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Abstract

Very recently, tropical counterparts of fractional linear programs have been
studied. Some algorithms were proposed for solving them, with techniques
ranging from bisection methods to homeomorphisms to formal power series.
In this paper, some algorithms are also proposed. They mainly rely in the
ability of finding the greatest and smallest solutions of tropical equations,
a subject that was discussed in a previous work of the authors (Gonçalves
et al. (2013)).
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1. Introduction

Tropical Fractional Linear Programs (denoted as TFLP hereafter) are
problems of the form ( Gaubert et al. (2012)) (see Section 2 for the notations)

max /min (wTp⊕ α)◦/(fTp⊕ β) such that

Rp⊕ r = Sp⊕ s. (1)

This formulation can be used to solve optimization problems for multi-
processor systems (see Butkovic and Aminu (2008)) and to compute the
tightest inequality of the form pi−pj ≥ K if p is inside a tropical polyhedra,
which finds applications in static analysis (see Gaubert et al. (2012)). It can
also be used to check if a set of equalities Rp⊕ r = Sp⊕ s implies another
equality wTp ⊕ α = fTp ⊕ β without the burden of finding all solutions
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explicitly 1. This is true if and only if both max and min versions of Problem
1 have optimal value 0. This is worthy of mention because, in contrast with
the traditional algebra, in the tropical setting there are equalities that can be
logically deduced from a set of other equalities, but cannot be obtained by
taking tropical linear combinations of these (see Gaubert and R.Katz (2009)).
Hence, it is not always possible to expect to claim that Rp ⊕ r = Sp ⊕ s
does not imply wTp⊕ α = fTp⊕ β by verifying the solvability of the equa-
tions zTR = w, zT r = α, zTS = fT and zT s = β for z 2. With an efficient
algorithm for solving TFLPs, one can check the validity of this proposition
in an easy manner.

These kind of optimizations problems have began receiving attention from
scientific community not a long time ago. By the authors knowledge, the
first published work that has solved a particular case of Problem 1 (save
the very particular cases in which it can be solved by a direct application
of residuation theory, such as Ax � b) of Problem 1 was ( Butkovic and
Aminu (2008)). This special case is when f =⊥ and β = 0 (Tropical Linear
Programs, denoted as TLP hereafter)

max /min wTp⊕ α such that

Rp⊕ r = Sp⊕ s (2)

and an algorithm was presented to solve them. The idea is that it is possible
to check whether a value of objective function in Problem 1 is achievable
by solving a tropical affine equation. Thus, if a lower and upper bound for
the objective function is derived, it is possible to use a bisection method
searching for the optimal value. The recent paper ( Butkovic and MacCaig
(2013)) pursues an integer solution to the problem when the entries are real
numbers, also using a similar bisection approach.

( Gaubert et al. (2012)) studied the complete problem, and derived a
Newton-like algorithm which works by solving a sequence of mean-payoff
games. More recently, ( Allamigeon et al. (2013)) used the field of general-
ized Puiseux series over R, K (formal power series in one variable in which

1Finding all solutions of a tropical linear equation can be a very time consuming task,
so, it is advantageous to avoid it whenever possible.

2The analogue of this affirmation for traditional algebra, i.e Ax = b implies cTx = d
only if (the “if” part is trivial) there exists y such that yTA = cT and yTb = d is a
consequence of the Farkas Lemma.
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the exponents can be any real number) to develop an alternative approach
to the problem. It explores the idea of valuation, a function which maps
each Puiseaux series to the opposite of its smallest exponent with a non 0
coefficient. In a special subset of K, K+ (the set of “non-negative” Puiseux
series), this valuation function is a homeomorphism between K+ and the
tropical semiring Tmax. Since many of the results used in conventional linear
programming rely only in axioms of ordered fields, such as K, the classical
Simplex algorithm can be adapted to solve linear programs over K (instead
of the conventional R) and hence, thanks to the valuation homeomorphism,
tropical lineal programs as well.

In this paper, some algorithms will be proposed to solve the general Prob-
lem 1. The first algorithm, to solve max type TLPs, comes directly from a
remarkable result about tropical affine equations: they do have a greatest
solution. For min type TLPs, a more sophisticated approach using the re-
cent developments in (Gonçalves et al. (2013)) is presented. The connection
between TLPs and TFLPs is made by using a tropical version of the clas-
sical Charnes-Cooper method ( Charnes and Cooper (1962)) for converting
(traditional) fractional linear programs to (traditional) linear programs. As
a byproduct of the derivation of those methods, some interesting conclusions
can be obtained. Mainly that, as far as the solution p is concerned, the objec-
tive function do not matter for max TLPs and hence that the numerator and
denominator of the objective functions in max and min TFLPs, respectively,
also do not.

