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Abstract— This paper deals with the model-reference control The paper is organized as follows. Section Il introduces
of max-plus linear systems. The main contribution of this work  some algebraic tools concerning the Dioid and Residuation
is a general control structure that encompasses the previous {haqries and their applications to max-plus linear system.
one found in the literature. It is based on the RST-structure . .

Section Il introduces some control results and develops the

for conventional differentiable system. In addition it provides a . ) .
comparison among some sub-structures and simulation results Proposed control structure. Simulation Results are shown in

are presented. section IV. A conclusion is given in section V.
Keywords : Discrete event dynamic systems, Timed Petri
nets, Max-plus algebra, dioid, Control, Just-in-Time. II. MAX-PLUS LINEAR SYSTEM THEORY
I. INTRODUCTION An important framework to deal with max-plus systems is

Several applications in manufacturing, computer and conthe dioid algebra. Adioid D is an idempotent semiring. The
munication systems can be modelled by the so called Di§v0 internal operations are denotedand®. The operation
crete Event Systems (DES) theory. These of systems &feis associative, commutative and idempotent, thatis,
often described by the Petri Net formalism [15]. Timedz = a,Va € D. The operation® is associative (but not
Event Graphs (TEG) are Timed Petri Nets in which alnecessarily commutative) and distributive at left and at right
places have single upstream and single downstream trangith respect to©. The neutral elements ab and ® are
tions and are used to model DES characterized by del&§presented by ande respectively, and is absorbing for
and synchronization phenomena. TEG can be described By(Va € D,e ® a =a® e = ¢ ). In a dioid, a partial order
linear equations in the dioid algebra formulation ([1],[7])relation is defined byu = b iff a = a@®bandz Ay
and this fact has allowed many important achievements dlenotes the greatest lower bound betweesndy. A dioid
the modelling and control of DES, as detailed in [5], [14],D is said to be complete if it is closed for infinite-sums
[6], [12], [9], [10], [8]. TEG control problems are usually and if ® distributes over infinitep-sums. Most of the time
stated in a Just-in-Time context, where the design goal #§e symbol® will be omitted as in conventional algebra,
to minimize stocks while guaranteeing performance (e.gnoreovera’ =a®a'~! anda’ =e.
throughput). One possible approach for the control of TEG The least solution of the equation= az ® b is a relevant
is the model-reference technique in which a given moddgsue in many max-plus linear systems problems and an
describes the desired performance and the design goalifigportant result is presented in theorem 1.
achieved through the calculation of a precompensator or Theorem 1 ( [1], th. 4.75)The implicit equationz =
of a feedback controller [6], [12]. The techniques basedz © b defined over a complete dioif?, admitsz = a*b
on feedback control, although favoring stability, are limitedas least solution, wher¢* =  a* (Kleene star operator).

in the sense that the reference model must satisfy certainaiomatic control synthesis involves the inversion of map-

restrictive conditions. Those based on precompensation Cﬁfﬁgs. Mappings defined over dioid does not always admit
guarantee performance for any reference model, but nplerse hut the residuation theory allows to characterize
stability (for the concept of stability in TEG, see [3]). Ingq|tion set of inequalities such thfz) < y. The reader

this context , the present paper Pproposes a control Str_UCt%y consult [2] to obtain an exhaustive presentation of this
based on well known RST for continuous systems which Heory.

a generalization of the work proposed by [6] and [13]. The Definition 1 (Residual and residuated mapping)n iso-
main advantage of the approach is that it achieves optimali ¥ne mappingf : D — &, whereD and £ are partially
regarding stocks while guaranteeing optimal compliance Witgrdered sets is. a{esiduat’ed mappingf for all y € &

any prescribed reference model. there exists a greatest solution for the inequality) < y
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formulae involving these residuals are given below. customers demand). This idea is illustrated in the figure 1.
In this figure,u, y and H represents respectively the input,

a(akz) = (@) the output and the system transfer function: the reference
ay(azx) = (2)  model is given byG,.; and the external outplitis given
a(ay(az)) = ax (3) by v. The control problem is presented in the following.
aa = (aa)* (4) Let H € (Zmax[y])™*? be the matrix transfer function of
) — by* 5 the system(y, € (Zmax[7])™*? be the controlled system
a(ba)” = (ab)"a ) transfer function and?,e; € (Zmax[7])"*? be a reference
s 2a" & s=zad (6)  modeli.e, the desired transfer function for the controlled
(ab)yz = by(ajz) (7) system. So the problem can be stated as follows.
ay(a(akz)) = i ®) Given a TEG, which controller will assure the greatest

transfer function between andv (G..), such thatG,, =<
Atrajectory of a TEG transition is aflrlng date sequence GTefO Con5|der|ng the JUSt in-time context, the goa| is
{z(k)} € Z. For each increasing sequen¢e(k)}, it is to obtain a controller satisfying the reference specification
possible to define the transformatiar{y) = @ a(k)v*  (Gyy = Gyep) while delaying as much as possible the

where~y is a backward shift operator in event domain (thaProduct admissions into the system.

