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INTRODUCTION

Discrete Event (Dynamic) Systems 1 (DES) are discrete-state systems whose dynamics
are entirely driven by the occurrence of asynchronous events over discrete time instants
[1, Sec. 1.3.2].

The study of DES is of great interest in analysis, control and estimation of systems that
are often of human design. Examples of DES include computer systems [2], telecommu-
nication networks [3, 4], manufacturing lines and transportation systems. Unlike classical
continuous systems, they usually cannot be described by differential equations because
of the nature of the involved phenomena. These systems are then often represented by
state-transition models: finite state automata and languages [5] which are used to rep-
resent simple deterministic systems; Markov chains for stochastic systems [6]; and Petri
nets for more complex systems that include synchronization, conflict and parallelism [7].

Among the DES, a particular class involving only synchronization and time-delay
phenomena has been the subject of a dedicated algebraic development, generally called
Max-Plus linear algebra [8]. This class of DES can be represented graphically, depicted
by Timed Event Graphs (TEG) and is typical for the modelling of systems arising in
scheduling applications involving allocation of resources.

The fascinating mathematical theory of Max-Plus algebra is due to the fact it provides
techniques for solving nonlinear problems that can be given in the form of linear problems,
when arithmetical addition is replaced by the operation of maximization (denoted ⊕) and
arithmetical multiplication is replaced by addition (denoted ⊗). The Max-Plus algebra
setting, which is an idempotent semiring that is properly presented later in this thesis, is
suitable to describe the behavior of TEG thanks to linear state equations which are very
analogous to those found in classical linear system theory, i.e., the behavior of a Max-
Plus Linear system (MPL) can be depicted thanks to matrices defined in this algebra. The
states of MPL systems represent the dates of occurrence of the events in a given event-
horizon and can be simulated using the Max-Plus Toolbox [9] for Scilab and ScicosLab
with built-in property analysis tools that mainly concern periodic behavior regime, i.e.,

1. The term Discrete Event Systems can be also used if we keep in mind that they are dynamic by
definition.
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Introduction

no verification tool is available.

These linear state equations are useful to deal with performance analysis [10] and
control problems addressed similarly to the classical control theory. Among the problems
solved we can cite the optimal control [11, 12], the model-predictive control [13, 14], the
robust controller design [15, 16] and the control strategies allowing the state to stay in a
specific state subspace or semi-module [17, 18, 19, 16, 20].

These models are also useful to deal with state estimation [21, 22, 23, 24] which is a
fundamental problem to address applications such as fault detection and diagnosis [25]
and state feedback control [26]. However, if the system is with uncertain parameters 2,
some alternative methods can be considered in order to take advantage of the knowledge
about the characteristics of this uncertainty [23, 24, 23, 27, 28, 29]. It is worth mentioning
that if we do not take these uncertainties into account, we may observe tracking error
or instability in closed loop control strategies [30]. The nondeterministic MPL systems
(or Stochastic Max-Plus Linear (SMPL) systems if probabilistic information is available)
are defined as MPL systems whose matrix entries are characterized by random variables
[31, 32, 30, 33, 34].

Objective of the thesis

In this work, we are interested in stochastic filtering of Uncertain Max-Plus Linear
(uMPL) systems, a subclass of nondeterministic systems, with entries that are mutually
independent bounded random variables with support in a real interval (bounded domain).
The objective of the stochastic filtering is to be able to estimate the state of the system
given a sequence of observations (measurements). Relying on the theory of estimation, it
is well known that all the information for estimating the state of the system is contained in
the posterior probability density function (PDF) of this state. However, as presented later,
the solution of this problem is for linear (or nonlinear with good linear approximations)
systems with Gaussian noise only (this solution is known as Kalman filter), which is not
the case of nondeterministic MPL systems.

2. The noise in MPL systems is Max-Plus multiplicative and appears as uncertainties in the Max-Plus
model parameters. As a result, the system matrices are uncertain.
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Preliminary works

To meet probabilistic objectives, we cite some preliminary works which are the basis
of this thesis:

— the conditional reachability analysis (RA) corresponds to the support calculation
of the posterior PDF of the uMPL system states [35, 27, 29]. However, it should be
noted that the conditional (RA) techniques are not stochastic since it does not rely
on any probability measurement. Nevertheless, this approach is useful to improve
the efficiency of Particle filtering algorithms. Particle filters, or Sequential Monte
Carlo methods, are suboptimal Bayesian algorithms based on weighted-particle
approximation of probability densities [36, 37], and in general these approaches
are limited by the numerical difficulties due to the generation of the particles and
by the fact that the lower dimensionality of the measurements with respect to the
state, introduces an imprecise generation of particles in the state-space. Particle
filters applied to MPL systems have been studied in [23, 29];

— in [28], an alternative stochastic filtering algorithm for uMPL systems has been
studied. The algorithm is depicted in a two-fold scheme, as it is the case of the
Bayes filter (basis of Kalman filter): a prediction phase based on the calculation
of the conditional mathematical expectation E[observation|state]; and a correction
phase using available measurements and the prediction into account in order to
compute a state estimate, based on a constraint satisfaction problem [38].

Contributions

In this thesis, the following problems have been analyzed:
— we present a reinterpretation of conditional RA for uMPL systems using Max-

Plus polyhedra [39]. We show that the forward reach set, i.e., the set of all states
that can be reached from a previous set via dynamics, is computed in strongly
polynomial-time and are characterized by a single Max-Plus polyhedron whereas in
[35, 29] the complexity is exponential, and also being characterized as a collection of
Difference-Bound Matrices (DBM) [40, Sec 4.1] to represent the same set (explosion
in the number of DBM as the dimension evolves). Conversely, we show that the
backward reach set, i.e., the set of all states that lead to a measurement point via
observation, is computed with exponential complexity in worst-case scenarios using
either the polyhedral or the DBM approaches. Nevertheless, since the intersection

13
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of the forward and backward reach sets is the objective of stochastic filtering, then
we claim that we have obtained a significant improvement. Moreover, polyhedral-
sets allow us to promptly verify inclusion by using a procedure with polynomial
complexity in the dimension;

— we present conditions to compute (exactly or approximately) the forward and back-
ward reach set using algebraic operations with quadratic complexity;

— we introduce a criterion to the alternative stochastic filtering proposed in [28]
that makes it possible to define an improved filtering algorithm. The new proposed
algorithm is based on the minimization of this criterion which allows evaluating the
estimation error of the prediction phase and to adjust the importance to be given
between the prediction estimation and the corrected estimation, as the quadratic
criterion does in Kalman filter for linear continuous time-driven systems.

— we extend the stochastic filtering algorithms, that are essentially devoted to TEG
whose places have at least a single token, to systems with token-free places. Briefly,
filtering algorithms assume that the stochastic entries of the system matrices are
independent. However, with token-free places, the entries of system matrices are
sums and/or max of processing times, in which various processing times appear in
multiple entries. Therefore, the entries of the matrices are not independent, and
these procedures are not directly adapted.

List of Publications (International comunications)

1. G. Espindola-Winck, L. Hardouin, M. Lhommeau, and R. Santos-Mendes, “Stochas-
tic filtering scheme of implicit forms of uncertain max-plus linear systems,” IEEE
Transactions on Automatic Control, vol. 67, no. 8, pp. 4370–4376, 2022.

2. G. Espindola-Winck, L. Hardouin, and M. Lhommeau, “Max-plus polyhedra-based
state characterization for uMPL systems,” in 2022 European Control Conference
ECC 22, pp. 1037–1042, 2022.

3. G. Espindola-Winck, R. Ferreira Candido, L. Hardouin, and M. Lhommeau, “Ef-
ficient state-estimation of uncertain max-plus linear systems with high observa-
tion noise,” 16th IFAC Workshop on Discrete Event Systems WODES 22, Prague,
September 2022.

4. G. Espindola-Winck, L. Hardouin, M. Lhommeau, and R. Santos Mendes, “Cri-
teria stochastic filtering of max-plus discrete event systems with bounded random
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variables,” 1st IFAC Workshop on Control of Complex Systems Cosy 22, Bologna,
November 2022.

Ongoing writing: "Forward Reachability Computation of Uncertain Max-Plus Linear
Systems: a Polyhedral Approach" to be summited to Automatica.

List of Publications (National comunications in french)

1. G. Espindola-Winck, L. Hardouin and M. Lhommeau. "Analyse d’atteignabilité des
systèmes (max,+)-linéaires à l’aide des polyèdres tropicaux," MSR 19 Modélisation
des Systèmes Réactifs, Angers, 2019.

2. G. Espindola-Winck, L. Hardouin and M. Lhommeau. "Sur l’estimation d’état des
systèmes max-plus," MSR 21 Modélisation des Systèmes Réactifs, Paris, 2021.

Organization of the document

This work is organized as follows: Chapter 1 recalls the preliminaries on DES, Max-
Plus algebra, Residuation theory over complete dioids and MPL systems. Chapter 2 gives
an overview of the methods for RA analysis of uMPL systems. The main contribution
in this Chapter is related to the use of polyhedral-sets to perform RA instead of using
DBM. Chapter 3 recalls the stochastic filtering of uMPL systems and presents some
contributions: the definition of criteria "à la Kalman"; an extension to TEG with token-
free places; consistency with the support of the posterior PDF.
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Chapter 1

PREREQUISITES

This chapter covers a brief introduction to Discrete Event Systems (DES), Max-Plus
algebra, Residuation theory over complete dioids. At the end of this Chapter, we introduce
Max-Plus Linear (MPL) systems.

1.1 Discrete Event Systems

In systems theory, systems that describe physical phenomena are controlled by consid-
ering model-based strategies using, e.g., ordinary differential equations. Some properties
must be satisfied in order to properly use these models:

1. the state-space must be continuous;

2. the presence of time-driven state transition mechanism.

The state-space being continuous means that it can be defined through continuous vari-
ables that can take any arbitrary value within a real (or complex) interval. Some common
physical variables such as position and temperature are examples of time-driven systems.
Hence, any continuous variable, as long as one can naturally define its derivatives, is
suitable to be handled by this class of systems.

The second property is due to the fact that the states generally evolve as a function
of time. Figure 1.1 shows a typical trajectory of such systems.

Furthermore, control engineers are also interested in the control of complex systems,
e.g.,

— manufacturing systems;
— transportation systems;
— telecommunication networks;
To describe the behavior of these systems, the mathematical tools of time-driven sys-

tems are not suitable, hence more relevant theoretical setting are considered, among them

17



Chapter 1 – Prerequisites

dx
dt

= f(x, t)

t

x(t)

Figure 1.1 – Typical trajectory of a time-driven system

the following can be cited: languages and automata, Markov chains and Petri nets. The
reader is invited to consult [1] for an overview.

As it was done for time-driven systems, we state the properties of these systems:

1. the state-space is discrete;

2. the presence of event-driven state transition mechanism.

Definition 1.1 (Discrete Event System (DES) [1]). Discrete Event Systems (DES) are
systems whose dynamics are event-driven, i.e., the state evolution depends entirely on the
occurrence of asynchronous discrete events over time.

Discrete state-spaces are present in several systems, the majority of them having a
technological application. The event-driven property of DES is due to the fact that the
states can only change over time at discrete instants, which physically coincides to the def-
inition of asynchronous occurrences of discrete events. The following implication naturally
arises:

If it is possible to identify any sort of "event" that can trigger a
state transition =⇒ time no longer serves to drive such a system.

Example 1.1. A machine has the following set of states that describe its behavior:

x ∈ {ON, OFF, Processing, Idle}

Figure 1.2 depicts an arbitrary trajectory of the states of this machine. In this trajectory,
events are represented by the Greek letters α, β, γ. It can be seen that a same event has
different effects in the state evolution, depending on the state in which it occurs. For

18



1.1. Discrete Event Systems

t1 t2 t3 t4

OFF

Idle

Processing

ON α

β

γ

α

t

x(t)

Figure 1.2 – Trajectory of the states
of the machine of Example 1.1

t1 t2 t3 t4

1

2

3

4

k = 1

k = 2

k = 3

k = 4

t

x(t)

Figure 1.3 – Typical trajectory of a counter
of Example 1.2

instance, in the figure: if the system is in state OFF and an event α occurs then the
next state will be ON; if α occurs at Processing then the next state will be Idle. The
trajectory can continue indefinitely. Hence, the trajectory is given by the (untimed or
logical) finite list of events {α, β, γ, α, . . . }. If the timing information is explicitly included,
then we consider the timed list {(α, t1), (β, t2), (γ, t3), (α, t4), . . . }, otherwise, we consider
the previous logical list of events.

Example 1.2. Counters are naturally discrete, i.e., x = 1, 2, 3, . . . counts, for instance,
the number of products that have been processed by a machine. Figure 1.3 depicts this
behavior. The term k ∈ {1, 2, 3, 4} denotes the numbering of the events that increase the
value of x (monotonic increasing function) while the set {t1, t2, t3, t4} denotes the date of
occurrences of such events.

As already mentioned, it is possible to use different modeling approaches for DES,
without any of them being considered as "universal". Indeed, depending on the system to
be modeled, a specific approach may simplify the modeling and ease, e.g., analysis and
control design. For instance, state machines, a subclass of Petri nets, cannot model syn-
chronization phenomena but are perfectly suitable to handle problems involving conflicts
and/or decisions [41]. Another subclass of Petri nets, called marked graphs or event graphs,
cannot model conflicts but are perfectly adapted to model synchronization phenomena
[42], for instance in a manufacturing system subject to synchronization: the assembly of
a product waits for n resources to become available. In this subclass, timing information
is generally considered in the modelling, and we consider Timed Event Graphs (TEG),
which explicitly contain timing information for the different events. TEG can be described
in terms of state-space equations using maximization and addition operations to describe
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delay and synchronization phenomena.
In the sequel, we present the basic concepts of Petri nets and Timed Event Graphs

(TEG).

1.1.1 Petri Nets (PN)

Definition 1.2 ([1]). A Petri net (PN) is a bipartite-directed graph given by the following
5-tuple

N = (P, T,A,w, x),

composed of:
— Two types of nodes:

1. places p ∈ P , where P is the set of places, are passive nodes depicted by circles,
and refer to conditions or resources;

2. transitions t ∈ T , where T is the set of transitions, are active nodes depicted
by bars and refer to activities, i.e., events that can change the state of the
resources.

— Tokens, indicated as dots or numbers within places p ∈ P , are discrete variable
elements, denoted x(p) ∈ N, which define the state (or marking) of the PN;

— Directed arcs interconnecting places and transitions 1:

1. places p ∈ P exclusively connected to transitions t ∈ T ;

2. transitions t ∈ T exclusively connected to places p ∈ P .

The set of arcs is denoted A ⊆ (P × T ) ∪ (T × P ). Furthermore, arcs are inactive
elements and are depicted by arrows. They specify the causal relationships between
transitions and places and indicate how the marking is changed by the firing of a
transition;

— Weight function: each arc is related to an arc weight w : (P × T ) ∪ (T × P )→ N.
The arc weight defines the number of tokens that are consumed or produced by a
transition.

Example 1.3. Consider the following PN, denoted N = (P, T,A,w, x),

1. Directed arcs connect only nodes of different types (definition of bipartite graph).
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2

Then the following elements of N are promptly obtained

P = {p1, p2}, T = {t1}, A = {(p1, t1), (t1, p2)}

w(p1, t1) = 2, w(t1, p2) = 1, (x(p1), x(p2))t = (2, 0)t

Elementary structures

PN are very powerful, because they are capable of representing a large amount of
features, such as:

— Sequence: Figure 1.4a depicts an example of this structure, in which a token in
place p0 enables the transition t1. The firing of transition t1 enables the transition
t2, since p1 is now marked;

— Fork: Figure 1.4b shows an example of a fork structure. This structure is the basic
feature of the creation of parallel processes;

— Join (synchronization): Figure 1.4c combines two concurrent processes, allowing
that another process continues its execution only after the end of predecessor pro-
cesses (represented by the firing of transition t1), i.e., these processes need to
synchronize with each other;

— Choice: Figure 1.4d depicts the process of making choices, i.e., the firing of tran-
sition t1 disables the transition t2 and the firing of t2 disables t1;

— Merging: Figure 1.4e shows a net with two independent transitions t1 and t2 that
have an output place p2 in common. Therefore, the firing of one of these two
transitions, enables the firing of subsequent transitions since p2 becomes marked.

Special modelling features

— Parallel processes: A model for parallel processes may be obtained by composing
the model for each individual process with fork and synchronization structures.
Figure 1.5a depicts an example of a parallel process, where I and II represent
parallel activities. Since p0 is marked, then transition t1 is enabled. When transi-
tion t1 fires, pI

1 and pII
1 become marked, representing a concurrency, i.e., internal
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(a) Sequence

(b) Fork (c) Join (d) Choice (e) Merging

Figure 1.4 – Elementary PN structures

transitions in I are independent of II. The firing of t2 depends on pI
n and pII

n ,
implying that both process I and II are finished and p0 is once again marked,
ready to restart the process by enabling the firing of t1;

— Mutual exclusion: The modelling of resource sharing is addressed in a mutual ex-
clusive way. Figure 1.5b depicts a single resource (token) in place R. This place is
seen as a pre-condition for sub-systems S1 and S2 that need such resource. After
the use of this resource by S1 or S2, then it must be released and ready to be used
again.

Dynamic evolution in PN with initial marking

Definition 1.3 ([1]). A transition tj ∈ T in a PN is said to be enabled if x(pi) ≥ w(pi, tj)
for all pi ∈ I(tj) = {pi ∈ P | (pi, tj) ∈ A} (the set of all input places for transition tj).

Remark 1.1. If there is no arc from place pi ∈ P to transition tj ∈ T , then w(pi, tj) = 0.
Similarly, if there is no arc from tj to pi, then w(tj, pi) = 0.

Definition 1.4 (Transition equation). The map f : N|P | × T → N|P | of the PN given by
N = (P, T,A,w, x) is defined by the transition tj ∈ T if and only if

pi is enabled ∀pi ∈ I(tj).

Then the following equation defines f((x(p1), . . . , x(p|P |))t, tj):

x′(pi) = x(pi)− w(pi, tj) + w(tj, pi), i = 1, 2, . . . , n
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(a) Parallel processes

(b) Mutual exclusion

Figure 1.5 – Special PN modelling features

where (x(p1), . . . , x(p|P |))t and (x′(p1), . . . , x′(p|P |))t represent the numbers of tokens in all
pi ∈ P before and after the firing of tj, respectively.

In this way, the next marking (state), explicitly depends on the input and output places
of a transition and the weights of the arcs that connect these places to the transition. It
should be noted that the number of tokens does not necessarily need to be conserved after
the firing of a transition in a PN. In general, it is possible that after several transition
firings, the resulting state is (x(p1), . . . , x(p|P |))t = (0, . . . , 0)t, or that the number of
tokens in one or more places is arbitrarily large.

Remark 1.2. If a PN has transitions with choice structure, then we say that they are in
conflict. In this thesis, however, the focus is on non-conflicting PN.

Definition 1.5 (Event graph). A non-conflicting PN is called an event graph, if each
place has exactly one upstream and one downstream transition and if all arcs have weight
1. Event graphs are perfectly suitable to model synchronization phenomenon.

Example 1.4. Let N = (P, T,A,w, x) be an event graph, with initial marking depicted
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by Figure 1.6a. Then the following elements of N are promptly obtained,

P = {p1, p2, p3}, T = {t1, t2, t3}, A = {(t1, p1), (p1, t2), (p3, t2), (t2, p2), (p2, t3), (t3, p3)}

w(t1, p1) = w(p1, t2) = w(p3, t2) = w(t2, p2) = w(p2, t3) = w(t3, p3) = 1,


x(p1)
x(p2)
x(p3)

 =


0
0
1


Below we list the cyclic behavior of N :

1. Figure 1.6a: t1 is the only transition that is enabled since there is no precedence
condition. The firing of t1 inserts a token in place p1, since

x′(p1) = 0− w(p1, t1) + w(t1, p1) = 0− 0 + 1 = 1

x′(p2) = 0− w(p2, t1) + w(t1, p2) = 0− 0 + 0 = 0

x′(p3) = 1− w(p3, t1) + w(t1, p3) = 1− 0 + 0 = 0

2. Figure 1.6b: t1 and t2 are enabled because:
— t1: there is no precedence condition;
— t2: for the set I(t2) = {p1, p3} we have x(p1) = 1 ≥ w(p1, t2) = 1 and x(p3) =

1 ≥ w(p3, t2) = 1.
Two options are possible:

(a) The firing of t1 inserts again a token in place p1;

(b) The firing of t2 inserts a token in p2 and eliminates a token in p1 and another
in p3, since

x′(p1) = 1− w(p1, t2) + w(t2, p1) = 1− 1 + 0 = 0

x′(p2) = 0− w(p2, t2) + w(t2, p2) = 0− 0 + 1 = 1

x′(p3) = 1− w(p3, t2) + w(t2, p3) = 1− 1 + 0 = 0

We choose the second option;

3. Figure 1.6c: t1 and t3 are enabled because:
— t1: there is no precedence condition;
— t2: for the set I(t3) = {p2} we have x(p2) = 1 ≥ w(p2, t3) = 1. Two options are

possible:

(a) The firing of t1 inserts again a token in place p1;
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(a) (b) (c) (d)

Figure 1.6 – Dynamic evolution of the markings of the PN of Example 1.4

(b) The firing of t3 inserts a token in p3 and eliminates a token in p2, since

x′(p1) = 0− w(p1, t3) + w(t3, p1) = 0− 0 + 0 = 0

x′(p2) = 1− w(p2, t3) + w(t3, p2) = 1− 1 + 0 = 0

x′(p3) = 0− w(p3, t3) + w(t3, p3) = 0− 0 + 1 = 1

We choose the second option;

4. Note that after the considered firings, the PN is back to its initial condition. Anal-
ogously, a new cycle can be started, through the firing of transition t1.

1.1.2 Timed PN and Timed Event Graphs (TEG)

In a standard PN, the quantification of time does not appear. Indeed, it only models the
possible ordering of firings of transitions, but not the actual firing times, since all actions
are assumed to be instantaneous. In order to take into account the timing information,
there are two approaches, precisely:

— T-time PN : The timing information is associated with the transitions of a PN.
When the transition is activated, the triggering is not immediate, being triggered
only after its delay (transition delay). When the transition delay is equal to zero,
the transition will fire as soon as the transition is enabled.

— P-time PN: The timing information is associated with the places of a PN. After
being inserted in a timed place, a token is not available to activate a next transition
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Figure 1.7 – Example of a TEG

until the minimum time (holding time) required by the corresponding place has
elapsed.

Definition 1.6 (Timed event graph (TEG)). An event graph equipped with either tran-
sition delays or holding times as timing information defines Timed Event Graph (TEG).

Remark 1.3 ([7]). If every transition in a TEG, associated with a transition delay, has
at least one input place, then the transition delays can always be converted into holding
times (by simply shifting each transition delay to all input places of the corresponding
transition). However, in general, it is not possible to convert every TEG with holding
times into a TEG with transition delays. Therefore, we will only consider TEG with
timing information in the places, i.e., for each place p ∈ P we associate a holding time
θ(p) ∈ R+, where R+ is the set of the non-negative real numbers.

Figure 1.7 is an example of a TEG, and we have three distinguished transitions that
appear in any TEG:

1. input transitions that are not affected by the firing of other transitions (t1);

2. output transitions that do not affect the firing of other transitions (t4);

3. and internal transitions that are neither input nor output transitions (t2, t3).

Temporal behavior of TEG

The dynamic behavior of a TEG can algebraically be represented in different ways.
On top of this, we know that TEG is a subclass of timed PN, and then it is possible to
consider the evolution of the marking of the places as the state recursion (see Definition
1.4). Nevertheless, in order to be able to discuss the performance of the TEG, i.e., to
determine its transient regime and/or its steady state, then a suitable modeling is to not
consider the state of the marking but the dates of occurrence of the transitions (events).
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In the following, we will detail how to obtain the mathematical description of the
dynamics of a TEG. First, we associate each transition with a dater xti

(k) : N → R+,
where xti

(k) is an increasing map that denotes the date at which the firing of number k ∈ N

of the transition ti occurs. By convention, the transition firings will be numbered from
0, i.e., firing number 0 is the first firing of a transition. Moreover, xti

(k) = +∞ means,
by convention, that the events numbered greater than or equal k, never took place. It is
also assumed that the tokens have been present in the TEG since the beginning of time,
i.e., since the date −∞, and that at an initial instant (which can be taken equal to 0),
no transition has been fired.

Roughly speaking, the dynamic evolution of a TEG is associated to the following
general synchronization structure (join structure of the PN of Figure 1.4c) depicted in
Figure 1.8 for two input places, being simple to extend to multiple input places, one input
place being trivial. In this example, we have three transitions t1, t2 and t3 and two places
p1 and p2 with corresponding holding times θ(p1) and θ(p2). In Figure 1.8a, no token is
initially present in places p1 and p2, hence, the earliest date of the k-th firing of transition
t3 is conditioned by the dates of the k-th firings of t1 and t2, shifted by θ(p1) and θ(p2),
respectively. Mathematically,

x3(k) ≥ x1(k) + θ(p1) and x3(k) ≥ x2(k) + θ(p2)

⇐⇒ x3(k) ≥ max (x1(k) + θ(p1), x2(k) + θ(p2))

Hence, the maximization operation is responsible by the synchronization, i.e., for instance,
if x1(k) + θ(p1) > x2(k) + θ(p2) then t3 is triggered at earliest at x1(k) + θ(p1).

Figure 1.8b represents a more general situation where the initial marking is with tokens
for some places. In this case, the reasoning is as follows: the k-th firing of the transition
t3 is conditioned by

— (k −M(p1))-th firing of the transition t1 since p1 has initially M(p1) tokens;
— (k −M(p2))-th firing of the transition t2 since p1 has initially M(p2) tokens;

Thus

x3(k) ≥ x1(k −M(p1)) + θ(p1) and x3(k) ≥ x2(k −M(p2)) + θ(p2)

⇐⇒ x3(k) ≥ max (x1(k −M(p1)) + θ(p1), x2(k −M(p2)) + θ(p2))

By applying this procedure, the fundamental principle of each dater xti
of the corre-
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(a) Free token case (b)

Figure 1.8 – General synchronization structure for two input places of a TEG

sponding transition ti of a TEG is given in the sequel.

xti
(k) ≥ max

tj∈T \{ti}

(
xtj

(k −M(pj)) + θ(pj)
)
, ti ∈ T

where k ∈ N is the event-number, ti is the output transition, tj is
the input transition,

pj ∈ P\{pi} and pi ∈ P

are the output places immediately after tj and the output places
immediately after ti, respectively. Additionally,

M(pj) ∈ N

is the number of tokens in pj and θ(pj) the holding time a of pj.

a. If there is no arc between ti and pj then θ(pj) = −∞ and thus x =
(xt1 , . . . , xtn)t ∈ (R ∪ {−∞})n.

Fundamental principle of TEG

Example 1.5. Consider the TEG of Figure 1.7. By applying the fundamental principle
of TEG, we obtain the following system of inequalities:

xt1(k) is a control input
xt2(k) ≥ max(xt1(k − 1), xt3(k − 2) + 4)
xt3(k) ≥ xt2(k) + 1
xt4(k) ≥ xt3(k)
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Another possible way to describe TEG is by considering the so-
called counters denoted x(τ) ∈ N. Counters determine the number
of events that have occurred up to time t, for instance, xi(τ) refers to
the number of occurrences of transition i up to time τ . It is assumed
that time is discrete in this representation, i.e., τ ∈ N 7→ x(τ) ∈ N.

Example 1.6. Consider again the TEG of Figure 1.7. The time-
domain model of this TEG is given by the following system of in-
equalities:

xt1(τ) is a control input
xt2(τ) ≤ min(1 + xt1(τ), xt3(τ − 4) + 2)
xt3(τ) ≤ xt2(τ − 1)
xt4(τ) ≤ xt3(τ)

Consequently, it is possible to model the dynamic behavior of a
TEG either in the event-domain (daters) or in the time-domain
(counters). In this work, we consider the model dynamics in the
event-domain only.

Remark 1.4. Considering the earliest firing rule, i.e., every internal and output transi-
tion fires as soon as it is enabled, the system of inequalities ≥ of Example 1.5 becomes a
system of equations =.

In view of the recursive equations for the transition firing times of Example 1.5, it
is easy to recognize that addition and the maximization operations are necessary to de-
termine the desired timetable. Due to the maximization operation, these equations are
nonlinear in conventional algebra. Nevertheless, in the sequel we introduce a suitable
mathematical framework to properly deal with these systems.

1.2 Max-Plus algebra: an idempotent semiring

The Max-Plus algebra has been an important area of study since the 1970s, with
special attention to the modeling and control of DES involving allocation of resources. In
the sequel, we shall use [43] and [10].
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1.2.1 Basic concepts

Let us begin with some notations. Let Rmax
def= (R ∪ {ε},⊕,⊗) be the union of the

set of all real numbers with ε = −∞. This set is an idempotent semiring or dioid 2, (i.e.,
∀a ∈ Rmax, a⊕a = a), endowed with max as the addition operator ⊕ and + as the product
operator ⊗. These notations are consistent with respect to the usual properties:

Associativity of ⊕ and ⊗:

∀a, b, c ∈ Rmax, (a⊕ b)⊕ c = a⊕ (b⊕ c)
∀a, b, c ∈ Rmax, (a⊗ b)⊗ c = a⊗ (b⊗ c)

Commutativity ⊕ and ⊗:

∀a, b ∈ Rmax, a⊕ b = b⊕ a
∀a, b ∈ Rmax, a⊗ b = b⊗ a

Distributivity of ⊗ over ⊕:

∀a, b, c ∈ Rmax, (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

Neutral element for ⊕ and the absorbing element for ⊗:

∀a ∈ Rmax, a⊕ ε = ε⊕ a = a

∀a ∈ Rmax, a⊗ ε = ε⊗ a = ε

Neutral element for ⊗:

∀a ∈ Rmax, a⊗ e = e⊗ a = e, with e = 0

Hereafter, as it is done in usual algebra, the operator ⊗ will usually
be omitted in expressions whenever it is clear.

The n-th power of a ∈ Rmax is naturally introduced in Max-Plus algebra, by using the
associative property as shown below

a⊗n = a⊗ a⊗ · · · ⊗ a︸ ︷︷ ︸
n times

2. Dioid is an algebraic structure that has all properties of a ring except the additive inverse.
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for all n ∈ N \ {0}. For n = 0, we have a⊗0 = e. Furthermore, if a ∈ R, then a⊗−1 stands
for −a.

Proposition 1.1. The inequality x ≥ ax ⊕ b of Rmax has x̂ = a⋆b as smallest solution,
where a⋆ (Kleene star) is defined by:

a⋆ = ⊕
k∈N

a⊗k.

Moreover, x̂ satisfies the implicit equation x = ax⊕ b.

1.2.2 Matrices and Vectors in Max-Plus algebra

The previous results are extended to matrices and vectors. The set of matrices of
shape n×m is denoted Rn×m

max . An entry of the matrix A ∈ Rn×m
max is denoted as aij for all

i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
The sum of matrices A,B ∈ Rn×m

max is defined as

(A⊕B)ij = aij ⊕ bij, for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.

Furthermore, the commutativity property holds for the sum of A,B ∈ Rn×m
max , i.e., A⊕B =

B ⊕ A.

Example 1.7. e ε

3 2

⊕
−5 11

1 ε

 =
e⊕−5 ε⊕ 11

3⊕ 1 2⊕ ε

 =
e 11

3 2

 .
The product of a matrix A ∈ Rn×m

max by a scalar α ∈ Rmax is defined as

(α⊗ A)ij = α⊗ aij, for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.

The product of matrices A ∈ Rn×l
max and B ∈ Rl×m

max is defined similarly to the usual
algebra, by replacing + by ⊕ and × by ⊗. Formally

(A⊗B)ik =
l⊕

j=1
aij ⊗ bjk, for all i ∈ {1, . . . , n} and k ∈ {1, . . . ,m}.
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Example 1.8.e ε

3 2

⊕
−5 11

1 ε

 =
(e⊗−5)⊕ (ε⊗ 1) (e⊗ 11)⊕ (ε⊗ ε)

(3⊗−5)⊕ (2⊗ 1) (3⊗ 11)⊕ (2⊗ ε)

 =
−5 11

3 14


Furthermore, the commutativity property does not hold for the product of A ∈ Rn×l

max

and B ∈ Rl×m
max , i.e., A⊗B ̸= B ⊗ A.

The operations ⊕ and ⊗ of matrices have neutral elements similar to the neutral
elements of scalars. Let E be the zero matrix, i.e., a rectangular matrix whose entries
are ε. Let diag(a1, . . . , ad) be the diagonal matrix, i.e., a square matrix with its di-
agonal elements a1, . . . , ad ∈ Rmax and its off diagonal entries ε. A trivial example of
a diagonal matrix is the Max-Plus algebraic identity matrix of appropriate dimension
I = diag(e, . . . , e). The following properties are easily verified:

∀A ∈ Rn×m
max , A⊕ E = E ⊕ A = A

∀A ∈ Rn×m
max , A⊗ E = E ⊗ A = E

∀A ∈ Rn×m
max , A⊗ I = I ⊗ A = A

The transpose of A ∈ Rn×m
max , denoted At, is defined as the usual way, i.e., (At)ij = aji

for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
The k-th power of A ∈ Rn×n

max is defined as

A⊗k = A⊗ A⊗ · · · ⊗ A︸ ︷︷ ︸
k times

where A⊗0 = I.
The set Rn

max = Rn×1
max refers to the n-th fold Cartesian product of Rmax. Its elements

can be thought of as points of an affine space, or as vectors. They are denoted by bold
symbols, for instance x = (x1, . . . , xn)t. The unit vector is denoted u = (e, . . . , e)t and
∀α ∈ Rmax, α⊗ u denotes a vector whose entries are α. Furthermore, the j-th column of
the identity matrix I is called the j-th basis of Rn

max.

Example 1.9. The vectors v1 = (e, ε)t and v2 = (ε, e)t are at the same time the columns
of

I =
e ε

ε e


and the basis of R2

max. The latter statement is due to the fact that any v ∈ R2
max may be
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uniquely written as
v = α1v1 ⊕ α2v2.

Any other pair of linearly independent vectors of R2
max, such as v1 = (5, ε)t and v2 =

(ε, 3)t, forms also a basis of R2
max.

Let A ∈ Rn×n
max be a square matrix, and let b ∈ Rn

max and x ∈ Rn
max be

two vectors. According to Proposition 1.1, the equation x = Ax⊕b
admits x = A⋆b as smallest solution, where

A⋆ =
⊕
k∈N

A⊗k.

If A is a lower triangular matrix, i.e., aij = ε for all i ≤ j with
i, j ∈ {1, . . . , n}, then A⊗k = E for a sufficient large k (not greater
than the matrix dimension).