2. Tropical Algebra and Definitions

Tropical Algebra (also known as the Max-Plus Algebra), is the semiring3

Tmax = {Z ∪ {−∞},⊕,⊗} (3)

in which ⊕ is the maximum and ⊗ is the traditional sum. It is usual, as
well, to denote the neutral element of the sum, −∞, as ⊥. It is also usual to
define the complete dioid Tmax augmented with the element∞, here denoted
as >. It is also defined >⊗ ⊥=⊥ ⊗> =⊥. As in the traditional algebra, the
symbol ⊗ is usually omitted.

3Usually, the name is used to denote the isomorphic dioid Min-Plus.
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It is assumed from now on that the reader is familiar with this algebra
basics and also with the concepts of residuation and Kleene Closure ( Baccelli
et al. (1992)). The pointwise infimum is denoted by ∧. ◦\, ◦/ are used to denote
the left and right residuation of the product, respectively (more details in
Blyth and Janowitz (1972)):

A◦/B ≡ max
XB�A

X,

A◦\B ≡ max
AX�B

X. (4)

The dual residuation of the sum, written as ◦−, is defined as:

A◦−B ≡ min
X⊕B�A

X. (5)

By analogy with the traditional algebra, if A is a matrix and α a scalar,
A◦/α will be the pointwise scalar residuation of the entries of A by α. ⊥ is a
matrix of appropriate dimensions in which all the entries are ⊥, while > is
a matrix in which all the entries are >.

An equation can be referred as Problems throughout this paper if it rep-
resents an optimization problem. For example, concerning the very first
equation of this paper, it will be written “Problem 1” instead of “Equation
(1)”.

3. Dual and Primal Methods

In this section, a short review of two “cousins” algorithms, the Dual
and Primal Methods, will be given (an in depth discussion can be found in
Gonçalves et al. (2013)). Both methods solve linear tropical equations of the
form

Ex = Dx. (6)

3.1. Dual Method

The Dual Method (this is a denomination given in the paper (Gonçalves
et al. (2013)), since as far as one is concerned there is no official denomi-
nation) is an iterative method described in literature. For example, it ap-
pears in (Dhingra and Gaubert (2006); Gaubert and Sergeev (2013)) and
also as a particular case of a slight modification of the general algorithm
of (Cuninghame-Green and Zimmermann (2001)). It is also related to the

4



Alternating Method presented in (Cuninghame-Green and Butkovic (2003)).
The main appeal of this algorithm for this paper is the fact that it is able to
find the greatest solution of a tropical linear equation 4.

It solves Equation (6) by iterating the sequence

x[k + 1] = E◦\(Dx[k]) ∧D◦\(Ex[k]) ∧ x[k] (7)

on an initial x[0]. It can also solve (Cuninghame-Green and Butkovic (2003))

Rp⊕ r = Sp⊕ s (8)

by solving the modified equation

Rp⊕ ry = Sp⊕ sy (9)

which is linear and reduces to Equation (6) if one sets x = (pT 99
9 y)T , E =

(R 99
9 r) and D = (S 99
9 s).

If a finite (no ⊥ entries) solution exists, the Dual Method is able to find
in a finite number of steps the greatest solution to Equation (8) smaller than
or equal to a desired upper bound pUB. If one solves the linear Equation (9)
with the initial condition p[0] = pUB and y[0] = 0, a solution smaller than or
equal to pUB will exist if and only if y remain 0 throughout the entire sequence
of iterations (see Gonçalves et al. (2013)). Thus, the greatest solution can

be found using the initial condition x[0] = (> 99
9 0)T .

Being closely related to the Alternating Method of (Cuninghame-Green
and Butkovic (2003)) (see Gonçalves et al. (2013)), the Dual Method has
a pseudo-polynomial complexity. (Cuninghame-Green and Butkovic (2003))
also presents conditions which ensure that the method converges in finite
time (it is possible that one or more of the entries of x decrease indefinitely
to ⊥ thus implying an infinite number of steps for convergence). In practice,
however, the algorithm seems to be efficient (convergence with finite time
and with a low number of steps) for handling typical problems.