is y(v) =vz(v) & {y(k)} = {x(k - 1)}, see [1], p. 228).
This transformation is analogous to thetransform used in

discrete-time classical control theory and the formal series W I

z(vy) is a synthetic representation of the trajectarfk).

The set of the formal series i is denoted byZ,.x[7] Max Plus G, Reference

and constitutes a dioid. In general, MIMO max-plus linear ~ LinearSystem Controlled Svstom ' Model
ontrolled System

System can be represented by

Fig. 1. Model Reference Control
r = Az du 9)

y = Cux (10)

where vectorsr € (Zmax[V])", v € (Zmax[7])? andy €
(Zmax[y])™ represent respectively, the state, the input an
output trajectories of the system add B, C' are the system
matrices of appropriate dimmensions. These trajectories ¢
be related ([1], p. 243) by the equation = Hwu, where
H = CA*B € (Zmax[7])™? is called the transfer matrix
of the TEG. Entries of matri¥{ are periodic series ([1], p.
260) in the dioidZ,,.[7], usually represented by (y) @
q(v)(7y*)*. The asymptotic slope of a periodic series=
p(7) @ q(y)(ry")* denotedo,,(s) is defined as the ratfo
Oxo(s) =%

A. RST-structure control

d It is known that the existence of the greatest feedback
controller depends on the model reference choice [6]. A
gﬂntrol structure based on a precompensator and a feedback
controller improves the controlled system performance, as
shown in [13]. This approach always lead to an optimal
behavior of the closed-loop system and assures better ro-
bustness properties than the simple feedback [11].

In this section, a more general structure is proposed based
on the well known RST-structure for continuous systems.
This control approach is based on three control matrices as
illustrated in the figure 2. By using figure 2, one has the

II. CONTROL METHOD

The control method proposed herein is based on the Just- (G-
in-Time strategy and on the model reference approach [6] and '
is summarized as follows. First |68 € (Zp.[Y])™*? be
the transfer matrix of the plant an@,.; € (Zmax[7])™*?
be the reference modele., the desired transfer matrix for the
controlled system. In the model reference context, the aim is
to delay as much as possible the firing dates of the input tran-
sition by assuring that the controlled system transfer function Fig. 2. RST-structure Control
be less than or equal to the reference model (which represents
in a manufacturing context the restriction imposed by théllowing control law

L,
p(y) = 1oy P ’Y P € N, is a polynomial that represents the u= R(Tv® Sy). (11)
transient andy(y) = ,0 a; 7/, @ € N, is a polynomial that represents
?ra%ztii?orrr: which is repeated eachtlme units and eachv firings of the Thereforey = Hu = HRTv ® HRSy, then theorem 1
3Asymptotic slope in a manufacturing context can be viewed as the
production rate of the system. The ratio.(s) is calculated in the 4In a Just-in-Time contextp represents the available supply of raw
conventional algebra. material andu represents the allowance of the raw material into the system.



and formulae 5 yield to the following equations. This result means that, for a given external inpute
(Zmax[])P, the input vector, given by, = Ruv, will be

y = (HRS)HRTv=H(RSH)'RTv  (12) . uimai’In fact, for anyR such thatHR < G,.;, R <
GRrsTV (13)  R,,,, therefore the isotony property assures that Rv <
u = (RSH)*RTv. (14) R,prv. However, since it is an open-loop approach, it does

not reinforce the stabiliyof the system and is not efficient
when disturbances act on the system( see [13] for details).

S-Structure

So the objective is to obtain matricés S, T that maximize
u with the restriction thati rsT < Gcr, WhereG, .y is the

model reference. As in [13], one can show that:
. In this case one sets matricésand T equal to identity
H(RSH)*RT = Giref and it is known as feedback approach. By using equation
= (RSH)*RT = H{G,cy 13, the closed-loop transfer matrix betwegrand v, for a
& H(RSH)"RT =< H(HXGref). (15) given feedback controlle$, is given byH (SH)*. Therefore
) N the problem is solved by finding the greatestsuch that
From these inequalities, one can solve the control problegq(SH)* < Ghes. This problem can be solved via residua-
by observing that matrice® and 7" must satisfy: tion theory if some restrictions are imposed on the reference
RT < HXGhey. (16) model. The following result is due to [6].

~ Proposition 1:Let H € (Zmax[7])"*? be the transfer
' function of a TEG. For every reference modgl. ; such that

for instance takel? = Ipxp’ S = [E]me andT = H&\GTef’ =FE*H or Gv‘ef =HF* (WhereE S (Znnx[h/]])mxm

. ; G,
which correspond to the precompensator case. In this caaﬁé F € (Zumax[7])P*?) there exists a greatest feedback

by taking equation 14 and expression 15 into account, ﬂb%ntrollerS € (Zumax[7])7*™ such that the transfer function

cpntrol icugfnc'? g'venT?])(HiG”f)?’ gnd It is maxmglzed of the closed-loop system is less than or equalip;. The
sinceu = (HYG,.s)v. Therefore it is important to o Server%reatest feedback controller is:

that one possible solution for the proposed control proble
is achieved if one takeRRT = H}G,.. By considering this
particular solution, the expression 15 assures the following

developments.
One should remark from equation 14 that in this strategy
H(RSH)*(HYGrey) = H(HRGef) the transfer function betweenandwv is (SH)*.
& (HRS)"H(HXGyep) 2 H(HYGrey) 17) Property 1: If H(SH)* < G,.y, for given H and G,
= (HRS)" = (H(HXGrey))¢(H(HXGrey)) (18) then(SH)* < Rop = HYGrey.
& HRS = (H(H8Grey))f(H(H8Grer))  (19)  The proof comes from the fact that < b < « < akb. This

. . . . property means that the transfer function betwaeand
The expression 17 is a consequence of equation 5; 18 |§ perty N

. . S the optimal open-loop strategy is always greater than or
gesult of the residuation definition and 19 comes from 4 ané)qual to the one obtained for any feasible feedback strategy.

.As a result, the RST control problem can be solved if It is important to remark that under some restriction on
RT = HYG,.; with the restriction given by the inequality the reference model the simple feedback (S-structure) is

Actually the upper bound?}G,.s is always reachable

Sopt = HYGrepd H.

19. Synthetically, an optimal control is obtained if better that (R-structure) in th.e stabilization context [13], [_6].
However the precompensation always leads to an optimal
RT = H{Grey (20)  control action which is equal tdR,,;v and there is no

HRS = (H(HNGep)f(H(H5Gyep)).  (21) restriction concerning the reference model choice. The next

) ) o structure to be presented exploits the main advantages of
In general, the calculation of matricds, S andT" is, in  {hase two approaches.

some extent, equivalent to solve the diophantine equation RS-struct
for conventional linear continuous systems. This task can be > > ru_c ure _ _
easily done by using some particular control structures of In [13], it was considered a particular case where the pre-

the proposed RST-structure. These cases are presented @@ipensatof’’ is equal to the identity matrix. This structure
discussed below. is shown in figure 3. In this case the direct application of

R-Structure residuation theory to the system given by 20 and 21leads to
This case is known in literature as precompensatiofPtimal controller matrices given by:
approach [4]. In this structure, the controlled system is
simplified by_considering t_half_ = IP*? andS = [¢]pxm. SO Ropt = HYGhrey, (23)
the problem is solved by finding the greatest precompensator
R such thatH R < G,.s. The optimal solution, denoted by Sopt = (HRopt)R(H Ropt)# (H Rop)- (24)
Ropt, is obtained directly from equation 20:

Ropt = HRYGrey. (22) 5Stability here means that the number of tokens of system is bounded.



number of arcs (from output to input) of the RS one. Concept
of stability here means that the number of tokens of the
closed-loop system remains bounded and one must remember
that a strongly connected graph is always stable. For more
detail regarding stability see [1] and [3].

Fig. 3. RS-structure Control

IV. SIMULATION RESULTS

ST-structure: output feedback
This is a new control structure. It is obtained from the The objective here is to illustrate the application of model
RST one by simply making matri® equal to the identity. reference approach to control a max-plus linear system

It is illustrated in the figure 4. represented by a Timed Event Graph.
P, - Consider the TEG depicted in gray box of the Fig. 5
/G as an example. It models a workshop with 3 machines

