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Max-plus algebra is suitable to deal with control and observation of
Timed Event Graphs.
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Different control strategies can be considered :
@ Output/State Feedback controller
@ State Estimation
@ Observer-based controller

This talk presents a survey of these different strategies and a software tool
yielding an efficient way for implementing in order to control an automated
system.
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Methodology overview :

A manufacturing systems to control
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Methodology (first step) :

1. The manufacturing system is depicted as a Petri Net
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Methodology (second step) :

2. Petri net is transformed in State model in dioid Zmax[7]

The system in dioid Zmax[7] :
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Methodology (Third step) :

3. The matrices of the model are put in a Supervisory Control And Data
Acquisition ( SCADA) system and implemented in a Programmable Logical
Controller (PLC) in order to control the system.

The system in Zmaxl{",’ll SCADA
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Dioid Theory in a few words [Baccelli et al. 1992]

A Dioid is a set D with two binary operators addition & and multipli-
cation ®.
o Addition @ is associative, commutative, zero element denoted ¢
@ Multiplication ® is associative, unit element denoted e
e Distributivity property : (a® b)Rc=a®cdb® c.
@ Zero element ¢ is absorbing : a®e =¢
@ Addition is idempotent : aba = a
Properties
@ Inducedorder b<a< adb=a
@ A dioid is said to be complete if it is closed for infinite sums and if
multiplication distributes over infinite sums.
@ On a complete dioid the Kleene star a*, is defined by a* = 2, &'
with a® = eand a*t! = a® a'.
Theorem On a complete dioid D, x = a*b is the least solution of the

implicit equation x = ax & b.
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Example Dioid

Max-plus Algebra

Max,+ Algebra is the set Z . = Z U o,
endowed with :

@ max as addition @
@ + as multiplication ®

The zero element € = —oo and the unit
element e = 0. |

@ For example : 5@ 4®7 =max(5+4,7) =9
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Residuation Theory

Residuation Theory [Baccelli et al. 1992]

Residuation theory provides, under certain conditions, the greatest solution
(in accordance with the considered order) to the inequality f(x) < b where
f is an order-preserving mapping defined over ordered sets.

Example : Inequality a® x < b in a complete Dioid

Example left multiplication : the inequality a @ x < b admits a greatest
solution, denoted, x = ayb (left division by a).

Right multiplication by a : In analogy the inequality x ® a < b has a
greatest solution, denoted x = b¢a (right division by a).
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Timed Event Graph (TEG)

@ Subclass of Timed Discrete Event Systems
@ Graphical model for manufacturing systems, transportation systems,

Definition TEG

o P={p1, - ,pn} is the set of places.
T ={t1, - ,tm} is the set of
transitions.

computer networks, ...

@ Every place p; has exactly one
upstream and one downstream
transition and is attached with holding
time ¢; € Np.

@ AC(T x P)U(P x T) is the set of
arcs and all arcs (tj, p/) and (py, to) are
equipped with weights 1.

W
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TEG Model in Zmax[7]
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Firing Date [Cohen et al., 85]
xi(k) : date of the firing numbered k for the transition labelled /.

» Mc

7 transform [Cohen et al,89]
~ transform of x(k) is a formal series x (7) = @@ v*x(k).
kEZ

~-operator is like a backward shift operator in the event domain,
y(7) = vx(7) © y(k) = x(k — 1)Vk.
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TEG Model in Zmax[7]

POH%O—}*O%I

x) = axes) = (5 7)o
y(n) = &(v) = (¢ 4)x(v)

The system in Zpau[7] : > M

x(v) = A'B = G?;; 7233?) <i> u(vy)
y(v) = CAB = (8(37%))u(y)
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Optimal control : IEEE TAC, Cohen et al. 1989

Problem Formulation :

Let z be a desired output. Is it possible to compute a control input in order
to get an output y as close as possible to z while respecting the
constraint : y < z. The optimal input is given by :

uopt = (CA*B)}z

It is the greatest input which achieves the inequality :

y = (CA*B)ugpt = z. In manufacturing setting z corresponds to the
customer demands, v the input of raw parts in the system, y the output of
processed parts. Optimal control v,y is the one which minimizes the
internal stock while ensuring the customer demand is honored.

v
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Optimal Filtering : JESA, Hardouin et al. 1995

u
o

Problem Formulation :

Let H be a matrix describing a desired behavior. Let CA*B be the transfer
of the system to be controlled, and P a filter such that y = CA*B® P @ w.
The optimal filter such that CA*BPu < Hu, Yu is given by :

Popt = (CA*B)§H

In manufacturing setting it is the one which delays as much as possible the
input while ensuring that the output y < Hu Vu.
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State Feedback controller synthesis [Cottenceau 1999, Maia

2003, Lhommeau 2003, Gongalves 2015]

x = Ax® Bu
y =

u = P(vé Kx)

v

y

— CA*Bu
— CA*BP(KA*BP)v

u Yy
7] 4
Objective

y = CA*BP(KA*BP)v =< Hv
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State Feedback controller synthesis [Cottenceau 1999, Maia
2003, Lhommeau 2003, Gongalves 2015]

Compute the greatest
controllers P, K such that :

CA*BP(KA*BP) < H

v

Optimal Solution :

A b Popt = (CA'B)YH
Kopt - 'Doptkipopt%(A*BPopt
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Sub Observer Synthesis : Hardouin et al. [IEEE TAC
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Compute an observer matrix L such that the estimated state be as close as

possible to the real state under the constraint,

X =< x.
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Sub Observer Synthesis :

Ar & Bu® Sq
Cx

Simulator

I
Observer

Ax @ Bu @ Sq = A"Bu @ A*Sq
Cx = CA*Bu @ CA*Sq.

System Equations :

Estimated State Equations

x

ARG Bud L(y @ y)
y = Cx

Optimal Matrix :
Lopt = ((A*B)#(CA*B)) A ((A*S)¢(CA*S))
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Observer-based Control : Hardouin et al. 2018

Observateur

Controleur

Optimal Matrices :

Lopt = ((A"B)#(CA"B)) A ((A*S)7(CA*S))
Popt = (CA*B)YH
Kopt - Poth{Popt?{(A*BPopt)
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About Implementation :

Realization (Contribution) :

Each entry (# ¢) of these matrices (Lopt, Popt, Kopt) are periodic series,
e.g.. Kij = pj® qjr; where pj;,q;; are polynomials and r;; a monomial, to

realize these series, the following vector is introduced (j; = <<'j1>

CUQ
R L0/ R Pij\ ¢
e (e 5) i @ (%) ki

KijXij =(e )¢
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Platform of Control

http ://lisabiblio.univ-angers.fr/MASTERSiteWebFreitasOliveiraGabriel /Home.htm

The system in M3X[~.4] :

> SCADA
Ax ® Bu SYSTEM

-0

@ Enter matrices A, B, C, S
e Optimal tracking (a trajectory must be first defined)

<
I

o State Estimation

o State Feedback Control (All states are supposed measured)
e Feedback Control
]

Observer-based Control

v
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Petri Net Model with 24 states, 10 control inputs, 10 measured outputs ( Mariano

Gongalves 2015
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Results and Benefits

On this kind of systems, pallets wait in the front of Button which regu-
late the flow :

(experiment 6 hours) :

Mean waiting time | Percent of gain
As soon as possible CA*B 8.3s 0%
Feedback control 6.6s 20.5%
Observer-based control 6.4s 22.5%
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Conclusion

With this software platform it is easy to implement these control stra-
tegies

@ Improvement of state estimation (G. Winck)
@ Control of systems with sharing resources (G. Schafaschek, Friday)
e State estimation of weighted TEG (J. Trunk, Friday)
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