4The remarkable observation is that the greatest solution to any tropical affine equation
does exist, thanks to the idempotence property of the sum in the tropical semiring. This
can be concluded by the following simple observation. Let X be the set of all solutions of
the affine equation, then

⊕
x∈X x is clearly the greatest member of X , and thus it is itself

a solution to the equation.
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3.2. Primal Method

The Primal Method works, in some ways, in a dual manner to the Dual
Method. Since the smallest solution of a tropical affine equation does not
exists in general5 , the algorithm is able to find the smallest solution in
a particular subset. The method provides other solutions to Equation (6)
by using a previously found one, denoted by z. It works by finding the
dominances of z on E and D. For instance, the dominance of z on E maps
to each row i of E a column j, j = Υ(i), such that for the ith row the jth

column dominates in the product Ez. Thus⊕
j

Eijzj = EiΥ(i)zΥ(i) ∀i. (10)

For example, if the first row of E is (1 2 − 3) and z = (0 3 10)T , then
the product is (1 · 0) ⊕ (2 · 3) ⊕ ((−3) · 10) = 1 ⊕ 5 ⊕ 7 = 7. Note that the
third term (−3) · 10 = 7 is the dominating term, so in this case Υz

E(1) = 3.
A dominance may not be unique, as if z′ = (0 5 10)T is used instead of z, in
which the second and third terms achieves the maximum. In this case, any
dominance can be chosen.

With these dominances Υz
E and Υz

D for E ∈ Tn×mmax and D ∈ Tn×mmax respec-
tively, one can create matrices W[(Υz

E, E) ∈ Tm×nmax and W[(Υz
D, D) ∈ Tm×nmax

such that

{W[(Υz
E, E)}ij ≡ −Eji if j = Υz

E(i);

{W[(Υz
E, E)}ij ≡⊥ otherwise, (11)

and respectively for W[(Υz
D, D) using D.

Thus, if one sets

H(E,D,Υz
E,Υ

z
D) ≡ W[(Υz

E, E)D ⊕W[(Υz
D, D)E (12)

then x = H(E,D,Υz
E,Υ

z
D)∗y is a solution for any y.

As the Dual Method, the Primal is also able to solve Equation (8) by
transforming it into the Equation (9) and using, for a desired pLB, y =

(pTLB 99
9 0)T . The solution found will be the smallest one inside the so called

5A simple example: x1 ⊕ x2 = 0. The solution set is obviously ((x1 = 0) AND (x2 ≤
0)) OR ((x1 ≤ 0) AND (x2 = 0)), for which the smallest element does not exists.
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dominance space induced by z on E and D that is greater than or equal to
the lower bound pLB (see Gonçalves et al. (2013)). Thus, the smallest solution

inside this dominance space can be found by using y = (⊥ 99
9 0)T (that is, p

being the last column of H(E,D,Υz
E,Υ

z
D)∗ without the last entry).

The Primal Method relies in the ability of finding a solution to Equation
(6), which can be done (for example) with the Dual Method. Disregarding the
time for computing this solution, the Primal Method is essentially a problem
of computing a Kleene Closure, which is tantamount to a problem of all-to-
all maximum path in a graph. There exist strongly polynomial algorithms
for solving this problem such as, for example, the Floyd-Warshall Algorithm
(which is O(n3) for a n × n matrix, see Robert (1962); Stephen (1962)). In
some applications (for example, for solving TLPs as will be presented further
in this text) it is necessary to compute only one specific solution (a column
of H(E,D,Υz

E,Υ
z
D)∗). In this case, a more efficient one-to-all maximum path

algorithm can be used.

4. Solving TLPs and TFLPs

4.1. Max type programs

Max type TLPs are problems of the form

max wTp⊕ α such that

Rp⊕ r = Sp⊕ s. (13)

As discussed in Subsection 3.1, the greatest solution to Equation (8) always
exists, that is, there exists a solution pmax such that for all other solutions p
of this affine equation pmax � p.

Thus, Max-type TLP can be solved disregarding w and α, by finding this
greatest solution of Equation (8). The Dual Method can be used for this
purpose. Thus, the algorithm is very straightforward.

Algorithm 4.1. Solving max type TLP

1. Find the greatest solution of Equation (8) using the Dual Method.
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4.2. Min type programs

Min type TLPs are problems of the form

min fTp⊕ β such that

Rp⊕ r = Sp⊕ s. (14)

The method for solving Min type TLPs is not as straightforward as solving
Max type ones since, in general, the smallest solution of Equation (8) does
not exists. The Primal Method addresses this problem partially by finding
the smallest solution inside a special set, the dominance space. For that, it
is necessary to find a solution to the equation first (see Subsection 3.2).