Equation x = Ax⊕ b of Rn
max

1.2.3 Completion of Rmax and residuation theory over complete
dioids

In a dioid (D,⊕,⊗) with ε and e their zero and unit elements, respectively, the fol-
lowing equivalence is considered

∀a, b ∈ D, a = a⊕ b ⇐⇒ ∃c ∈ D, a = b⊕ c.

This equivalence defines the natural order relation ⪰ as follows:

a ⪰ b ⇐⇒ a = a⊕ b. (1.1)

The set Rmax is linearly ordered with respect to ⊕ and the order ⪰
in this set coincides with the usual linear order ≥.

This order relation makes D to be a partially ordered set such that each pair of
elements (a, b) admits the lowest upper bound sup{a, b}, usually denoted a ∨ b, which
coincides with a⊕ b. Hence, a dioid is in particular a sup-semilattice.
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The sum and the left and right products preserve this relation:

∀a, b, c ∈ D, a ⪰ b =⇒


a⊕ c ⪰ b⊕ c, (sum)

a⊗ c ⪰ b⊗ c, (left product)

c⊗ a ⪰ c⊗ b, (right product)

Definition 1.7 (Complete dioid). A dioid D is complete if it is closed for infinite sums
and the left and right distributivity of the product extend to infinite sums.

For a complete dioid D, the top element, denoted ⊤, exists and is equal to the sum of
all elements of D, i.e., ⊤ = ⊕

a∈D
a. This element respects the absorbing rule, i.e., ε⊗⊤ = ε

and ⊤⊗ ε = ε

The dioid Rmax is not complete but it can be completed by adding
a top element ⊤ = +∞. Hereafter, rather than using Rmax we use
Rmax

def= (Rmax ∪ {⊤},⊕,⊗) because we are able to perform compu-
tations with infinite values without a careful handling.

Complete dioid Rmax

For a complete dioid, an inner operation representing the lower bound of the operands,
denoted by ∧, automatically exists. The partial order relation presented in Equation (1.1)
can be expressed as

a ⪰ b ⇐⇒ a = a⊕ b ⇐⇒ b = a ∧ b. (1.2)

where a ∧ b = inf{a, b} is the greatest lower bound of (a, b).

In Rmax, the operation a ∧ b for the scalars a, b ∈ Rmax coincides
with min(a, b).

For matrices with entries in D, the order ⪰ on D induces a (partial) order on the set
Dn×m, i.e., for any A,B ∈ Dn×m the following equivalence holds:

A ⪰ B ⇐⇒ aij ⪰ bij, for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
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Remark 1.5. The dioid Dn×n is complete whenever D is complete because the sum of
matrices simply involves the sum of similar entries. Notice that for two matrices A,B ∈
Dn×n the following holds:

A ⪰ B ⇐⇒ A = A⊕B ⇐⇒ B = A ∧B,

where
(A ∧B)ij = aij ∧ bij, for all i, j ∈ {1, . . . , n},

is consistent, as it is for scalars in D.

Regarding the order structure of dioids, we are interested in system of equations of
form f(x) = y where f is an isotone mapping. However, in dioids, the absence of additive
inverses increases the difficulty of finding the solutions of systems of linear equations.
Hence, we must weaken the notion of solution, denoting that a sub-solution of f(x) = y

is a x which satisfies f(x) ⪯ y. Nevertheless, as in usual algebra the solution of f(x) = y

does not always exist and if it does, it is not necessary unique.
Below, we present the greatest solution of f(x) ⪯ y using residuation theory.

Definition 1.8 (Residual and residuated mapping). Let D and C be two complete dioids
and f : D → C be an isotone mapping, i.e., order preserving. Then, f is residuable if, for
all y ∈ C, there exists the greatest x to f(x) ⪯ y, hereafter denoted f ♯(y). The monotone
mapping f ♯ : C → D, y 7→ ⊕{x ∈ D | f(x) ⪯ y} is called residual of f . Moreover, f ♯ is
the unique mapping that verifies the following statements f ◦ f ♯ ⪯ IdC et f ♯ ◦ f ⪰ IdD

where IdD and IdC are the identity mappings on D and C, respectively.

Example 1.10. Mappings La : D → D, x 7→ ax and Ra : D → D, x 7→ xa for any a ∈ D
are both residuated. Their residuals are isotone mappings, denoted L♯

a : D → D, y 7→ a◦\y
("left residuation by a") and R♯

a : D → D, y 7→ y◦/a ("right residuation by a"), respectively.
Hence, the greatest solutions of ax ⪯ b and xa ⪯ b are a◦\b and b◦/a, respectively.

In Appendix A.1, we collect some useful properties of left and right multiplication and
their residuals.

In Rmax, the product is commutative, hence xa = ax ≤ y admits
x = a◦\y = y◦/a as greatest solution where operators ◦\ and ◦/ are the
classical subtraction −, i.e., x = y − a with the convention that
−∞+∞ = +∞.
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One can extend the residuation computation to matrices of dioids. Matrix inequalities
of form f(X) ⪯ Y , with X a rectangular matrix of any arbitrary dimension, are also
residuable. Then

LA : Dp×m → Dn×m, X 7→ AX

RC : Dn×p → Dn×m, X 7→ XC

with A ∈ Dn×p and C ∈ Dp×m, are both residuated and their residuals are given by

L♯
A : Dn×m → Dp×m, Y 7→ A◦\Y

R♯
A : Dn×m → Dn×p, Y 7→ Y ◦/C.

Hence, the greatest solutions of AX ⪯ B and XC ⪯ B, where B ∈ Dn×m, are A◦\B and
B◦/C, respectively. Computationally,

(A◦\B)ij =
n∧

k=1
aki◦\bkj, for all i ∈ {1, . . . , p} and j ∈ {1, . . . ,m}

and
(B◦/C)ij =

m∧
k=1

bik◦/cjk, for all i ∈ {1, . . . , n} and j ∈ {1, . . . , p}

In Rmax, A◦\B = −At⊗′B = −(At⊗(−B)) and B◦/C = B⊗′(−Ct) =
−((−B) ⊗ Ct) where A,B and C are matrices of appropriate di-
mension and ⊗′ is the ⊗-product of matrices but by replacing ⊕ by
min a.

a. The max and min operations are dual, i.e., for x, y ∈ Rmax, the following
equalities hold: min(x, y) = −max(−x,−y) and max(x, y) = −min(−x,−y).

The following example deals with the solution of inequalities of form f(x) ⪯ y, which
is a specific case of the previous calculations that are useful in the sequel of this work.

Example 1.11. Given A ∈ Dn×p, the mapping LA : Dp → Dn,x 7→ Ax is residu-
able. For all y ∈ Dn, the residual of LA is L♯

A(y) = A◦\y which is given by (A◦\y)i =
n∧

j=1
aji◦\yj, for all i ∈ {1, . . . , p} where aji◦\yj is the greatest solution of ajix ⪯ yj. Further-

more, due to isotonicity, Ax ⪯ y implies A(A◦\y) ⪯ y, and it follows immediately that
Ax = b has solution if and only if A(A◦\b) = b.
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In Rmax, Ax ≤ y, with A ∈ R
n×p
max, x ∈ R

p
max and y ∈ R

n
max, admits

A◦\y as its greatest solution, where

(A◦\y)i = min
1≤j≤n

(−aji + yj) for all i ∈ {1, . . . , p}. (1.3)

Example 1.12. Given A =
2 ε

⊤ 3

 and y =
ε

1

 then

x = A◦\y = min(−2 + ε,−⊤+ 1) = min(ε, ε)
min(−⊤+ ε,−3 + 1) = min(⊤,−2)

 =
 ε

−2


which is the greatest vector x such that Ax ≤ y. Furthermore, in
this case Ax = y holds.

Theorem 1.1. Let D and C be two complete dioids and f : D → C be a residuated
mapping. Then

f ◦ f ♯ ◦ f = f and f ♯ ◦ f ◦ f ♯ = f ♯.

Proposition 1.2. Let D and C be two complete dioids and f, g : D → C be two residuated
mappings. The greatest solution of f(x) = g(x) is equal to the greatest fixed-point of the
isotone mapping Π : D → D, Π(x) = x ∧ g♯(f(x)) ∧ f ♯(g(x)).

Proof. The following equivalences hold:

f(x) = g(x) ⇐⇒ f(x) ⪰ g(x) and g(x) ⪰ f(x)

⇐⇒ g♯(f(x)) ⪰ x and f ♯(g(x)) ⪰ x

⇐⇒ g♯(f(x)) ∧ f ♯(g(x)) ⪰ x

⇐⇒ g♯(f(x)) ∧ f ♯(g(x)) ∧ x = x

Hence, the greatest fixed-point of Π(x) = x ∧ g♯(f(x)) ∧ f ♯(g(x)) is the greatest solution
of f(x) = g(x). Moreover, f, f ♯, g and g♯ are isotone mappings, and thus the mapping Π
is also isotone.

As a consequence of the previous Proposition 1.2, if the greatest solution of f(x) = g(x)
exists, then it can be obtained by solving xk = Π(xk−1) with convergence (i.e., xk = xk−1)
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in a finite number of iterations k. Thus, starting from an arbitrary x0, we obtain xk less
than or equal to x0 because xk ⪯ xk−1 for all k.

Remark 1.6. In [44], it is shown that the complexity of computing this problem is pseudo-
polynomial if it converges (it exists a finite solution), i.e., the convergence rate is polyno-
mial according to the distance between the greatest fixed-point xk and the initial value x0.
Nevertheless, if xk = Π(xk−1) is not solvable, i.e., f(x) = g(x) does not possess a finite
solution, then xk = Π(xk−1) is likely to run infinitely and some other techniques shall be
considered in order to avoid this bad behavior.

Fixed-point of mappings in dioids of matrices are a natural extension of Proposition
1.2 for scalars. Hence, it is possible to compute the greatest solution x ∈ Dn of the vertical
concatenation of s ≥ 1 two-sided equations of form atx = btx, where a,b ∈ Dn, as shown
below.

Consider the matrices A,B ∈ R
p×n

max and the vector x ∈ R
n

max, then
Proposition 1.2 implies that the greatest solution of Ax = Bx is
obtained by considering the greatest fixed-point of the mapping

Π(x) = x ∧ A◦\(Bx) ∧B◦\(Ax) (1.4)

On the two-sided equation Ax = Bx in R
n
max

Previously, it has been shown how residuation theory can be applied to determine the
greatest solution of inequalities f(x) ⪯ y in complete dioids, denoted f ♯(y). Dually, it is
of course also possible to determine the least solution x of inequalities such as y ⪯ f(x),
denoted f ♭(y). Hence, f ♭(y) is called the dual residual of f .

Example 1.13. The mapping Ta(x) : D → D, x 7→ x ⊕ a, is dually residuated, and its
residual is denoted by T ♭

a(y) : D → D : y 7→ y ◦− a. It is worth to mention that

y ◦− a = ε ⇐⇒ a ⪰ y.

Definition 1.9 ([45]). A matrix in a dioid Dn×p is said to be row (column) G-astic if it
has at least one non-ε element in each row (column). Formally, for A ∈ Dn×p we have
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that
A is row G-astic : if

p⊕
j=1

aij ̸= ε, i = 1, 2, . . . , n

A is column G-astic : if
n⊕

i=1
aij ̸= ε, j = 1, 2, . . . , p.

Furthermore, A is said to be doubly G-astic if it is, at the same time, row and column
G-astic [46].

Proposition 1.3. In Rmax, y ≤ Ax with A ∈ R
n×p

max, x ∈ R
p

max and
y ∈ R

n
max admits a finite least solution if and only A is doubly G-

astic with only one element different of ε per row and column.

Proof. First, if A is doubly G-astic with only one element different
of ε per row and column, then (Ax)i = aij(i) ⊗ xj(i) with j(i) ∈
{1, . . . , p} for i = 1, 2, . . . , n such that j(1) ̸= j(2) ̸= . . . ̸= j(n).
Thus,

yi ≤ (Ax)i ⇐⇒ yi ≤ aij(i) ⊗ xj(i) ⇐⇒ xj(i) ≥ aij(i)◦\yi,

which is the element-wise finite least solution of y ≤ Ax.

A general solution for this problem is given in Appendix B.2.

1.3 Modelling of TEG in Rmax: the Max-Plus Linear
(MPL) systems

1.3.1 Motivating example

Example 1.14 ([1]). Imagine a railway network consisting of two stations (Angers := x1

and Paris := x2) and three lines: one inner loop with two rail tracks each (one for x1 → x2

and other for x2 → x1); two outer loops with one rail track each. The basic structure of this
railway network is depicted in Figure 1.9a. It is assumed that the train company operates
one train on each track initially; the travel times are fixed as indicated on the arcs; trains
scheduled to depart must wait for all arriving trains before departing because passengers
are able to change line at the stations (to change from the inner to an outer loop or vice
versa); and departures occur as soon as possible (refer to Remark 1.4). As mentioned
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ParisAngers

(a) Precedence graph
(b) TEG model

Figure 1.9 – Railway network model

before, TEG are suitable to model synchronization phenomena. Figure 1.9b depicts this
model and the following equations are obtained: x1(k)

x2(k)

 =
 max(2 + x1(k − 1), 5 + x2(k − 1))

max(3 + x1(k − 1), 3 + x2(k − 1))


where (x1(0), x2(0))t ∈ R2 is supposed to be known. For instance, for (x1(0), x2(0))t =
(0, 0)t, the following timetable can be achieved

such that calculating the differences between adjacent elements of the timetable, i.e.,
∀k, x(k + 1)− x(k) we obtain

 5
3

 ,
 3

5

 ,
 5

3

 ,
 3

5

 ,
 5

3

 ,
 3

5

 , . . . ,
i.e., on average a train leaves station x1 or x2 at every 4 unit of time, but the simulated
timetable is considered to be 2-periodic, since it is not hard to see that ∀k ≥ 0, x(k+2) =
8 + x(k).

Furthermore, this system is nonlinear in the conventional algebra, however it can be
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expressed as the following linear system in R
2
max:

 x1(k)
x2(k)

 =
 2⊗ x1(k − 1)⊕ 5⊗ x2(k − 1)

3⊗ x1(k − 1)⊕ 3⊗ x2(k − 1)

 =
2 5

3 3

⊗
 x1(k − 1)
x2(k − 1)


This motivating example suggests that a TEG appears to have a state-space charac-

terization similar to the one found in classical time-driven systems.

1.3.2 State-space equations

Example 1.15. The TEG of Figure 1.10 models a simple manufacturing system. The lin-
ear dynamical system in Max-Plus algebra, with xi(k), uj(k), z(k) being the time instants
that the transitions xi, uj and z fire at k, is



x1(k) ≥ 1⊗ x2(k − 2)⊕ 5⊗ u1(k − 1)
x2(k) ≥ x1(k)⊕ 3⊗ x3(k − 3)
x3(k) ≥ 5⊗ u2(k)
z(k) ≥ 2⊗ x2(k)⊕ 3⊗ x3(k − 1)

Rewriting the system in matrix form, one obtains x(k) ≥ A0x(k)⊕ A1x(k − 1)⊕ A2x(k − 2)⊕ A3x(k − 3)⊕B0u(k)⊕B1u(k − 1),
z(k) ≥ C0x(k)⊕ C1x(k − 1),

with A0 =


ε ε ε

e ε ε

ε ε ε

, A1 = E, A2 =


ε 1 ε

ε ε ε

ε ε ε

, A3 =


ε ε ε

ε ε 3
ε ε ε

, B0 =


ε ε

ε ε

5 ε

,

B1 =


5 ε

ε ε

ε ε

, C0 =
(
ε 2 ε

)
and C1 =

(
ε ε 3

)
.

Generally speaking, for any TEG (cf. Definition 1.6), one obtains the following in-
equalities: 

x(k) ≥
M⊕

i=0
Aix(k − i)⊕

M⊕
j=0

Bju(k − j),

z(k) ≥
M⊕
l=0

Clx(k − l),

(1.5a)

(1.5b)
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Figure 1.10 – TEG of a simple manufacturing system

where M is the maximal initial marking, x ∈ R
n
max, u ∈ R

p
max, z ∈ R

q
max, A0, A1, . . . , AM ∈

R
n×n

max , B0, B1, . . . , BM ∈ R
n×p

max and C0, C1, . . . , CM ∈ R
q×n

max.
Inequality (1.5) is rewritten as

x(k) ≥ A0x(k)⊕
 M⊕

i=1
Aix(k − i)⊕

M⊕
j=0

Bju(k − j)
 ,

and according to Proposition 1.1 its smallest solution is

x̂(k) =
M⊕

i=1
A⋆

0Aix(k − i)⊕
M⊕

j=0
A⋆

0Bju(k − j).

Furthermore, x̂(k) is also the smallest solution of the implicit equation

x(k) = A0x(k)⊕
 M⊕

i=1
Aix(k − i)⊕

M⊕
j=0

Bju(k − j)
 , (1.6)

and thus
x(k) =

M⊕
i=1

Ãix(k − i)⊕
M⊕

j=0
B̃ju(k − j), with Ãi = A⋆

0Ai and B̃j = A⋆
0Bj,

z(k) =
M⊕
l=0

Clx(k − l),

(1.7a)

(1.7b)

represents the behavior of the associated TEG without implicit terms.
The non-null entries of A0 correspond to holding times of the token-free places in
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the initial marking. In practice, TEG are assumed to be live (otherwise some transitions
would be frozen), this implies that there is an appropriate permutation of the transitions
numbering such that A0 can be written in strictly lower triangular form, i.e., the infinite
sum that defines A⋆

0 becomes finite.

Remark 1.7. Rather than using A⋆
0, the implicit part of Equation (1.6) can also be elim-

inated by successive substitutions of scalar variables, with careful attention to the order of
these substitutions.

Eliminating the implicit part of Inequality (1.5) supposes the earli-
est firing rule (see Remark 1.4), but also that the tokens of the ini-
tial marking are immediately available a, i.e., the initial conditions
{x(k)}k<0 took place on date −∞. Other nonzero initial conditions
can be circumvented using input transitions of the TEG.

a. It is for this reason that in the state representation, inequalities (signs
≥) become equations (signs =) (see Remark 1.4).

We can transform any M -order system to a first order system by considering an
augmented version of the state-space. For the TEG this means:

— any place between two internal transitions must contain exactly one token, i.e., for
i ̸= 1 the matrices Ai must be null;

— any place between an input transition and an internal transition must be without
token, i.e., for j > 0 the matrices Bj must be null;

— any place between an internal transition and an output transition must be without
token, i.e., for l > 0 the matrices Cl must be null.

Hence, from the implicit Equation (1.7), it is always possible to
obtain the following canonical form:

x(k) = Ax(k − 1)⊕Bu(k),

z(k) = Cx(k),

(1.8a)

(1.8b)

where x, u, z, A, B and C are of appropriate dimension.

Max-Plus Linear (MPL) system
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By analogy with the theory of time-driven linear systems, Equation (1.8a) is the state
equation and represents the internal dynamics, Equation (1.8b) is the observation (or
output) equation, x is the state vector, u is the input or control vector and z is the
output or observation vector.

Nevertheless, a generic MPL system equation is represented by:

y(k) = Ax(k − 1), (1.9)

where A ∈ R
n×p

max, y and x are vectors of appropriate dimension.

Remark 1.8. Equation (1.9) is generic because it can represent either an autonomous
MPL system (i.e., Bu(k) = ε) or a non-autonomous MPL system (i.e., Bu(k) ̸= ε), both
given by Equation (1.8a). It can also represent Equation (1.8b).

Example 1.16. Consider the non-autonomous MPL system given by Equation (1.8):

x(k) =


3 2 2
e 1 3
2 1 e

x(k − 1)⊕


e ε

ε e

ε ε

u(k),

where x(k) ∈ R
3
max and u(k) ∈ R

2
max. The equivalent generic system is given by (see

Equation (1.9)):

x(k) =


3 2 2 e ε

e 1 3 ε e

2 1 e ε e

 x̃(k − 1),

with x̃(k − 1) = (xt(k − 1),ut(k))t ∈ R
5
max.

Example 1.17. We recall Example 1.15. In order to obtain a representation of the TEG
of Figure 1.10, we consider the following steps:

1. Compute A⋆
0: A⋆

0 =


e ε ε

e e ε

ε ε e


2. Compute Ã1 = A⋆

0A1, Ã2 = A⋆
0A2, Ã3 = A⋆

0A3, B̃0 = A⋆
0B0 and B̃1 = A⋆

0B1:

Ã1 = E, Ã2 =


ε 1 ε

ε 1 ε

ε ε ε

, Ã3 =


ε ε ε

ε ε 3
ε ε ε

, B̃0 =


ε ε

ε ε

5 ε

 and B̃1 =


5 ε

5 ε

ε ε
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(a) Step 2

(b) Step 3

Figure 1.11 – Canonical form of the TEG of Example 1.17

Alternative to 2. Substitute x1(k) into x2(k)


x1(k) = 1⊗ x2(k − 2)⊕ 5⊗ u1(k − 1)
x2(k) = x1(k)⊕ 3⊗ x3(k − 3)

= 1⊗ x2(k − 2)⊕ 3⊗ x3(k − 3)⊕ 5⊗ u1(k − 1)
x3(k) = 5⊗ u2(k)
z(k) = 2⊗ x2(k)⊕ 3⊗ x3(k − 1)

This step is represented by Figure 1.11a.

3. Introduce new variables ξ1, ξ2, . . . , ξ6 such that:

x1(k) = 1⊗ ξ2(k − 1)⊕ 5⊗ ξ1(k − 1)
x2(k) = 1⊗ ξ3(k − 1)⊕ 3⊗ ξ5(k − 1)⊕ 5⊗ ξ1(k − 1)
x3(k) = 5⊗ u2(k)
ξ1(k) = u1(k)
ξ2(k) = x2(k − 1)
ξ3(k) = x2(k − 1)
ξ4(k) = x3(k − 1)
ξ5(k) = ξ4(k − 1)
ξ6(k) = x3(k − 1)
z(k) = 2⊗ x2(k)⊕ 3⊗ ξ6(k)

which is clearly a first order system that is depicted by Figure 1.11b and charac-
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terized by Equation (1.8), i.e.,




x1(k)
x2(k)
x3(k)
ξ1(k)
ξ2(k)
ξ3(k)
ξ4(k)
ξ5(k)
ξ6(k)



=



ε ε ε 5 1 ε ε ε ε

ε ε ε 5 ε 1 ε 3 ε

ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε

ε e ε ε ε ε ε ε ε

ε e ε ε ε ε ε ε ε

ε ε e ε ε ε ε ε ε

ε ε ε ε ε ε e ε ε

ε ε e ε ε ε ε ε ε





x1(k − 1)
x2(k − 1)
x3(k − 1)
ξ1(k − 1)
ξ2(k − 1)
ξ3(k − 1)
ξ4(k − 1)
ξ5(k − 1)
ξ6(k − 1)



⊕



ε ε

ε ε

ε 5
e ε

ε ε

ε ε

ε ε

ε ε

ε ε



 u1(k)
u2(k)

 ,

z(k) =
(
ε 2 ε ε ε ε ε ε 3

)



x1(k)
x2(k)
x3(k)
ξ1(k)
ξ2(k)
ξ3(k)
ξ4(k)
ξ5(k)
ξ6(k)



.

It is also possible to consider a different approach to eliminate the implicit part of
Inequality (1.5). First, suppose also that the corresponding TEG is under the earliest
fire rule, then ≥ becomes =. Considering an augmented version of the state-space, the
M -order system can be rewritten as

x(k) = A0x(k)⊕ A1x(k − 1)⊕Bu(k),

z(k) = Cx(k),

(1.10a)

(1.10b)

where x, u, z, A0, A1, B and C are of appropriate dimension. Since the TEG is considered
to be live, then x(k) = A⋆

0A1x(k − 1)⊕ A⋆
0Bu(k),

z(k) = Cx(k),

(1.11a)

(1.11b)
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Alternatively, Equation (1.10) can be rewritten as:

x1(k) = y1(k − 1),
x2(k) = a0

21x1(k)⊕ y2(k − 1),
x3(k) = a0

31x1(k)⊕ a0
32x2(k − 1)⊕ y3(k − 1),

...
xn(k) =

(⊕n−1
l=1 a

0
nlxl(k)

)
⊕ yn(k − 1),

z(k) = Cx(k),

(1.12)

where y(k − 1) = A1x(k − 1) ⊕ Bu(k) and a0
ij ∈ A0 for all i, j ∈

{1, . . . , n}.

Triangular form of Equation 1.10

1.3.3 MPL systems as Piece-Wise Affine (PWA) systems

MPL systems are linear over Rmax. Nevertheless, in [47], it has been shown that it
was always possible to represent the nonlinear dynamics of MPL systems in R ∪ {−∞}
as linear Piece-Wise Affine (PWA) systems, i.e., as the union of affine partitions of the
nonlinear dynamics.

Equation (1.9) represents a generic MPL system, which is also represented by

yi(k) = max
1≤i≤p

(aij + xj(k − 1)), i = 1, 2, . . . , n, (1.13)

where yi, aij, xj ∈ R ∪ {−∞}.
For each i ∈ {1, . . . , n}, ∃ gi ∈ {1, . . . , p} such that aigi

+xgi
(k−1) ≥ aij +xj(k−1) and

then yi(k) = aigi
+xgi

(k−1). Summing up, ∀i we define g = (g1, g2, . . . , gn) ∈ {1, . . . , p}n,
and then

y(k) = Pgx(k − 1) + Ξg, for x(k − 1) ∈ Rg (1.14)

where ∀(i, j) ∈ {1, . . . , n} × {1, . . . , p} we have pij
g ∈ Pg ∈ {0, 1}n×p, as defined below

pij
g =

1 if j = gi,

0 otherwise,
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the vector of constants Ξg is given by

Ξg =
(
a1g1 a2g2 . . . angn

)t

and each one of the pn affine dynamics is strictly valid in the region Rg, which is defined
by

Rg =
n⋂

i=1

p⋂
j=1
j ̸=gi

{x ∈ (R ∪ {−∞})p | xj − xgi
≤ aigi

− aij} , (1.15)

where x ≡ x(k − 1) for the evaluation of x(k − 1) ∈ Rg.
In [48, Sec. 2.2], the authors have shown that it is possible to reinterpret Equation

(1.15), leading to a recursive computation. First, define the partial region

R(g1,...,gk) =
k⋂

i=1

p⋂
j=1
j ̸=gi

{x ∈ (R ∪ {−∞})p | xj − xgi
≤ aigi

− aij} , (1.16)

where ∀k ∈ {1, ..., n}, (g1, ..., gk) are its partial coefficients. Note that, for k > 1, the
partial regions (1.16) can be computed as

R(g1,...,gk) = R(g1,...,gk−1) ∩
p⋂

j=1
j ̸=gi

{x ∈ (R ∪ {−∞})p | xj − xgk
≤ akgk

− akj} , (1.17)

i.e., if for some k > 1 the partial region R(g1,...,gk) is empty, then, we label these coefficients
as (g∅

1, ..., g
∅
k) and the regions R(g1,...,gn) are also empty if and only if ∀i ∈ {1, . . . , k} gi = g∅

i .

Remark 1.9. A procedure, with worst-case complexity O (pn(np+ p3)), is described in
[48, Alg. 1] and creates a PWA system from a generic MPL system 3. Furthermore, it is
worth to mention that a more efficient procedure (with the same worst-case complexity),
using the algebraic operations ⊕ and ⊗ in the Rmax, is described in [49, Alg. 1].

Example 1.18. Consider the generic MPL system given by (see Equation (1.9)):

y(k) =


8 5
4 3
1 2

⊗ x(k). (1.18)

3. In [48], it is shown that each row of A has 0 ≤ p′
i ≤ p finite elements, and then the number of

regions is at most N such that N ≤ Πn
i=1p′

i ≤ pn, i.e., the sparsity of A increases the performance of the
procedure in the worst-case scenario.
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Following Equation (1.16), we compute R(g1) ∀g1 ∈ {1, 2}, as

R(1) =
{
x ∈ (R ∪ {−∞})2 | x2 − x1 ≤ 3

}
, R(2) =

{
x ∈ (R ∪ {−∞})2 | x1 − x2 ≤ −3

}
.

Now, since k > 1, we use Equation (1.17) to compute the subsequent partial regions. Thus,
to compute R(g1,g2) ∀(g1, g2) ∈ {1, 2}2 = {(1, 1), (1, 2), (2, 1), (2, 2)} we use R(g1) previously
calculated as follows

R(1,1) = R(1) ∩ {x | x2 − x1 ≤ 1} = {x | x2 − x1 ≤ 1} ,

R(1,2) = R(1) ∩ {x | x1 − x2 ≤ −1} = {x | 1 ≤ x2 − x1 ≤ 3} ,

R(2,1) = R(2) ∩ {x | x2 − x1 ≤ −1} = ∅,

R(2,2) = R(2) ∩ {x | x1 − x2 ≤ −1} = {x | x1 − x2 ≤ −3} ,

now,

∀(g1, g2, g3) ∈ {1, 2}3 =

= {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2),
R(2,1)=∅︷ ︸︸ ︷

(2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)},

and we finally compute Rg=(g1,g2,g3) using the nonempty partial regions R(g1,g2) previously
calculated as follows

R(1,1,1) = R(1,1) ∩ {x | x2 − x1 ≤ −1} = {x | x2 − x1 ≤ −1} ,

R(1,1,2) = R(1,1) ∩ {x | x1 − x2 ≤ 1} = {x | −1 ≤ x2 − x1 ≤ 1} ,

R(1,2,1) = R(1,2) ∩ {x | x2 − x1 ≤ −1} = ∅,

R(1,2,2) = R(1,2) ∩ {x | x1 − x2 ≤ 1} = {x ∈| 1 ≤ x2 − x1 ≤ 3} ,

R(2,1,1) = R(2,1,2) = ∅ because R(2,1) = ∅,

R(2,2,1) = R(2,2) ∩ {x | x2 − x1 ≤ −1} = ∅,

R(2,2,2) = R(2,2) ∩ {x | x1 − x2 ≤ 1} = {x | x1 − x2 ≤ −3} ,

Thus, according to Equation (1.14), the corresponding PWA system that encodes Equation
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+
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+
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Figure 1.12 – PWA system that encodes the MPL system of Example 1.18

(1.18) is given by:

y(k) =




1 0
1 0
1 0

x(k − 1) +


8
4
1

 if x(k − 1) ∈ R(1,1,1),


1 0
1 0
0 1

x(k − 1) +


8
4
2

 if x(k − 1) ∈ R(1,1,2),


1 0
0 1
0 1

x(k − 1) +


8
3
2

 if x(k − 1) ∈ R(1,2,2),


0 1
0 1
0 1

x(k − 1) +


5
3
2

 if x(k − 1) ∈ R(2,2,2).

Figure 1.12 depicts the PWA system generated by matrix A, where, for the sake of brevity,
x1(k − 1) ≡ x1, x2(k − 1) ≡ x2 and y(k) ≡ y.
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1.3.4 Some notions on spectral theory of matrices in Rmax

We briefly recall the elementary facts from spectral theory of matrices in R
n×n
max . We

shall use [43] and [50].

Example 1.19. Recall Example 1.14. The timetable of the railway network simulation for
the initial state x(0) = (e, e)t highlights that the associated model dynamics is 2-periodic,
however it is possible to determine x(0) to ensure that the system evolves in a 1-periodic
manner, i.e.,

xi(k)− xi(k − 1) = λ, λ ∈ R, k = 0, 1, 2, . . ., i ∈ {1, 2},

interpreted in the classical algebra.

Example 1.19 presents a requirement that is rewritten in matrix form as follows:

x(k) = λx(k − 1), k = 0, 1, 2, . . . (1.19)

with x ∈ R
n
max and λ ∈ Rmax. This yields the Max-Plus eigenproblem as stated in the

sequel.

Problem 1.1. Let
x(k) = Ax(k − 1) = A⊗kx(0),

where x ∈ R
n

max, A ∈ R
n×n

max and k ∈ N, be an autonomous MPL system, i.e., Bu(k) = ε.
We consider the problem of existence of eigenvalues λ ∈ Rmax and eigenvectors ξ ∈ R

n
max

such that:
Aξ = λξ.

For the evolution of the state of the system, if λ is the eigenvalue of A and if x(0) is an
eigenvector of A then

x(k) = λx(k − 1) = λ⊗kx(0),

or equivalently in the classical algebra as

x(k) = λ+ x(k − 1) = kλ+ x(0),

i.e., all state variables are incremented by λ as k evolves and the steady state is reached,
without going through a transient state phase. This behavior is called 1-periodic with a
period length of λ.
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Theorem 1.2. An irreducible 4 matrix A ∈ R
n×n

max admits a unique eigenvalue λ ∈ Rmax

equal to

λ =
n⊕

j=1

(
trace(A⊗j)

)⊗1/j
, (1.20)

where trace(A⊗j) denotes the trace of A⊗j, i.e., the ⊕-sum of its diagonal elements, and
(a⊗j)⊗1/j = a.

Remark 1.10. Non-irreducible (or reducible) matrices may have more than one eigen-
value whereas, as given by Theorem 1.2, irreducible matrices have a unique eigenvalue
but may possess several linearly independent eigenvectors, i.e., the set of all eigenvectors
corresponding to the eigenvalue λ is the eigenspace E(A) = {x ∈ R

n
max | Ax = λx}.

Remark 1.11. The simplest method to obtain λ consists in evaluating Equation (1.20).
Nevertheless, there are several algorithms to more efficiently solve the Max-Plus eigen-
problem. For more details, the reader is invited to refer to [50].

Theorem 1.3. Let A ∈ R
n×n
max be an irreducible matrix with eigenvalue λ ∈ Rmax, then it

exists K, c ∈ N \ {0} such that

∀k ≥ K, Ak+c = λ⊗cA⊗k,

and c is called the cyclicity of A.

Theorem 1.3 means that after a transient state phase of length K, the system reaches
a periodic behavior with cyclicity c, i.e.,

xi(k + c) = xi(k) + cλ, i = 1, 2, . . . , n,

interpreted in the classical algebra.

Example 1.20. Recall Example 1.14. For x(0) = (2, e)t, we obtain the following timetable
 2
e

 ,
 5

5

,
 10

8

,
 13

13

,
 18

16

,
 21

21

, . . . ,
4. A matrix A ∈ R

n×n

max is said to be irreducible if aij ̸= ε ∀i, j ∈ {1, . . . , n}, i.e., there exists an arc
from place i to place j in the corresponding TEG.
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which is 2-periodic (ciclicity c = 2) and ∀k ≥ 1 x(k + 2) = 8 + x(k). On the other hand,
for x(0) = (1, e)t we obtain the following timetable

 1
e

 ,
 5

4

 ,
 9

8

 ,
 13

12

 ,
 17

16

 ,
 21

20

 , . . . ,
which is 1-periodic (ciclicity c = 1) and ∀k ≥ 0 x(k + 1) = 4 + x(k) with 4 an eigenvalue
of A because x(k) = 4k + x(0). Hence, x(0) = (1, e)t is an eigenvector of A.
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Chapter 2

NONDETERMINISTIC SYSTEMS:
SET-MEMBERSHIP ESTIMATION

Recall the generic MPL system Equation (1.9), precisely y(k) = Ax(k). Clearly, this
system is deterministic because the output y is exactly predicted if one knows the values
of the system matrix entries aij and the state x. Conversely, if each aij assumes a different
value at each k, then the system is called nondeterministic because y cannot be exactly
predicted.

In this work, each aij is assumed to be subject to bounded noise, i.e., disturbances
and/or modelling errors, which should be taken into account in order to avoid tracking
error or closed-loop instability [51, 52]. In general, these perturbations are Max-Plus
multiplicative and appear as uncertainties in each aij. Stochastic MPL (SMPL) systems
[53, 54, 55, 52, 22, 28] are defined as MPL systems, in which each aij is an independent-
distributed random variable, and its probability density function (PDF) is supposed to be
known. In this Chapter, the only probabilistic aspect of the uncertainties that are taken
into account is the support of PDF, i.e., the random variables aij are supported on a
bounded real interval/domain (closed or open). For instance, aij ∼ U(aij, aij), means that
aij is uniformly distributed between its lower and upper bounds aij and aij, respectively.

2.1 Uncertain MPL (uMPL) systems: a bounded rep-
resentation

Uncertain MPL (uMPL) systems are assumed to have each aij independently dis-
tributed within a closed specified range (bounded random variable). Thus, an autonomous
uMPL system equation is given by

x(k) = A(k)x(k − 1), ∀k A ≤ A(k) ≤ A, (2.1)
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Figure 2.1 – TEG model of the uMPL system representing a railway network

where A(k) ∈ R
n×n
max and x ∈ R

n
max. Then, the entries of A(k) are within a closed range for

each k, i.e., aij ≤ aij(k) ≤ aij for all i, j ∈ {1, . . . , n}, i.e., A and A are, respectively, the
lower and upper bounds of the domain of A.

Remark 2.1. The system in Equation 2.1 is assumed to be FIFO (first in, first out). In
view of this assumption, it is always true that x(k) ≥ x(k − 1), such that the elements of
the main diagonal of A(k) can be assumed to be greater or equal to e at each k.

Example 2.1. Recall Example 1.14. The travelling times were assumed to be fixed. How-
ever, in practice, these times are uncertain and are bounded within a range, as depicted
in Figure 2.1. Hence, the travelling times (states) of the system are represented by:

x(k) ∈
{
x | Ax(k − 1) ≤ x ≤ Ax(k − 1)

}
,

where A =
2 5

3 3

, A =
3 6

4 4

 and x(k − 1) are supposed to be known at each k.

Supposing that only the initial state is known, for instance x(0) = (1, e)t, then the
following bounds for the timetable can be achieved:

x(k) =
 1
e

 ,
 5

4

 ,
 9

8

 ,
 13

12

 ,
 17

16

 ,
 21

20

 , . . . , k = 0, 1, . . . ,

and

x(k) =
 1
e

 ,
 6

5

 ,
 11

10

 ,
 16

15

 ,
 21

20

 ,
 26

25

 , . . . , k = 0, 1, . . . .

Clearly, A and A share the eigenvector (1, e)t and the system is 1-periodic with λ = 4 and
λ = 5 (refer to Section 1.3.4), i.e., x(k + 1) = 4 + x(k) and x(k + 1) = 5 + x(k).
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2.2 Notions on interval analysis

Interval arithmetic is presented in [56] and extended to Rmax in [57, 58, 15, 59].

2.2.1 Basic concepts

Definition 2.1 (Closed interval over Rmax). A closed interval, denoted [x] = [x, x], is a
subset of Rmax, i.e., [x] ⊆ Rmax satisfying

[x] =
{
x ∈ Rmax | x ≤ x ≤ x

}
,

where x, x ∈ Rmax (x ≤ x) are the lower and upper bounds of [x], respectively.

We denote IRmax, the set of intervals of Rmax, as IRmax =
{
[x, x] | x ≤ x, x, x ∈ Rmax

}
such that [x] ∈ IRmax is equivalent to [x] ⊂ Rmax.

Definition 2.2. The width of an interval [x] ∈ IRmax is defined, using conventional alge-
bra, as w([x]) = x− x.

Remark 2.2 (Empty interval). From the Definitions 2.1 and 2.2 above, an interval [x]
is empty if x > x, i.e., if w([x]) < 0.

Definition 2.3 (Midpoint of intervals). The midpoint of an interval [x] ∈ IRmax is defined,
using conventional algebra, as mid([x]) = x+x

2 .

Remark 2.3 (Deprecated interval). If an interval [x] has its bounds such that x = x, i.e.,
w([x]) = 0, then, [x] is said to be deprecated. Deprecated intervals are suitable to represent
elements without uncertainties, i.e., deterministic points. In this case [x] = [x, x] = x.

The ⊕ and ⊗ operations of scalars in Rmax are naturally extended to intervals in Rmax:

[x]⊕ [y] = {x⊕ y | x ∈ [x] and y ∈ [y]} =
[
x⊕ y, x⊕ y

]
,

[x]⊗ [y] = {x⊗ y | x ∈ [x] and y ∈ [y]} =
[
x⊗ y, x⊗ y

]
.

Example 2.2. Let [x] = [4, 8] and [y] = [3, 5]. Then

[x]⊕ [y] = [4⊕ 3, 8⊕ 5] = [4, 8],

[x]⊗ [y] = [4⊗ 5, 8⊗ 3] = [9, 11].
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Remark 2.4 (Order relation of intervals in Rmax). The ⊕ induces an order relation over
intervals, similar to Equation (1.1) defined for scalars in Rmax:

[x]⊕ [y] = [y] ⇐⇒ [x] ≤ [y] ⇐⇒ x ≤ y and x ≤ y,

As an immediate consequence of the previous Remark 2.4, the following equality of
intervals is defined

[x] = [y] ⇐⇒ x = y and x = y. (2.2)

Below, we collect two important set-theoretic operations to properly handle intervals.
First, let [x] = [x, x] and [y] = [y, y] be two non-disjoint intervals, then their intersection is
nonempty and is defined as the set Z = {z ∈ Rmax | z ∈ [x] and z ∈ [y]}, which coincides
with [z] = [x] ∩ [y], i.e., Z = [z], where

[z] = [max(x, y),min(x, y)]. (2.3)

Secondly, let [x] = [x, x] and [y] = [y, y] be two intervals, then their union is defined as the
set [x]∪ [y] = {z ∈ Rmax | z ∈ [x] or z ∈ [y]} which is a subset of Rmax but not necessarily
an interval 1. Hence, in order to make the set of intervals be closed with respect to this
operation, we define the interval union, i.e., the interval hull 2 of [x] ∪ [y] as:

[z] = [x] ⊔ [y] = [min(x, y),max(x, y)] ⊇ [x] ∪ [y]. (2.4)

Example 2.3. Consider the intervals [x] = [e, 4], [y] = [2, 5] and [z] = [5, 7]. Then,

[x] ∩ [y] = [max(e, 2),min(4, 5)] = [2, 4],

[x] ∩ [z] = [max(e, 5),min(4, 7)] = [5, 4] = ∅,

[y] ∩ [z] = [max(2, 5),min(5, 7)] = [5, 5].

Since [x] ∩ [y] and [y] ∩ [z] are not empty we have that:

[x] ⊔ [y] = [min(e, 2),max(4, 5)] = [e, 5] = [x] ∪ [y],

[y] ⊔ [z] = [min(2, 5), max(5, 7)] = [2, 7] = [x] ∪ [y].

1. The union of two intervals is an interval if and only if they are non-disjoint.
2. The interval hull of a set X ⊆ R is the smallest interval [X] such that X ⊆ [X].
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Note that the intersection of [x] and [z] is empty, and therefore [x] ⊔ [z] is the smallest
interval that encloses the disjoint union between these intervals, formally

[x] ⊔ [z] = [min(e, 5),max(4, 7)] = [e, 7] ⊃ [x] ∪ [y] = {w | w ∈ [e, 4] or w ∈ [5, 7]}.

Remark 2.5. Any ♢ ∈ {⊕,⊗,∩,⊔} operation over two intervals is also extended to a
finite number of intervals, for instance for ♢ = ⊕ we have

n⊕
i=1

[xi] =
{

n⊕
i=1

xi | xi ∈ [xi]
}

=
[

n⊕
i=1

xi,
n⊕

i=1
xi

]
. (2.5)

2.2.2 Matrices and Vectors

For the vector-valued case, an interval vector (also called interval box) is denoted as the
Cartesian product of scalar intervals or more simplify according to the stacked notation

[x] = [x1]× · · · × [xn] ≡ ([x1], . . . , [xn])t,

where the set of axis-aligned interval vectors in R
n

max is denoted as IR
n

max.

Remark 2.6. The notation [A] denotes an interval matrix, i.e., a matrix with its entries
composed of intervals. Formally

[A] = [A,A] =
(
[a, a]ij

)
1 ≤ i ≤ n

1 ≤ j ≤ p

Remark 2.7. Any matrix A ∈ R
n×p

max can be represented by a deprecated interval matrix
[A] ∈ IR

n×p
max, in which aij = aij for all i ∈ {1, . . . , n} and j ∈ {1, . . . , p}.

The ⊕ and ⊗ are extended to interval matrices as follows: if [A], [B] and [C] are,
respectively, (n× p), (n× p) and (p× q)-dimensional interval matrices, then

([A]⊕ [B])ij = [aij]⊕ [bij] = [aij ⊕ bij, aij ⊕ bij],

([A]⊗ [C])ij =
p⊕

k=1
[aik]⊗ [ckj] =

p⊕
k=1

{
[aik ⊗ ckj, aik ⊗ ckj]

}
=

[ p⊕
k=1

{
aik ⊗ ckj

}
,

p⊕
k=1
{aik ⊗ ckj}

]
.
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Thus, the k-th power and the Kleene star operation of a matrix of intervals are given by:

[A]⊗k = [A⊗k, A
⊗k] and [A]⋆ = [A⋆, A

⋆].

Furthermore, the ∩ (or ⊔) operation of two interval matrices can be computed as the
element-wise ∩ (or ⊔) operation of the corresponding entries.

Example 2.4. Given [A] =
[2, 7] [4, 5]

[4, 6] [2, 6]

 and [v] =
 e

[e, 1]

 then [x] = [A][v] is given

by [x1]
[x2]

 =
[(2⊗ e)⊕ (4⊗ e), (7⊗ e)⊕ (5⊗ 1)]

[(4⊗ e)⊕ (2⊗ e), (6⊗ e)⊕ (6⊗ 1)]

 =
[4, 7]

[4, 7]

 .
2.2.3 Mappings and inverse mappings of points

Let f : R
n

max → R
m

max,x 7→ Ax be a linear mapping and

F (x) = [A]x = {y ∈ R
m
max | Ax ≤ y ≤ Ax}, (2.7)

be a set, where A ∈ [A] = [A,A] ∈ IR
m×n
max and x ∈ R

n
max.

In other words, ∀A ∈ [A] we have that f(x) = Ax ∈ F (x) = [A]x.

Remark 2.8. In Lemma C.1 of Appendix C, it is demonstrated that given x, y and
[A] = [A,A] such that Ax ≤ y ≤ Ax, then ∃A ∈ [A] such that Ax = y.

Example 2.5. Given x = (e, e)t and y ∈
(
[1, 4] [2, 3]

)
x then y ∈ [2, 4]. Suppose that we

take mid([2, 4]) = 3 to be a point ỹ in [2, 4]. Thus, thanks to Remark 2.8, it exists a matrix
A in [A,A] =

(
[1, 4] [2, 3]

)
such that 3 = A ⊗ (e, e)t. This matrix is given by Lemma

C.1 of Appendix C and is equal to A = (ỹ◦/x) ∧ A =
(
3 3

)
∧
(
4 3

)
=
(
3 3

)
, which is

promptly verified by ⊗-multiplying it by x.

Let f : R
n

max → R
m

max,x 7→ Ax be a linear mapping and

F−1(y) = {x ∈ R
n
max | ∃A ∈ [A], Ax = y}

be a set, where A ∈ [A] = [A,A] ∈ IR
m×n

max , x ∈ R
m

max and y ∈ R
m

max. Then, x ∈ F−1(y) ⇐⇒
Ax ≤ y ≤ Ax, and thus

F−1(y) = {x ∈ R
n

max | Ax ≤ y ≤ Ax}. (2.8)
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2.2. Notions on interval analysis

In other words, F−1(y) is the set in x of all y = Ax, given y and with A ∈ [A].
In view of Ax ≤ y ≤ Ax, given y, there is a unique greatest x given by Equation (1.3)

such that Ax ≤ y holds, but not a unique least x such that Ax ≥ y also holds. Hence,
we split F−1(y) into two sets L and U such that F−1(y) = L ∩ U . In details,

L = {x ∈ R
n

max | y ≤ Ax} (2.9) U = {x ∈ R
n

max | Ax ≤ y}, (2.10)

Proposition 2.1 ([29]). The sets L and U of Equations (2.9) and (2.10), respectively,
are equivalent to:

L =
⋃

g∈G

m⋂
i=1

setigi
and U = {x ∈ R

n
max | x ≤ A◦\y},

where
G = {1, . . . , n}m,g ∈ G,g = (g1, g2, . . . , gm), gi ∈ {1, . . . , n}

and

setij =
j−1⋂

k=1
{x ∈ R

n
max | xk < aik◦\yi}

 ∩ {x ∈ R
n
max | xj ≥ aij◦\yi}.

Proof. The proof for U is straightforwardly done by using residuation theory, while the
proof for L follows the proof given in Section B.2 of Appendix B.

Thus,

F−1(y) = L ∩ U =
 ⋃

g∈G

m⋂
i=1

setigi

 ∩ U =
⋃

g∈G

SET g, with SET g =
m⋂

i=1
setigi

∩ U, (2.11)

which is a set composed of at most nm pairwise disjoint sets (see Lemma B.1 and Remark
B.2 of Appendix B for more details).

Example 2.6. Consider the first event of an autonomous uMPL system, described by

x(1) ∈ [A]x(0), where [A] =
[1, 4] [2, 3]

[1, 2] [e, 4]

 and x(0) = (e, e)t. Then, the set of all

x(1) ∈ [A]x(0) given by Equation (2.7) is calculated below

x(1) ∈
[1, 4] [2, 3]

[1, 2] [e, 4]

e
e

 = [x](1) =
[2, 4]

[1, 4]

 ,
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Chapter 2 – Nondeterministic systems: set-membership estimation

and depicted in Figure 2.2. If one takes a point in [x](1), for instance x̃(1) = mid([x](1)) =
(3, 2.5)t, then thanks to Equation (2.11) it is possible to compute the set of all x(0) that
⊗-multiplied by a matrix A ∈ [A] yield x(1). This computation is performed by expressing
sets L and U according to Proposition 2.1. Then,

U = {x | x ≤ A◦\x̃(1)}, where A◦\x̃(1) =
1 2

1 e

 ◦\

 3
2.5

 =
1.5

1

 .

Calculating L is done by defining first setij for all (i, j) ∈ {1, 2} × {1, 2}, as follows:

set11 = {x | x1 ≥ a11◦\x̃1 = 4◦/3 = −1} = {x | x1 ≥ −1}

set12 = {x | x2 ≥ a12◦\x̃1 = 3◦/3 = e} ∩ {x | x1 < a11◦\x̃1 = 4◦/3 = −1}

= {x | x1 < −1, x2 ≥ e}

set21 = {x | x1 ≥ a21◦\x̃2 = 2◦/2.5 = 0.5} = {x | x1 ≥ 0.5}

set22 = {x | x2 ≥ a22◦\x̃2 = 4◦/2.5 = −1.5} ∩ {x | x1 < a21◦\x̃2 = 2◦/2.5 = 0.5}

= {x | x1 < 0.5, x2 ≥ −1.5} .

Now, we compute L∩U as ⋃g∈G SET
g = ⋂n

i=1 setgi
∩U , with G = {(1, 1), (1, 2), (2, 1), (2, 2)}

as shown below:

SET (1,1) = set1g1=1 ∩ set2g2=1 ∩ U

= {x | x1 ≥ −1} ∩ {x | x1 ≥ 0.5} ∩ {x | x1 ≤ 1.5, x2 ≤ 1}

= {x | 0.5 ≤ x1 ≤ 1.5, x2 ≤ 1},

SET (1,2) = set1g1=1 ∩ set2g2=2 ∩ U

= {x | x1 ≥ −1} ∩ {x | x1 < 0.5, x2 ≥ −1.5} ∩ {x | x1 ≤ 1.5, x2 ≤ 1}

= {x | −1 ≤ x1 < 0.5,−1.5 ≤ x2 ≤ 1}

SET (2,1) = set1g1=2 ∩ set2g2=1 ∩ U

= {x | x1 < −1, x2 ≥ e} ∩ {x | x1 ≥ 0.5} ∩ {x | x1 ≤ 1.5, x2 ≤ 1}

= ∅,

SET (2,2) = set1g1=2 ∩ set2g2=2 ∩ U

= {x | x1 < −1, x2 ≥ e} ∩ {x | x1 < 0.5, x2 ≥ −1.5} ∩ {x | x1 ≤ 1.5, x2 ≤ 1}

= {x | x1 < −1, e ≤ x2 ≤ 1},
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2.3. Models of uMPL systems

such that

L ∩ U = {x | 0.5 ≤ x1 ≤ 1.5, ε < x2 ≤ 1} ∪ {x | −1 ≤ x1 < 0.5,−1.5 ≤ x2 ≤ 1}

∪ {x | ε < x1 < −1, e ≤ x2 ≤ 1},

as depicted in Figure 2.2.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5
−4
−3
−2
−1

0
1
2
3
4
5

•
x(0)

•
x̃(1)

x1

x
2

Figure 2.2 – [x](1) as the set of all x(1) ∈ [A]x(0) (in gray), x̃(1) as the middle point of
[x](1) (black dot) and set L ∩ U (union of red, green and blue boxes) of Example 2.6

2.3 Models of uMPL systems

2.3.1 Implicit and explicit forms of uMPL systems

The following equation defines the model of an uMPL system with implicit part

x(k) = A0(k)x(k)⊕ A1(k)x(k − 1)⊕B(k)u(k),

z(k) = C(k)x(k),

(2.12a)

(2.12b)

where A0(k) ∈ [A0] ∈ IR
n×n

max , A1(k) ∈ [A1] ∈ IR
n×n

max , B(k) ∈ [B] ∈ IR
n×p

max, C(k) ∈ [C] ∈
IR

q×n

max and x, u, z are vectors of appropriate dimension (refer to Equation (1.10)).
Since [A0] is considered to be written in strictly lower triangular form (the associated
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Chapter 2 – Nondeterministic systems: set-membership estimation

TEG is live) then

xi(k) =

(
i−1⊕
l=1

a0
il(k)xl(k)

)
⊕ yi(k − 1), i = 1, 2, . . . , n

z(k) = C(k)x(k),

(2.13a)

(2.13b)

where
y(k − 1) = A1(k)x(k − 1)⊕B(k)u(k)

and a0
ij(k) ∈ [a0

ij(k)] = [a0
ij(k), a0

ij(k)] for all i, j ∈ {1, . . . , n}.
Alternatively, using Kleene star operation, we may address Equation (2.12) as the

following explicit form

x(k) = A(k)x(k − 1)⊕ B̃(k)u(k),

z(k) = C(k)x(k),

(2.14a)

(2.14b)

where A(k) ∈ [A⋆
0][A1], B̃(k) ∈ [A⋆

0][B] and [A⋆
0] = [A⋆

0, A
⋆

0].

Remark 2.9. The entries of matrices A(k) = A⋆
0(k)A1(k) and B̃(k) = A⋆

0(k)B(k) in
Equation (2.14a) are coupled, even though the entries of A0(k), A1(k) and B(k) being
considered mutually independent (refer to Equation (2.1)). Thus, Equation (2.14a) is a
conservative (over-approximation) representation for the real system given by Equation
(2.12a), and it may lead to unfeasible states (false-positive states).

Example 2.7. Consider the autonomous uMPL system (B(k)u(k) = ε) with implicit
part as given by Equation (2.12a), with

A0(k) ∈ [A0] =
 ε ε

[1, 2] ε

 , A1(k) ∈ [A1] =
[4, 6] [3, 5]

[3, 7] [4, 5]

 .
It is possible to obtain x(1) = (5, 9)t using Equation (2.14a). In details,

A(1) =
4 5

8 7

 ∈ [A] = [A⋆
0][A1] =

[4, 6] [3, 5]
[5, 8] [4, 7]


and x(0) = (1, e)t yield x(1) = A(1)x(0) = (5, 9)t. However, this state is unfeasible if one
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2.3. Models of uMPL systems

considers Equation (2.13):

x1(1) ∈ [4, 6]x1(0)⊕ [3, 5]x2(0) x(0)=(1,e)t

=⇒ 5 ∈ [5, 7],

x2(2) ∈ [1, 2]x1(1)⊕ ([3, 7]x1(0)⊕ [4, 5]x2(0)) x1(1)=5,x(0)=(1,e)t

=⇒ 9 /∈ [5, 8].

Hence, this Chapter will be focused on uMPL systems modeled exclusively by Equation
(2.14) with

A(k) ∈ [A1], B̃(k) ∈ [B] and C(k) ∈ [C],

i.e., systems without implicit parts.

2.3.2 Partitioned uMPL systems: PWA-uMPL systems

In this Section, we shall use the results of [35, 27].
Equation (2.14a) can be rewritten as the following uMPL system equation (refer to

Equation (1.9)):
y(k) = A(k)x(k − 1), (2.15)

where A ∈ [A] ∈ IR
n×p

max, y ∈ R
n

max and x ∈ R
p

max. Thus,

yi(k) = max
1≤j≤p

(aij(k) + xj(k − 1)), aij(k) ∈ [aij(k)] = [aij, aij], i = 1, 2, . . . , n, (2.16)

with yi, xj ∈ R∪{−∞} and [aij(k)] ⊂ R∪{−∞}, represents the dynamics in the conven-
tional algebra. Furthermore,

yi(k) ∈ [yi(k)] =
[

max
1≤j≤p

(aij + xj(k − 1)), max
1≤j≤p

(aij + xj(k − 1))
]
,

⇐⇒ yi(k) ∈
{
yi | max

1≤j≤p
(aij + xj(k − 1)) ≤ yi ≤ max

1≤j≤p
(aij + xj(k − 1))

}
⇐⇒ yi(k) ∈

{
yi | max

1≤j≤p
(aij + xj(k − 1)) ≤ yi

}
∩
{
yi | yi ≤ max

1≤j≤p
(aij + xj(k − 1))

}

Regarding the lower bound we have

max
1≤j≤p

(aij + xj(k − 1)) ≤ yi ⇐⇒


ai1 + x1(k − 1) ≤ yi

...

aip + xp(k − 1) ≤ yi

,
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and thus
{
yi | max

1≤j≤p
(aij + xj(k − 1)) ≤ yi

}
≡

p⋂
j=1
{yi | aij + xj(k − 1) ≤ yi}.

On the other hand, regarding the upper bound we have (refer to Section B.2 of Appendix
B for more details):

{
yi | yi ≤ max

1≤j≤p
(aij + xj(k − 1))

}
≡

p⋃
j=1
{yi | yi ≤ aij + xj(k − 1)}.

Hence,

yi(k) ∈
p⋂

j=1
{yi | aij + xj(k − 1) ≤ yi} ∩

p⋃
j=1
{yi | yi ≤ aij + xj(k − 1)},

i.e., ∃gi ∈ {1, . . . , p} for all i ∈ {1, . . . , n}, such that

yi(k) ∈
p⋂

j=1
{yi | aij + xj(k − 1) ≤ yi} ∩ {yi | yi ≤ aigi

+ xgi
(k − 1)} (2.17)

⇐⇒ yi(k) ∈
[

max
1≤j≤p

(aij + xj(k − 1)), aigi
+ xgi

(k − 1)
]
,

with aigi
+ xgi

(k − 1) ≥ aij + xj(k − 1) ⇐⇒ xj(k − 1)− xgi
≤ aigi

− aij,∀j.
Given g = (g1, g2, . . . , gn) ∈ {1, . . . , p}n, the affine dynamics of Equation (2.15) are

therefore given by

x(k − 1) ∈ Rg =⇒ yi(k) ∈
[

max
1≤j≤p

(aij + xj(k − 1)), aigi
+ xgi

(k − 1)
]
, i = 1, 2, . . . , n,

(2.18)
where

Rg =
n⋂

i=1

p⋂
j=1
j ̸=gi

{x ∈ (R ∪ {−∞})p | xj − xgi
≤ aigi

− aij} , (2.19)

with the notation x ≡ x(k − 1) for the evaluation of x(k − 1) ∈ Rg.

Remark 2.10. The procedure for generating a PWA system from an uMPL system has
the same complexity as the one presented in Remark 1.9. As it was considered for MPL
systems (refer to Equation (1.16)) it is possible to compute Equation (2.19) in a recursive
way.
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Example 2.8. Consider the following uMPL system

x(k) = A(k)x(k − 1), A(k) ∈
[4, 6] [3, 5]

[3, 7] [4, 5]

 . (2.20)

In order to compute its partitioned representation, first, compute each Rg, with g ∈
{1, 2}2 = {(1, 1), (1, 2), (2, 1), (2, 2)}, as given by:

R(1,1) = {x ∈ (R ∪ {−∞})2 | x2 − x1 ≤ 1} ∩ {x ∈ (R ∪ {−∞})2 | x2 − x1 ≤ 2}
= {x ∈ (R ∪ {−∞})2 | x2 − x1 ≤ 1}

R(1,2) = {x ∈ (R ∪ {−∞})2 | x2 − x1 ≤ 1} ∩ {x ∈ (R ∪ {−∞})2 | x1 − x2 ≤ −2}
= ∅,

R(2,1) = {x ∈ (R ∪ {−∞})2 | x1 − x2 ≤ −1} ∩ {x ∈ (R ∪ {−∞})2 | x2 − x1 ≤ 2}
= {x ∈ (R ∪ {−∞})2 | 1 ≤ x2 − x1 ≤ 2} ,

R(2,2) = {x ∈ (R ∪ {−∞})2 | x1 − x2 ≤ −1} ∩ {x ∈ (R ∪ {−∞})2 | x1 − x2 ≤ −2}
= {x ∈ (R ∪ {−∞})2 | x1 − x2 ≤ −2} .

Thus, from Equation (2.18), the PWA system that represents the corresponding uMPL
system, is given by

x(k) ∈



[max(4 + x1(k − 1), 3 + x2(k − 1)), 6 + x1(k − 1)])
[max(3 + x1(k − 1), 4 + x2(k − 1)), 7 + x1(k − 1)])

 if x(k − 1) ∈ R(1,1)[max(4 + x1(k − 1), 3 + x2(k − 1)), 5 + x2(k − 1)])
[max(3 + x1(k − 1), 4 + x2(k − 1)), 7 + x1(k − 1)])

 if x(k − 1) ∈ R(2,1)[max(4 + x1(k − 1), 3 + x2(k − 1)), 5 + x2(k − 1)])
[max(3 + x1(k − 1), 4 + x2(k − 1)), 5 + x1(k − 1)])

 if x(k − 1) ∈ R(2,2)

Figure 2.3 depicts the PWA system generated by the interval matrix [A]. Notation: X1 ≡
max(4 + x1(k− 1), 3 + x2(k− 1)), X2 ≡ max(3 + x1(k− 1), 4 + x2(k− 1)), x(k) ≡ x′ and
x(k − 1) ≡ x.

Equation (2.17) is simply expressed ∀i ∈ {1, . . . , n} as the following
subset of (R ∪ {−∞})n:

y(k) ∈
n⋂

i=1

p⋂
j=1
{y | aij+xj(k−1) ≤ yi}∩

n⋂
i=1
{y | yi ≤ aigi

+xgi
(k−1)}.

(2.21)
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Figure 2.3 – PWA system that encodes the uMPL system of Example 2.8

2.3.3 Difference-Bound Matrices (DBM) representation of PWA-
uMPL systems

Difference-Bound Matrices (DBM)

Difference-Bound Matrices (DBM) are used to represent regions (or zones as initially
mentioned in [60]) in the state-space defined by a finite number of linear inequalities (or
difference constraints) in an efficient and concise way. For instance, in [61, 62], DBM were
used on timed automata. It is also important to mention the use of DBM for the analysis
of computer programs, as presented in [63, 64].

Definition 2.4 (Difference-Bound Matrices (DBM)). Let X = {x1, x2, . . . , xn} be a set
of states in a given state-space and X̃ = X ∪ {x0} be its augmented form, where x0 = 0.
A DBM is a square matrix D with its rows and columns labeled by X̃ (i.e., of dimension
(n+1)×(n+1)) such that its entries dij are in R∪{+∞} and represent for all xi, xj ∈ X̃
the difference constraints 3(linear inequalities) xi − xj ≤ dij with i, j ∈ {1, . . . , n + 1}.
Moreover: the artificial state x0 allows expressing xi ≤ di0 and −xj ≤ d0j; if an entry dij

is equal to +∞, then xi − xj is not upper bounded, i.e., xi − xj < +∞; the difference

3. DBM allow expressing strict and non-strict difference constraints, for instance xi − xj < c and
xi − xj ≤ c, respectively. However, in general, we are interested on non-strict constraints.

68



2.3. Models of uMPL systems

constraint xj−xi ≥ c with c ∈ R∪{+∞} is reinterpreted as xi−xj ≤ dij = −c; the main
diagonal elements dii, are equal to +0 since xi − xi = 0 ≤ dij = +0.

In the sequel, we use the notation R(D) to represent the set of solutions of the system
of inequalities (intersection of inequalities) encoded by a DBM D.

Remark 2.11 (Canonical form and emptiness verification). In general, the same region
can be represented by different DBM, for instance D1 and D2. Nevertheless, each DBM
admits a single representation in its canonical form, denoted for instance for D1 and D2

as cf(D1) = cf(D2) (see [61, Th.2]). The algorithm of Floyd-Warshall, with complexity
O(n3), is responsible for computing cf(D1) and cf(D2). Moreover, as presented in [35,
Alg. 2.1], this algorithm allows signalizing if the corresponding DBM represents an empty
region, and it stops if this is the case.

Example 2.9. Let X1 = {(x1, x2)t ∈ R2 | x1 ≥ 3, x2 ≤ 5, x1 − x2 ≤ 4} and X2 =
{(x1, x2)t ∈ R2 | x1 ≥ 11, x2 ≤ 5, x1 − x2 ≤ 4} be two subsets of R2, representing two
different zones. These sets are represented by the DBM D1 and D2 of (R ∪ {+∞})3, as
given below:

D1 =


x0 x1 x2

x0 +0 −3 +∞
x1 +∞ +0 4
x2 5 +∞ +0

 ⇐⇒

x1 ≥ 3 ⇐⇒ x0 − x1 ≤ −3
x2 ≤ 5 ⇐⇒ x2 − x0 ≤ 5

x1 − x2 ≤ 4

and

D2 =


x0 x1 x2

x0 +0 −11 +∞
x1 +∞ +0 4
x2 5 +∞ +0

 ⇐⇒

x1 ≥ 11 ⇐⇒ x0 − x1 ≤ −11
x2 ≤ 5 ⇐⇒ x2 − x0 ≤ 5

x1 − x2 ≤ 4

Computing their canonical forms using [35, Alg. 2.1], we obtain 4.

D1 =


x0 x1 x2

x0 +0 −3 1
x1 9 +0 4
x2 5 2 +0

 =⇒ R(D1) ̸= ∅ and R(D2) = ∅.

4. R(D2) = ∅ is also easily verified by considering that x2 ≤ 5 =⇒ x1 ≤ 9 when intersecting with
x1 − x2 ≤ 4 and thus there is no x1 that satisfies both inequalities x1 ≤ 9 and x1 ≥ 13.
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Figure 2.4 below depicts these regions.
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Figure 2.4 – Representation of region R(D1) and inequality x1 ≥ 11 of Example 2.9

Remark 2.12 (Orthogonal projection of DBM). Let D be a DBM, in its canonical form,
that represents the region R(D) generated by the variables xi ∈ X = {x0, x1, x2, . . . , xn}
and their differences xi − xj,∀i ̸= j and i, j ∈ {0, . . . , n}. Given X̂ = {xi1 , . . . , xip} ⊆ X,
then the orthogonal projection of D onto X̂, denoted D⌈

X̂
, is obtained by deleting the

rows and columns corresponding to X\X̂, i.e., the variables xi /∈ X̂ (see [61, Sec. 4.1]).
Furthermore, the region represented by D⌈

X̂
is given by

R(D⌈
X̂

) = {(xi1 , . . . , xip)t ∈ Rp | (x0, x1, x2, . . . , xn)t ∈ R(D)}.

Remark 2.13 (Cartesian product of DBM). Let DX et DY be two DBM of dimensions
(p+ 1)× (p+ 1) and (n+ 1)× (n+ 1), respectively. Then, the Cartesian product of their
regions R(DX) and R(DY ) is computed as

R(DX)×R(DY ) = {(xt,yt)t ∈ Rp+n | x ∈ R(DX),y ∈ R(DY )}.

Alternatively, it is possible to compute DX×Y = DX × DY as an augmented DBM of
dimension (p+ n+ 1)× (p+ n+ 1) such that

R
(
DX×Y

)
= R

(
DX

)
×R

(
DY

)
.

Computationally, calculating DX×Y is done with complexity O(max(p2, n2)).
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Example 2.10. Let

DR2 =


x0 x1 x2

x0 +0 +∞ +∞
x1 +∞ +0 +∞
x2 +∞ +∞ +0

and DY =

x0 y1

x0 +0 0
y1 1 +0



be the DBM that represents R2 and an arbitrary DBM, respectively. Then, DR2×X is given
by

DR2×X = DR2 ×DX =



x0 x1 x2 y1

x0 +0 +∞ +∞ 0
x1 +∞ +0 +∞ +∞
x2 +∞ +∞ +0 +∞
y1 1 +∞ +∞ +0

.

Clearly, DR2×X is in its canonical form, i.e., cf(DR2×X) = DR2×X . As proof of correctness,
the orthogonal projection of cf(DR2×X) over R2 is cf(DR2×X)⌈R2= DR2, and the orthogonal
projection of cf(DR2×X) over X is cf(DR2×X)⌈X= DX .

Remark 2.14 (Representing interval vectors as DBM). An interval vector [x] ∈ IR
n
max is

such that x0 − xi ≤ −xi and xi − x0 ≤ xi for i = 1, 2, . . . , n in the conventional algebra.
Hence,

D[x] =



x0 x1 xn

x0 +0 −x1 −xn

x1 x1

xn xn

Idn

,

where Idn is a matrix of dimension n×n with +0 on the main diagonal and +∞ elsewhere,
is the DBM representation of [x].

Remark 2.15 (Partial order on DBM). Let D and E be two DBM of same dimension
n× n. The partial order on D and E is defined as: D ⪯ E ⇐⇒ dij ≤ eij where dij ∈ D
and eij ∈ E for all i, j ∈ {1, . . . , n}. Then,

D ⪯ E implies that R(D) ⊆ R(E).

Remark 2.16 (Set-theoretic operations of DBM). Let D and E be two DBM of same
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dimension n × n such that their region representations R(D) and R(E) are non-empty.
Thus, min(D,E), computed element-wise, is such that

R(D) ∩R(E) = R(min(D,E)).

Similarly, max(D,E), also computed element-wise, is such that

R(D) ∪R(E) ⊆ R(max(D,E)).

Example 2.11. Given two interval vectors

[x] =
[1, 4]

[1, 3]

 and [y] =
[2, 5]

[2, 4]

 ,
then their DBM representations (see Remark 2.14) is given below

D[x] =


x0 x1 x2

x0 +0 −1 −1
x1 4 +0 +∞
x2 3 +∞ +0

 and D[y] =


x0 x1 x2

x0 +0 −2 −2
x1 5 +0 +∞
x2 4 +∞ +0

.

Computing

[x] ∩ [y] =
[2, 4]

[2, 3]


can alternatively be done by considering min(D[x], D[y]):

min




0 −1 −1
4 0 ∞
3 ∞ 0

,


0 −2 −2
5 0 ∞
4 ∞ 0


 =


min(0, 0) min(−1,−2) min(−1,−2)
min(4, 5) min(0, 0) min(∞,∞)
min(3, 4) min(∞,∞) min(0, 0)



=


0 −2 −2
4 0 ∞
3 ∞ 0

.

Similarly

[x] ⊔ [y] =
[1, 5]

[1, 4]
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can alternatively be done by considering max(D[x], D[y]):

max




0 −1 −1
4 0 3
3 2 0

,


0 −2 −2
5 0 ∞
4 ∞ 0


 =


max(0, 0) max(−1,−2) max(−1,−2)
max(4, 5) max(0, 0) max(∞,∞)
max(3, 4) max(∞,∞) max(0, 0)



=


0 −1 −1
5 0 ∞
4 ∞ 0

.

Furthermore,

min(D[x], D[y]) ⪯ max(D[x], D[y]) =⇒ R(min(D[x], D[y])) ⊆ R(max(D[x], D[y])).

Figure 2.5 shows these computations.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

[x]

[y]

[x] ∩ [y]

[x] ⊔ [y]

x1

x
2

Figure 2.5 – Representations of [x] (or R(D[x])), [y] (or R(D[y])), [x] ∩ [y] (or
R(min(D[x], D[y]) and [x] ⊔ [y] (or R(max(D[x], D[y])) of Example 2.11

PWA-uMPL systems represented by DBM

In [48], the authors proposed a method to represent partitioned MPL systems as DBM
(refer to Section 1.3.3). Algorithmically, it receives as input the matrix of the MPL system,
and it returns as output the collection of DBM, in which each DBM represents an affine
dynamics and its corresponding active region. Thus, the main advantage of using DBM to
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represent partitioned MPL systems is the existence of powerful and efficient manipulation
procedures (Cartesian product, orthogonal projection, canonical form, inclusion test and
set-theoretic operations). Nevertheless, it is worth to be mentioned that this representation
substantially increases the dimension of the problem, i.e., instead of having a compact
state-space equation, we obtain finitely many DBM.

Straightforwardly, in [35, 27], this representation was extended to uMPL systems and
for in-depth information, please refer to these works. Briefly, recall that Equation (2.15)
is alternatively expressed by Equation (2.21) and is valid for x(k − 1) in an active region
Rg given by Equation (2.19). After trivial algebraic manipulations in the conventional
algebra, y(k) ∈ L ∩ Ug, where

L =

"lower" dynamics︷ ︸︸ ︷
n⋂

i=1

p⋂
j=1
{y ∈ (R ∪ {−∞})n | xj − yi ≤ −aij}, (2.22)

Ug =
n⋂

i=1
{y ∈ (R ∪ {−∞})n | yi − xgi

≤ aigi
}︸ ︷︷ ︸

"upper" dynamics

, (2.23)

for x ≡ x(k−1) ∈ Rg, which is clearly the intersection of n×(p+1) difference constraints.
Hence, it is possible to write all these inequalities using a single DBM, as shown below

Dg =



x0 y1(k) yn(k) x1(k − 1) xp(k − 1)
x0 +0 +∞ +∞ +∞ +∞

y1(k) +∞

yn(k) +∞
x1(k − 1) +∞

xp(k − 1) +∞

Idn Ug from Eq (2.23)

L from Eq (2.22) Rg from Eq (2.19)


, (2.24)

which is a matrix of dimension (n+ p+ 1)× (n+ p+ 1).

Definition 2.5 (Subsystem of a PWA-uMPL system). A subsystem of a PWA-uMPL
system is represented by the DBM Dg with g ∈ {1, . . . , p}n.

Example 2.12. Let us recall Example 2.8. It was obtained 3 regions, precisely R(1,1),
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R(2,1) and R(2,2). For

R(1,1) =

x(k − 1) | x2(k − 1)− x1(k − 1) ≤ 1︸ ︷︷ ︸
d

(1,1)
54

 ,

the active dynamics is given by Equations (2.22) and (2.23), as follows

x(k) ∈ L

∩

x(k) | x1(k)− x1(k − 1) ≤ 6︸ ︷︷ ︸
d

(1,1)
24

 ∩
x(k) | x2(k)− x1(k − 1) ≤ 7︸ ︷︷ ︸

d
(1,1)
34

 ,

where

L =

x(k) | x1(k − 1)− x1(k) ≤ −4︸ ︷︷ ︸
d

(1,1)
42

 ∩
x(k) | x2(k − 1)− x1(k) ≤ −3︸ ︷︷ ︸

d
(1,1)
52


∩

x(k) | x1(k − 1)− x2(k) ≤ −3︸ ︷︷ ︸
d

(1,1)
43

 ∩
x(k) | x2(k − 1)− x2(k) ≤ −4︸ ︷︷ ︸

d
(1,1)
53

 ,

and thus

D(1,1) =



x0 x1(k) x2(k) x1(k − 1) x2(k − 1)
x0 +0 +∞ +∞ +∞ +∞

x1(k) +∞ +0 +∞ 6 +∞
x2(k) +∞ +∞ +0 7 +∞

x1(k − 1) +∞ −4 −3 +0 +∞
x2(k − 1) +∞ −3 −4 1 +0


.
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Now, for

R(2,1) = {x(k − 1) | 1 ≤ x2(k − 1)− x1(k − 1) ≤ 2}

=

x(k − 1) | x1(k − 1)− x2(k − 1) ≤ −1︸ ︷︷ ︸
d

(2,1)
45

 ∩
x(k − 1) | x2(k − 1)− x1(k − 1) ≤ 2︸ ︷︷ ︸

d
(2,1)
54

 ,

we have the following active dynamics

x(k) ∈ L

∩

x(k) | x1(k)− x2(k − 1) ≤ 5︸ ︷︷ ︸
d

(2,1)
25

 ∩
x(k) | x2(k)− x1(k − 1) ≤ 7︸ ︷︷ ︸

d
(2,1)
34

 ,

and thus

D(2,1) =



x0 x1(k) x2(k) x1(k − 1) x2(k − 1)
x0 +0 +∞ +∞ +∞ +∞

x1(k) +∞ +0 +∞ +∞ 5
x2(k) +∞ +∞ +0 7 +∞

x1(k − 1) +∞ −4 −3 +0 −1
x2(k − 1) +∞ −3 −4 2 +0


.

Following the same procedure, for R(2,2) = {x(k − 1) | x1(k − 1) − x2(k − 1) ≤ −2} we
obtain

D(2,2) =



x0 x1(k) x2(k) x1(k − 1) x2(k − 1)
x0 +0 +∞ +∞ +∞ +∞

x1(k) +∞ +0 +∞ +∞ 5
x2(k) +∞ +∞ +0 +∞ 5

x1(k − 1) +∞ −4 −3 +0 −2
x2(k − 1) +∞ −3 −4 +∞ +0


.
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2.4 The set-estimation problem: conditional reacha-
bility analysis (RA) techniques

In stochastic estimation approach, the uncertain state vector x is characterized by
probability density functions (PDF). Conversely, in set-membership estimation (or set-
estimation for short) approach, x is characterized by a set X such that x ∈ X. Both
approaches are related by the fact that X represents the support of the PDF that represent
x.

Handling sets is easier than computing PDF (more details will be presented in the
next Chapter), however PDF provide more accuracy rather than simply obtaining their
support. Hence, set-membership estimation is considered to be conservative.

In this section, we consider the model of Equation (2.14) with A0(k) = E for all
1 ≤ k ≤ N . We also consider that the measurement vector z(k) is included in a subset of
the measurement-space, precisely z(k) ∈ Z(k) ⊂ R

q
max.

Definition 2.6 (Conditional reach set). Let X0 ⊂ R
n
max be a set of initial conditions such

that x(0) ∈ X0. Given that z(k), from event 1 up to N , is included in Z(k), then Xk|k

corresponds to the conditional reach set from Xk−1|k−1 (assuming that X0|0 = X0) obtained
by Equation (2.14a), which leads to Z(k) via Equation (2.14b).

The interpretation of Definition 2.6 is the following two-fold procedure:

x(k) ∈ Xk|k︸ ︷︷ ︸
posterior estimation

= Xk|k−1︸ ︷︷ ︸
prior estimation

⋂
X̃k|k︸ ︷︷ ︸

set-inversion problem

, ∀1 ≤ k ≤ N, (2.25)

where
— for the non-autonomous case: Xk|k−1 = {(A B̃)y(k − 1) | y(k − 1) ∈ Xk−1|k−1 ×

Uk, A ∈ [A1], B̃ ∈ [B]}, Uk = {u(k)};
— for the autonomous case: Xk|k−1 = {Ax(k − 1) | x(k − 1) ∈ Xk−1|k−1, A ∈ [A1]};
— for z(k) ∈ Z(k), where Z(k) is not a singleton: X̃k|k = {x(k) | ∃C ∈ [C], Cx(k) ∈

Z(k)};
— for z(k) ∈ Z(k), where Z(k) = {z(k)}, i.e., Z(k) is a singleton: X̃k|k = {x(k) |
∃C ∈ [C], Cx(k) = z(k)}.

Characterizing X̃k|k corresponds to a set-inversion problem [38] in the general case and
to the inverse mapping of a point problem if Z(k) is a singleton (refer to Section 2.2.3).
Hence, X̃k|k is the set of all states x(k) that may lead to z(k) ∈ Z(k).
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Figure 2.6 – Graphical scheme of the two-fold computation of Xk|k: from Xk−1|k−1 we
compute Xk|k−1; it exists a x(k) ∈ Xk|k−1 that generates Z(k) which in turn generates
X̃k|k; finally, Xk|k = Xk|k−1 ∩ X̃k|k

Remark 2.17. If Xk−1|k−1 = {x(k − 1)} for any k then Xk|k−1 is easily computed by
Equation (2.7) as x(k) ∈ Xk|k−1 = {x | A1x(k − 1) ≤ x ≤ A1x(k − 1)}, for autonomous
systems. The same is considered for non-autonomous systems by considering that A1x(k−
1)⊕B̃u(k) ≤ x(k) ≤ A1x(k−1)⊕B̃u(k). This computation (matrix-vector multiplication)
has bilinear complexity O(n(n+p)) for non-autonomous systems and quadratic complexity
O(n2) for autonomous systems.

The Figure 2.6 depicts an example of the steps necessary to compute Xk|k.

2.4.1 DBM-RA

In [35, 27, 29], the computation of Xk|k is addressed using forward and backward
reachability analysis (RA), as an extension of the results found in [65, 66, 48].

Remark 2.18. The image and the inverse image of a set represented by a DBM with
respect to a subsystem (cf. Definition 2.5) of a PWA-uMPL system is a set that can be
represented by a DBM (see [35, Prop. 5.1]).

Remark 2.19. The image and the inverse image of a set represented by the union of
finitely many DBM with respect to a PWA-uMPL system can be represented by the union
of finitely many DBM (see [35, Cor. 5.2]).
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In the sequel, we consider Remarks 2.18 and 2.19 to compute Xk|k−1 and X̃k|k.

Prior estimation

First, we aim at computing

Xk|k−1 = {Fy | y ∈ Xk−1|k−1 × Uk, F ∈ [F ]}, (2.26)

with [F ] = ([A] [B̃]) and Uk = {u(k)}.
It is assumed that the set Xk−1|k−1 is represented by the union/collection of a finite

number of DBM. Furthermore, x(k) = F (k)y(k) with F (k) ∈ [F ] and y(k) = (xt(k −
1),ut(k))t is also represented by the union of a finite number of DBM (see Section 2.3.3).

Let Dg ∈ (R ∪ {+∞})n+m+1×n+m+1 be the DBM representation
of a subsystem of a PWA-uMPL system. Given DYk = DXk−1 ×
DUk ∈ (R ∪ {+∞})m+1×m+1 representing the region R

(
DYk

)
=

Yk = Xk−1 × Uk ⊆ (R ∪ {+∞})m, then its image with respect to
Dg is given below:

1. Compute the Cartesian product between DRn and DYk ,
mathematically DRn×Yk = DRn ×DYk (see Remark 2.13);

2. Compute the intersection of DRn×Yk with Dg, mathemati-
cally DX̂k = min(DRn×Yk , Dg) (see Remark 2.16);

3. Compute the canonical form of DX̂k , mathematically, DX̂k
cf =

cf(DX̂k) (see Remark 2.11);

4. Compute the orthogonal projection of DX̂k
cf over x(k), math-

ematically DXk = DX̂k
cf ⌈{x1(k),...,xn(k)} (see Remark 2.12);

5. DXk is the image of DYk .
The complexity of this procedure depends essentially on the canon-
ical form computation (step 3), which is cubic in the dimension
of DX̂k . The term m refers to an autonomous (m = n) or non-
autonomous system (m = n+ p).

Image of a DBM with respect to a subsystem of a PWA-uMPL system

79



Chapter 2 – Nondeterministic systems: set-membership estimation

If Xk−1|k−1×Uk is represented as the union of N DBM then its image is computed with
worst-case complexity O(Nmn(n + m)3) where m = n + p if [B̃] ̸= E in [F ] = ([A1] [B̃])
(i.e., Uk ̸= ∅) or m = n otherwise. The term mn refers to the worst-case number of
subsystems of the PWA-uMPL system, and the term (m + n)3 refers to the complexity
of computing the image of a single DBM with respect to a subsystem of the PWA-uMPL
system. Assuming m = n, then the worst-case becomes O(Nnn+3), i.e., exponential in
dimension n, which is clearly cumbersome if we want to handle large systems.

Example 2.13. Recall Example 2.8, which is represented by 3 subsystems of the PWA-
uMPL system that represents a uMPL system. Precisely, in Example 2.12 we have com-
puted D = {D(1,1), D(2,1), D(2,2)} as its subsystems. Given

X0|0 = {x(0) | 0 ≤ x1(0) ≤ 1, 1 ≤ x2(0) ≤ 3}, DX0|0 =


x0 x1(0) x2(0)

x0 +0 0 −1
x1(0) 1 +0 +∞
x2(0) 3 +∞ +0


which is an interval vector in IR

n
max, represented by the corresponding DBM DX0|0, then

X1|0 is the collection of the images of X0|0 with respect to each D ∈ D.
Following the procedure, we compute

DR2×X0|0 = DR2 ×DX0|0 =



x0 x1(1) x2(1) x1(0) x2(0)
x0 +0 ∞ +∞ 0 −1

x1(1) +∞ +0 +∞ +∞ +∞
x2(1) +∞ ∞ +0 +∞ +∞
x1(0) 1 +∞ +∞ +0 +∞
x2(0) 3 +∞ +∞ +∞ +0


.

Then, for D(1,1) we compute

DX̂1|g=(1,1) = min(DR2×X0|0 , D(1,1))

= min





0 ∞ ∞ 0 −1
∞ 0 ∞ ∞ ∞
∞ ∞ 0 ∞ ∞
1 ∞ ∞ 0 ∞
3 ∞ ∞ ∞ 0


,



0 ∞ ∞ ∞ ∞
∞ 0 ∞ 6 ∞
∞ ∞ 0 7 ∞
∞ −4 −3 0 ∞
∞ −3 −4 1 +0




=



0 ∞ ∞ 0 −1
∞ 0 ∞ 6 ∞
∞ ∞ 0 7 ∞
1 −4 −3 0 ∞
3 −3 −4 1 0


,
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and thus, the canonical form of DX̂1|g=(1,1)

D
X̂1|g=(1,1)
cf = cf(DX̂1|g=(1,1)) =



x0 x1(1) x2(1) x1(0) x2(0)
x0 +0 −4 −5 0 −1

x1(1) 7 +0 2 6 6
x2(1) 8 3 +0 7 7
x1(0) 1 −4 −4 +0 0
x2(0) 2 −3 −4 1 +0


,

and finally the orthogonal projection of DX̂1|g=(1,1)
cf over x(k)

DX1|g=(1,1) = D
X̂1|g=(1,1)
cf ⌈{x1(1),x2(1)}

=



x0 x1(1) x2(1) x1(0) x2(0)
x0 +0 −4 −5 0 −1

x1(1) 7 +0 2 6 6
x2(1) 8 3 +0 7 7
x1(0) 1 −4 −4 +0 0
x2(0) 2 −3 −4 1 +0




{x1(1),x2(1)}

=


x0 x1(1) x2(1)

x0 +0 −4 −5
x1(1) 7 +0 2
x2(1) 8 3 +0

,

which corresponds to

R
(
DX1|g=(1,1)

)
= X1|g=(1,1)

= {x(1) | 4 ≤ x1(1) ≤ 7, 5 ≤ x2(1) ≤ 8,−2 ≤ x2(1)− x1(1) ≤ 3}.

Repeating the procedure for D(2,1) and D(2,2), we obtain

DX1|g=(2,1) =


x0 x1(1) x2(1)

x0 +0 −4 −5
x1(1) 8 +0 1
x2(1) 8 3 +0

 and DX1|g=(2,2) =


x0 x1(1) x2(1)

x0 +0 −5 −6
x1(1) 8 +0 1
x2(1) 8 2 +0

.

Hence, X1|0 is represented by

DX1|0 =
{
DX1|g=(1,1) , DX1|g=(2,1) , DX1|g=(2,2)

}
.
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Figure 2.7 – Computation of X1|0 of Example 2.13

Notice that DX1|g=(2,2) ⪯ DX1|g=(2,1) then R
(
DX1|g=(2,2)

)
⊆ R

(
DX1|g=(2,1)

)
(cf.Remark 2.15)

and then we have simply

DX1|0 =
{
DX1|g=(1,1) , DX1|g=(2,1)

}
,

which corresponds to

X1|0 = R
(
DX1|g=(1,1)

)
∪R

(
DX1|g=(2,1)

)
= {x(1) | 4 ≤ x1(1) ≤ 7, 5 ≤ x2(1) ≤ 8,−2 ≤ x2(1)− x1(1) ≤ 3}

∪ {x(1) | 4 ≤ x1(1) ≤ 8, 5 ≤ x2(1) ≤ 8,−1 ≤ x2(1)− x1(1) ≤ 3}.

Figure 2.7 represents X0|0 and X1|0.

Set-inversion estimation

We aim at computing

X̃k|k = {x(k) | ∃C ∈ [C], Cx(k) ∈ Z(k)}. (2.27)

It is assumed that Z(k) is represented by the union of a finite number of DBM.
Similarly to the prediction phase, the observer z(k) = C(k)x(k) is also represented by the
union of a finite number of DBM.
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Let Dg ∈ (R ∪ {+∞})q+n+1×q+n+1 be the DBM representation
of a subsystem of a PWA-uMPL observer. Given DZ(k) ∈ (R ∪
{+∞})q+1×q+1 representing the region R

(
DZ(k)

)
= Z(k) ⊆ (R ∪

{+∞})q, then its image with respect to Dg is given below:
1. Compute the Cartesian product between DZ(k) and DRn ,

mathematically DZ(k)×Rn = DZ(k)×DRn (see Remark 2.13);

2. Compute the intersection of DZ(k)×Rn with Dg, mathemati-
cally DX̂k = min(DZ(k)×Rn

, Dg) (see Remark 2.16);

3. Compute the canonical form of DX̂k , mathematically, DX̂k
cf =

cf(DX̂k) (see Remark 2.11);

4. Compute the orthogonal projection of DX̂k
cf over x(k), math-

ematically DXk = DX̂k
cf ⌈{x1(k),...,xn(k)} (see Remark 2.12);

5. DXk is the inverse image of DZ(k).
The complexity of this procedure depends essentially on the canon-
ical form computation (step 3), which is cubic in the dimension of
DX̂k .

Inverse image of a DBM with respect to a subsystem of a PWA-uMPL observer

If Z(k) is represented as the union of N−1 DBM then its inverse image is computed
with worst-case complexity O(N−1n

q(q + n)3), which is also exponential in dimension n

for q = n. The term nq refers to the worst-case number of subsystems of the PWA-uMPL
observer, and the term (q+n)3 refers to the complexity of computing the image of a single
DBM with respect to a subsystem of the PWA-uMPL observer.

Example 2.14. Consider the observer z(k) = C(k)x(k), with C(k) ∈
(
[1, 3] [e, 2]

)
for

all k. This observer is also represented as a PWA-uMPL system, depicted by the collection
of DBM D = {D(1), D(2)}, given by Equation (2.24), where

D(1) =



x0 z(k) x1(k) x2(k)
x0 +0 +∞ +∞ +∞

z(k) +∞ +0 3 +∞
x1(k) +∞ −1 +0 +∞
x2(k) +∞ 0 1 +0

 and D(2) =



x0 z(k) x1(k) x2(k)
x0 +0 +∞ +∞ +∞

z(k) +∞ +0 +∞ 2
x1(k) +∞ −1 +0 −1
x2(k) +∞ 0 +∞ +0

.
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Suppose that x(1) = (5, 7)t originates a subset of the measurement-space, denoted Z(1),
which is, in this case, an interval vector, mathematically

z(1) ∈ Z(1) ≡ [z](1) = [7, 9] ⊂ Rmax,

which is represented by the following DBM

DZ(1) =

x0 z(1)

x0 +0 −7
z(1) 9 +0

.
Then, X̃1|1 is the collection of the inverse images of Z(1) with respect to each D ∈ D.

Following the procedure, we compute

DZ(1)×R2 = DZ(1) ×DR2 =



x0 z(1) x1(1) x2(1)
x0 +0 −7 +∞ +∞

x1(1) 9 +0 +∞ +∞
x1(1) +∞ +∞ +0 +∞
x2(1) +∞ +∞ +∞ +0

.

Then, for D(1) we compute

DX̂1|g=(1) = min(DZ(1)×R2
, D(1))

= min




0 −7 ∞ ∞
9 0 ∞ ∞
∞ ∞ 0 ∞
∞ ∞ ∞ 0

,


0 ∞ ∞ ∞
∞ 0 3 ∞
∞ −1 0 ∞
∞ 0 1 0



 =


0 −7 ∞ ∞
9 0 3 ∞
∞ −1 0 ∞
∞ 0 1 0

,

and thus, the canonical form of DX̂1|g=(1)

D
X̂1|g=(1)
cf = cf(DX̂1|g=(1)) =



x0 z(1) x1(1) x2(1)
x0 +0 −7 −4 +∞

z(1) 9 +0 3 +∞
x1(1) 8 −1 +0 +∞
x2(1) 9 0 1 +0

,
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and finally the orthogonal projection of DX̂1|g=(1)
cf over x(k)

DX1|g=(1) = D
X̂1|g=(1)
cf ⌈{x1(1),x2(1)}

=



x0 z(1) x1(1) x2(1)
x0 +0 −7 −4 +∞

z(1) 9 +0 3 +∞
x1(1) 8 −1 +0 +∞
x2(1) 9 0 1 +0




{x1(1),x2(1)}

=


x0 x1(1) x2(1)

x0 +0 −4 +∞
x1(1) 8 +0 +∞
x2(1) 9 1 +0

,

which corresponds to

R
(
DX1|g=(1)

)
= X1|g=(1)

= {x(1) | 4 ≤ x1(1) ≤ 8,−∞ ≤ x2(1) ≤ 9, x2(1)− x1(1) ≤ 1}.

Repeating the procedure for D(2), we obtain

DX1|g=(2) =


x0 x1(1) x2(1)

x0 +0 +∞ −5
x1(1) 8 +0 −1
x2(1) 9 +∞ +0

,

which corresponds to

R
(
DX1|g=(2)

)
= X1|g=(2)

= {x(1) | −∞ ≤ x1(1) ≤ 8, 5 ≤ x2(1) ≤ 9, 1 ≤ x2(1)− x1(1)}.

Hence,

X̃1|1 = R
(
DX1|g=(1)

)
∪R

(
DX1|g=(2)

)
= {x(1) | 4 ≤ x1(1) ≤ 8,−∞ ≤ x2(1) ≤ 9, x2(1)− x1(1) ≤ 1}

∪ {x(1) | −∞ ≤ x1(1) ≤ 8, 5 ≤ x2(1) ≤ 9, 1 ≤ x2(1)− x1(1)}.

Figure 2.8 depicts R
(
DX1|g=(1)

)
, R

(
DX1|g=(2)

)
and X̃1|1.
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Figure 2.8 – Computation of X̃1|1 of Example 2.14

Correction phase

In the correction phase, we correct the prior estimation set Xk|k−1 with the set X̃k|k,
obtained thanks to the observation, leading to the posterior estimation set Xk|k (see
Equation (2.25)).

Remark 2.20. The intersection of two sets represented by the union of finitely many
DBM is again a union of finitely many DBM.

Let N1 and N2 be the number of DBM to represent Xk|k−1 and X̃k|k, respectively.
Then, Xk|k is the collection of the canonical form representation of the intersection of
each DBM that represents Xk|k−1 with each DBM that represents X̃k|k. Thus, the overall
complexity of computing Xk|k is O(N1N2n

3), where n3 corresponds to canonical form
computation (Floyd–Warshall algorithm).

Example 2.15. Recall the uMPL system of Examples 2.8 and 2.13. Let us consider that
the associated observer is given by Example 2.14. The point x(1) = (5, 6)t is in X1|0 and
it generates Z(1) that was used to compute X̃1|1 (see Examples 2.13 and 2.14), hence
X1|1 = X1|0 ∩ X̃1|1 is expected to be non-empty. Figure 2.9 depicts X1|1 = X1|0.

Z(k) = {z(k)} - set-inversion problem becomes an inverse mapping problem

In the vast majority of cases, more particularly in stochastic filtering problems, z(k) ∈
Z(k) = {z(k)}, i.e., a sequence of measurements {z(1), . . . , z(k)} is obtained via the
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Figure 2.9 – Computation of X1|1 of Example 2.15

observer Equation (2.14b). Then, Equation (2.27) is alternatively replaced by

X̃k|k = {x(k) | ∃C ∈ [C], Cx(k) = z(k)}, (2.28)

which is equivalent to
{x(k) | Cx(k) ≤ z(k) ≤ Cx},

with the solution given by Proposition 2.1. Hence, let us consider 5

X̃k|k =
⋃

g=(g1,...,gq)∈{1,...,n}q

SET g ∩ U, with SET g =
q⋂

i=1
setigi

and U = {x(k) | x(k) ≤ X},

(2.29)
where

setij =
 j−1⋂

w=1
{x(k) | xw(k) < zi(k)− cik}

 ∩ {x(k) | −xj(k) ≤ cij − zi(k)}.

The sets U and setij are clearly represented by DBM with strictness sign ▷◁ ∈ {<,≤},

5. X = C ◦\z(k) converted in conventional algebra.
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in contrast with Definition 2.4, precisely

DU =



x0 x1(k) xn(k)
x0 (+0,≤) (+∞, <) (+∞, <)

x1(k) (X1,≤)

xn(k) (Xn,≤)
Id▷◁

n

 (2.30)

where Id▷◁
n is a matrix of dimension n×n with (+0,≤) on the main diagonal and (+∞, <)

elsewhere and

Dseti
j =



x0 x1(k) xj−1(k) xj(k) xj+1(k) xn(k)
x0 (+0,≤) (+∞, <) (+∞, <) (−X(i)

j ,≤) (+∞, <) (+∞, <)
x1(k) (X(i)

1 , <)

xj−1(k) (X(i)
j−1, <)

xj(k) (+∞, <)
xj+1(k) (+∞, <)

xn(k) (+∞, <)

Id▷◁

n


(2.31)

where X(i)
j = zi(k)− cij.

Remark 2.21 (Partial order on DBM with strictness sign). Let (a′, ▷◁′) and (a′′, ▷◁′′) be
two typical entries of DBM with strictness sign where ▷◁′, ▷◁′′ ∈ {<,≤} and a′, a′′ ∈ R ∪
{+∞}. These pairs are ordered, i.e., (a′, ▷◁′) ⪯ (a′′, ▷◁′′) if a′ < a′′ or 6 a′ = a′′ and ▷◁′ ⪯ ▷◁′′.
(see [29, Sec. II]). Furthermore, this partial order is also applied to the element-wise op-
erations max and min between two DBM, which are fundamental operations in order to
handle intersection and union of DBM (see Remark 2.16).

6. The symbols < and ≤ are assumed to be partially ordered with < strictly less than ≤, i.e., < ⪯ ≤.
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Then, SET g is represented as

R
(
DSET g) =

q⋂
i=1
R
(
Dseti

gi

)
= R

(
q

min
i=1

(
Dseti

gi

))
, (2.32)

and the set SET g ∩ U is represented as

R
(
DSET g∩U

)
= R

(
DSET g) ∩R (DU

)
= R

(
min

(
DSET g

, DU
))
. (2.33)

Remark 2.22 (Easy emptiness check). Let D be a DBM with strictness sign of dimension
(n+1)× (n+1). If all entries different of (+0,≤) or (+∞, <) are in its first row/column,
then xi − x0 ▷◁′ c′ and x0 − xi ▷◁′′ c′′ where ▷◁′, ▷◁′′ ∈ {<,≤} and c′, c′′ ∈ R ∪ {+∞}
for all i ∈ {1, . . . , n}. Hence, rather than checking for emptiness of D using the canonical
form computation, which has cubic complexity in dimension n (see Remark 2.11), it is
alternatively possible to verify if it exists an empty interval {xi | −c′′ ▷◁′′ xi ▷◁

′ c′} (note
that this definition of interval differs from Definition 2.1), which is done for D with
worst-case linear complexity in dimension n, i.e., O(n).

It is worth to be mentioned that DSET g∩U is computed with complexity O(q), however
it is likely that this DBM is empty for some g (see Remark 2.22), hence the overall
complexity of computing DSET g∩U amounts to O(qn) in the worst-case scenario.

Finally, X̃k|k is represented as

X̃k|k =
⋃

g=(g1,...,gq)∈{1,...,n}q

R
(
DSET g∩U

)
, (2.34)

i.e., X̃k|k is represented as the collection of DBM {DSET g=(1,...,1)∩U , . . . , DSET g=(n,...,n)∩U},
with cardinality nq in worst-case scenarios. Thus, computing X̃k|k is done with worst-case
complexity O(qnq+1) [29, Alg. 1], whereas using the set-inversion estimation procedure,
the worst-case complexity is O(nq(q + n)3). Hence, the performance 7 of computing X̃k|k

is improved. As another advantage, X̃k|k is represented by Equation (2.34) as a disjoint
union of DBM, while it is also represented using the set-inversion procedure, but probably
with overlapping DBM (see Example 2.13).

Remark 2.23 (Reinterpretation of Xk|k−1 as a collection of DBM with strictness sign).
In order to compute Xk|k using the improved computation of X̃k|k of Equation (2.34), it is

7. If q = n then X̃k|k is computed with complexities O(nn+2) and O(nn+3), using inverse mapping of
Equation (2.34) and using set-inversion procedure, respectively.
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necessary to reinterpret the collection of DBM that represent Xk|k−1. Basically: +0 entries
are replaced by (+0,≤); +∞ entries are replaced by (+∞, <); other entries c ∈ R\{+0}
are replaced by (c,≤).

The complexity of computing Xk|k with the new representation of
X̃k|k given by Equation (2.34) and the reinterpretation of Xk|k−1 is
stillO(N1N2n

3) whereN1 andN2 are the number of DBM necessary
to represent Xk|k−1 and X̃k|k, respectively. Furthermore, it is neces-
sary to compute the canonical form representation of the intersec-
tion of each DBM that represents Xk|k−1 with each DBM that rep-
resents X̃k|k, with a sligth modified version of the Floyd–Warshall
algorithm, by considering the strictness signs of the involved DBM
[67, VeriSiMPL]. It is also worth to note that if Xk|k−1 is given by
{x(k) | x(k|k − 1) ≤ x(k) ≤ x(k|k − 1)} (see Remark 2.17), then
Xk|k is computed with complexity O(N2n

2) since its calculation
does not use the Floyd-Warshall algorithm, but the Remark 2.22.

Example 2.16. Let us recall the uMPL system of Examples 2.8 and 2.13. Now, consider
that the associated observer is the same given by Example 2.14 but with

z(1) = C(1)x(1) ∈ Z(1) = {z(1)},

where C(1) =
(
1 1

)
and x(1) = (5, 7)t, yielding z(1) = 8, which is represented by the

following DBM

Dz(1) =

x0 z(1)

x0 +0 −8
z(1) 8 +0

.
Following the same procedure used in Example 2.14 we compute

X̃1|1 = {x | 5 ≤ x1(1) ≤ 7,−∞ ≤ x2(1) ≤ 8, x2(1)− x1(1) ≤ 1}

∪ {x | −∞ ≤ x1(1) ≤ 7, 6 ≤ x2(1) ≤ 8, 1 ≤ x2(1)− x1(1)}.

However, let us consider the procedure of Equation (2.34) to alternatively compute X̃1|1.
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First, we compute DU using Equation (2.30) as

DU =


x0 x1(1) x2(1)

x0 (+0,≤) (+∞, <) (+∞, <)
x1(1) (7,≤) (+0,≤) (+∞, <)
x2(1) (8,≤) (+∞, <) (+0,≤)

.

Then, for g = (g1) ∈ {1, 2} we compute Dseti
gi for i = 1 using Equation (2.31) as

Dset1
g1=1 =


x0 x1(1) x2(1)

x0 (+0,≤) (−5,≤) (+∞, <)
x1(1) (+∞, <) (+0,≤) (+∞, <)
x2(1) (+∞, <) (+∞, <) (+0,≤)


and

Dset1
g1=2 =


x0 x1(1) x2(1)

x0 (+0,≤) (+∞, <) (−6,≤)
x1(1) (5, <) (+0,≤) (+∞, <)
x2(1) (+∞, <) (+∞, <) (+0,≤)

.
Thus, using Equation 2.32 we obtain that

DSET g=(1) = Dset1
g1=1 and DSET g=(2) = Dset1

g1=2

and using Equation (2.33) we finally obtain

DSET g=(1)∩U =


x0 x1(1) x2(1)

x0 (+0,≤) (−5,≤) (+∞, <)
x1(1) (7,≤) (+0,≤) (+∞, <)
x2(1) (8,≤) (+∞, <) (+0,≤)


and

DSET g=(2)∩U =


x0 x1(1) x2(1)

x0 (+0,≤) (+∞, <) (−6,≤)
x1(1) (5, <) (+0,≤) (+∞, <)
x2(1) (8,≤) (+∞, <) (+0,≤)

.
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(a) Computation using set-inversion procedure
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(b) Computation using inverse mapping

Figure 2.10 – Both representations of X̃1|1 of Example 2.16

Hence,

X̃1|1 = R
(
DSET g=(1)∩U

)
∪R

(
DSET g=(2)∩U

)
= {x | 5 ≤ x1(1) ≤ 7,−∞ < x2(1) ≤ 8} ∪ {x | −∞ < x1(1) < 5, 6 ≤ x2(1) ≤ 8}.

Both representations of X̃1|1 are depicted in Figure 2.10. Finally, the computation of
X1|1 = X1|0 ∩ X̃1|1 is represented in Figure 2.11.

2.4.2 Polyhedral-RA

In this Section, we tackle the set-estimation problem given by the Equation (2.25) and
presented in the Definition 2.6 by using Max-Plus polyhedral-sets, which will be defined
in the sequel. We shall use [68, 69] to recall the results concerning Max-Plus polyhedra,
which allow us to solve the set-estimation problem with algebraic operations in Rmax only,
i.e., without using any kind of affine partition of the state-space.

Max-Plus polyhedra

Conventional convex polyhedra and (convex) Max-Plus (or Tropical) polyhedra admit
external descriptions, in terms of half spaces (affine constraints), and internal descriptions,
in terms of convex hulls of generators (vertices and rays). Nevertheless, the underlying
algebras used by the two kinds of polyhedra are different, therefore the mathematical
tools and definitions are also different.
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Figure 2.11 – Computation of X1|1 of Example 2.16

Definition 2.7 (Max-Plus line segment). A subset Lv,w of R
n
max is a Max-Plus line seg-

ment if it is given by
Lv,w = {λv⊕ µw | λ⊕ µ = e}

for some vectors v,w ∈ R
n
max. Furthermore, v and w are the endpoints of L with (λ =

e, µ = ε) and (λ = ε, µ = e), respectively.

Remark 2.24. Contrary to conventional line segments, there are no positivity constraints
on λ and µ for Max-Plus analogues because for all scalars a ∈ Rmax, we have that a ≥
ε = −∞, i.e., being "positive" by construction, which is omitted.

Remark 2.25. Max-Plus line segments of R
n

max are depicted as the concatenation of at
most n conventional closed line segments Lx,y = {tx + (1− t)y | 0 ≤ t ≤ 1} of slope 0,1
or +∞, with endpoints x and y.

Definition 2.8 (Max-Plus convex sets). A subset C of R
n
max is Max-Plus convex if, for

any v and w in C, the Max-Plus line segment connecting v and w also lies in C, i.e.,
Lv,w ∈ C.

In general, Max-Plus convex sets are not convex in the conventional sense. Figure
2.12a depicts an example of a convex set in R

2
max and it can be seen that it contains all

Max-Plus line segments between two points in itself (there are 6 kinds of Max-Plus line
segments in R

2
max as represented by the red lines in this figure) but it does not contain

the conventional line (in blue).
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(a) Convexity through Max-Plus line segments
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(b) Intersection of half spaces

Figure 2.12 – An example of a Max-Plus convex set in R
2
max

Definition 2.9. A Max-Plus half space is similar to a classical half space, and is defined
as the set of points x ∈ R

n
max satisfying
 n⊕

j=1
aj ⊗ xj

⊕ b ≥
 n⊕

j=1
cj ⊗ xj

⊕ d,
where aj, b, cj, d ∈ Rmax.

Definition 2.10. A Max-Plus polyhedron of R
n
max is (externally) defined as the intersec-

tion of finitely many Max-Plus half spaces, i.e., as the set of points x ∈ R
n

max satisfying
s ≥ 1 inequalities as given in Definition 2.9. This can be summarized as

P = {x | Ax⊕ b ≥ Cx⊕ d},

where A,C ∈ R
s×n
max and b,d ∈ R

s
max.

The convex set depicted in Figure 2.12a can be defined as the intersection of 4 Max-
Plus half spaces, as precisely depicted in Figure 2.12b.

Definition 2.11. The homogenization of a Max-Plus polyhedron P = {x | Ax⊕b ≥ Cx⊕
d} ⊆ R

n

max is defined as P̂ ⊆ R
n+1
max, which is (externally) expressed as P̂ = {z | Ez ≥ Fz}

where E = (A b), F = (C d). When x ∈ R
n

max and α ∈ Rmax, the term (xt, α)t refers to the
vector z ∈ R

n+1
max whose first n coordinates coincide with x and the latter is α (refers to the

affine component in P). Furthermore, thanks to Equation (1.2), the following equivalent
definition holds: P̂ = {z | (E ⊕ F )z = Ez}.

94



2.4. The set-estimation problem: conditional reachability analysis (RA) techniques

By considering the Max-Plus Minkowski-Weyl Theorem [70, Th 1], in the sequel we
recall the internal representation of Max-Plus polyhedra. First, we consider the following
sets.

Definition 2.12. Given a subset W = {w1, . . . ,wm} ⊂ R
n

max, the Max-Plus cone gener-
ated by W is defined as cone(W ) =

{⊕m
i=1 λiwi | wi ∈ W,λi ∈ Rmax

}
.

This definition coincides with the span of W . Furthermore, a Max-Plus cone generated
by a non-null vector is a ray. Such a vector is a representative of the ray that it generates.

Definition 2.13. Given a subset V = {v1, . . . ,vp} ⊂ R
n

max, the Max-Plus convex hull of
V is denoted co(V ) and is cone(V ) with the additional constraint ⊕p

i=1 λi = e.

Theorem 2.1. A Max-Plus polyhedron P ⊆ R
n

max is (internally) expressed as

P = co(V )⊕ cone(W ), (Minkowski sum)

= {v⊕w | v ∈ co(V ),w ∈ cone(W )},

for the finite subsets V,W ⊂ R
n
max (see [46]).

The subsets V and W represent the generators of P , i.e., are sets of vertices and rays,
respectively.

Corollary 2.1. Let P = co(V ) ⊕ cone(W ) ⊆ R
n

max be a Max-Plus polyhedron, then its
homogenization yields P̂ ⊆ R

n+1
max, which is (internally) defined as

P̂ = cone(V̂ ∪ Ŵ ),

V̂ = V × {e} = {(vt, e)t | v ∈ V }, Ŵ = W × {ε} = {(wt, ε)t | w ∈ W}.

Thus, the internal representation of the homogenous Max-Plus polyhedron of Defini-
tion 2.11 is given by the Max-Plus cone of Corollary 2.1. Therefore, the representation of
Max-Plus polyhedra is reduced to represent finitely generated Max-Plus cones.

Remark 2.26. If Ŵ = ∅ in V̂ ∪Ŵ , that defines P̂ = cone(V̂ ∪Ŵ ), then P̂ does not possess
non-null rays according to Definitions 2.12 and 2.13. Hence, P̂ is the homogenous form
of P = co(V )⊕ cone({ε}) which is equivalently equal to P = co(V )⊕ cone(∅) = co(V ),
where V = {v | (vt, e)t ∈ V̂ }. This Max-Plus polyhedron is called compact and will be
referred to as c-Polyhedron in the sequel.
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In the literature, we find some methods to convert Max-Plus cones
from their external representation (cf. Definition 2.11) to their in-
ternal representation [46, 39, 69], i.e., to find its generating set. It
has been proved that the generating set is finitely generated [46]
and is equivalent to mean payoff games [71], which are known to
be in NP ∩ coNP [72], i.e., the existence of a strongly polynomial
procedure for solving it remains an open problem. The double de-
scription method [69] is practically efficient and simple to be used
in Polymake [73] that implements TPLib [74] (even if its complex-
ity is exponential in worst-case scenarios, as precisely described in
Remark 2.27), and can be used to translate an external description
into an internal description and vice-versa.

Double description

Remark 2.27 (Complexity of external-to-internal procedure). For a Max-Plus cone of
R

n
max, generated by the intersection of s half spaces, the time complexity to translate its

external description into its internal description is O(N2s2n). The term G is related to
the maximal number of generators of the s intermediate half spaces, and the calculation of
its bounds falls back on a combinatorial problem that is hard to be determined beforehand
[75]. Nevertheless, in [75, Th. 1], the authors use McMullen-type bounds to show that G
is always upper bounded, but a general formula (i.e., for any s and n) for the lower bound
is still an open problem. Precisely (see [76, Sec. 5.3.4] for more details):

— N ≤ O
(
(s+ n)⌊ n−1

2 ⌋
)
;

— N ≥ O ((s− 2n)2n−2) if s ≥ 2n; N ≥ O
(
n⌊ n−p−1

2 ⌋
)

if n ≥ 2s+ 1.
Hence, its upper bound is tight when n → +∞ for a fixed s. In many practical applica-
tions, the exact value is much smaller than this upper bound, i.e., N is a non-exponential
function in the dimension n (i.e., the number of generators of the s intermediate half
spaces is also non-exponential).

Although costly, the double description is suitable to easily handle
set-theoretic operations of union and intersection.
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Example 2.17. In Figure 2.12b, 4 half spaces generated a Max-Plus convex set, precisely


x1 − 4 ≥ max(x2 − 7, 0),

0 ≥ max(x1 − 8, x2 − 8),

x2 − 5 ≥ 0,

max(x2 − 6, 0) ≥ x1 − 7,

or


−4 ε

ε ε

ε −5
ε −6


x1

x2

⊕

ε

e

ε

e

 ≥

ε −7
−8 −8
ε ε

−7 ε


x1

x2

⊕

e

ε

e

ε

 .

Hence, it is possible to obtain a Max-Plus polyhedron P, externally represented as the
intersection of these half spaces or internally as

P = co


 8

7

 ,
 7

5

 ,
 5

8

 ,
 4

5


⊕ cone(∅),

depicted by black dots in Figure 2.12b.

Let G = {g1, . . . ,gk} be a finite subset of R
n

max, C = cone(G) ⊆
R

n

max be a Max-Plus cone and v ∈ R
n

max be a vector. In [77], it has
been proven that testing whether v ∈ C is equivalent to compute
the following test, with complexity O(nk):

v ∈ C ⇐⇒
k⋃

i=1
arg

n
min
j=1

(−gi
j + vj) = {1, . . . , n}, (2.35)

with gi
j the j-th component of the vector gi. Thus, if the test holds

then ∃λ1 ⊕ · · · ⊕ λk = e such that v = ⊕k
i=1 λigi.

Membership to Max-Plus cones

Remark 2.28 (Partial order on Max-Plus cones). Given two finite subsets of R
n
max, pre-

cisely G = {gi}k
i=1 = {g1, . . . ,gk} and H = {hi}w

i=1 = {h1, . . . ,hw} then a partial or-
der can be defined on G = cone(G) ⊆ R

n

max and H = cone(H) ⊆ R
n

max, as follows:
H ⊆ G ⇐⇒ ∀hi ∈ H,hi ∈ G. The complexity of this test is O(nwk).

Example 2.18. Consider the internal representation of the Max-Plus polyhedron P given
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in Example 2.17. Its homogenization yields

P̂ = cone






8
7
e


︸ ︷︷ ︸

g1

,


7
5
e


︸ ︷︷ ︸

g2

,


5
8
e


︸ ︷︷ ︸

g3

,


4
5
e


︸ ︷︷ ︸

g4




,

which is a Max-Plus cone. Let v1 = (8, 5)t and v2 = (6, 7)t be two vectors. Using Equation
(2.35) we obtain 8:

— for v̂1 = (8, 5, e)t:

(
min
idx

(−8 + 8,−7 + 5, 0 + 0)
)
∪
(

min
idx

(−7 + 8,−5 + 5, 0 + 0)
)

∪
(

min
idx

(−5 + 8,−8 + 5, 0 + 0)
)
∪
(

min
idx

(−4 + 8,−5 + 5, 0 + 0)
)

= {2, 3} ≠ {1, 2, 3}

— for v̂2 = (6, 7, e)t:

(
min
idx

(−8 + 6,−7 + 7, 0 + 0)
)
∪
(

min
idx

(−7 + 6,−5 + 7, 0 + 0)
)

∪
(

min
idx

(−5 + 6,−8 + 7, 0 + 0)
)
∪
(

min
idx

(−4 + 6,−5 + 7, 0 + 0)
)

= {1, 2, 3} = {1, 2, 3}

and thus, v̂1 /∈ P̂ ⇐⇒ v1 /∈ P and

v̂2 ∈ P̂ ⇐⇒ v̂2 =


6
7
e

 = −2


8
7
e

⊕−1


7
5
e

⊕−1


5
8
e

⊕ e


4
5
e


⇐⇒ v2 ∈ P ⇐⇒

 6
7

 = −2
 8

7

⊕−1
 7

5

⊕−1
 5

8

⊕ e
 4

5

 .
Definition 2.14. A vector v ∈ R

n
max is said to be an extreme generator of a Max-Plus

cone C ⊆ R
n
max if v ∈ C and if the following property is satisfied

v = y⊕ z, y, z ∈ C =⇒ v = y or v = z,

8. The operator minidx returns the index into the operating dimension that corresponds to the mini-
mum value.
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i.e., v cannot be written as the ⊕-sum of two vectors of C that are both different from it.

Remark 2.29. If v is an extreme generator of C, then the points in {λv | λ ∈ Rmax}
form an extremal ray of C, i.e., are also extreme generators of C.

It follows that a Max-Plus cone C = cone(G) ⊆ R
n
max is finitely generated and its

generating set G = {g1, . . . ,gk} ⊆ R
n

max satisfies its external representation of Definition
2.11. Thus, it is possible that some elements of G are redundant, i.e., linearly dependent
on the other ones, and in order to represent G as a non-redundant, also unique up to nor-
malization, generating set, one must select a representative in each extreme ray of C (refer
to [78]). Hence, C admits a minimal representation (or canonical form), denoted cf(C),
which is generated by Gcf = {g1

cf, . . . ,gk′
cf} ⊆ R

n

max, where k′ ≤ k and whose elements
form a minimal basis of G, i.e., cf(C) = cf(cone(G)) = cone(Gcf). The computation of
Gcf is done with complexity O(nk2), as summarized in the following algorithm.

Algorithm 2.1: Removing redundant generators of Max-Plus cones
Data: a finite set G = {g1, . . . , gk} ⊆ R

n
max, assuming its elements are not proportional

to each other;
Result: a set Gcf = {g1, . . . , g|J |}, with |J | ≤ k.
/* Goal: Eliminate the elements of G which are a linear combination of

the other ones */
1 foreach i ∈ {1, . . . , k} do
2 J ← ∅, v← gj and H ← {gi}i∈{1,...,k}\j

3 if v ∈ cone(H) (i.e., v is redundant cf. Equation (2.35)) then
4 gj ← ε
5 else
6 J ← J ∪ {j}
7 end
8 Gcf = {gj}j∈J
9 end

10 return Gcf = {g1, . . . , g|J |}

Clearly, the operator cf(C) is idempotent, i.e., cf(cf(C)) = cf(C) for an arbitrary
Max-Plus cone C.

Remark 2.30. Algorithm 2.1 is exclusively for cones of the form C = cone(G) ⊆ R
n
max

with G = {g1, . . . ,gk} ⊆ R
n
max such that

∀x ∈ C ⇐⇒ x =
k⊕

i=1
λigi.
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Conversely, C ′ = co(G) ⊆ R
n

max with the same G of C has the following that holds

∀x ∈ C ′ ⇐⇒ x =
k⊕

i=1
λigi, s.t.

k⊕
i=1

λi = e,

which is different of C and is not taken into account by this algorithm. According to
Corollary 2.1, C ′ is a Max-Plus polyhedron, i.e., co(G) ⊕ cone(∅) = co(G) ⊆ R

n
max, and

its homogenous cone is given by Ĉ ′ = cone(Ĝ) ⊆ R
n+1
max, where Ĝ = G × {e}, which is

a c-Polyhedron according to Remark 2.26. Summarizing, computing cf(C ′) is done by
considering cf(Ĉ ′) with complexity O((n+ 1)k2), resulting in set Ĝcf and thus in set

Gcf =

ĝi
cf |

 ĝi
cf

e

 ∈ Ĝcf, 1 ≤ i ≤ k

 .

The external-to-internal translation algorithm (compute_ext_rays
of TPLib [74]) of the double description method computes a min-
imal generating set of a polyhedral (cone) set, which is externally
represented by its homogenous form. Briefly, given a polyhedral set
defined by a system of s half spaces in homogenous form, it com-
putes by induction on k = 1, 2, . . . , s a generating set Gk ⊂ R

n+1
max

of the intermediate homogenous cone (cf. Corollary 2.1) defined by
the first k half spaces. Passing from the set Gk to the set Gk+1

relies on: given a homogenous cone C and a homogenous half space
H = {z | atz ≥ btz} ⊆ R

n+1
max, allows building a (minimal) generat-

ing set G′ of C ∩H from a generating set G of C. The initial step is
with G0 = {ϵi}1≤i≤n+1 representing R

n+1
max, with ϵi ∈ R

n+1
max a vector

whose i-th coordinate is equal to e, and the others to ε. At the end,
k = s and cf(cone(Gs)) = cone(Gs) (idempotence property).

Remark 2.31 (Replacing the initial generating set: intersection). Based on the external-
to-internal translation algorithm of the double description method, it is assumed that G0 =
{ϵi}1≤i≤n represents R

n
max. However, considering that G0 represents an arbitrary Max-Plus

cone, in its internal form allows computing the intersection of G0 with another Max-Plus
cone, in its external form, also of R

n
max. Summing-up, replacing G0 by an arbitrary cone

in the initial step of the procedure, exactly yields a minimal system of generators of this
intersection.
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As mentioned previously, the external representation of Max-Plus cones encodes a
single half space in each row. Consequently, the intersection between two Max-Plus cones
can be performed simply by concatenating the rows of them, as precisely described in the
sequel.

Remark 2.32 (Intersection of Max-Plus cones). Let P̂ = {z | Az ≥ Bz} and P̂ ′ = {z |
Cz ≥ Dz} be two Max-Plus cones of R

n+1
max where A,B,C,D ∈ R

s×(n+1)
max . Then,

P̂ ∩ P̂ ′ =

z |

 A

C

 z ≥

 B

D

 z

 ≡ {z | z ∈ P̂ and z ∈ P̂ ′}.

As already pointed out, translating external representations of Max-Plus cones to
internal representation and vice-versa is cumbersome, and it would be interesting to ef-
ficiently compute the intersection of these cones when they are internally represented by
generating sets. Thus, we propose the following intersection of c-Polyhedra in internal
form (see Remark 2.26), adapted from [76, Sec. 8.2.1].

Remark 2.33 (Finite subsets as matrices). A finite subset V = {v1, . . . ,vk} of R
n

max

admits a reinterpretation as a matrix

mat(V ) = (v1, . . . ,vk) ∈ R
n×k
max ,

i.e., as an "array" of column vectors, with the same expressiveness.

Proposition 2.2 (Intersection of c-Polyhedra). Let G = co(G) and H = co(H) be
two c-Polyhedra of R

n

max where G = {g1, . . . ,gnG} and H = {h1, . . . ,hnH} are finite
subsets of R

n

max. Then I = G ∩ H is represented by the Max-Plus cone Î = cone(I)
where the elements of its generating set I are the columns of the matrix Ĝmat(Γ) where
Γ = {γ | Ĝγ = Ĥγ}, Ĝ = (mat(G× {e}) E), Ĥ = (E mat(H × {e})) and γ = (λt,βt)t.

Proof. First, thanks to Remark 2.26 we have

∀v ∈ I ⇐⇒ (vt, e)t ∈ Î v
e

 = mat(G× {e})λ = mat(H × {e})β ⇒ mat(G× {e})λ = mat(H × {e})β

Thus, in order to obtain a two-sided equation in the same variable, we consider Γ =
{γ | Ĝγ = Ĥγ}. Hence, the elements of the generating set I of Î are the columns of the
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matrix Ĝmat(Γ). Moreover, it is particularly interesting to compute the minimal canonical
representation of Î, i.e., cf(Î) = cf(cone(I)) = cone(Icf)).

Rather than considering this costly computation, for instance using the function
mpsolve that implements, in the Max-Plus toolbox [9] of Scilab and ScicosLab, the
elimination method (refined in [39]), with worst-case complexity that is exponential in di-
mension nG + nH , we define the following fixed-point equation problem in order to check
if this intersection is non-empty.

Procedure 2.1. Let Ĝγ = Ĥγ be the two-sided equation raised in Proposition 2.2. Then,
define

Π(γ) = Ĥ◦\(Ĝγ) ∧ Ĝ◦\(Ĥγ) ∧ γ (2.36)

as a fixed-point equation problem (see Equation (1.4)) with γ0 = e since ⊕nG+nH
k=1 γ0k

= e.
If the greatest solution γ of Ĝγ = Ĥγ exists, then it is given by the fixed-point equation
F : γl = Π(γl−1) (with convergence), which is smaller than or equal to γ0.

Remark 2.34. Clearly, Ĝγ = Ĥγ is solvable if and only if the fixed-point equation
problem γl = Π(γl−1) converges, and in this case I = G ∩ H ̸= ∅. Nevertheless, if the
former problem is not solvable, i.e., Ĝγ = Ĥγ does not possess a finite solution, then it is
likely to run infinitely, with γl converging to ε (refer to Remark 1.6). In order to avoid this
bad behavior, we consider the following stop condition to the fixed-point procedure: evaluate
at each iteration l if at least one element of γl is equal to e, i.e., if ⊕nG+nH

k=1 γlk = e is
respected, and if this statement holds then the procedure keeps running, else it stops and
I = ∅ (see [44] for more details).

In the following, we consider the join operation between two Max-Plus polyhedra
in their homogeneous forms, which yields the smallest over-approximation polyhedron
of their exact union. As a matter of fact, neither the Max-Plus polyhedra nor DBM
are generally able to calculate exactly the union of the regions they represent. However,
we observe, in practice, that the over-approximation using polyhedra has lower risk of
introducing false-positive points than using DBM [79, Cor. 2], i.e., approximations using
Max-Plus polyhedra are tighter than DBM approximations as it is illustrated in Figure
2.13. In the sequel, we provide the technical details concerning this operation using Max-
Plus cones.

Remark 2.35 (Join operation of Max-Plus cones). Given two finite subsets of R
n
max,

precisely G = {g1, . . . ,gk} and H = {h1, . . . ,hw} then the join operation (or abstract
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union) ⊔ between G = cone(G) ⊆ R
n

max and H = cone(H) ⊆ R
n

max, is given by

G ⊔ H = cf(cone(G ∪H)),

which has complexity O(n(k + w)2). Furthermore,

G ∪ H = {v | v ∈ G or v ∈ H} ⊆ G ⊔H.

Figure 2.13 shows an interpretation of the tightness in the over-approximation of the
union of two regions using DBM and Max-Plus polyhedra. Note that, in this case, the
join operation using Max-Plus polyhedra yields the exact union.

x1

x
2

(a) Using DBM

x1

x
2

(b) Using Max-Plus polyhedra

Figure 2.13 – Over-approximation of the union of two regions using DBM and Max-Plus
polyhedra

Polytropes: a special subclass of c-Polyhedra

Definition 2.15. A polytrope 9 is a c-Polyhedron P = co(V )⊕cone(∅) = co(V ) ⊆ R
n
max

(see Remark 2.26), with the finite subset V ⊆ R
n
max, being also convex in the ordinary

sense.

Remark 2.36. Polytropes of R
n
max are externally defined by the intersection of a finite

number of classical half spaces of the form xi − xj ≤ cij for all i, j ∈ {0, . . . , n} where
xi, xj, cij ∈ R and x0 = 0, i.e., as DBM. Hence, the external representation of polytrope
is similar to the one used in DBM with non-strict constraints (see Remark 2.36), and we

9. A polytope is the convex hull of a nonempty finite set. A polytrope is the Max-Plus analogue of a
polytope.
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can always represent these DBM by using Max-Plus convex polyhedral sets [80, 81, 82].
Furthermore, it is worth to be mentioned that a single DBM can only represent Max-
Plus polyhedral sets that are also convex in the classical context (cf. Definition 2.15),
i.e., polytrope, otherwise a collection of DBM must be considered. Hence, a Max-Plus
polyhedron is represented by a collection of DBM.

Example 2.19. Figure 2.12b depicts a Max-Plus polyhedron. This polyhedron is also
represented by

X =
=G︷ ︸︸ ︷

{x | 4 ≤ x1 ≤ 7, 5 ≤ x2 ≤ 8,−2 ≤ x2 − x1 ≤ 3}

∪ {x | 4 ≤ x1 ≤ 8, 5 ≤ x2 ≤ 8,−1 ≤ x2 − x1 ≤ 3}︸ ︷︷ ︸
=H

,

a collection DBM as given in Example 2.13. The sets G and H are equivalent to the
external representation of the polytropes

G =


x |



e ε

ε ε

ε e

ε ε

ε e

3 ε



x1

x2

⊕



ε

7
ε

8
ε

ε


≥



ε ε

e ε

ε ε

ε e

−2 ε

ε e



x1

x2

⊕



4
ε

5
ε

ε

ε




,

H =


x |



e ε

ε ε

ε e

ε ε

ε e

3 ε



x1

x2

⊕



ε

8
ε

8
ε

ε


≥



ε ε

e ε

ε ε

ε e

−1 ε

ε e



x1

x2

⊕



4
ε

5
ε

ε

ε




,

which also admit the internal representations

G = co


 5

8

,
 7

5

,
 4

5


 ,

H = co


 4

7

,
 5

8

,
 7

5

,
 8

7


 ,
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such that (see Remark 2.35)

G ⊔ H = cf

co


 5

8

,
 7

5

,
 4

5

,
 4

7

 ,
 8

7


 ,

= co


 8

7

 ,
 7

5

 ,
 5

8

 ,
 4

5


 ,

which is equivalent to the Max-Plus polyhedron computed in Example 2.17. Moreover, in
this case G ∪ H = G ⊔ H.

Remark 2.37. It is known that a n-dimensional polytrope is the Max-Plus convex hull
of at most n + 1 points or equivalently as the intersection of n + 1 Max-Plus half spaces
in R

n

max (refer to [68, Th 3.2] for further details and proofs).

Proposition 2.3. The polytrope expressed by P[h] = co(H) ⊆ R
n

max, with

H =
{
h,v1, . . . ,vn

}
⊆ R

n
max, where vi = (h1, h2, . . . , hi, hi+1, . . . , hn)t, (2.37)

represents the non-empty Max-Plus hypercube defined as [h] = [h,h] = {h | h ≤ h ≤
h} ⊆ R

n
max (see Definition 2.1).

Proof. A simple sketch of the proof is given by considering that [h] is also represented by
the following set [h] = S1 ∩ S2, where

S1 =
n⋂

j=1
{h | hj ≥ hj} =

n⋂
j=1
{h | h−1

j ⊗ hj ≥ e} and

S2 =
n⋂

j=1
{h | hj ≤ hj} =

n⋂
j=1
{h | h−1

j ⊗ hj ≤ e}.

Thus, [h] is the intersection of 2n conventional half spaces. Nevertheless, S2 is also equiv-
alent to

S̃2 =

h |
n⊕

j=1
h

−1
j ⊗ hj ≤ e

 ,
representing a single Max-Plus half space. Hence, we can conclude that [h] = S1∩ S̃2, i.e.,
[h] is the intersection of n + 1 Max-Plus half spaces 10. For instance, Figure 2.14 depicts
these Max-Plus half spaces in R

2
max. Note that all Max-Plus half spaces in S1 intersect

10. It is worth to recall that every conventional half space is a Max-Plus half space, but the converse
does not hold.
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h1 h2

h1

h2

[h]

•

• •
h

1
≥
h

1

h2 ≥ h2

0 ≥ max(−h1 + h1,−h2 + h2)

h1

h
2

Figure 2.14 – [h] and its polytrope representation P[h] = co(H) in R
2
max with H ={(

h1
h2

)
,

(
h1
h2

)
,

(
h1
h2

)}

at h, i.e., being a common point (black dot); each Max-Plus half space in S2 is oriented
toward a direction j and intersects with the single Max-Plus half space in S̃2 at a point
v(j) (green dots) whose i-th coordinate is equal to hi for all i ∈ {1, . . . , n}\j, and the j-th
coordinate is equal to hj. At the end, we have n + 1 unique points of intersection which
coincide with the elements of H, and thus Remark 2.37 holds.

Furthermore, this result is also verifiable by considering Remark 2.30, i.e., by checking
that the following equality holds: cf(P[h]) = P[h] (idempotence property).

Corollary 2.2. The polytrope P[h] of Proposition 2.3 is externally represented by

P[h] =

h |

diag(h−1)
εt

h⊕

ε

e

 ≥
 E

(h−1)t

h⊕

e

ε


and its homogenous form P̂[h] is finitely generated by Ĥ = H × {e}, with H given by
Equation (2.37). In other words, all elements in Ĥ are vertices (i.e., their (n + 1)-th
coordinate is e).

Proof. Let us suppose that P̂[h] is generated by a ray (i.e., its (n+ 1)-th coordinate is ε),
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then the following inequality must be respected

(
εt e

) h
ε

 ≥ ((h−1)t ε
) h

ε

 =⇒ ε ≥ (h−1)th,

which is not the case. Hence, P̂[h] is only generated by vertices.

The following equivalences always hold true:

∀h ∈ [h] ⇐⇒ h ∈ P[h] = co(H) =


n+1⊕
j=1

βjhj | hj ∈ H,
n+1⊕
j=1

βj = e


⇐⇒ h =

n+1⊕
j=1

βjhj, s.t.
n+1⊕
j=1

βj = e.

Set-estimation using Polyhedral-RA: Prior estimation

This Section presents an approach to compute the image of a c-Polyhedron Pk|k−1 =
co(Gk|k−1) ⊆ R

n
max, with Gk|k−1 = {g1

k|k−1, . . .gN
k|k−1} ⊆ R

n
max, i.e., representing x(k) ∈

Xk|k−1 of Equation (2.26). Furthermore, it is assumed thatX0|0 is known and is represented
by P0|0 = co(G0|0) ⊆ R

n

max with G0|0 = {g1
0|0, . . .gk

0|0} ⊆ R
n

max.
In order to take the control input u(k) into account, we define the following extended

polyhedron

P̃k−1|k−1 = Pk−1|k−1 × {u(k)} = co(Gk−1|k−1)× {u(k)} = co(G̃k−1|k−1) ⊆ R
n+p
max, (2.38)

where G̃k−1|k−1 = Gk−1|k−1×{u(k)} ⊆ R
n+p
max. Clearly, this extended polyhedron represents

the set Xk−1|k−1 × Uk of Equation (2.26).

Definition 2.16 (Bounded linear maps). Let f : R
n

max → R
n

max be a linear map, such
that f ⪯ f ⪯ f , and we denote [f ] = [f, f ], then [f ](v) = [f(v), f(v)] and the following
equivalences hold

1. α[f ](v) = [f ](αv) ⇐⇒ αf(v) = f(αv), ∀f ∈ [f ]

2. [f ](v)⊕ [f ](w) = [f ](v⊕w) ⇐⇒ f(v)⊕ f(w) = f(v⊕w), ∀f ∈ [f ]

107



Chapter 2 – Nondeterministic systems: set-membership estimation

for any α ∈ Rmax and v, w ∈ R
n

max. Let V = {v1, . . . ,vp} be a finite subset of R
n

max. The
image of V under [f ] is given by

[f ](V ) =
{
[f ](vi) | vi ∈ V, 1 ≤ i ≤ p

}
⊆ R

n

max,

which is interpreted as
{[f ](v1), . . . , [f ](vp)}.

The following linear map depicts the uMPL dynamics

f : R
n+p
max → R

n
max : y(k) 7→ Fy(k), (2.39)

where f ⪯ f ⪯ f , F = (A1 B̃) ∈ [F ] = ([A] [B̃]) and y(k) = (xt(k − 1),ut(k))t.

Lemma 2.1. Let f : R
n

max → R
n

max be a linear map, where f ∈ [f ] = [f, f ], as pro-
posed in Definition 2.16 and P = co(V ) = {⊕p

i=1 λivi | vi ∈ V,⊕p
i=1 λi = e} ⊆ R

n

max be a
c-Polyhedron for the finite subset V = {v1, . . . ,vp} ⊆ R

n
max. Then, the direct image of

P with respect to all f ∈ [f ], denoted

χf (P) = {f(P) | f ∈ [f ]},

is equivalently expressed as

χf (P) = co(co({H1, . . . , Hp}),

where Hi ⊆ R
n

max is the generating set of the polytrope that represents each [f ](vi) ∈ [f ](V )
(cf. Definition 2.16).

Proof. First,

∀x ∈ P ⇐⇒ x =
p⊕

i=1
λivi, s.t.

p⊕
i=1

λi = e.

Then, ∀f ∈ [f ], we have

f(x) ∈ f(P) ⇐⇒ f(x) = f

( p⊕
i=1

λivi

)
, s.t.

p⊕
i=1

λi = e.

with
f

( p⊕
i=1

λivi

)
=

p⊕
i=1

f(λivi) =
p⊕

i=1
λif(vi),
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where f(vi) ∈ [f ](vi). The term [f ](vi) is a Max-Plus hypercube represented by the
polytrope co(Hi) ⊆ R

n
max with Hi ⊆ R

n
max given by Equation (2.37) of Proposition 2.3.

Hence, ∀f ∈ [f ], we have

f(vi) ∈ [f ](vi) ⇐⇒ f(vi) ∈ co(Hi) =


n+1⊕
j=1

βi
jh

j
i | h

j
i ∈ Hi,

n+1⊕
j=1

βi
j = e


⇐⇒ f(vi) =

n+1⊕
j=1

βi
jh

j
i , s.t.

n+1⊕
j=1

βi
j = e

and thus, with regard to ⊕p
i=1 λif(vi), we have

p⊕
i=1

λif(vi) =
p⊕

i=1
λi

n+1⊕
j=1

βi
jh

j
i =

p(n+1)⊕
w=1

αwgw,

where gw ∈ G = {H1, . . . , Hp} and ⊕p(n+1)
w=1 αw = e with αw = λiβ

i
j. Finally, ∀f ∈ [f ] we

have f(P) = co(co(G)), which represents χf (P) = {f(P) | f ∈ [f ]} ≡ co(co(G)).

The image of P̃k−1|k−1, denoted by Pk|k−1 = [f ](P̃k−1|k−1), is given thanks to Lemma
2.1. Thus, consider the generating setHi of the polytrope that represents each [f ](g̃i

k−1|k−1) =
([A] [B̃])g̃i

k−1|k−1, for all i ∈ {1, . . . , N}. We recall that Hi is given by Equation (2.37).
Then,

Pk|k−1 = [f ](P̃k−1|k−1) = co(Gk|k−1), with Gk|k−1 = {H1, . . . , HN}. (2.40)

Furthermore, |Gk|k−1| = N(n+ 1).
In order to obtain cf(Pk|k−1), i.e., the canonical form of the c-Polyhedron Pk|k−1,

one must consider its homogenous form (see Remark 2.30). The homogenization of Pk|k−1

is expressed as P̂k|k−1 = cone(Ĝk|k−1) ⊆ R
n+1
max, where Ĝk|k−1 = Gk|k−1 × {e}. Then,

cf(P̂k|k−1) = cone(Ĝcfk|k−1) is computed thanks to Algorithm 2.1 (note that the elements
of Ĝk|k−1 are not proportional to each other and line 1 of this algorithm is satisfied), and
cf(Pk|k−1) = co(Gcfk|k−1) where

Gcfk|k−1 =

ĝi
cfk|k−1

|

 ĝi
cfk|k−1

e

 ∈ Ĝcfk|k−1 , 1 ≤ i ≤ |Ĝcfk|k−1|

 .
The procedure is summarized by Algorithm 2.2.
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Algorithm 2.2: Computing the generating set of the image of the c-Polyhedron
P̃k−1|k−1

Data: a finite set G̃k−1|k−1 = Gk−1|k−1 × {u(k)} ⊆ R
n+p
max and a linear map

f : R
n+p
max → R

n
max as given by Equation (2.39);

Result: a set Gcfk|k−1 =
{

ĝ1
cfk|k−1

, . . . , ĝ
|Gcfk|k−1 |
cfk|k−1

}
.

/* Goal: Compute the minimal generating set of the image of the
c-Polyhedron P̃k−1|k−1 */

1 foreach i ∈ {1, . . . , N} do
2 Compute the hypercube [f ](g̃i

k−1|k−1)← ([A] [B̃])g̃i
k−1|k−1

3 Compute Hi thanks to Equation (2.37) over ([A] [B̃])g̃i
k−1|k−1

4 end
5 Define Gk|k−1 ← {H1, . . . , HN} and Ĝk|k−1 = Gk|k−1 × {e}
6 Compute Ĝcfk|k−1 using Algorithm 2.1

7 Define Gcfk|k−1 =
{

ĝi
cfk|k−1

|
(

ĝi
cfk|k−1

e

)
∈ Ĝcfk|k−1 , 1 ≤ i ≤ |Ĝcfk|k−1 |

}
8 return Gcfk|k−1 = {ĝ1

cfk|k−1
, . . . , ĝ

|Gcfk|k−1 |
cfk|k−1

}

The complexity to calculate Gcfk|k−1 amounts to O(n3N2), since
Ĝk|k−1 is a subset of R

r=n+1
max with cardinality c = N(n + 1), and

it takes rc2 steps to compute Ĝcfk|k−1 using Algorithm 2.1. Thus,
rc2 = (n+1)(N(n+1))2 = (n+1)3N2. If f = f = f , i.e., the uMPL
system matrices are deprecated (representing a MPL system), then
the complexity is O(nN2) since the cardinality of Ĝk|k−1 is, in this
case, equal to N .

Example 2.20. Recall the autonomous system of Example 2.8, precisely

x(1) = A(1)x(0) where A(1) ∈ [A] =
[4, 6] [3, 5]

[3, 7] [4, 5]

 , for k = 1

Let P0|0 = co(G0|0) with

G0|0 =


e

1

 ,
1

1

 ,
e

3


be the initial c-Polyhedron, such that x(0) ∈ P0|0. It is straightforward to see that this
polyhedral set is a polytrope, more specifically a Max-Plus hypercube [x](0) = ([e, 1], [1, 3])t,
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H(1)[f ](g1

cf0|0
) = [A]g1

cf0|0

• •

•

H(2)

[f ](g2
cf0|0

) = [A]g2
cf0|0

• •
•

H(3)

[f ](g3
cf0|0

) = [A]g3
cf0|0

x1

x
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x(0) ∈ P0|0 = co(Gcf0|0)
•

g3
cf0|0

•
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•
g2

cf0|0

•

•

•

•
x(1) ∈ P1|0 = co(Gcf1|0)

Gcf1|0

x1

x
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Figure 2.15 – Prior estimation set X1|0 represented by the c-Polyhedron P1|0 of Example
2.20, which is computed as the minimal generating set resulting from the concatenation
of H(1), H(2) and H(3)

such that ∀x(0) ∈ [x](0) ⇐⇒ x(0) ∈ P0|0. We define P1|0 as the image of P0|0 with
respect to the linear map f : x(0) 7→ A(1)x(0), with f ⪯ f ⪯ f . Following the procedure
of Algorithm 2.2, for each gi

0|0 of G0|0 with i ∈ {1, 2, 3} we compute [f ](gi
0|0) = [A]gi

0|0,
which is a Max-Plus hypercube represented by the polytrope co(Hi), where

H(1) =


4

5

 ,
6

5

 ,
4

7

 , H(2) =


5

5

 ,
7

5

 ,
5

8

 , H(3) =


6

7

 ,
8

7

 ,
6

8

 .
Then, G1|0 = {H(1), H(2), H(3)} and P̂1|0 = cone(Ĝ1|0) where Ĝ1|0 = G1|0 × {e}. Thus,
cf(P̂1|0) yields cone(Ĝcf1|0) where

Ĝcf1|0 =




8
7
e

 ,


4
5
e

 ,


5
8
e

 ,


7
5
e




(see Algorithm 2.1). Finally, P1|0 = co(Gcf1|0) where

Gcf1|0 =


8

7

 ,
4

5

 ,
5

8

 ,
7

5

 ,
such that its columns are denoted by dots in Figure 2.15. As a matter of correctness, this
region representation of X1|0 is equivalent to the DBM representation of Example 2.13.
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Set-estimation using Polyhedral-RA: Set-inversion estimation

This Section is taken from [83], and we present more details concerning the technical-
ities. We reinterpret, using a polyhedral approach, the computation of the inverse image
of a given point (measurement), depicted by vector z(k), which is represented by set X̃k|k

as proposed in Equation (2.28). First, let us recall that

x(k) ∈ X̃k|k ⇐⇒ Cx(k) ≤ z(k) ≤ Cx(k),

where [C] = [C,C] ∈ IR
q×n
max. Thus,

X̃k|k = L ∩ U, (cf. Equation (2.8)), (2.41)

where L is defined in Equation (2.9) and is equal to ⋂q
i=1 Li, with

Li = {x | zi(k) ≤ (Cx)i} ≡
n⋃

j=1
{x | xj ≥ cij◦\zi(k)} (2.42)

and
U = {x | x ≤ C◦\z(k)}, (2.43)

also defined in Equation (2.10). Then,

X̃k|k = L ∩ U =
( q⋂

i=1
Li

)
∩ U =

q⋂
i=1

Li ∩ U.

Lemma 2.2. The following Max-Plus half space directly encodes Li of Equation (2.42)
with the same expressiveness

Li = {x | (z−1
i ⊗ ci1, . . . , z

−1
i ⊗ cin)x ≥ e}. (2.44)

Proof. ⊗-multiply both sides of zi ≤ (Cx)i by z−1
i , which yields (z−1

i ⊗ci1, . . . , z
−1
i ⊗cin)x ≥

e. The proof is complete.

Lemma 2.3. The following Max-Plus half space directly encodes U with the same expres-
siveness

U = {x | e ≥ ((C◦\z(k))−1
1 , . . . , (C◦\z(k))−1

n )x}. (2.45)

Proof. It follows from {x | x ≤ C◦\z(k)} = ⋂n
j=1{x | xj ≤ (C◦\z(k))j}, that by ⊗-
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multiplying both sides of xj ≤ (C◦\z(k))j by (C◦\z(k))−1
j yields

n⋂
j=1
{x | (C◦\z(k))−1

j ⊗ xj ≤ e} ≡ {x | ((C◦\z(k))−1
1 , . . . , (C◦\z(k))−1

n )x ≤ e}.

The proof is complete.

Proposition 2.4. Let P̃k|k ⊆ R
n

max be a Max-Plus polyhedron that represents X̃k|k. Then,
P̃k|k, in its external form, is given by

P̃k|k =

x |

diag(z−1(k))C
εt

x⊕

ε

e

 ≥
 E

((C◦\z(k))−1)t

x⊕

e

ε

 , (2.46)

(representing s = q + 1 single half spaces).

Proof. The proof is straightforward mixing Lemma 2.2 for i = 1, 2, . . . , q and Lemma 2.3
and does not require further details.

Lemma 2.4. P̃k|k of Proposition 2.4 is a c-Polyhedron.

Proof. The proof follows the same insight used in Corollary 2.2. First, we consider the
homogenous form of P̃k|k, which is finitely generated by Ĝ. Supposing that an element of
Ĝ is a ray, then its (n+ 1)-th coordinate equal to ε and hence

(
εt e

) x
ε

 ≥ (((C◦\z(k))−1)t ε
) h

ε

 =⇒ ε ≥ ((C◦\z(k))−1)tx,

which is an absurd. As a consequence, all elements of Ĝ are vertices, i.e., their (n+ 1)-th
coordinate is equal to e and the proof is complete.

The external-to-internal translation of P̃k|k is done with complexity
O(N2s2n) where s = q+1 andN ≤ O

(
(s+ n)⌊ n−1

2 ⌋
)

is the maximal
number of generators of the s intermediate Max-Plus cones. If q = n

and n > 0 is an even integer, then the internal representation of
P̃k|k is computed with worst-case complexity O(nn+3). In many
applications, q ≪ n and then the tightness condition of Remark
2.27 (precisely n ≥ 2s+1) is likely to occur and thus, it is preferable
to use the external representation of P̃k|k for large systems.
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Example 2.21. Consider z(1) = (5, 4)t and [C] =
[1, 4] [2, 3]

[1, 2] [e, 4]

. Thus, P̃1|1 is internally

represented (refer to Proposition 2.4) by co(S) ⊂ R
2
max where S =

ε 3 1 ε 2
3 ε e 2 ε

 is

obtained by using the double description method over the following matrix inequality
−1 −2
−2 e

ε ε

x(1)⊕


ε

ε

e

 ≥

ε ε

ε ε

−3 −3

x(1)⊕


e

e

ε

 .

The reader is invited to verify the consistency that ∀x(1) ∈ P̃1|1 we have Cx(1) ≤ z(1) ≤
Cx(1), as it is shown in Figure 2.16.

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4
0 ≥ max(−3 + x1,−3 + x2)

max(−1 + x1,−2 + x2) ≥ 0

max(−2 + x1, x2) ≥ 0

P̃1|1

⊚

⊚

•

⊚

⊚

x1

x
2

Figure 2.16 – P̃1|1 of Example 2.21

Set-estimation using Polyhedral-RA: Correction phase estimation

The set Xk|k of Equation (2.25) is alternatively represented by the intersection of
the Max-Plus polyhedra Pk|k−1 (exclusively in its internal form) and P̃k|k (exclusively in
its external form), denoted by the c-Polyhedron 11 Pk|k that must be represented in its
internal form to be used in the subsequent computation of Pk+1|k (back-shift operation:

11. The intersection of two c-Polyhedra is a c-Polyhedron.
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Pk−1|k−1 ← Pk|k in the event-domain). Hence,

x(k) ∈ Xk|k ⇐⇒ x(k) ∈ Pk|k = Pk|k−1 ∩ P̃k|k, (2.47)

is computed using Remark 2.31.

The external representation of Pk|k−1 is given by O(n) Max-Plus
half spaces. Thus, s = O(n + q) is the number of Max-Plus half
spaces that represent Pk|k of Equation (2.47). Hence, the number
of generators N of Pk|k is upper bounded by O

(
(s+ n)⌊ n−1

2 ⌋
)

and
lower bounded by O ((s− 2n)2n−2) if s ≥ 2n (see Remark 2.27).
Assuming q = n, then the complexity to obtain the internal repre-
sentation of Pk|k is O (σn3) with σ equal to

— (best-case): 22n−4 ;
— (worst-case): nn−1 for n an odd integer or nn for n an even

integer

Example 2.22. Recall the generating set of the c-Polyhedron P1|0 of Example 2.20,
represented by the generating set

G =


 8

7

 ,
 7

5

 ,
 5

8

 ,
 4

5

 .
Now consider the observer of Example 2.21 but with z(1) = C(1)x(1) = (9, 8)t where

C(1) =
2 3

2 e

 and x(1) = (6, 6)t ∈ P1|0. Thus, P̃1|1 is externally represented by

P̃1|1 =

x |


−5 −6
−6 −4
ε ε

x⊕


ε

ε

e

 ≥

ε ε

ε ε

−7 −7

x⊕


e

e

ε


 .

Finally, P1|1 is internally expressed by P1|1 = P1|0 ∩ P̃1|1 using Remark 2.31. Precisely,

P1|1 = co


 5

5

 ,
 4

6

 ,
 7

5

 ,
 4

7


as depicted in Figure 2.17.

115



Chapter 2 – Nondeterministic systems: set-membership estimation
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0 ≥ max(−7 + x1, −7 + x2)

max(−6 + x1, −4 + x2) ≥ 0

max(−5 + x1, −6 + x2) ≥ 0

•

•

•

• •
•

•

•
P1|1 ×

x(1)
P1|0P1|0

x1

x
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Figure 2.17 – P1|0 (orange region), P̃1|1 (intersection of the Max-Plus half spaces in green,
blue and red) and P1|1 (intersection of P1|0 and P̃1|1 in bounded by magenta dashed lines)
of Example 2.22

Set-estimation using Polyhedral-RA: Correction phase estimation with Xk−1|k−1 =
{x(k − 1)}

This Section is also taken from [83]. The basic idea is to assume that Xk−1|k−1 is as a
singleton, precisely Xk−1|k−1 = {x(k − 1)}. Thus, based on Remark 2.17, we know that
Xk|k−1 is therefore a Max-Plus hypercube [x](k|k − 1) that is also represented by the
polytrope generated by the intersection of n+ 1 half spaces or equivalently by the convex
hull of n+ 1 points (vertices).

Proposition 2.5. Let Pk|k ⊆ R
n
max be a c-Polyhedron that represents Xk|k. Then, Pk|k,

in its external form, is given by

Pk|k =

x |


diag(x−1(k|k − 1))

diag(z−1(k))C
εt

x⊕


ε

ε

e

 ≥


E
E

((x(k|k − 1) ∧ C◦\z(k))−1)t

x⊕


e

e

ε


 ,

(2.48)
(representing s = n+ q + 1 single half spaces).

Proof. The proof is straightforward using the proof of Proposition 2.3 and Lemmas 2.2
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and 2.3. The term x(k|k − 1) ∧ C◦\z(k) refers to

e ≥ (x−1(k|k − 1))tx and e ≥ ((C◦\z(k))−1)tx⇔ e ≥
(
(x−1(k|k − 1))t ⊕ ((C◦\z(k))−1)t

)
x

e ≥ ((x(k|k − 1) ∧ C◦\z(k))−1)tx

Corollary 2.3. Pk|k of Proposition 2.5 is a c-Polyhedron.

Proof. The proof is similar to the proof of Lemma 2.4 and does not require further details.

In this case, the external-to-internal translation of Pk|k has also
exponential complexity in worst-case scenarios but rarely expected
to be attained since the condition for tightness in Remark 2.27,
precisely s = n+ q+ 1 ≤ n−1

2 , never holds. Moreover, usually q < n

and then the condition s = n + q + 1 ≥ 2n of the same remark
to obtain a best-case complexity (also costly) holds if and only if
n− q ≤ 1.

Example 2.23. Consider the uMPL system given below:

x(1) = A(1)x(0), A(1) ∈
[1, 3] [e, 4]

[2, 4] 2.5

 ,
z(1) = C(1)x(1), C(1) ∈

(
0.5 [e, 1]

)
,

with x(0) = (e, e)t, x(1) = (3.3, 3.3)t, z(1) = (0.5 0.5)x(1) = 3.8. Then, P1|1 is externally
represented by

P1|1 =


x |


−1 ε

ε −2.5
−3.3 −2.8
ε ε

x⊕


ε

ε

ε

e

 ≥


ε ε

ε ε

ε ε

−3.3 −3.8

x⊕


e

e

e

ε




,

or equivalently, internally represented by

P1|1 = co


 1

3.8

 ,
 3.3

2.5

 ,
 1

2.8

 ,
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as depicted in Figure 2.18.
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Figure 2.18 – P1|1 of Example 2.23.

2.4.3 Interval-RA

This Section is taken from [84]. The goal is to propose an approach to compute over-
approximations of the image of an interval vector with respect to Equation (2.14a) and
of the inverse image of a measurement point z(k) with respect to Equation (2.14b).

On Xk−1|k−1

Let us assume, without loss of generality, that the studied systems in this Section are
autonomous, i.e., x(k) = A(k)x(k − 1) with A(k) ∈ [A] ∈ IR

n×n
max . Given Xk−1|k−1 a set

contained in R
n

max such that x(k− 1) ∈ Xk−1|k−1, then its exact image with respect to [A]
is given by Equation (2.26) as

Xk|k−1 = {Ax ∈ R
n
max | x ∈ Xk−1|k−1, A ∈ [A]}.

As we already know, this computation is done either in exponential-time (worst-case
scenario) using DBM approach or in cubic-time using polyhedral approach. Hence, in
order to avoid this computational effort, we consider [x](k − 1|k − 1) ∈ IR

n
max such that

Xk−1|k−1 ⊆ [x](k−1|k−1), i.e., the smallest interval vector that encloses Xk−1|k−1. Thus,
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set Xk|k−1 is over-approximated by the following interval vector

[x](k|k − 1) = {x(k) ∈ R
n
max | A x(k − 1|k − 1) ≤ x(k) ≤ Ax(k − 1|k − 1)}, (2.50)

such that Xk|k−1 ⊆ [x](k|k − 1). Thus, this computation is done with complexity O(n2)
(see Remark 2.17).

On X̃k|k

Let z(k) = C(k)x(k) be the observation equation with C(k) ∈ [C] ∈ IR
q×n
max. Given

z(k) a measurement point, then its exact inverse image with respect to [C] is given by
Equation (2.27) as

X̃k|k = {x(k) | Cx(k) ≤ z(k) ≤ Cx(k)}.

This computation is also known to be done in exponential-time (worst-case scenarios)
using either DBM or polyhedral approaches.

In general, the smallest interval vector [x̃](k|k) that encloses X̃k|k is given by

[x̃](k|k) =


[ε, (C◦\z(k))1]

...
[ε, (C◦\z(k))n]

 , such that X̃k|k ⊆ [x̃](k|k)

However, if C (as consequence C as well) has only one element different of ε per row for
the subset I ⊆ {1, . . . , q} (refer to Definition 1.9) then, based on Proposition 1.3, consider
the following procedure:

Procedure 2.2.

S1 = ∅, S2 = ∅, . . . ,Sn = ∅,

for each i ∈ I,∃j(i) ∈ {1, . . . , n} such that xj(i)(k) ≥ cij(i)◦\zi(k), Sj(i) = Sj(i) ∪ {j(i)},

such that

[x̃](k|k) =


[x̂1, (C◦\z(k))1]

...
[x̂n, (C◦\z(k))n]

 , where x̂j =


⊕

w∈Sj ciw◦\zi(k) if Sj ̸= ∅,

ε otherwise.
(2.51)

Hence, this procedure is computed in bilinear/quadratic-time (matrix-vector multipli-
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cation only).

Remark 2.38. If C is doubly G-astic with only one element different of ε per row and
column, then X̃k|k is exactly equal to [x̃](k|k) given in Equation (2.51) of Procedure 2.2.

On Xk|k

The set Xk|k is computed as the intersection of Xk|k−1 and X̃k|k. Consider the alter-
native problem: intersection of [x](k|k − 1) of Equation (2.50) and

X̃k|k = {x(k) | x(k) ≤ C◦\z(k)} ∩ {x(k) | z(k) ≤ Cx(k)},

such that

Xk|k ⊆ χ = [x](k|k − 1) ∩ X̃k|k (2.52)

χ = {x(k) | z(k) ≤ Cx(k)} ∩ {x(k) | x(k|k − 1) ≤ x(k)} ∩ {x(k) | x(k) ≤ Ω} (2.53)

where Ω = x(k|k − 1) ∧ C◦\z(k). Thus,

χ = {x(k) | x(k|k−1) ≤ x(k)}∩S where S = {x(k) | z(k) ≤ Cx(k)}∩{x(k) | x(k) ≤ Ω}

Lemma 2.5. The term Ω = x(k|k − 1) ∧ C◦\z(k) is also given by Ω = Ĉ◦\z(k) where
Ĉ = z(k)◦/Ω.

Proof. From Lemma A.1 of Appendix A, the following holds: (z(k)◦/Ω)◦\z(k) = Ω, hence
Ω = Ĉ◦\z(k).

Remark 2.39. Based on Lemma 2.5, the set S = {x(k) | z(k) ≤ Cx(k)}∩{x(k) | x(k) ≤
Ω} is equivalent to {x(k) | Ĉx(k) ≤ z(k) ≤ Cx(k)}.

Proposition 2.6. Set S can be expressed equivalently as: S = {x(k) | Ĉx(k) ≤ z(k) ≤
Ĉx(k)} with Ĉ defined as

ĉij =

ε if ĉij > cij,

cij otherwise.
(2.54)

for all i ∈ {1, . . . , q} and all j ∈ {1, . . . , n}.

Proof. For the sake of brevity, in the proof we use the notation: x ≡ x(k) and z ≡ z(k).

120



2.4. The set-estimation problem: conditional reachability analysis (RA) techniques

First, we consider (Ĉx)i ≤ zi ≤ (Cx)i for all i ∈ {1, . . . , q}, this implies (Ĉx)i ≤ (Cx)i,
i.e.,

n⊕
k=1

ĉik ⊗ xk = ĉi1 ⊗ x1 ⊕ · · · ⊕ ĉin ⊗ xn ≤ ci1 ⊗ x1 ⊕ · · · ⊕ cin ⊗ xn =
n⊕

k=1
cik ⊗ xk.

Let us define a = ĉij ⊗ xj, c = cij ⊗ xj,

b =
n⊕

k=1,
k ̸=j

ĉik ⊗ xk and d =
n⊕

k=1,
k ̸=j

cik ⊗ xk,

then it is straightforward to apply Lemma A.2 of Appendix A if c = cij⊗xj < a = ĉij⊗xj

as shown below:

a⊕ b = ĉij ⊗ xj ⊕
n⊕

k=1,
k ̸=j

ĉik ⊗ xk =
n⊕

k=1
ĉik ⊗ xk ≤ c⊕ d =

n⊕
k=1

cik ⊗ xk =
n⊕

k=1,
k ̸=j

cik ⊗ xk = ε⊕ d.

Furthermore, the following equivalence holds ∀xj, cij ⊗ xj < ĉij ⊗ xj ⇔ cij < ĉij, hence,
in S definition, matrix C can be replaced by matrix Ĉ.

Remark 2.40. In view of the previous Proposition 2.6, the observation part of the cor-
responding TEG is potentially simplified when evaluating its upper holding time bounds,
i.e., some places can be neglected, without loss of information.

Using Procedure 2.2 for S = {x(k) | Ĉx(k) ≤ z(k) ≤ Ĉx(k)} and
assuming that Ĉ has only one element different of ε for a subset of
rows of {1, . . . , q}, then it is straightforward to compute [S] such
that S ⊆ [S]. It is worth to mention that if Ĉ is not row G-astic
then [S] = ∅ and then S = ∅.

Finally, if [S] ̸= ∅ then

[χ] = [max (x(k|k − 1), S) , S = Ω]. (2.55)

It is easy to interpret that if ĉij > cij then cij can be neglected in the analysis of the
TEG’s behavior.
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Chapter 2 – Nondeterministic systems: set-membership estimation

Example 2.24. Let [x](1|0) = ([0, 4], [−2, 1])t, z(1) = (5, 4)t and [C] =
[1, 4] [2, 3]

[1, 2] [e, 4]

.

Then 1 2
1 e

x(1) ≤ z(1) ≤
4 3

2 4

x(1).

First, compute

Ω =
4

1

 ∧
1 2

1 e

 ◦\

5
4

 =
3

1


and we obtain U = {x(1) | x(1) ≤ (3, 1)t}.

In order to compute the smallest interval that encloses χ of Equation (2.53), we

compute [S] using Procedure 2.2 that makes it possible to replace C =
4 3

2 4

 with

Ĉ =
4 ε

2 4

 because Ĉ = z(1)◦/Ω =
5

4

 ◦/

3
1

 =
2 4

1 3

 is such that ĉ12 > c12. Hence, Ĉ

is row G-astic with only one element different of ε for the subset of rows {1} ⊂ {1, 2} and

then [S] =
[1, 3]

[ε, 1]

 . Finally, χ ⊆ [χ] using Equation (2.55), precisely [χ] =
 [1, 3]

[−2, 1]

 .
Figure 2.19 depicts χ and [χ].

−2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

X̃1|1

[x](1|0)

χ

[χ]

x1

x
2

Figure 2.19 – χ and [χ] of Example 2.24 corresponds to the exact intersection between
[x](1|0) and X̃1|1 while [χ] is the smallest envelope such that χ ⊆ [χ]
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2.5. Trajectories x(k) ∈ Xk|k within event-horizon

2.5 Trajectories x(k) ∈ Xk|k within event-horizon

This Section summarizes the approaches studied to compute Xk|k and their complex-
ities in order to choose the best approach, considering the trade-off between efficiency
and accuracy (risk of false-positives). An illustrative representation of the trajectories of
x(k) ∈ Xk|k within a finite event-horizon is depicted in Figure 2.20.

X0|0 = X0

X1|1

X2|2

X3|3
X4|4

x1

x
2

Figure 2.20 – Calculation of Xk|k for k = 1, 2, 3, 4 (blue regions). The red dots represent
the true state-vector x(k)

2.5.1 Comparison table of computational complexity

The following Table 2.1 summarizes the worst-case complexity analysis of the pro-
cedures that compute Xk|k−1, X̃k|k and Xk|k of Sections 2.4.1 and 2.4.2 and their over-
approximations of Section 2.4.3, given a measurement point z(k) and Xk−1|k−1. In this
analysis, we assume, without loss of generality, that the systems are autonomous and that
the measurement-space is equal to the state-space (q = n). As a notation, we have:

— N as the number of DBM to represent Xk−1|k−1;
— N1 and N2 as the number of DBM to represent Xk|k−1 and X̃k|k, respectively;
— G the number of vertices that generate the Max-Plus polyhedron Pk−1|k−1 that

represents Xk−1|k−1;
— α is either 2 for n an odd integer or 3 for n an even integer;
— "int. form" (internal representation) and "ext. form" (external representation) refers

to the fact that int. form is computed from ext. form (which is considered as given
in O(1) since it is only a matter of writing the inequalities);
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Chapter 2 – Nondeterministic systems: set-membership estimation

— "approx." and "exact" refer to the fact that the Interval-RA generally yields over-
approximations.

Procedure Xk|k−1 (Prior) X̃k|k (Measurement info.) Xk|k (Posterior)
DBM-RA O(Nnn+3) O(nn+2) O(N1N2n

3)

Poly.-RA O(G2n3) int. form O(1) ext. form
O(nn+α) int. form O(nn+α) int. form

Int.-RA O(n2) approx. O(n2) approx. or exact O(n2) approx.

Table 2.1 – Comparison of the complexity

The calculation of Xk|k−1 using the polyhedral approach is both efficient and accurate
(no risk of false-positives) while the calculation of X̃k|k (and therefore Xk|k) are either
efficient-and-inaccurate (using interval approach) or inefficient-and-accurate (using DBM
and polyhedral approaches). Nevertheless, as proposed in Remark 2.38, it is possible to
compute X̃k|k both efficiently and accurately using the interval approach. In this case, X̃k|k

is an interval vector or equivalently a Max-Plus hypercube generated by n + 1 vertices
(see Remark 2.37 and Proposition 2.3). Therefore, Xk|k is yet computed in an inefficient-
and-accurate way using polyhedral approach of Proposition 2.2.

In summary, the best approach combining the trade-off between efficiency and preci-
sion is the polyhedral one.

In a closed-loop system relying on state-estimation [85], an
observer-based controller is expecting an estimated vector x(k) and
not a set Xk|k such that x(k) ∈ Xk|k at each iteration k. Thus, we
have to select one point in Xk|k. For instance, the estimated state
can be chosen as the center a or as the greatest value of Xk|k. For
all types of choices, the trajectory estimated by the set-estimation
approach is in general less accurate than those considering the prob-
abilistic aspects [23, 28].

a. Xk|k is likely to be a non-convex object in conventional algebra and thus,
the centroid is often not a part of the object itself

Computing a point in the estimated set Xk|k
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Chapter 3

NONDETERMINISTIC SYSTEMS:
STOCHASTIC FILTERING

In Chapter 2, different approaches were studied in order to be able to compute
the conditional reach set. In this Chapter, we will show that these reach sets corre-
spond to the support of the posterior conditional probability density function (PDF)
p(x(k)|{z(1), . . . , z(k)}) in the context of Bayesian filtering and that, due to the strong
nonlinearity of MPL systems, it is usually not possible to obtain an analytical form of this
PDF, despite calculating its support, which makes it very difficult to define an estimator
for the state-vector x(k).

Nevertheless, in [28, 86, 87], an original approach to alternatively solve this problem
was proposed. The main idea is to drawn inspiration from the maximum likelihood es-
timator, but rather than looking for the value of the state x(k) which maximizes the
likelihood function p(z(k),x(k)), we will seek, given a measurement point z(k), to invert
the conditional mathematical expectation E[z(k)|x(k)] in order to obtain a state which
"gives" the measurement, i.e., a state consistent with the measurement point.

As a promising application of the stochastic filtering algorithms that will be presented
in the sequel, we can cite the approach of MPL systems of queuing networks [88], the
so-called stochastic event graphs [89], which is handled, for instance, by an algebra of
unbiased gradient estimators (see [90] for details).

3.1 Nonlinear Bayesian Estimation

Bayesian methods provide a rigorous and general probabilistic framework for dynamic
state estimation problems. The main idea is to recursively estimate the state-vector x(k)
over time (k here represents the discrete-time) using the mathematical model of the
dynamics and correcting it using measurement information.
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Chapter 3 – Nondeterministic systems: stochastic filtering

Figure 3.1 – A sequence of hidden states {x(k)}0≤k≤+∞ is indirectly observed by a noisy
sequence of measurements {z(k)}1≤k≤+∞ of a Bayesian Network

Let x(k) = f (x(k − 1),w(k)) ,

z(k) = h (x(k),v(k)) ,

(3.1a)

(3.1b)

be a discrete nonlinear system with x ∈ Rn the state-vector and z ∈ Rq the measurement-
vector. We also assume that w ∈ Rm and v ∈ Rr are mutually independent and identically
distributed (iid) noises. The nonlinear functions f : Rn × Rm → Rn and h : Rn × Rr → Rq

are the transition and observation functions, respectively.
The true state x(k) is assumed to be an unobserved Markov process, and the mea-

surements points z(k) are the observations of a Hidden Markov Model (HMM). Thus,
the term optimal filtering 1 is mathematically seen as a statistical inverse problem (or an
inference or estimation problem), where the unknown quantity is a vector valued time
series {x(k)}0≤k≤+∞ = {x(0),x(1),x(2), . . . }, which is observed through a set of noisy
measurements {z(k)}1≤k≤+∞ = {z(1), z(2), . . . } as depicted in Figure 3.1 by the Bayesian
Network.

We seek to stochastically understand Equations (3.1a) and (3.1b). For this purpose, we
consider the random generation of vectors x(k) and z(k). First, let x(0) be a random vari-
able distributed according to p(x(0)), i.e., x(0) ∼ p(x(0)). Thus, x(0) 7→ f (x(0),w(1))
denotes how the state evolves with respect to x(0) and the noise w(1) (stochastic diffu-
sion) through the nonlinear function f , i.e., x(1) ∼ p(x(1)|x(0)) is a new random vector
conditioned to x(0). Extending the reasoning for the subsequent iterations and using
the fact that Markov process are under the Markov property 2, one could conclude that
x(k) ∼ p(x(k)|x(k − 1)) for all k. Straightforwardly, z(k) is also a random vector condi-
tioned to x(k), i.e., z(k) ∼ p(z(k)|x(k)). In practice, it is possible to measure z(k) at each
instant k and this measurement can ultimately be considered as a sample drawn from

1. The term optimal in this context refers to statistical optimality. Additionally, Bayesian filtering
refers to the Bayesian way of formulating optimal filtering.

2. The Markov property states that the likelihood of a current state depends on the immediately
previous state only.
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3.1. Nonlinear Bayesian Estimation

Figure 3.2 – An arbitrary posterior PDF and its estimation, which is, in this case, the
maximum a-posteriori x̂(k|k) = arg maxx(k) p(x(k)|{z(1), . . . , z(k)})

p(z(k)|x(k)). Hence, the following general probabilistic state-space model is considered:

x(k) ∼ p(x(k)|x(k − 1)), with x(0) ∼ p(x(0)), (Markov process)

z(k) ∼ p(z(k)|x(k)), (Conditionally independent given the state).

(3.2a)

(3.2b)

The goal of the Bayesian approach is to compute an estimation of x(k) based on all
available information (sequence of measurements Z(k) = {z(1), . . . , z(k)}) for all k. To
this end, it is necessary to construct the posterior PDF p(x(k)|Z(k)) as depicted in Figure
3.2. Briefly, all the information needed to properly compute an optimal estimate, based
on different criteria, for x(k) is contained in this PDF. Some examples are

— mean (expectation), mode, median, etc.

A classical criterion to obtain x(k) at time k, using p(x(k)|Z(k)), is
to consider the minimum-variance unbiased estimator, which gives
that the optimal estimate of x(k) given Z(k), denoted as x̂(k|k),
is the mathematical expectation of the random variable x(k) con-
ditioned to Z(k), i.e.,

x̂(k|k) = E[x(k)|Z(k)] =
∫

x(k)p(x(k)|Z(k))dx(k), (3.3)

(see [91, Th. 3.1] for more details).

Minimum-variance unbiased estimator

The Recursive Bayesian filter allows calculating the posterior PDF and then an optimal
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estimate to x(k). In the sequel, we briefly summarize this framework. Given:
— The probabilistic form of the dynamic system given by Equations (3.2a) and (3.2b),

with known statistics of w(k) and v(k);
— Initial prior PDF p(x(0)|z(0));
— Sequence of measurement up to k, formally Z(k) = {z(1), . . . , z(k)}.

Compute in an on-line two-fold manner:

1. Prediction step (a-priori): p (x(k − 1)|Z(k − 1)) p (x(k)|Z(k − 1))
— by using system dynamics; inflates the support of p (x(k − 1)|Z(k − 1)) due to

random noise;

2. Correction (or update) step (a-posteriori) p (x(k)|Z(k − 1)) p (x(k)|Z(k))
— corrects the prediction by using the new measurement z(k); tightens the support

of p (x(k)|Z(k − 1)).

Mathematically, step 1 is computed using the Chapman-Kolmogorov equation under
the Markov property 3 [92, 93] as follows:

p(x(k)|Z(k − 1)) =
∫
p(x(k)|x(k − 1))︸ ︷︷ ︸

dynamics

p(x(k − 1)|Z(k − 1))︸ ︷︷ ︸
previous posterior

dx(k − 1), (3.4)

assuming p(x(k− 1)|Z(k− 1)) is given at time k− 1. Step 2 uses the famous Bayes rule,
which effectively allows us to obtain an optimal solution to this problem. Precisely

p(x(k)|Z(k)) = p(x(k)|z(k),Z(k − 1)) (3.5)

p(A|B,C) = p(B|A,C)p(A|C)
p(B|C) =

z(k) is independent of Z(k − 1)︷ ︸︸ ︷
p(z(k)|x(k),Z(k − 1)) p(x(k)|Z(k − 1))

p(z(k)|Z(k − 1))

"likelihood"× "prior"
"evidence" =

measurement model︷ ︸︸ ︷
p(z(k)|x(k)) p(x(k)|Z(k − 1))

p(z(k)|Z(k − 1))︸ ︷︷ ︸
normalization constant

,

∝ p(z(k)|x(k))p(x(k)|Z(k − 1))

where p(z(k)|Z(k − 1)) =
∫
p(z(k)|x(k))p(x(k)|Z(k − 1))dx(k).

3. The joint distribution of x(k) and x(k − 1) given Z(k − 1) can be computed by using the Markov
property as follows: p(x(k), x(k − 1)|Z(k − 1)) = p(x(k)|x(k − 1),Z(k − 1))p(x(k − 1)|Z(k − 1)) =
p(x(k)|x(k − 1))p(x(k − 1)|Z(k − 1)).
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3.2. Nondeterministic MPL systems and the Bayesian filtering

Figure 3.3 – The nonlinear system propagates the state x(k) through time and produces
output measurements z(k) at each instant k. In view of this principle, the Bayesian filter
tracks the PDF of x(k) given the measurement set Z(k).

Figure 3.3, adapted from [94], summarizes these two steps as the so-called Bayesian
principle.

Although conceptually correct, the Bayesian principle is not practical since the asso-
ciated integrals are intractable in most cases. Nevertheless, an optimal solution does exist
for restrictive cases:

— in the case of linear systems with additive Gaussian noise the exact recursive
solution of the problem is the very well known Kalman Filter [92, 91];

— for nonlinear problems for which the linearized model is a good approximation, the
Extended Kalman filter [95] or the Unscented Kalman filter [96] can be considered.

3.2 Nondeterministic MPL systems and the Bayesian
filtering

In this Section, we will formalize an "alternative" Bayesian filtering approach to handle
nondeterministic MPL systems with bounded random variables (uMPL systems). First,
let us study the modelling of TEG with stochastic holding times.

Example 3.1. Consider the TEG depicted in Figure 3.4 and its model with x1, x2, x3, a, b, c ∈
R ∪ {−∞} and k ∈ N.
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Figure 3.4 – A simple TEG with correlations in its canonical form representation



x1(k) = max (x2(k − 2), u(k)) ,
x2(k) = a(k) + x1(k),
x3(k) = max (b(k) + x1(k), c(k) + x2(k)) ,
z(k) = x3(k).

As we can see, these dynamics are nonlinear but are not of the form f(x(k − 1),w(k))
and therefore the system is not a Markov process. However, by introducing a new variable
x4(k) = x2(k− 1) and by naively substituting variables we obtain (refer to Section 1.3.2):



x1(k) = max (x4(k − 1), u(k))
x2(k) = a(k) + x1(k)

= max (a(k) + x4(k − 1), a(k) + u(k))
x3(k) = max (b(k) + x1(k), c(k) + x2(k))

= max (d(k) + x4(k − 1), d(k) + u(k))
d(k) = max (b(k), c(k) + a(k))
x4(k) = x2(k − 1)
z(k) = x3(k)

which is clearly of the desired form. Even though we consider that a(k), b(k) and c(k)
are mutually independent random variables distributed according to the same probability
distribution over different supports, we observe, on the other hand, that d(k) is coupled (or
correlated) to a(k), b(k) and c(k) and it would be necessary to take into account its joint
distribution with respect to these other random variables. This means that the assumption
of the mutual independence of the stochastic holding times does not hold anymore. A
possible conservative solution is to consider that d(k) is a "new" independent random
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3.2. Nondeterministic MPL systems and the Bayesian filtering

variable, i.e., uncoupled to a(k), b(k) and c(k).

Consider the canonical form of nondeterministic autonomous MPL systems, given by

x(k) = A(k)x(k − 1), A(k) ∈ [A] ∈ IR
n×n
max ,

z(k) = C(k)x(k), C(k) ∈ [C] ∈ IR
q×n
max,

(3.6a)

(3.6b)

with vectors x and z of dimension n and q, respectively; entries of A(k) and B(k) are mu-
tually independent bounded random variables distributed according to known piecewise
polynomial cumulative distribution functions (CDF) 4, denoted by F (aij) and F (cij) or
more simply by F (A) and F (C). Therefore, this canonical form is said to be Markovian
(for non-autonomous systems, this statement is also valid).

However, as already pointed out, for MPL systems, the Bayesian formulation does not
rely on the Kalman filter (or its extensions) due to the strong nonlinearity of the operator
⊕ = max in classical algebra (lack of linearization). Then, even though we cannot directly
apply the Bayesian filtering to obtain an estimate of the state x(k) we can still calculate
the support of the posterior PDF p(x(k)|Z(k)) using the results of Chapter 2 as shown
in Figure 3.5.

In the probabilistic point of view, the disadvantage of Bayesian
set-membership filtering is obvious: no estimate is computed but a
region in which the state x(k) and its estimate x̂(k|k) lie.

In order to overcome these unfeasible computations, an alternative filtering problem
was proposed in [28, Sec. IV] and can be stated as follows: after event k, given a sequence of
measurements Z(k) = {z(1), . . . , z(k)}, determine an estimate for x(k), denoted by x̂(k),
supposing that an estimate x̂(0) is known at k = 0. For the unknown state trajectory
X (k) = {x(0), . . . ,x(k)}, x̂(k) is computed as

x̂(k) = E[x(k)|x̂(k − 1)]. (3.7)

4. The CDF Fx of a random variable x is a monotonic increasing mapping Fx : R → [0, 1], t 7→ Fx(t)
satisfying limt→−∞ Fx(t) = 0 and limt→+∞ Fx(t) = 1. It is also equivalent to the area under the PDF px(t)
from −∞ to t, i.e., Fx(t) =

∫ t
−∞ px(τ)dτ . Additionally, it is possible to obtain px(t) as px(t) = dFX (t)

dt ,
provided that this derivative exists.
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Figure 3.5 – Concatenation of the set-estimation with Bayesian principles, hereafter re-
ferred to as Bayesian set-membership filtering: from the support of p(x(k− 1)|Z(k− 1)),
denoted Xk−1|k−1, we compute the support of the prior distribution p(x(k)|Z(k− 1)), de-
noted Xk|k−1; the correction phase is computed by correcting Xk|k−1 thanks to the support
of the measurement likelihood p(z(k)|x(k)), denoted X̃k|k, in other words, the support of
the posterior distribution p(x(k)|Z(k)) is Xk|k = Xk|k−1 ∩ X̃k|k
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3.2. Nondeterministic MPL systems and the Bayesian filtering

Similarly, from Z(k), we will look for the state x̂(k) such that it leads to

z(k) = E[z(k)|x̂(k)]. (3.8)

A sequence X̂ (k) = {x̂(0), . . . , x̂(k)}, ideally tracking X (k), is obtained if it satisfies the
Equations (3.7) and (3.8). This sequence can be seen as the classical maximum likelihood
estimator in the sense that it is based on the likelihood function p(z(k)|x(k)). The main
difference is that instead of considering the maximum of this function, with respect to
x(k), the estimate x̂(k) (see Equation (3.8)) chooses the value of x(k) such that z(k) is
equal to E[z(k)|x̂(k)].

It is important to note that the strategy summarized by Equations (3.7) and (3.8) effec-
tively takes into account the prior data 5, since x̂(k) appears in both equations. Although
conceptually useful, these equations are not adequate for the direct implementation of
a filter, because there is no unique solution x̂(k) guaranteed due to the nature of the
Max-Plus operations.

Alternatively, we can define x(k) as a value which is constrained by z(k) = E[z(k)|x(k)]
(even though in classical filtering this is not mandatory) and is the closest to x̂(k) =
E[x(k)|x̂(k−1)] (prior estimation). To retain this value, we use a suboptimal solver based
on interval contraction that will be presented in the sequel.

In short, the approach is also two-fold and can be resumed by the
following equations:

Prediction x̂(k|k − 1) = E[x(k)|x̂(k − 1|k − 1)]. (3.9)

Update x̂(k|k) = arg min
x
∥x− x̂(k|k − 1)∥∞ , (3.10a)

s.t. z(k) = E[z(k)|x], (3.10b)

supposing that x̂(k−1|k−1) is known (previous posterior estima-
tion).

Alternative filtering

5. Estimators based on p(x(k)|z(k)) are Bayesian because they consider the probability density
p(x(k)|x(k − 1)) (see Equations (3.4) and (3.5) and note that the dependency on past measurements
Z(k − 1) has been omitted for simplicity). On the other hand, estimators purely based on the measure-
ment likelihood p(z(k)|x(k)) are non-Bayesian.
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In the sequel, we will introduce the mathematical tools necessary to properly compute
Equations (3.9) and (3.10).

3.2.1 On the mathematical conditional expectation calculation:
exact and approximation approaches

Clearly, a special ingredient is the computation of expected values of max-affine ex-
pressions, for instance, the expected value of

z = max
1≤i≤n

(ai + xi),

where a1, . . . , an are mutually independent bounded random variables with piecewise poly-
nomial CDF F (ai), is denoted by E[z|x1, . . . , xn].

Let us start with the simple case of the calculation of E[v], where v = max(a1, . . . , an).
First, we compute the CDF of v as 6

Fv(t) = P [v ≤ t] = P [a1 ≤ t and a2 ≤ t and an ≤ t] =
n∏

i=1
P [ai ≤ t] =

n∏
i=1

Fai
(t).

As a corollary, if each ai is shifted by a constant xi, i.e., v = max(a1 + x1, . . . , an + xn),
then

Fv(t) =
n∏

i=1
Fai

(t− xi), (3.11)

which is a piecewise polynomial function. This expression is famous and can be found in
[97].

Remark 3.1. The computation of Equation (3.11) can become complex for some bounded
piecewise polynomial distributions, since it is necessary to consider several possible com-
binations of ranges. Therefore, throughout this Chapter, we consider that ai are uniformly
distributed on [ai, ai], i.e., ai ∼ U(ai, ai) and

Fai
(t) =


0 if t ≤ ai,

t−ai

ai−ai
if ai < t ≤ ai,

1 otherwise,

6. P [x ≤ t] represents the probability that the random variable x takes on a value less than or equal
to t.
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which allows us to directly implement this computation in a procedural way.

Let us derive the expression of the mathematical expectation. Let X be a random
variable with non-negative support and with its CDF FX(x). If ∀x ≤ x0 we have FX(x) ≡ 0
and thus

E[X] = x0 +
∫ +∞

x0
(1− FX(x)) dx. (3.12)

A simple way to understand this result is to consider the following:
First,

1− FX(x) = P [X > x] =
∫ +∞

x
px(t)dt

and ∫ +∞

x0
(1− FX(x)) dx =

∫ +∞

x0
P [X > t]dx =

∫ +∞

x0

∫ +∞

t
pX(t)dtdx,

then changing the order of integration and also the integration limits, i.e.,

{x ≥ x0, t ≥ x ⇐⇒ {t ≥ x0, x0 ≤ x ≤ t,

we obtain
∫ +∞

x0

∫ t

x0
pX(t)dxdt =

∫ +∞

x0
[xpX(t)]tx0

dt =
∫ +∞

x0
(t− x0)pX(t)dt,

which is equal to
∫ +∞

x0
(t− x0)pX(t)dt =

∫ +∞

x0
tpX(t)dt− x0

∫ +∞

x0
pX(t)dt︸ ︷︷ ︸

=1−FX(x0)=1

=
∫ +∞

x0
tpX(t)dt− x0,

the term
∫+∞

x0
tpX(t)dt is the usual definition of E[X], i.e.,

E[X] =
∫ +∞

−∞
tpX(t)dt =

∫ +∞

x0
tpX(t)dt.

Hence, ∫ +∞

x0
(1− FX(x)) dx = E[X]− x0.

For the special case of bounded random variables, i.e., a ≤ X ≤ b, Equation (3.12) is
rewritten as

E[X] = b−
∫ b

a
FX(x)dx. (3.13)
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Consider the Max-Plus mapping

z = A⊗ x ⇐⇒ zi = (A⊗ x)i = nmax
j=1

(aij + xj), i = 1, . . . , q

with vectors x and z of dimension n and q, respectively; entries of
A ∈ IR

q×n
max are mutually independent random variables distributed

according to known piecewise polynomial CDF Faij
. Supposing that

x is a deterministic vector and z is a random vector then the condi-
tional expectation of z given x is denoted E[z|x] and is exprressed
as

E[z|x] =


z1 −

∫ z1
z1

∏n
j=1 Fa1j

(t− xj)dt
...

zq −
∫ zq

zq

∏n
j=1 Faqj

(t− xj)dt

 (3.14)

where z = A ⊗ x and z = A ⊗ x. Moreover, E[zi|x] is clearly a
continuous and isotonic function of x: if xa ≥ xb then

n∏
j=1

Faij
(t− xa

j ) ≤
n∏

j=1
Faij

(t− xb
j),

since Faij
(t−xa

j ) ≤ Faij
(t−xb

j) for j = 1, . . . , n, leading to E[zi|xa] ≥
E[zi|xb] (see [28, Lem.1]).

Conditional expectation of z = A⊗ x given x

Remark 3.2. A large class of random variables can properly be approximated by piecewise
polynomial CDF, including those that have no upper bound (infinite support). For MPL
systems, the requirement of a finite lower bound is generally not restrictive.

Remark 3.3 (Continuity and isotony). Any other technique to calculate E[zi|x], and
therefore, E[z|x], can alternatively be considered in the alternative filtering approach, given
by Equations (3.9) and (3.10), as long as it keeps the properties of continuity and isotony
with respect to x (it is the essence of the success of the next part). Particularly, we can
mention the results proposed in [98, 24], which are possible alternative methods.
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In [24], it was considered an approximation based on the moments
of a random variable by using the fact that

max(x1, . . . , xn) ≤
∥(x1,...,xn)t∥∞︷ ︸︸ ︷

max(|x1|, . . . , |xn|) ≤

∥(x1,...,xn)t∥p︷ ︸︸ ︷
(xp

1 + . . . xp
n)1/p,

with equality if p → ∞. Briefly, the focus is on decreasing the
computational burden of the calculation of z = E[max(x1, . . . , xn)]
where x1, . . . , xn are random variables. Then

lower(z) ≤ z ≤ upper(z),

where the lower and upper bounds [24, Sec. 3] are given be-
low, for the special case where x1, . . . , xn have bounded domains
dom(x1), . . . , dom(xn):

lower(z) = max(E[x1], . . . ,E[x1])

upper(z) =
(

n∑
i=1

E [|xi − L|p]
) 1

p

+ L,

with
L =

n
min
i=1

(min(dom(xi), 0))

and exploiting the Jensen’s inequalities for convex and concave
functions, respectively. The approximation with respect to the up-
per bound tightens according to a suitable tuning of the parameter
p. A proper discussion on this adjustment is detailed in [24]. For
comparison purposes, the p-value can also be adjusted experimen-
tally by increasing it while the result is improved, indeed for a
larger p-value the result could deviate from the exact solution. As
suggested in the work, it is recommended that p be an even integer
since in this case

E[|xi|p] = E[xp
i ].
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Equation (3.14) exactly computes the expectation of each E[zi|x].
By using the approximation method of [24], with a suitable tuning
of the even integer p and of L, the following holds for i = 1, . . . , q:

E[zi|x] = ϵ+
 n∑

j=1
E [(aij + xj − L)p]

 1
p

+ L

︸ ︷︷ ︸
E≈[zi|x]

(3.15)

The approximation error ϵ tends to 0 if we made a good choice for
the parameters. Thus, E≈[zi|x] is an alternative to replace E[zi|x]
as long as it keeps properties of continuity and isotony with respect
to x. Continuity is trivial since ϕ(ν) = (∑i E [νp

i ])1/p with p ̸= 0
is clearly a continuous function since E [νp

i ] =
∫

dom(νi)(νi)ppνi
(t)dt

is assumed to be continuous and positive. Isotony is proved in
Lemma C.2 of Appendix C to show that if xa

j ≥ xb
j then

E
[
(aij + xa

j − L)p
]
≥ E

[
(aij + xb

j − L)p
]

for j = 1, . . . , n and con-
sequently E≈[zi|xa] ≥ E≈[zi|xb].

Approximation of the condition expectation

Remark 3.4. There are other upper approximations to max(x1, . . . , xn), such as the
normalized exponential function (softmax) and the LogSumExp (also seen as the sum
operator of log semiring in the field of tropical analysis), which exploit Jensens’ inequality
and then, in theory, it is possible to get good approximations.

Example 3.2. Consider a state xa(k) in a TEG that is the result of synchronization and
delay of two other states, i.e., xa(k) = α⊗x1(k− 1)⊕β⊗x2(k− 1) such that its expected
value given x1(k − 1) = x2(k − 1) = e is denoted E[xa(k)|(x1(k − 1), x2(k − 1))t] and is
given by

E[max(α, β)], where α ∼ U(3, 6) and β ∼ U(4, 8).

The analytical computation using Equation (3.14) is depicted in the Figure 3.6. It should
be noticed that the PDF obtained by max(α, β) is not uniform, i.e., the max operator does
not preserve the distribution (see Figure 3.7).
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Figure 3.6 – Computing the conditional expectation of Example 3.2 using the analytical
approach - E[xa(k)|(x1(k − 1), x2(k − 1))t] = 8− A = 8− 17

9 = 55
9

PDF x Sample Space 

Figure 3.7 – The max operation does not preserve the distribution of its inputs, and
usually E[max(X1, X2)] ̸= max(E[X1],E[X2])
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This result could also be computed using Equation (3.15), as follows:

E[max(α, β)] ≈ (E[(α− L)p] + E[(β − L)p])
1
p + L

≈
(∫ α

α
(t− L)ppα(t)dt+

∫ β

β
(t− L)ppβ(t)dt

) 1
p

+ L

≈
(

1
α− α

∫ α

α
(t− L)pdt+ 1

β − β

∫ β

β
(t− L)pdt

) 1
p

+ L

≈

 1
α− α

[
(t− L)p+1

p+ 1

]α

α

+ 1
β − β

[
(t− L)p+1

p+ 1

]β

β


1
p

+ L,

by arbitrarily choosing L = 3 and p = 10 we obtain E[max(α, β)] ≈ 7.0247 to be compared
with the exact value 55

9 (other choices for the parameter p could potentially reduce the
approximation error).

3.2.2 On the inverse of continuous and isotonic conditional ex-
pectation functions

We shall use [28, Sec. II] in the sequel. It is assumed that the method to compute
E[z|x] keeps the property of continuity and isotony (refer to [28, Lem. 3]).

Given a q-dimensional vector ẑ, find x ∈ Rn such that ẑ = E[z|x] =
E[C ⊗ x], with C ∈ [C] ∈ IR

q×n
max, is respected. This is also seen a

statistical inverse problem.

Due to the multiplicity of solutions, we seek to characterize the set

χ = {x | ẑ = E[z|x]} ⊆ (R ∪ {−∞})n

inside a given box
[x] = {x | x ≤ x ≤ x} ⊆ (R ∪ {−∞})n,

i.e., χ ⊆ [x], as close as possible to an arbitrary point x0 (obtained somehow).
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Contractors (see [38]) are powerful tools to efficiently solve the prob-
lem of characterization of the set χ. The operator Cχ is a contractor
for χ if it satisfies ∀[x] ⊆ (R ∪ {−∞})n the following properties

Cχ([x]) ⊆ [x] (contractance) and
Cχ([x]) ∩ χ = [x] ∩ χ (completeness).

The first property states that the contraction of [x] always yields a
contracted [x]. The second property, combined with the definition
[x] ∩ χ = χ, asserts that the box Cχ([x]) does not remove a single
point of χ. Moreover, a contractor is said to be minimal if [x]∩χ =
Cχ([x]).

Contractors

In the following, it is assumed that:
— H1) χ is not empty;
— H2) E[z|x] ≤ ẑ;
— H3) ∀j ∈ {1, . . . , n}, E[z|(x1, x2, . . . , xj, . . . , xn−1, xn)t)] ≥ ẑ.
Let us define some useful conditions.

Condition L true if E[zi|ξ] < ẑi with ξ =
(
x1, x2, . . . , xj, . . . , xn−1, xn

)t
. (3.16)

If the condition L holds, then there exists at least a point x′′ =(
x1, x2, . . . , x

′′
j , . . . , xn−1, xn

)t
with xj ≤ x′′

j ≤ xj, such that
E[zi|x′′] = ẑi.

Similarly,

Condition U true if E[zi|η] > ẑi with η = (x1, x2, . . . , xj, . . . , xn−1, xn)t . (3.17)

If the condition L holds, then there exists at least a point x′′ =(
x1, x2, . . . , x

′′
j , . . . , xn−1, xn

)t
, with xj ≤ x′′

j ≤ xj, such that
E[zi|x′′] = ẑi.
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These two conditions/consequences define two operations that both combined sum-
marize the contractor Ωχ on [x] = [x,x].
∆L

ij operator:

∆L
ij([x,x]) = [x′,x] , (3.18)

with
x′ = (x1, x2, . . . , x

′
j, . . . , xn−1, xn)t

x′
j = sup{xj ∈ [xj, xj]} s.t.: E[zi | x′′] < ẑi

x′′ = (x1, x2, . . . , xj, . . . , xn−1, xn)t

∆U
ij operator:

∆U
ij([x,x]) = [x,x′] , (3.19)

with
x′ = (x1, x2, . . . , x

′
j, . . . , xn−1, xn)t

x′
j = inf{xj ∈ [xj, xj]} s.t.: E[zi | x′′] > ẑi

x′′ = (x1, x2, . . . , xj, . . . , xn−1, xn)t

The calculation of x′
j in Equations (3.18) and (3.19) is a one-dimensional search that

can be efficiently performed by the dichotomy method (see [99]) as follows: at each step,
the search interval initialized with [xj, xj] is divided into two equal intervals. The half
containing the solution will be the search interval at the next step. Algorithm 3.1 sum-
marizes this search for each row/column pair (i, j) and stops when the search interval is
sufficiently small.

Let us understand a case of this procedure: for instance, in the case
of the ∆L

ij operator, yj is the middle point of the search interval
[xj, xj] with y accordingly, i.e., y = (x1, x2, . . . , yj, . . . , xn−1, xn)t.
If E[zi|x′′] ≥ ẑi then the solution is on the lower half (this is done by
replacing the upper bound xj of the search interval by the middle
point yj).

The composition of ∆L
ij and ∆U

ij for i = 1, . . . , q and j = 1, . . . , n
We denote Ωχ the contractor obtained from the iterated composition of 2qn operators

142
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Algorithm 3.1: One-dimensional search
Data: [x], (i, j), ẑi, type L or U, tol (tolerance)
Result: [w, x] = ∆L

ij([x]) or [x, w] = ∆U
ij([x])

1 (y, w)←
{

(x, x) if L; (x, x) if U;
2 while |xj − xj | > tol do
3 yj ← (xj + xj)/2;
4 if |E[zi|y]− ẑi| > tol then
5 if E[zi|y] > ẑi then
6 xj ← yj ;
7 else
8 xj ← yj ;
9 end

10 else
11

{
xj ← yj if L; xj ← yj if U;

12 end
13 end
14 wj ← yj ;
15 return w;

defined above, i.e.,

Ωχ([x]) = (∆L
11 ◦∆U

11 ◦ . . .∆L
1n ◦∆U

1n ◦ . . . ◦∆L
q1 ◦∆U

q1 ◦ . . . ◦∆L
qn ◦∆U

qn)([x]).

It is worth to mention that, if the condition L is not satisfied, then ∆L
ij([x]) is mathe-

matically seen as the identity operator, i.e., ∆L
ij([x]) = IdL([x]) = [x]. Similarly, if the

condition U is not satisfied, then ∆U
ij([x]) = IdU([x]) = [x].

Remark 3.5. The contractor Ωχ satisfies the contractance, completeness and monotonic 7

properties (see [28, Lem. 2] for proofs).

The Algorithm 3.2 summarizes the contractor Ωχ.

Remark 3.6. Ωχ([x]) converges to a fixed point, i.e., to an interval I such that

Ωχ(I) = I.

Moreover, I contains χ (see [28, Lem. 3] for proofs).

Deprecation of I, the suboptimal solver Inv:

7. Monotonic contractors verify: if EX ⊂ EY then C(EX) ⊂ C(EY ).
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Algorithm 3.2: Interval contractor
Data: [x], ẑ
Result: I = Ωχ([x])

1 while x′ ̸= x and x′ ̸= x do
2 x′ ← x; x′ ← x ;
3 foreach i ∈ {1, . . . , q} do
4 foreach j ∈ {1, . . . , n} do

/* Lower dichotomy */
5 x← x; xj ← xj ;
6 if E[zi|x] < ẑi then
7 x← ∆L

ij([x, x]) ; // a new xj is computed
8 end

/* Upper dichotomy */
9 x← x; xj ← xj ;

10 if E[zi|x] > ẑi then
11 x← ∆U

ij([x, x]); // a new xj is computed
12 end
13 end
14 end
15 end
16 return [x, x];

Generally, the interval I = [xopt,xopt] is not deprecated after the contraction procedure
of the initial interval [x], then in order to obtain a point in I we consider the deprecation
procedure described below (see [28, Sec. IV] for more details).

Procedure 3.1. For an arbitrary j ∈ {1, . . . , n}, let a ∈ [xj, xj]. Moreover, let χ′ =
χ ∩ {xj = a}, with {xj = a} a hyperplane in Rn, and let I ′ = I ∩ {xj = a}. In general,
I ′ is not minimal (see Remark 3.6) and the contraction algorithm must be run again to
obtain the minimal interval containing χ′.

The procedure above can be iteratively repeated until the minimal interval is reduced
to one point (all components are fixed) that necessarily belongs to χ. The remaining ques-
tion is: which component should be fixed at each step and to which value? To answer this,
consider now that one holds a guess value (obtained somehow), formally x0. We shall look
for a point x ∈ χ that is the closest to this value, i.e., xopt = arg minx∈χ∥x− x0∥∞. In
general, xopt is not unique, i.e., multiple solutions yield the same minimum, and mostly
important: an optimal value for this problem cannot be guaranteed because χ is unknown.
However, following [28, Sec. IV], a suboptimal heuristic procedure, based on the depreca-
tion method described above, is proposed to solve an alternative optimization problem,
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stated as follows: as we already know, I, such that χ ⊂ I, is the interval resulting from
the Algorithm 3.2. Then, we consider the alternative minimization

xsubopt = arg minx∈I∥x− x0∥∞,

whose optimal solution 8 is given by the line 7 of Algorithm 3.3.

Remark 3.7. The vector xsubopt not necessarily belongs to χ, but it is useful to determine
at each step which component must be deprecated and to which value. Given that, χ ⊂ I
then the following statement holds:

min
x∈χ
∥x− x0∥∞ ≥ min

x∈I
∥x− x0∥∞.

The Algorithm 3.3 summarizes this procedure, and it should be noticed the generation
of the initial interval [x] must contain at least one solution of the problem characterized
by the set χ. A simple rule to guarantee this is to choose x such that Cx < ẑ and x such
that Cx > ẑ are respected 9.

Let us interpret the line 9 of Algorithm 3.3. This line means that
∃j ∈ {1, . . . , n} such that |xsubopt

j − x0
j | =

∥∥∥xsubopt − x0
∥∥∥

∞
, this j is

denoted j♯. The goal of the iterative suboptimization procedure that
was designed is to minimize

∥∥∥xsubopt − x0
∥∥∥

∞
. At each iteration k we

obtain j♯, denoted j♯(k), and thus if we do not choose the j♯(k)-
th component of [x] to be deprecated then in the next iteration
k+1 we will obtain that j♯(k+1) = j♯(k), i.e., without minimizing∥∥∥xsubopt − x0

∥∥∥
∞

, which is not desired, and hence, at each iteration
k the index of the component that must be deprecated is j♯.

Remark 3.8. In [28], a proper discussion of optimality is presented. In short, it is based
on analyzing J = ∥xsubopt − x0∥∞ at each iteration in Algorithm 3.3. If J remains un-
changed, then an optimal value is obtained. In practice, this can be summarized by eval-
uating whether j♯ is kept after each iteration since J = |xsubopt

j♯ − x0
j♯ |, i.e., if after some

iterations j♯ no longer changes, then an optimal value is found. On the other hand, if j♯ is
not preserved then, although an optimal value could be found, we cannot assert optimality.

8. As for xopt, there exist multiple solutions for xsubopt, but minx∈I∥x− x0∥∞ is unique.
9. H3 implies E[z|x] ≥ ẑ and it must always be respected, otherwise x must be properly modified.
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Algorithm 3.3: Suboptimal solver
Data: ẑ, x0

Result: x = Inv(ẑ, x0)
1 generate [x, x]; bool← true;
2 while bool do
3 [x, x]← Ωχ([x, x]) ; // Algorithm 3.2
4 bool← x ̸= x;
5 if bool then
6 foreach j ∈ {1, . . . , n} do

7 xsubopt
j ←


xj if x0

j ≤ xj

x0
j if xj < x0

j < xj

xj otherwise.
; // xsubopt = arg minx∈[x,x]

∥∥x− x0∥∥
∞

8 end
9 j♯ ← arg maxj∈{1,...,n} |x

subopt
j − x0

j |;
/* Deprecation */

10 xj♯ ← x′
j♯ ; xj♯ ← x′

j♯ ;
11 end
12 end
13 return x or x ; // Notice that: x = x

3.2.3 Computational point of view of the alternative filtering

From the computational point of view, the Equations (3.9) and (3.10) can be summa-
rized by Algorithm 3.4.

Algorithm 3.4: Alternative filter
Data: x̂(k − 1|k − 1) and z(k)
Result: x̂(k|k) = Filter(z(k), x̂(k − 1|k − 1))

1 x̂(k|k − 1) = E[x(k)|x̂(k − 1|k − 1)] ; // Equation (3.14)
2 x̂(k|k)← Inv(z(k), x̂(k|k − 1)); // Algorithm 3.3
3 return x̂(k|k)

Let us consider a simple graphical interpretation of Algorithm 3.4, as depicted in
Figure 3.8.

It is worth to mention that this alternative filtering computes an
estimate x̂(k|k) for x(k) ∈ Xk|k (support of the posterior PDF)
that not necessarily belongs to Xk|k.
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Figure 3.8 – Execution steps of Algorithm 3.4: first, a prediction value is computed using
the conditional expectation calculation; the prediction value is corrected in a second step
by using interval contraction of an initial interval that contains at least a x such that
z(k) = E[z(k)|x]
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Example 3.3. Consider the nondeterministic MPL system with mutually independent
and uniformly distributed processing times, described by

x(k) = A(k)x(k − 1), z(k) = C(k)x(k)

with

A(k) ∈ [A] =
[1, 3] [3, 4]

[2, 3] [2, 4]

 and C(k) ∈ [C] =
(
[1, 3] [0, 5]

)
and the following initial state x(0) = (e, e)t ∈ X0 = {x | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}.
Assuming that x̂(0|0) = x(0) ∈ X0|0 = X0 and considering the following simulated state
and measurement sequences given by Table 3.1, we compute using the polyhedral set-

k = 0 k = 1 k = 2

x(k)
(
e
e

) (
3.956
2.441

) (
6.097
6.924

)
z(k) − 6.537 11.158

Table 3.1 – Simulated state and measurement sequences of Example 3.3

membership method and Algorithm 3.4 the following results depicted in Figure 3.9.
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Figure 3.9 – Calculation of Xk|k for k = 1, 2 (blue regions) of Example 3.3. The red dots
represent the true state-vector x(k) and the black dots represent the estimate x̂(k|k) using
Algorithm 3.4
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Thus, clearly x̂(2|2) does not belong to X2|2 (even though z(2) = E[z(2)|x(2|2)]) thanks
to Equation (2.35), which denotes the membership test to the Max-Plus polyhedron that
represents X2|2. Briefly, x̂(2|2) is not consistent with the support of the posterior PDF for
k = 2 (a probabilistic issue), represented by X2|2. The simple way to consistently obtain
x̂(2|2) belonging to X2|2 is to compute its projection 10 over X2|2, precisely x̂proj(2|2) =
(8.692, 6.692)t represented by the green dot in Figure 3.9.

3.2.4 Filtering with error criteria

The aim of this Section is to propose an improvement in the correction phase of the
Algorithm 3.4. The new algorithm, originally presented in [87], is based on the minimiza-
tion of a criterion that allows evaluating the estimation error of the prediction phase
and to adjust the importance to be given between the prediction estimation and the cor-
rected estimation, as the quadratic criterion does in Kalman filter for linear continuous
time-driven systems.

In Kalman filter theory, the gain is the weight given to the measure-
ments and current-state estimate, and can be “tuned” to achieve a
particular performance. If the Kalman gain is large that means er-
ror in the measurement is small which means that new data put in
can now very quickly get us to the true value, and therefore we will
reduce the error in the estimate and vice versa. Then, we propose to
improve the original filtering algorithm for Max-Plus systems (Al-
gorithm 3.4) by introducing a criterion in the spirit of the Kalman
filtering gain. The optimal gain matrix of the Kalman filter is often
derived by minimizing the trace of the posterior covariance matrix
[100]. By analogy, we will define a criterion J to be minimized, al-
lowing to take into account the trade-off between the noise in the
prediction estimation and in the measurement.

The criterion J
From Equations (3.9) and (3.10) the following information is known:

10. If a homogenous point p̂ = (p, e)t does not belong to the homogenous form of a c-Polyhedron
represented by P̂ = co(Ĝ), where Ĝ is its minimal generating set, then its projection, given by p̂proj =
mat(G)⊗ (mat(G) ◦\p̂), necessarily belongs to P̂ (see [68] for more details).
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— The estimation of x(k) at k−1, formally x̂(k−1|k−1) (prior knowledge of state);
— The current prediction estimation for the state x(k) from the available state esti-

mation at k − 1, formally x̂(k|k − 1) = E[x(k)|x̂(k − 1|k − 1)];
— The measurement output z(k) obtained at k.

For instance, let z0 be defined as the output prediction estimation, i.e.,

z0 = E[z(k)|x̂(k|k − 1)].

Consider that, z0 will be used as input of the inversion procedure, formally

x0 = Inv(z0, x̂(k|k − 1)).

Based on this, it is straightforward to see that x0 = x̂(k|k − 1). However, if we define z1

as a classical convex combination between z(k) and z0, formally

z1 = βz(k) + (1− β)z0 where β ∈ [0, 1],

then this artificial measurement should be used also as input of the same inversion pro-
cedure, precisely

x1 = Inv(z1, x̂(k|k − 1)).

The pair (x1, z(k)) as defined before is the input of the following heuristic criterion that
aims at evaluating for each k the trade-off between the noise in the prediction estimation
and in the measurement:

J(x1, z(k)) = max{∥P−1
dyn(x1 − x̂(k|k − 1))∥∞, ∥P−1

obs(z(k)− E[z(k)|x1])∥∞}, (3.20)

where Pdyn = diag(α1, . . . , αn) and Pobs = diag(γ1, . . . , γq) are weighting matrices in
the usual algebra. The first part of the criterion reflects how the estimation impacts
the prediction estimation obtained in Equation (3.9). The second part reflects how the
estimation impacts the measurement.

A key point is to ensure that the criterion above is practical. For this reason, the
parameters α1, . . . , αn must be associated with the variability of the components of the
vector x̂(k|k−1). The inverse of these parameters is therefore an indicator of the reliability
of x̂(k|k−1). A rule of thumb for tuning the parameter αi for all i ∈ {1, . . . , n} is given by
considering the average width of the elements of the i-th row of the corresponding interval
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3.2. Nondeterministic MPL systems and the Bayesian filtering

matrix [A]. Similarly, the parameters γ1, . . . , γq must be associated with the reliability of
the components of E[z(k)|x1]. The variability of these variables depends on the vector x1,
and in principle, the parameter γi must depend on x1. In order to avoid this dependence,
although it is approximate, a possible rule of thumb for γi for all i ∈ {1, . . . , q} is given
by considering the average width of the elements of the i-th row of the corresponding
interval matrix [C]. Hence, Pdyn and Pobs are calculated in an offline phase and remain
the same throughout the filtering loop. Nevertheless, it is possible to define other suitable
values for αi and γi, possibly online, i.e., the weighting matrices could be calculated at
each iteration k in order to obtain better results.

It should be noted that:

— if z1 = z0, then the first part of the criterion, precisely P−1
dyn(x1− x̂(k|k−1)) is null

in the classical context;
— if z1 = z(k) (this is the case of Equation (3.10)), then the second part of the

criterion, precisely, P−1
obs(z(k)− E[z(k)|x1]) is null, also in the classical context.

The modified correction equation is also a constrained optimization problem, as shown
below, and the main idea is to choose x̂(k|k) as the value of x1 that minimizes Equation
(3.20).

x̂(k|k) = arg min
x1

J(x1, z(k))
s.t. z1 = E[z(k)|x1]

(3.21)

Based on this, the search for z1 will be constrained to the convex combination of z(k)
and z0. Hence, J(x1, z(k)) is reinterpreted by J(β) where β ∈ [0, 1]. Any one-dimensional
search method can be used to find a local minimum value of the objective function above.
We summarize Equation (3.9) together with (3.21) given by the following filtering Algo-
rithm 3.5.

The resulting one-dimensional search in the Algorithm 3.5 is represented by βopt =
1dMinimizer(func, 0, 1) and is can be solved using the fminbnd function, which is im-
plemented in MATLAB. Furthermore, it is worth to mention that if the elements of the
main diagonal of P−1

dyn and P−1
obs are 1/0 then fminbnd will not run as desired, and thus we

replace 1/0 with a sufficient finite value, for instance 104.

Example 3.4. Let us recall Example 3.3 with the same initial conditions and sequence
of state and measurements of Table 3.1. However, instead of applying Algorithm 3.4, let
us consider the application of Algorithm 3.5 but by considering the following weighting
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Algorithm 3.5: Criteria filtering algorithm for state estimation
Data: x̂(k − 1|k − 1), z(k), Pdyn and Pobs.
Result: x̂(k|k) = Filter(z(k), x̂(k − 1|k − 1))

1 x̂(k|k − 1)← E[x(k)|x̂(k − 1|k − 1)] ; // Equation (3.14)
2 z0 ← E[z(k)|x̂(k|k − 1)] ; // Equation (3.14)

/* Objective function. */

3 J(β) =


z1 ← βz(k) + (1− β)z0

x1 ← Inv(z1, x̂(k|k − 1))
J(x1, z(k))← max{∥P −1

dyn(x1 − x̂(k|k − 1))∥∞, ∥P −1
obs(z(k)− E[z(k)|x1)∥∞}

;

/* One-dimensional minimizer for J(β) with β between 0 and 1 */
4 βopt ← 1dMinimizer(J(β), 0, 1); // βopt = arg min

β∈[0,1]
J(β)

5 zopt
1 ← βoptz(k) + (1− βopt)z0;

6 xopt
1 ← Inv(zopt

1 , x̂(k|k − 1));
7 return x̂(k|k) = xopt

1

matrices

P−1
dyn =

 1
1.5 0
0 1

1.5

 and P−1
dyn = 1

3.5 .

The estimated states are represented in Figure 3.10.
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Figure 3.10 – Calculation of Xk|k for k = 1, 2 (blue regions) of Examples 3.3 and 3.4.
The red dots represent the true state-vector x(k), the black dots represent the estimate
x̂(k|k) using Algorithm 3.4 and the blue dots represent a different estimate x̂′(k|k) using
Algorithm 3.5
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Thus, clearly x̂′(k|k) ∈ Xk|k for k = 1, 2 and all estimates are consistent with the
support of the posterior PDF (it is not always the case, i.e., no guarantee). In addition,
the following values of βopt are obtained: k = 1, βopt = 0.1753 and k = 2, βopt = 0.1784,
which means that more importance was automatically given to noise in the prediction
rather than noise in the measurement (too noisy). Finally, let us analyze the average
distance

1
2

2∑
k=1

d(x̂(k|k),x(k)) = 1
2

2∑
k=1

√
(x̂1(k|k)− x1(k|k))2 + (x̂2(k|k)− x2(k|k))2 ≈ 1.6328

between the estimation x̂(k|k) provided by Algorithm 3.4 and the true value of the state
x(k) and the distance

1
2

2∑
k=1

d(x̂′(k|k),x(k)) = 1
2

2∑
k=1

√
(x̂′

1(k|k)− x1(k|k))2 + (x̂′
2(k|k)− x2(k|k))2 ≈ 0.9854

between the estimation provided by Algorithm 3.5 and the true state. This analysis shows
that Algorithm 3.5 has slightly better results for this example.

Let us consider some other examples in the following.

Example 3.5 (Third-Order System). Consider the third-order nondeterministic MPL
system with mutually independent and uniformly distributed processing times, given by

x(k) = A(k)x(k − 1), z(k) = C(k)x(k)

with

A(k) ∈ [A] =
[1, 3] [3, 4]

[2, 3] [2, 4]

 and C(k) ∈ [C] =
(
[1, 3] [e, 5]

)
,

with A(k) ∈ [A] and C(k) ∈ [C] where

[A] =


[e, 8] [0, 8] [3, 11]
[2, 10] [e, 8] [0, 8]
[1, 9] [1, 9] [e, 8]

 , [C] =


[e, 1]
[e, 1]
ε


t

.

For instance, let us assume that x̂(0|0) is initialized with the initial state x(0) = e.
The analysis of the root-mean-square-error 11 (RMSE) between the estimation provided

11. Notation: RMSE(a, b) =
√

1
N

∑N
j=1 (a(j)− b(j))2.
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by Algorithm 3.4 and the true value of the state is almost equal to the RMSE between the
estimation provided by Algorithm 3.5 and the true state. Table 3.2 shows the obtained
results.

It is important to mention that, for this example, βopt asymptotically converges to 1
for most event-firings, such that z1 = z(k), clearly leading to the same result found using
the Algorithm 3.4.

State F1 : Alg. 3.4 F2: Alg. 3.5
i RMSE({x(k)}, {x̂F1(k|k)})i RMSE({x(k)}, {x̂F2(k|k)})i

1 1.9195 1.7046
2 2.0124 1.9171
3 1.8908 1.8745

Table 3.2 – Comparison between the Algorithms 3.4 and 3.5 of Example 3.5

Example 3.6 (Ninth-Order Flow Shop System). Consider the Flow Shop system modified
from [22], modelled as a ninth order nondeterministic MPL system with mutually inde-
pendent and uniformly distributed processing times, with three directly measured states x3,
x6, x8 and no control input (autonomous). Unfortunately, the measurement occurs under
high uncertainty. The model for this system is given by

x(k) = A(k)x(k − 1), z(k) = C(k)x(k)

with A(k) = A and C(k) ∈ [C]:

A =



ε ε 4 ε ε ε 2 ε ε

1 ε ε ε ε ε ε 3 ε

ε 5 ε ε ε ε ε ε 1
4 ε ε ε ε 3 ε ε ε

ε 3 ε 1 ε ε ε ε ε

ε ε 5 ε 4 ε ε ε ε

ε ε ε 4 ε ε ε ε 3
ε ε ε ε 3 ε 5 ε ε

ε ε ε ε ε 2 ε 4 ε



, [C] =



ε ε ε

ε ε ε

ε ε [e, 6]
ε ε ε

ε ε ε

ε [e, 6] ε

ε ε ε

[e, 6] ε ε

ε ε ε



t

.

For instance, let us assume that x̂(0|0) is initialized with the initial state x(0) = e.
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The model is not disturbed by any noise, i.e., it is under deterministic behavior. How-
ever, the measurement, represented by the interval matrix [C], is under high uncertainty,
making all states become noisy. Algorithm 3.4 will then return a poor corrected estimation
of the states, whereas Algorithm 3.5 is able to retrieve the prediction estimation instead
of the corrected one as the reliable estimation of the states (βopt asymptotically converges
to 0 for most event-firings).

The analysis of the RMSE between the estimation provided by Algorithm 3.4 and the
true value of the state is greater than the RMSE between the estimation provided by Al-
gorithm 3.5 and the true state. Table 3.3 shows the obtained results for the noisy states
x3, x6 and x8 only.

State F1: Alg. 3.4 F2: Alg. 3.5
i RMSE({x(k)}, {x̂F1(k|k)})i RMSE({x(k)}, {x̂F2(k|k)})i

3 1.7230 0.0065
6 1.6432 0.0065
8 1.5082 0.0065

Table 3.3 – Comparison between the Algorithms 3.4 and 3.5 of Example 3.6

The new filtering strategy for the correction equation uses the same
inversion procedure but using an artificial variable generated by a
convex combination between output prediction and output mea-
surement, rather than only the output measurement. This algo-
rithm is able to deal with the trade-off between the noise in the
measurement and in the prediction. Other objective functions which
improve the efficiency of the proposed filtering algorithm can be
considered, as well as the weighting matrices which are of utmost
importance for the practical performance of the algorithm.

Analysing the contribution: the new filtering algorithm

3.2.5 Filtering of live TEG with implicit form

The filtering Algorithms 3.4 and 3.5 assume that the stochastic entries of the system
matrices are independent. Unfortunately, in most applications the associated TEG have
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token-free places and due to algebraic manipulations (Kleene star), the entries of the
system matrices are Max-Plus summations of processing times (for instance, a(k) = b(k)⊕
c(k)d(k)), in which various processing times appear in multiple entries. Therefore, the
entries of the matrices are not mutual independent, and these algorithms are not directly
adapted. In the sequel, we use the results originally proposed in [86].

Let us recall the model of the TEG of Example 3.1, using Equation (2.13), i.e., we
have x(k) = A0(k)x(k) ⊕ y(k − 1), where A0(k)x(k) represents the implicit part and
y(k − 1) = A1(k)x(k − 1) represents the explicit part. This equation can be component-
wise depicted as follows:

x1(k) = y1(k − 1),
x2(k) = a21

0 (k)x1(k)⊕ y2(k − 1),
x3(k) = a31

0 (k)x1(k)⊕ a32
0 (k)x2(k)⊕ y3(k − 1),

...
xn(k) =

(⊕n−1
l=1 a

nl
0 (k)xl(k)

)
⊕ yn(k − 1),

(3.22)

where each yi is ⊕n
j=1 a

ij
1 (k)⊗xj(k−1), where each aij

1 (k) is assumed to be an independent
random variable, and each xj(k − 1) is fixed. Hence, the entries of the vector y(k) are
assumed to be independent. Moreover, the first part of the right-hand side of Equation
(3.22) is ⊕i−1

l=1 a
il
0 (k)⊗ xl(k) for all i ∈ {1, . . . , n} and depends on xl(k) from l = 1 up to

i − 1. By assuming that the computation of Equation (3.22) is done from i = 1 up to n
and the terms xl(k) are fixed and known, we will be able to ensure the independence of
the components of the vector x(k), which is worth of interest in the main contribution of
this Section 12.

Nevertheless, the stochastic systems described by the equation (3.22) have dependen-
cies between their matrix entries. Hence, to properly calculate the expectation of the i-th
component of x(k) it would be necessary to take into account its joint distribution with
respect to the other components, which seems to be an intractable problem for most of the
cases. From this fact, the stochastic filtering schemes that were proposed in Algorithms
3.4 and 3.5 are no longer allowed to be straightforwardly used if we are not interested in
conservative results 13.

12. We consider that each xi(k) is recursively known at each subsequent row.
13. It is always possible to consider a conservative result by taking into account the explicit form of

x(k) = A0(k)x(k)⊕A1(k)x(k − 1), which is given by either: x(k) = H(k)r(k), where H(k) ∈ ([A0] [A1])
and r(k) = (x(k) xt(k − 1))t; or x(k) = H(k)x(k − 1), where H(k) ∈ [A⋆

0][A1].

156



3.2. Nondeterministic MPL systems and the Bayesian filtering

Following Equation (1.12), we can write

xi(k) =
i−1⊕

j=1
aij

0 (k)xj(k)
⊕ yi(x(k − 1)), (3.23)

z(k) = C(k)x(k),

with yi(x(k−1)) the i-th entry of y(x(k−1)) = A1(k)x(k−1) (assuming the components
of x(k − 1) are obtained from the previous iteration). It is worth to mention that the
(n×n)-dimensional matrices A0(k) ∈ [A0] and A1(k) ∈ [A1], and the (q×n)-dimensional
matrix C(k) ∈ [C] have entries (for instance, aij

0 (k) ∈ [aij
0 , a

ij
0 ]) that are independent

random variables and uniformly distributed according to the CDF: F (A0(k) ∈ [A0]),
F (A1(k) ∈ [A1]) and F (C(k) ∈ [C]).

By considering Equation (3.14), the prediction equation for all i ∈ {1, . . . , n} is given
as follows:

x̂i(k|k − 1) = E

i−1⊕
j=1

aij
0 (k)xj(k)

⊕ yi(x(k − 1))
 . (3.24)

Starting from the equation

x̂1(k|k − 1) = E [y1(x(k − 1))]

and assuming that the values x(k− 1) are fixed, then it is trivial to compute x̂1(k|k− 1).
Conversely, for

x̂2(k|k − 1) = E
[
a21

0 (k)x1(k)⊕ y2(x(k − 1))
]
,

a similar trivial computation is not possible since it depends on x1(k). To calculate this
and the subsequent mathematical expectations, the joint distribution of the vector x(k)
should be obtained, which is a very difficult problem to solve. To avoid it, let us consider
that a reliable value for x1(k) is given by the fixed value ψ(x1(k)) (this is discussed in
the following). Then, it renders a21

0 (k)x1(k) = a21
0 (k)ψ(x1(k)) to be of the same kind as

y2(x(k − 1)) and thus being easily computed. To compute

x̂3(k|k − 1) = E
[
a31

0 (k)x1(k)⊕ a32
0 (k)x2(k)⊕ y3(x(k − 1))

]
,

we replace the random variables x1(k) and x2(k) by the fixed values ψ(x1(k)) and ψ(x2(k)),
respectively. All the other subsequent computations are similar.

The question is: how to define ψ(xi(k)) ?
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We recall the method given in [28, Sec. III], which defines
ψ(xi(k)) = αi ·x̂i(k|k−1) (multiplication in the classical context). It
corresponds to the strategy for systems with periodic behaviour a.

a. The set of parameters {α1, · · · , αn−1} is computed only once (offline
phase) using Monte Carlo techniques. This set is robust under periodic steady-
state regime, but if exogenous inputs modify the system behavior, the param-
eters should be tuned online, by evaluating the quality of the approximation
through classical statistical parameters (as for instance the mean and the stan-
dard deviation of the difference between both means). Furthemore, thanks to
the triangular structure of the matrix A0(k), it is possible to perform an un-
coupled search for each αi.

Let us assume that ψ(xi(k)) = x̂i(k|k) and in order to properly obtain x̂(k|k), one
must call n-times the procedure Inv (Algorithm 3.4). Clearly, this does not refer to a
classical two-fold filter scheme because we update separately the prediction for each i-th
component of the state vector.

Summing-up, the filtering algorithm of implicit forms, is given by Algorithm 3.6.

Algorithm 3.6: Filtering algorithm of implicit forms
Data: x̂(k − 1|k − 1) and z(k)
Result: x̂(k|k) = Filter(z(k), x̂(k − 1|k − 1))

1 y = A1(k)x̂(k − 1|k − 1);
2 x̂(k|k − 1)← (ε, . . . , ε)t ; // initialize
3 foreach i ∈ {1, . . . , n} do
4 x̂i(k|k − 1) = E[(

⊕i−1
j=1 aij

0 (k)x̂j(k|k))⊕ yi]; // Equation (3.24)
5 x̂(k|k)← Inv(z(k), x̂(k|k − 1)) ; // Algorithm 3.3
6 end
7 return x̂(k|k);

The Algorithm 3.6 uses n-times the Algorithm 3.3. This Algorithm 3.3 returns an
estimate x̂(k|k) for all components of the state vector x(k), which is the solution of
the constrained minimization problem (see Equations (3.10a) and (3.10b)). The input
x̂(k|k − 1) of the Algorithm 3.3 is updated at each step i, with x̂i(k|k − 1) which is the
corresponding entry of the prediction vector. At this step i, we must note that entries
j ∈ {i + 1, . . . , n} of x̂(k|k − 1) are still equal to ε, hence these entries j of the estimate
x̂(k|k) given by Algorithm 3.3 are equal to xj since x0

j ≤ xj (see line 7).
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Example 3.7. Consider the third-order nondeterministic MPL system with mutually in-
dependent and uniformly distributed processing times, governed by the equation below

x(k) = A0(k)x(k)⊕ A1(k)x(k − 1)⊕Bu(k),

with A0(k) ∈


ε ε ε

[1, 2] ε ε

[6, 10] [7, 11] ε

, A1(k) ∈


[7, 11] ε [2, 9]
ε [6, 12] [4, 8]
ε ε [6, 8]

 and B =


e ε

ε ε

ε e

.

The output measurement is defined by

z(k) = C(k)x(k),

with C(k) ∈ ([1, 3] [2, 4] ε).
For instance, let us assume that x̂(0|0) is initialized with the initial state x(0) =

(2 5 1).
Also, it should be mentioned that every calculation of x̂i(k|k − 1) = E[xi(k)|(x̂(k −

1|k−1)t u(k)t)t] takes into account a pseudo-random value u(k) drawn from the standard
uniform distribution on the closed interval vector between (2, 2)t and (40, 40)t.

For simulation purposes, let us compare two different filter strategies for this MPL
system in implicit form:

— Filter F1 uses the original filtering method given by Algorithm 3.6. In order to take
the input action into account, the line 1 is replaced by y = A1(k)x̂(k − 1|k − 1)⊕
Bu(k).

— Filter F2 considers Algorithm 3.4 with line 1 given by:

x̂i(k|k − 1) = E[xi(k)|(x̂t(k − 1|k − 1) ut(k))t],

with the right-hand side calculated by

E

i−1⊕
j=1

aij
0 (k) (αj · x̂j(k|k − 1))⊕

n⊕
j=1

aij
1 (k)x̂j(k − 1|k − 1)⊕

p⊕
j=1

bijuj(k)
 ,

for all i ∈ {1, . . . , n} and with · corresponding to the scalar multiplication in
regular algebra. It corresponds to the strategy given in [28, Sec. III] for systems
with periodic behavior, as previously presented. Let us assume that αj = 1 for all
i ∈ {1, . . . , n}.

159



Chapter 3 – Nondeterministic systems: stochastic filtering

Table 3.4 shows the obtained results for simulations up to the occurrence of 4000 events.
Each position of the table corresponds to root-mean-square-error RMSE(xi(k), x̂i(k|k))
with the usage of the corresponding filter.

State F1 F2
i RMSE({x(k)}, {x̂F1(k|k)})i RMSE({x(k)}, {x̂F2(k|k)})i

1 2.8883 4.5451
2 1.1299 1.7783
3 1.7233 16.7846

Table 3.4 – Comparison between F1 and F2 of Example 3.7

The analysis of Table 3.4 indicates that the RMSE between the estimation provided
by the F2 method and the true value of the state is higher than the F1 method with special
attention to i = 3 (unobserved state). Indeed, as x3(k) is not observed and is the noisiest
state, then this noise propagates throughout the TEG thanks to A1(k) and it penalizes the
estimate of x1(k) and x2(k).
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CONCLUSION

Stochastic filtering of Max-Plus Linear (MPL) systems is still a work in progress,
mainly due to the difficulty of using frameworks that reinterpret the basic notions of
probability and stochasticity in a tropical semiring [101, 102, 103, 104].

On Chapter 2

Although the computation of the posterior probability function (PDF), the key of
Bayesian formulation, cannot be computed in practice for MPL systems with stochastic
processing times, we are able to compute its support with an improvement in the com-
plexity of the forward reach set. We have shown in Chapter 2 that this computation is
exact and cumbersome (worst-case scenarios) or approximate and fast, and is ultimately
applied to systems without token-free place in the corresponding Timed Event Graph
(TEG), otherwise we compute a conservative support. In this thesis, we did not study
the use of this support to improve Particle filter algorithms, but it seems to be helpful
in future works. This support is also useful to validate the alternative stochastic filtering
scheme proposed in [28]. As future work, we aim to obtain a polynomial procedure to
compute the backward reach set using the polyhedral approach (successful in the forward
reach set computation), and then efficiently compute the posterior PDF support. It would
also be interesting to take care of the exact calculation of this support for systems with
token-free places, since we currently only have conservative solutions.

On Chapter 3

In Chapter 3, we have introduced an improvement to the alternative stochastic filtering
algorithm proposed in [28]. We have presented a significant contribution to the extent
that we minimize a trade-off criterion that considers noise in state and measurement.
Nevertheless, in future works, we aim to further analyze and discuss the results and to
also propose other trade-off criteria, since this is premature work in progress.

Also in Chapter 3, we have extended the filtering techniques to TEG with implicit part
(token-free matrices), which are encountered in real applications rather than systems with
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initially one token on each place. The corresponding TEG of these systems are generally
live, and then some approximate solutions are discussed: first, based on an offline Monte
Carlo simulation, which is robust only if the system works in its periodic behavior (the
filter works fine); our contribution is a new online strategy that is efficient even if the
system works in its transient behavior, without performing a single and imprecise offline
Monte Carlo simulation, since an adaptive tuning occurs in the loop.

In general

As presented at the beginning of this chapter, the absence of a complete stochastic
framework for MPL systems makes all known results very difficult to use (for example
the well-known Kalman filter). Indeed, it seems necessary to reinterpret the basic notions
of probability, ultimately changing the complete understanding of probabilistic measure-
ment, giving rise to a tropical Kalman-type stochastic filtering theory [105]. For instance,
in [106], the max-plus analog of the mathematical expectation is discussed. A promising
idea is to use Possibility theory for dealing with certain types of uncertainty, being an
alternative to probability theory [107, 108].
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Appendix A

RESIDUATION

A.1 Formulæ involving division

The following list provides some basic relations of left and right division, for the proofs
and a more detailed list the reader is invited to consult [43, Chap. 4].

For a complete dioid D with a, b, c ∈ D, we have:

a(a◦\b) ⪰ b (A.1)

a◦\a ⪰ e (A.2)

a(a◦\a) = a (A.3)

e◦\a = a (A.4)

ε◦\a = ⊤ (A.5)

(a◦\b) c ⪯ a◦\(bc) (A.6)

a◦\(b◦\c) = (ba)◦\c (A.7)

(a◦\b)⊕ (a◦\c) ⪯ a◦\(b⊕ c) (A.8)

(a◦\b)⊕ (c◦\b) ⪯ (a ∧ c)◦\b (A.9)

(a◦\b) ∧ (c◦\b) = (a⊕ c)◦\b (A.10)

(a◦\b) ∧ (a◦\c) = a◦\(b ∧ c) (A.11)

A.2 Lemmas

Lemma A.1. Given x ∈ R
p
max and y ∈ R

n
max, the following equality holds (y◦/x)◦\y = x.

Proof. For all i ∈ {1, . . . , n} and j ∈ {1, . . . , p}:

(y◦/x)ij = yi◦/xj = yi − xj,

and for all j ∈ {1, . . . , p}:

((y◦/x)◦\y))j =
n∧

i=1
(y◦/x)ij◦\yi =

n∧
i=1

yi − (yi − xj) = xj.
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Lemma A.2. Let a, b, c, d ∈ Rmax. If c ≺ a then the following equivalence holds

a⊕ b ≤ c⊕ d ⇐⇒ a⊕ b ≤ d.

Proof. First, a⊕ b ≤ c⊕d⇒ a⊕ b ≤ d since by assumption c ≺ a which implies c ≺ a⊕ b,
hence c ≺ a ⊕ b ≤ c ⊕ d and c ≺ c ⊕ d ⇐⇒ c ≺ d ⇐⇒ c ⊕ d = d. Similarly, c ≺ a

and a ⊕ b ≤ d imply c ≺ a ⊕ b ≤ d ⇒ c ⊕ c ≺ a ⊕ b ⊕ c = a ⊕ b ≤ c ⊕ d, i.e., we have
a⊕ b ≤ d⇒ a⊕ b ≤ c⊕ d which concludes the proof.
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Appendix B

SET OPERATIONS

B.1 Manipulations over sets

We recall that the complement of the intersection and the complement of the union
of q sets are obtained by applying DeMorgan’s Laws as shown below:

( q⋂
i=1
Aj

)∁

=
q⋃

i=1
A∁

j (B.1)
( q⋃

i=1
Aj

)∁

=
q⋂

i=1
A∁

j . (B.2)

An alternative way to represent Equation (B.1) is related, for instance, to the following
example of classical manipulation of sets:

A∁
1 ∪ A∁

1 ∪ A∁
3 = A∁

1 ∪ [A1 ∩ A∁
2] ∪ [A1 ∩ A2 ∩ A∁

3]

where ∪ stands for disjoint union. From this fact, the following always holds:

( q⋂
i=1
Aj

)∁

=
q⋃

i=1

[(
i−1⋂
k=1
Ak

)
∩ A∁

i

]
, (B.3)

with ⋂0
k=1Ak = U , where U stands for universal set. This equation represents the union of

pairwise disjoint sets. To understand it better, for instance, suppose q = 2 then Equation
(B.3) yields

A∁
1 ∪ [A1 ∩ A∁

2],

and we aim at evaluatingA∁
1∩[A1∩A∁

2]. Thanks to the associative law over the intersection
operation, we obtain

A∁
1 ∩ [A1 ∩ A∁

2] = [A∁
1 ∩ A1]︸ ︷︷ ︸

=∅

∩A∁
2 = ∅,

i.e., A∁
1 and [A1 ∩ A∁

2] are two disjoint sets.
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Another interesting property concerns, for instance, the set

(A1 ∪ A2) ∩ (A3 ∪ A4)

which is equal to

(A1 ∩ A3) ∪ (A1 ∩ A4) ∪ (A2 ∩ A3) ∪ (A2 ∩ A4)

thanks the distributive law over the intersection. Hence, consider the sets Ai
j and the

following operation:

q⋂
i=1

n⋃
j=1
Ai

j = (A1
1 ∪ · · · ∪ A1

n) ∩ (A2
1 ∪ · · · ∪ A2

n) ∩ (Aq
1 ∪ · · · ∪ Aq

n),

= (A1
1 ∩ A2

1 ∩ · · · ∩ An
1 ) ∪ (A1

1 ∩ A2
1 ∩ · · · ∩ A

q
2) ∪ · · · ∪ (A1

n ∩ A2
n ∩ · · · ∩ Aq

n), (B.4)

This equation is not in a compact way. However, by considering G = {1, . . . , n}q, gi ∈
{1, . . . , n} and g = (g1, g2, . . . , gq) ∈ G, then:

q⋂
i=1

n⋃
j=1
Ai

j =
⋃

g∈G

q⋂
i=1
Ai

gi
. (B.5)

B.2 Solution set to y ≤ Ax in the Max-Plus algebra

In the sequel, we recall the results of [35] and [29].
Let y ≤ Ax be an inequality, with A ∈ R

n×p

max, x ∈ R
p

max and y ∈ R
n

max. The set

χ = {x ∈ R
p

max | y ≤ Ax} =
n⋂

i=1

x ∈ R
p

max | yi ≤
p⊕

j=1
aij ⊗ xj


represents all x that satisfies the previous inequality.

Thanks to Equation (B.1) we calculate χ∁ as follows

χ∁ =
n⋃

i=1

x ∈ R
p
max | yi ≤

p⊕
j=1

aij ⊗ xj


∁

with ({x ∈ R
p

max | yi ≤
⊕p

j=1 aij ⊗ xj})∁ = {x ∈ R
p

max | yi >
⊕p

j=1 aij ⊗ xj} because
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yi ∈ Rmax. Thus,

χ∁ =
n⋃

i=1

x ∈ R
p
max | yi >

p⊕
j=1

aij ⊗ xj

 .
Taking into account

p⊕
j=1

aij ⊗ xj < yi ⇐⇒



ai1 ⊗ x1 < yi ⇐⇒ x1 < ai1◦\yi and

ai2 ⊗ x2 < yi ⇐⇒ x2 < ai2◦\yi and
...

ain ⊗ xn < yi ⇐⇒ xn < ain◦\yi,

then

χ∁ =
n⋃

i=1

 p⋂
j=1
{x ∈ R

p

max | xj < σij}

 , where σij = aij◦\yi.

Using Equation (B.2), χ is re-obtained as χ = (χ∁)∁, formally

χ =
 n⋃

i=1

 p⋂
j=1
{x ∈ R

p

max | xj < σij}

∁

=
n⋂

i=1

 p⋂
j=1
{x ∈ R

n

max | xj < σij}

∁

=
n⋂

i=1

 p⋃
j=1
{x ∈ R

p

max | xj ≥ σij}


However, it seems possible to reinterpret χ. First, we recall Equation (B.3), then

 p⋂
j=1
{x ∈ R

p
max | xj < σij}

∁

=
p⋃

j=1

j−1⋂
k=1
{x ∈ R

p
max | xk < σij}

 ∩ {x ∈ R
p
max | xj < σij}∁


=

p⋃
j=1

j−1⋂
k=1
{x ∈ R

p
max | xk < σij}

 ∩ {x ∈ R
p
max | xj ≥ σij}


with ⋂0

k=1{x ∈ R
p

max | xk < σij} = R
n

max, and thus

χ =
n⋂

i=1

 p⋃
j=1

setij

 ,where setij =
j−1⋂

k=1
{x ∈ R

p

max | xk < σij}

 ∩ {x ∈ R
p

max | xj ≥ σij}.

Remark B.1. setij1 ∩ set
i
j2 = ∅ holds for all i ∈ {1, . . . , n} and j1 ̸= j2 where j1, j2 ∈

{1, . . . , p}, i.e., setij1 and setij2 are pairwise disjoint sets.
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Finally, Equation (B.5) allows expressing

χ =
n⋂

i=1

 p⋃
j=1

setij

 =
⋃

g∈G
SET g, SET g =

n⋂
i=1

setigi
(B.6)

with G = {1, . . . , p}n, gi ∈ {1, . . . , p} and g = (g1, g2, . . . , gn) ∈ G.

Lemma B.1 ([29]). The sets SET g for all g ∈ G are pairwise disjoint from each other.

Proof. Consider g,g′ ∈ G with g ̸= g′. Then, ∃ k ∈ {1, . . . n} such that gk = g′
k. SET g

and SET g′ are disjoint if and only if SET g ∩ SET g′ . Then

SET g ∩ SET g′ =
(

n⋂
i=1

setigi

)
∩
(

n⋂
i=1

setig′
i

)

=
(

n⋂
i=1

setigi

)
∩
(

n⋂
i=1

setig′
i

)

=
 ⋂

i∈{1,...,n}\k

(setigi
∩ setig′

i
)
 ∩ (setigk

∩ setig′
k
)︸ ︷︷ ︸

=∅ (see Remark B.1)

= ∅

Remark B.2. In the worst-case scenario the set χ in Equation (B.6) can be represented
by the union of pn pairwise disjoint sets SET g. However, some SET g may be empty.
Hence, in general, the set χ can be represented by N ≤ pn pairwise disjoint sets.
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Appendix C

PROOFS

C.1 Proofs of Section 2.2.3

Lemma C.1 ([29]). Given Ax ≤ y ≤ Ax where A,A ∈ R
m×n

max , x ∈ R
n

max and y ∈ R
m

max

are assumed to be known. Then ∃A ∈ [A], i.e., A ≤ A ≤ A such that Ax = y.

Proof. From Ax ≤ y ≤ Ax where A,A ∈ R
m×n
max , x ∈ R

n
max and y ∈ R

m
max then the following

holds
Ax ≤ y ⇐⇒ A ≤ Â = y◦/x

where (y◦/x)ij = yi − xj for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. From A ≤ Â then

A ≤ Â ∧ A ≤ A.

Let y′ = (Â ∧ A)x where Â ∧ A ∈ [A], thus for all i ∈ {1, . . .m}

yi = max
1≤j≤n

(min(yi − xi, aij) + xj) = max
1≤j≤n

(min(yi, aij + xj))

= min
(
yi, max

1≤j≤n
(aij + xj)

)

Hence,
y′ = (Â ∧ A)x = y ∧ Ax = y ⇐⇒ y ≤ Ax (Assumption)

Finally, (Â ