a strong property
for an element z: the map f †z(x) = W[(Υz, E)x as defined in Definition 3.2
using an induced dominance.

Proposition 3.3. (Dominances induce a weak dual residuation with a strong
property) f(x) = Ex has as weak dual residuation the map f †z(x) = W[(Υz, E)x
with strong property for z.

Proof 3.3. It can be noted that

Ey � W(Υz, E)y ∀y (35)

(see Property 3.3). Thus, using y = W[(Υz, E)x and the fact that

W(Υz, E)W[(Υz, E) � I (36)

(since x 7→ W[(Υz, E)x is a dual residuation for x 7→ W(Υz, E)x), it can be
concluded that

EW[(Υz, E)x � x ∀x (37)

which is exactly the requirement for a weak dual residuation, that is, Equation
(8) with the order swapped. The strong property comes from Property 3.2:

W(Υz, E)z = Ez. (38)

Thus

W(Υz, E)z � Ez ⇐⇒ z � W[(Υz, E)Ez (39)

using the dual residuation of the map x 7→ W(Υz, E)x. Thus, the dual resid-
uation version of Equation (9) arises and this weak dual residuation has the
strong property for z.
�

Then, if Equation (7) is contextualized to Tmin and also weak residuations
who have a strong property for a solution are used, it can be concluded that
this equation reduces to
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x[k + 1] = W[(Υz, E)Dx[k]⊕W[(Υz, D)Ex[k]⊕ x[k]. (40)

It is straightforward to see that the resulting Equation (40) is the iterative
form of the Primal Method, as in Equation (34). Thus, as claimed, the Dual
Method and Primal Method share the same origin.

It will now be proved that they also share (almost) dualized properties.

3.3. Properties of the method

Some results concerning the properties of the solutions found by the Pri-
mal Method are presented now. For this, it is useful to use the iterative form
of the method, Equation (34). Thus, this form will be the one considered in
this subsection.

First, a dominance space is defined.

Definition 3.6. (Dominance space) Given a dominance Υ and a matrix E,
it is called D(Υ, E), the dominance space of Υ under E, the sets of all x
such that

Ex = W(Υ, E)x. (41)

�

It is important to remark that D(Υ, E) is a semimodule, since it is the
solution set of a linear tropical equation which can be given as the image of
a finite matrix (see Butkovic and Hegedüs (1984)). In fact, by Property 3.3,
Equation (41) is equivalent to W(Υ, E)x � Ex. Then, by using Property 3.1,
x � W[(Υ, E)Ex. This fact has two interesting implications. The first one is
that this implies that the semimodule is convex in the traditional sense. The
second one is that this semimodule is generated by the matrix (W[(Υ, E)E)∗

(see Footnote 3).

Proposition 3.4. (Exhaustion of dominance space) Any solution x gener-
ated by the Primal Method using a matrix H(E,D,Υz

E,Υ
z
D)∗ is such that

x ∈ D(Υz
E, E) ∩ D(Υz

D, D). Furthermore, H(E,D,Υz
E,Υ

z
D)∗ is a generator

matrix for all such x’s.

Proof 3.4. Consider x a solution. For the first part, using Property 3.3
and post multiplying by x
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Ex � W(Υz
E, E)x. (42)

Now, from the first Equation in (25), and using the fact that Ex = Dx

W(Υz
E, E)x � Ex. (43)

And thus Ex = W(Υz
E, E)x, and then x ∈ D(Υz

E, E). A similar results
holds for D and the first part is proved.

For the second part, suppose that x ∈ D(Υz
E, E) ∩ D(Υz

D, D). Then

W(Υz
E, E)x = Ex;

W(Υz
D, D)x = Dx. (44)

See Property 3.2. Using the fact that Ex = Dx, and also using the fact
that the equality implies, in particular, the inequality.

W(Υz
E, E)x � Dx;

W(Υz
D, D)x � Ex. (45)

Then, using the same manipulations as in Proposition 3.1, it can be con-
cluded that x = H(E,D,Υz

E,Υ
z
D)∗x. Then, clearly x is a linear combination

of columns of H(E,D,Υz
E,Υ

z
D)∗ and the proof is completed.

�

Using the iterative form of the Primal Method, one may show the follow-
ing result concerning the evolution of the sequence and its final value.

Proposition 3.5. ( Sequence characterization) The sequence x[k] is non-
decreasing, and converges to the smallest solution x such that x ∈ D(Υz

E, E)∩
D(Υz

D, D) and x � x0.