Given a solution psol to Equation (8), the optimality of it can be ensured
if and only if there is no solution to the following Equation

fTp⊕ β � γ

with γ = (−1)(fTpsol ⊕ β) (15)

inside the solution set of Equation (8). This is due to the fact that all the
numbers used in the TLP are integers and thus an integer solution p exists
(see Corollary 3.1 in Butkovic and Aminu (2008)). Hence the value of the
objective function is also an integer. Since Equation (15) can be written as
an equality

fTp⊕ (β ⊕ γ) = γ (16)

it is possible to check the optimality of psol by checking if there is a solution
to the augmented equation

Rp⊕ r = Sp⊕ s

fTp⊕ (β ⊕ γ) = γ. (17)

Further, if a solution is found, it is guaranteed that this solution improves
(decreases) the objective function value by at least one unit. Thus, one can
apply the following procedure.
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Algorithm 4.2. Solving min type TLP

1. Set k=0;

2. Find a solution pdl[0] to Equation (8), use as initial condition of
the Dual Method p[0] = >, y = 0;

3. Use the Primal Method to solve Equation (8), using the solution
pdl[k] to induce a dominance, to reduce this solution to a smallest
solution in this dominance space, ppr[k] (see Subsection 3.2);

4. Check for optimality of ppr[k] by solving Equation (17), using as
initial condition of the Dual Method p[0] = >, y = 0;

5. If optimality is found (there is no solution for Equation (17),
see Subsection 3.1), end the algorithm with the solution psol =
ppr[k];

6. Else, obtain the solution pdl[k + 1] of Step 4, set k to k + 1 and
go to Step 3.

One can note that Step 3 can be avoided by replacing ppr[k] with pdl[k].
However, the fact that the Primal Method finds a “small” solution (even if
it is not the smallest) can substantially reduce the number of steps taken
for convergence (the algorithm can naively just reduce the objective function
one unit at each step, see Subsection 5.2).

It is important to Remark that there is a deep connection between Al-
gorithm 4.2 and Algorithm 2 presented in (Gaubert et al. (2012)). In that
paper the problem of solving Min type Problem 1 is shown to be equivalent
to finding the smallest λ ∈ R such that φ(λ) ≥ 0 for a function φ : R 7→ R
constructed from all the parameters of the problem.

At each step, the authors find a so-called left optimal strategy σ, con-
structing a simplified function from this strategy, φσ(λ), and finding the
smallest λ such that φσ(λ) ≥ 0. The latter problem can be solved by rather
straightforward means using Kleene Closures. Due to the properties of left
strategies, it is guaranteed that at each step λ[k + 1] ≤ λ[k].

The concept of (max player) strategies is very close to the concept of
dominances defined in Subsection 3.2. Then, the problem of finding the
smallest λ such that φσ(λ) ≥ 0 can be interpreted as the problem of finding
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the smallest solution inside the dominance space, which is exactly Step 3 in
Algorithm 4.2. Thus, the essential difference between the algorithms lies in
the way that the monotonic convergence is guaranteed (left optimal strategies
for Algorithm 2 of (Gaubert et al. (2012)) and extra constraint Equation (16)
for Algorithm 4.2). Also, Algorithm 4.2 requires that the inputs are integers,
while Algorithm 2 of (Gaubert et al. (2012)) do not (albeit one which requires
this property is also presented).

Finally, Algorithm 4.2 solves Min-type TLPs, while Algorithm 2 of (Gaubert
et al. (2012)) solves the more general Min type TFLPs. It will be shown in
Subsection 4.3 that Algorithm 4.2 can also be used to solve this more general
kind of problem.

It is also very important to remark that the method may take an infinite
number of steps to converge if the optimal objective function value is ⊥. If
β 6=⊥ this bound is evident. If this does not hold, it is helpful to introduce
such bound as a constraint or adding it a new β′ to ensure that the number
of steps will be finite. In practice such bound can be inherent of the structure
of the problem. Nevertheless, (Butkovic and Aminu (2008)) shows how to
compute lower and upper bounds which are finite in some situations. Basi-
cally, assuming that r � s (this can be always assumed, since the equation
can be reordered in a way that this holds true) and β =⊥ (otherwise, β itself
is a bound) this bound can be written as

VLB = (fT ◦/S)(r◦−s). (18)

Indeed, with a very similar argument of those present in (Butkovic and
Aminu (2008)), a symmetric version of Equation (18) (without the assump-
tion r � s) can be found

VLB = (fT ◦/S)(r◦−s)⊕ (fT ◦/R)(s◦−r). (19)

Finally, one can note that (as opposed to Max type programs) the solution
of Min type programs depends on f and β.

4.3. Solving TFLPs

The complete problem (TFLPs) is defined as

max /min (wTp⊕ α)◦/(fTp⊕ β) such that

Rp⊕ r = Sp⊕ s. (20)
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It is straightforward to adapt the Charnes-Cooper transformation (Charnes
and Cooper (1962)) to the tropical setting. Set

q = p◦/(fTp⊕ β);

q̂ = 0◦/(fTp⊕ β). (21)

Then, by dividing (in Tropical Algebra) both sides of the affine equation on
Equation (20) by fTp⊕ β, it can be rewritten as

max /min wTq⊕ αq̂ such that

Rq⊕ rq̂ = Sq⊕ sq̂;

fTq⊕ βq̂ = 0 (22)

in which the equation fTq ⊕ βq̂ = 0 condenses Equation (21). Thus, this
problem in the transformed variables is a Max / Min type TLP. Once q and
q̂ are obtained, in order to come back to the original variable one just needs
to revert Equation (21)

p = (fTp⊕ β)q = q◦/q̂. (23)

It is necessary, however, to consider that not all the feasible space of
Problem 22 (transformed problem) can be mapped back to a member of
the feasible space of Problem 20 (original problem). This is the case for
some problems in which the transformed problem has q̂ = >. For instance,
suppose that r and s are finite (no ⊥ entries), r 6= s and β =⊥. In this case,
q̂ = > and any vector q with no > entries such that fTq = 0 are in the
feasible space of the transformed problem (since rq̂ = sq̂ = > and hence the
equation Rq ⊕ rq̂ = Sq ⊕ sq̂ clearly holds, regardless of q). Transforming
back to the original variables using Equation (23) yields to p =⊥ (since
q̂ =⊥ and no entry of q is >), which is not in the original feasible space since
by hypothesis r 6= s.

For Max type TFLPs, if one uses the method presented in Subsection 4.1
this consideration is crucial. This is due to the fact that the Dual Method
will initialize the vector (qT 99

9 q̂T )T in >, and hence q̂ will begin - and may

stay - in >. Thus, it is necessary to give an upper bound q̂ (by any finite
amount). This can be done by lower bounding fTp⊕β by a finite amount. As
mentioned previously, (Butkovic and Aminu (2008)) shows how to compute
lower and upper bounds which are finite in some situations (Equation (18)).
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Indeed, a cursory observation of Equation (18) is sufficient to conclude that
as long as f has no ⊥ entries and r 6= s then the bound is finite.

Thus

Algorithm 4.3. Solving Max type TFLPs using Max type TLPs

1. Use Charnes-Cooper transformation to transform a Max type
TFLP to a Max type TLP;

2. Find a finite lower bound VLB for fTp ⊕ β in the feasible space
of Equation (8). That is, find VLB �⊥ such that for all p such
that Rp ⊕ r = Sp ⊕ s one has fTp ⊕ β � VLB. See (Butkovic
and Aminu (2008)) for how to obtain this lower bound for certain
problems;

3. Solve the Max type TLP using Algorithm 4.1 with the additional
constraint q̂ � −VLB. This can be done by either setting the
constraint q̂ ⊕ (−VLB) = (−VLB) explicitly for the transformed
problem or initializing the Dual Method with q̂[0] = −VLB instead
of >;

4. Return to the original variables using Equation (23).

Also, one can solve Min type TFLPs using Algorithm 4.2. Hence

Algorithm 4.4. Solving Min type TFLPs using Min type TLPs

1. Use Charnes-Cooper transformation to transform a Min type
TFLP to a Min type TLP;

2. Solve the Min type TLP using Algorithm 4.2 ;

3. Return to the original variables.

Now, a Min type TFLP is simply a Max type TFLP with the inverse of
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the objective function

min (wTp⊕ α)◦/(fTp⊕ β) =

−max (fTp⊕ β)◦/(wTp⊕ α). (24)

Thus, Min type programs can be transformed in conventional Max type pro-
grams and vice-versa. In summary, any of the Algorithms 4.3 or 4.4 can be
used to solve either Max or Min type TFLPs. See Figure 1.

Max Type TLP
Solvable by finding the 

greatest solution 
inside the constraints set using

The Dual Method

Min Type TLP
Solvable by successively 

finding the smallest solution 
in a dominance space, inside

the constraints set, using the Primal
Method 

Max Type TFLP Min Type TFLP

Charnes- 
Cooper

Inverting the
objective
function

Special case
Charnes- 

Cooper Special case

Figure 1: Connection between the problems.

It is important to note that, due to the discussion presented in this Sub-
section, Max type TFLPs solutions (that is, the value of p) are independent
of f and β. Dually, Min type programs are independent of w and α.
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5. Example

The following example was taken from (Butkovic and Aminu (2008)).

min 3p1 ⊕ 1p2 ⊕ 4p3 ⊕ (−2)p4 ⊕ p5 such that

 17 12 9 4 9
9 0 7 9 10
19 4 3 7 11




p1

p2

p3

p4

p5

⊕
 12

15
13

 =

 2 11 8 10 9
11 0 12 20 3
2 13 5 16 4




p1

p2

p3

p4

p5

⊕
 12

12
3

 . (25)

The solution using Algorithms 4.3 and 4.2 will be presented.

5.1. Solving using Algorithm 4.3

For Algorithm 4.3, one must transform the original Min type TLP in a
Max type TFLP, that is

min 3p1 ⊕ 1p2 ⊕ 4p3 ⊕ (−2)p4 ⊕ p5 =

max 0◦/(3p1 ⊕ 1p2 ⊕ 4p3 ⊕ (−2)p4 ⊕ p5). (26)

Then, it is necessary to compute a lower bound for fTp⊕β. Using Lemma 3.2
of ( Butkovic and Aminu (2008)) (see Equation (18), note that r � s), one
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can obtain VLB = −5. Thus, q̂ � 5. The program in the modified variables is

max q̂ such that


17 12 9 4 9 12
9 0 7 9 10 15
19 4 3 7 11 13
3 1 4 −2 0 ⊥




q1

q2

q3

q4

q5

q̂

⊕

⊥
⊥
⊥
⊥

 =


2 11 8 10 9 12
11 0 12 20 3 12
2 13 5 16 4 3
⊥ ⊥ ⊥ ⊥ ⊥ ⊥




q1

q2

q3

q4

q5

q̂

⊕

⊥
⊥
⊥
0

 . (27)

Now, in order to solve Problem 5.1, it is sufficient to find the greatest
solution to the affine constraint equation. Using the Dual Method with
(q1[0] q2[0] q3[0] q4[0] q5[0] q̂[0])T = (> > > > > 5)T (note that q̂ was initial-
ized at 5 instead of >. Another possibility is initializing in > and adding the
constraint q̂⊕ 5 = 5), it is possible to find, after 8 iterations of the Equation
(7)

(q1 q2 q3 q4 q5 q̂) = (−7 − 1 − 4 − 6 0 − 1). (28)

Thus, the objective function value is −q̂ = 1, and (p1 p2 p3 p4 p5)T

= (−6 0 − 3 5 1)T is a possible p. The value obtained for the objective
function is, obviously, the same as the one obtained in (Butkovic and Aminu
(2008)). Also, the resulting solution p is exactly the same.

5.2. Solving using Algorithm 4.2

Solving Equation (5) with the Dual Method and initial condition

(p1[0] p2[0] p3[0] p4[0] p5[0])T = (0 0 0 0 0)T , (29)

it is possible to find after 2 iterations

pdl[0] = (−6 0 0 − 5 0)T (30)

which has objective function value 4. For notational simplicity, let U =
(R 99

9 r) and V = (R 99
9 s) and z[k] = (pdl[k]T 99
9 0)T for any k.
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Using the Primal Method with the dominances

Υ
z[0]
U (i) =


6, if i = 1

4, if i = 2

2, if i = 3

, Υ
z[0]
V (i) =


2, if i = 1

6, if i = 2

1, if i = 3

(31)

(this is not the unique pair of dominances possible to be induced by pdl[0],
and were chosen at random) and with those it is possible to obtain

ppr[0] = (−6 0 ⊥ −5 ⊥)T . (32)

The new objective function value is 1. Equation (17) has no solution and
the algorithm halts. It took a single iteration of Algorithm 4.2 to do so.

If Step 3 in Algorithm 4.2 is avoided, the algorithm takes 4 steps to
converge, beginning from objective function value equal to 4 and decreasing
one unit by iteration.
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