Py (M to Ms). MachinesM; and M; can process parts which

| u ’—‘
ﬁ@ 1 H are assembled by machinds. Inputsu; and u, represent
e

the admission dates of parts into the system; the transporta-
tion time is 1 for both parts; maching/; can process one
part in 2 time units; machiné/, can process one part in
3 time units. The transportation time between machihgs
Fig. 4. ST-structure Control and Mj3 is 4 time units and between machings and M5
is 5 time units. MachineM3; can assemble one part in 4
This approach always leads to an optimal control structuréme units, the transportation time until the output is 6 time
Actually, sinceR = I?*P, by using system given by 20 and units andy represents the output date of the final product.
20 , one can easily show that the optimal matrices are  As discussed in section Il, one must remind that this system
can be modelled by equations 9 and 10 and the input-output
relationship is given by the equation= Hu, where H is
Topt = HYGrey (25)  the transfer function. Therefore appropriated computations
Sopt H&(HTopt)ff(HTopt) (26) lead to:

At this point, it is known that both RS-structure and ST-
structure lead to an optimal control structure. Therefore, one
guestion arises: what are the differences between them? One
difference is pointed out in the property below. The obtained relationship means that the transfer functions

Property 2: For the ST structure, the feedback frombetweeny andu; andu, have a maximum production rate
the outputy to the inputw is greater than or equal of 1/4. This is a direct consequence of the workshop con-
the one obtained for the RS-structure. Proof: By figuration since the maching/s; has the slowest production
inspection of figures 4 and 3 one can see that it sufficagte (actually, it is the bottleneck for the system).
to show that the feedback given by equation 26 is To compare RS and ST control strategies, the reference
greater than or equal the product of equation 23 byodel is chosen a6,cr = [17(47)* 19(57)*]. That is, the
equation 24. In fact, by using equation 7, equation 2@bjective is to keep the production rate betweeand u,

y = [17(4)" 19(47)"u. (27)

can be rewritten as:(HRop)8(H Ropt)#(HRopt) = unchanged but to allow the one betweeandu, to reduce
RopR(HY(H Ropt))$(HRope). By equation 23, until 1/5. The obtained results are given below.

Ropt =  H{Grer, SO equation 8 leads to:

(H Ropt )} (H Ropt )¢ (H Ropt ) = Ropt&y Roptd (H Ropt).-

Therefore, for the RS-structure, one uses equation 1 to

obtain Rop: Sopt < Roped (H Ropt). A. RS-structure

In contrast, for the ST-structure, the feedback is given ) _ . )
by HX(HTpp)#(HTyp), Where T,y = HYGhep. SO €X- By using equations 23 and 24, one obtains the solution:
op opt )y opt — ref- * *
pression 2 assures thafy(HT,,) = T,y. By isotony, R,, = (47) 2(577) and S, = (3v°(4v)* a)t.

2y(4y)" (5y)"
HMHT"W)%(HT‘W). = Toptf (HTope)- One concludes the Figure 5 shows one realization of the controlled workshop
proof by remembering thak,,: = Rop:.

system.

Remark 1:This results may suggest that the ST-structure
is more favorable to Stab{l'ty than the RS one since its 6Softwares to handle dioid algebra using Scilab can be downloaded from
greatest feedback leads, in the worst case, to the samesite [16].



(1]

(2]
(3]

(4]

(6]
Fig. 5. Controlled Workshop System with the RS-strategy.
(6]

B. ST-structure

By using the equations 25 and 26, one obtains the foll”]
(4v)* 2(57)*> (8]
X « | and Sy =
S\t Gy vt
(37°(47)* 14°(4v)*) . Figure 6 shows one realization of [9]
the controlled workshop system.

lowing solution: Tp,,: = (

[20]

[11]

[12]

[13]

[14]

Fig. 6. Controlled Workshop System with the ST-strategy.

[15]

Remark 2:Both RS and ST approaches lead to an optimzﬂa
closed-loop system in a just-in-time sense, that is, the control
action is maximized. However in this example calculation
results in RopeSopt = (37°(47)* 5y6(47)*)t for the RS-
strategy . The obtained feedback matrix for the ST-strategy is
(375 (47)* 175(47)*)t. By remembering thatly®(4v)* =
19° @ 5+%(4~)*, the feedback from the outpytto the input
u is greater than the one obtained for the RS-structure. This
is a consequence of property 2.

V. CONCLUSIONS AND FUTURE WORKS

This paper presents a general structure for the model-
reference control of DES described by the max-plus algebra.
The approach is based on the well known RST-structure
control for conventional differentiable system. The presented

results encompasses the ones found in the literature and some

comparisons concerning performance and stability between
particular cases are made. Investigations concerning robust-
ness of the proposed structure, as initiated by [11], is an

important issue. Another step is the control design in the

uncertain environment as proposed by [10].
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