Proof 3.5. The fact that it is a non-decreasing sequence is straightforward
by the sum of x[k] in Equation (34).

For the second part, let X be the set of all solutions x (Ex = Dx) inside
D(Υz

E, E) ∩ D(Υz
D, D) and X�(x0) all x ∈ X such that x � x0. Then, by

the conclusions of Proposition 3.4, if x ∈ X
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x = H(E,D,Υz
E,Υ

z
D)∗x ⇒ x � H(E,D,Υz

E,Υ
z
D)∗x. (46)

With this in regard, if additionally x � x0 one has x � H(E,D,Υz
E,Υ

z
D)∗x0.

Thus, any member of X�(x0) is minored by H(E,D,Υz
E,Υ

z
D)∗x0, which is

the value in which the sequence x[k] converges and also a member of X�(x0).
Then, the proof is completed.
�

S = D(Υz
E, E) ∩D(Υz

D, D) is a semimodule, being an intersection of two
semimodules. This semimodule has the special property that the smallest
solution of Ex = Dx exists inside it.

Property 3.4. It can be seen that the non-iterating Primal Method (com-
puting H(E,D,Υz

E,Υ
z
D)∗) and iterating Primal Method (iterating the map

in Equation (34)) are related by using the initial conditions formed by the
columns of the identity matrix in the iterating Primal Method . �

Note that the Dual Method generates a non-increasing sequence which
converges to the greatest solution smaller or equal than the initial x0. The
Primal Method has an “almost” dual property in that regard: it generates a
non-decreasing sequence which converges to the smallest solution greater or
equal than the initial x0 which is inside the dominance spaces. The “...which
is inside the dominance space” part, not present in the Dual, is which justifies
the “almost”.

3.4. Numerical example

Let

Rp⊕ r = Sp⊕ s; (47)

be an equation in which R, r, S and s are given by


2 −3 −2
−4 −3 4
0 3 −3
−3 1 −2

p⊕


−2
−3
0
−1

 =


2 1 −1
1 2 0
0 −1 −3
−3 2 −3

p⊕


1
−3
2
−5


(48)
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Using the Dual Method, the augmented solution z = (3 − 2 0 0)T can be
found, thus psolD = (3 − 2 0)T is a solution.

By inspection of the products Ez and Dz, it is possible to conclude that

Υz
E(1) = 1; Υz

E(2) = 3;

Υz
E(3) = 1; Υz

E(4) = 1.

(49)

Υz
D(1) = 1; Υz

D(2) = 1;

Υz
D(3) = 1; Υz

D(4) = 1,

(50)

and thus

W(Υz
E, E) =


2 ε ε ε
ε ε 4 ε
0 ε ε ε
−3 ε ε ε

 ; W(Υz
D, D) =


2 ε ε ε
1 ε ε ε
0 ε ε ε
−3 ε ε ε

 ; (51)

W[(Υz
E, E) =


−2 ε 0 3
ε ε ε ε
ε −4 ε ε
ε ε ε ε

 ; W[(Υz
D, D) =


−2 −1 0 3
ε ε ε ε
ε ε ε ε
ε ε ε ε

 .

(52)
And also

H(E,D,Υz
E,Υ

z
D)∗ =


0 5 3 2
ε 0 ε ε
−3 2 0 −1
ε ε ε 0

 . (53)

The first, second and fourth columns of H(E,D,Υz
E,Υ

z
D)∗ are linearly

independent. The last column generates the solution psolP = (2 ε − 1)T ,
which is smaller or equal than psolD. It is also remarkable that this solution
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Table 1: Shown in the table: the mean of number of linearly independent solutions found
in the Primal Method, the standard deviation of LIp, the mean of time taken to end
the Primal Method (seconds, and including the time for solving the equation with the
Dual Method), the standard deviation of tp, the mean sparsity of matrix H(E,D,Υz

E ,Υ
z
D)

(proportion of ε entries), the standard deviation of nε.

n LIp σ(LIp) tp σ(tp) nε σ(nε)

50 35.45 2.03 0.04 0.005 71% 3%
100 77.65 2.49 0.15 0.005 76% 3%
200 166.25 2.75 0.74 0.082 82% 2%
300 254.15 3.16 1.88 0.060 85% 1%

psolP is the smallest one in D(Υz
E, E) ∩ D(Υz

D, D). This is due to the fact
that it was generated by the augmented initial condition (ε ε ε 0)T in the
iterating Primal Method (see Property 3.4), and thus used as initial p the
smallest initial condition possible: ε.

Remark 3.4. In order to find the smallest solution of Equation (4) inside
a dominance space, it is sufficient to transform it into linear one and use the
iterating Primal Method, in the augmented vector x, with the initial condition
p[0] = ε and y = 0.
�

As an illustration of the practical behavior of the method, an experiment
(using the computer package ScicosLab 4.4.1) in which the Primal Method
was applied to systems of the form of Equation (47) was done. The matrices
E,D ∈ Tn×nmax were square, with random entries between −10 and 10 or null,
with 20% of entries equal to ε. The experiment was done with values of n
being 50, 100, 200 and 300. For each n the experiment was repeated 50 times.
The results are shown in Table 1. From this table, it is possible to infer that
the Primal Method seems to yields a high number of linearly independent
solutions and also with a high sparsity. Further, that it has a considerable
speed even with a relatively large dimension as n = 300.

As mentioned in Section 1, the Primal Method generates solution with
attractive properties in some applications. For example, when designing
feedback controllers for guaranteeing that certain constraints holds in the
firing dates of Timed Event Graphs, it may be also desirable that this control
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has the secondary property of not slowing down the system performance (for
example, it may be a manufacturing system in which the firings are related
to the production rate). Further, a tertiary desirable characteristic could be
that this control rule is “simple” enough to implement.

This control can be designed to be completely characterized by a matrix
F , which can be obtained by solving a tropical affine equation as Equation
(47) (after vectorizing the matrix F in a vector x). Then, the requirement
of performance can be transferred to the matrix F having small entries, and
the simplicity in the sparsity of it (because it would require less connections
between the transitions of the Timed Event Graph). This is fitting for the
Primal Method, which can generate small and sparse solutions. So, the affine
equation can be solved (by any method, the Dual Method for example) and
the resulting F can be used in the Primal Method to generate a better
solution, F primal by finding, for example, the smallest solution inside the
dominance (see Remark 3.4). The reader is invited to read Gonçalves et al.
(2012) in order to obtain some results concerning feedback synthesis and the
utility of the Primal Method in that context.

3.5. Connection with other works

The proposed method has similarities with some other previously pub-
lished results.

Connection to the Cellular Decomposition of Develin and Sturm-
fels (2004): The Develin-Sturmfels cellular decomposition decomposes a
tropically convex polytope tconv(V ) , considered as the image of a finite
matrix V ∈ Tn×mmax , in a finite number of convex (in the traditional sense)
polytopes. It does so using the concept of type: a type of a vector x relative
to V , typexV , is a set of n subsets of {1, 2, ...,m} defined such that 4:

typexV (i) = {j ∈ {1, 2, ...,m} such that
n⊕
k=1

(−xk)Vkj = (−xi)Vij}. (54)

A type and an induced dominance are closely related. In fact, if Υx
M(i) = j

then i ∈ type−x
MT (j) (note that the type must act on −x and the matrix M

must be transposed).

4The original work of Develin and Sturmfels (2004) uses Tmin instead of Tmax. Further,
it assumes that the linear span of the rows of V generates the tropically convex polytope.
The definition was adapted to the settings of this paper: Tmax and column linear span.

20



If one defines for a type S the set XS of all points x ∈ Tnmax such that
their type typexV contains S, then (i) XS is convex in the traditional sense
(ii) XS is bounded if and only if S(j) 6= ∅ for all j and (iii) tconv(V ) is the
union of all bounded XS. Further, XS can be completely characterized as the
image of a Kleene Closure matrix C(S)∗.

The solution set of Equation (2) -an implicit characterization of the semi-
module of solutions- is a tropically convex polytope, that is, there is a finite
matrix G (see Butkovic and Hegedüs (1984)) such that all solutions can be
written as x = Gy for a vector y - an explicit characterization of the semi-
module of solutions. Thus, in possession of a solution z, one can compute its
type typezG and with it characterize a convex set of solutions as the image of
the matrix C(typezG)∗. The Primal Method works similarly, but uses an im-
plicit characterization (instead of the explicit), that is Equation (2), to com-
pute a convex set of solutions as the image of the matrix H(E,D,Υz

E,Υ
z
D)∗.

Further, the Primal Method also induces a decomposition by convex cells of
the semimodule of solutions if one enumerates all dominances Υ and con-
siders all the sets generated by the image of the upper bounded matrices
H(E,D,ΥE,ΥD)∗. This approach was the one taken in the work described
below.

Connections with the Algorithm of Truffet (2010): That work
deals with equations of the form Ax � Bx, A,B ∈ Tn′×m

max . Null row con-
siderations aside (the author considers explicitly the null rows of B when
constructing the solution, as opposed to this paper in which the null rows
are considered to be, without loss of generality, non existent by Remark 3.1),
the author enumerates a set of n′-tuples with values ranging from 1 to m, that
is, a set of functions j : {1, 2, ..., n′} 7→ {1, 2, ...,m} . Then, they are used to
construct the entire semimodule of solutions to the tropical linear equation
as an image of a matrix G by the augmentation of individual matrices

Gj =

(
n⊕
i=1

Qij(i)

)∗
(55)

for all n′-tuples j in the set.
These results can be interpreted by using the notations of this paper. But

since in this paper equations of the form of Equation (2) are considered, it is

necessary to use A = (ET

99
9DT )T , B = (DT

99
9ET )T so Ax � Bx⇒ Ex = Dx

(so, n′ = 2n since E,D ∈ Tn×mmax ). Then, in the notation of this paper, a j is
a dominance on the matrix B and thus a dominance on E (denoted by ΥE)
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augmented with a dominance in D (denoted by ΥD). Then, the matrix inside
the Kleene Closure of Equation (55) can be written as H(E,D,ΥE,ΥD)⊕ I
and, by consequence, Gj = H(E,D,ΥE,ΥD)∗.

The main difference of the approach of this paper and that one is that
the former presents a guidance for choosing dominances in which the “use-
fulness” is guaranteed (that is, those induced by solutions with appropriate
properties). The latter work generates all solutions by enumerating a set
of “promising ” dominances and computing the Gj for all of them. These
promising dominances are obtained by discarding the n′-tuples j that would

surely generate an unbounded (and therefore useless) Gj. However, (in gen-
eral) it is possible that event the promising dominances generates unbounded
solutions, and these must be removed from the matrix G later.

Connection with Mean Payoff Games: Consider a directed bipartite
graph with two disjoint sets of nodes, say “CIRCLE” nodes (n nodes i =
1, 2, .., n) and “SQUARE” nodes (m nodes j = 1, 2, ..,m). A game is played
in which, initially, a pawn is in one SQUARE node j. A player, MIN, plays
by moving the pawn to a CIRCLE node i and receives from the other player,
MAX, an integer amount Aij. Then, it is time to the player MAX to move
the pawn to a SQUARE node j′ and then receiving from MIN an integer
amount Bij′ . Then, a turn ends and this zero-sum game proceeds again with
a move from MIN player, and so on. The player MAX aims to maximize his
receiving while the player MIN aims to minimize this same amount. Then,
one considers the mean payoff at the turn k as the cumulative reward of the
player MAX at turn k, divided by k. With these definitions, it is of interest
the vector χj which gives the value 5 of this game when the starting SQUARE
node is j and k goes to infinity. This is a mean payoff game.

There is a close connection between tropical linear equations, written on
the form Ax � Bx A,B ∈ Tn×mmax (which can be formulated as Equation (2)
and vice-versa, and thus are equivalent in terms of what they can describe)
and mean payoff games described above. In fact, the map f(x) = A◦\(Bx)
can be seen as a dynamic programming operator of the described game.
Then, solving the tropical linear equation equation can be reduced to the
problem of finding an invariant half-line to this map. These ideas have been
developed in V.Dhingra and Gaubert (2006); Akian et al. (2010); Gaubert
et al. (2012); Gaubert and Sergeev (2010) and in the references therein.

5In the sense of the MINIMAX theorem, see Osborne and Rubinstein (1994).

22



The Primal Method can be also interpreted by what is denoted in the
literature as one player mean payoff game (V.Dhingra and Gaubert (2006)),
which establishes mean payoff games as another common ground to both
Primal and Dual, other than the Extended Cuninghame-Green and K. Zim-
mermann algorithm presented in Section 2. In an (MAX) one player mean
payoff game, the MAX player uses a positional strategy σ : {1, 2, .., n} 7→
{1, 2, ...,m}, that is, he chooses an a priori strategy that he will chose
SQUARE node j = σ(i) when it is at the CIRCLE node i. The player
MIN then aims to minimize the rewards of player MAX based on a more
general strategy. This positional strategy is simply what is called dom-
inance is this paper. With this strategy, the equation Bx � Ax is re-
duced to an Equation Bσx � Ax, in which Bσ is dually residuated, that
is Bσx � Ax ⇐⇒ x � (Bσ)[Ax. Then, a standard Kleene Closure can
be used. This step is essentially an application of the Primal Method, but
adapted to Equation Ax � Bx instead of Equation (47). However, not all
strategies σ generate “useful” dominances (upper bounded solutions): one
needs that all χj � 0 (or equivalently, ρ((Bσ)[A) � 0) to this to happen. The
fact that the Primal Method presented in this paper uses another solution
(with special characteristics) to generate dominances addresses this problem.

Connections with the Algorithm of Lorenzo and de la Puente
(2011): The concept of dominance is closely related to the concept of Win-
ning sequences in Lorenzo and de la Puente (2011). Following this work,
given a system as Equation (2), with E,D ∈ Tn×mmax , a winning pair is a pair
(i, j) ∈ {1, 2, ...,m} × {1, 2, ...,m} of indexes. A winning sequence is a set of
n winning pairs such that a compatibility requirement for the matrices E, D
holds. This compatibility is a necessary condition for the proposed algorithm
in Lorenzo and de la Puente (2011) to be successful in returning solutions
when this winning sequence is used.

The winning sequences are replaced in this work by a pair of induced
dominances, {Υz

E,Υ
z
D}. The compatibility requirement then comes natu-

rally from the fact that z is a solution, by hypothesis. Using a winning
sequence, the authors derive from Equation (2) a set of bivariate equalities
and inequalities. Then, a specialized gaussian elimination is used to generate
the entire set of solutions that are induced by that winning sequence. The
reasoning here is similar, but a previously found solution is used for finding
adequate dominances and Kleene Closures are used instead of the gaussian
elimination. As it was proved in Proposition 3.4, it also generates the entire
set of solutions inside that particular dominance.
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Connections with the Algorithm of Gaubert et al. (2012): In
Gaubert et al. (2012), algorithms for solving tropical fractional linear pro-
grams (tropical analogues of fractional linear programs) are presented. One
of the algorithms (Algorithm 2) concerns minimization problems, and an
idea closely related to the Primal Method was used for solving them. At each
step, the current suboptimal solution x[k] is used to transform the constraint
equation (which determines the feasible set of the optimization problem)

Rx⊕ r � Sx⊕ s (56)

(which is equivalent to equations of the form Equation (47) discussed in this
paper) in a “simplified form” Rσx � Sx ⊕ s. The matrix Rσ is, in the
notations of this paper, the matrix generated by the dominance of x[k] in

R, that is, Rσ = W(Υ
x[k]
R , R). Then, the equation is reduced to the form

x � W[(Υ
x[k]
R , R)(Sx ⊕ s) in which, as discussed in this paper, the smallest

solution x[k + 1] � x[k] exists and can be computed using Kleene Closures.
This step is essentially an application of the Primal Method, but adapted to
Equation (56) instead of Equation (47) (see the connection with mean payoff
games above). Then, after this procedure one has either a smaller (therefore
better) objective function - and thus the iteration must continue - or the
algorithm converged to (one possible) optimal solution.

Among the works cited, this one is probably the closest one to the pro-
posed Primal Method. This is due to the fact that it contains implicitly
an important feature of the algorithm: the idea that a solution is useful to
guarantee the convergence (upper boundedness) of the Kleene Closure of a
specially constructed matrix.

4. Acknowledgements

The authors are grateful to Coordenação de Aperfeiçoamento de Pes-
soal de Nı́vel Superior (CAPES), Conselho Nacional de Desenvolvimento
Cient́ıfico e Tecnológico (CNPq) and Fundação de Amparo a Pesquisa do
Estado de Minas Gerais (FAPEMIG) in Brazil. They are also grateful to
the anonymous reviewers for providing important advices and pointing out
other related works to the one in this paper, therefore improving its quality.
They also express their gratitude to Hossein Bonyan Khamseh for the helpful
remarks and tips to improve the English writing

24



References

Akian, M., Gaubert, S., Guterman, A., 2010. The correspondence between
tropical convexity and mean payoff games. In: Mathematical Theory of
Networks and Systems. pp. 1295–1302.

Allamigeon, X., Gaubert, S., Goubault, E., 2010. The tropical double descrip-
tion method. In: 27th International Symposium on Theoretical Aspects of
Computer Science (STACS 2010). Vol. 5. pp. 47–58.

Baccelli, F., Cohen, G., Olsder, G., Quadrat, J., 1992. Synchronization and
Linearity. Wiley, New York.

Brunsch, T., Hardouin, L., Maia, C. A., Raisch, J., 2012. Duality and interval
analysis over idempotent semirings. Linear Algebra and its Applications
437, 2436–2454.
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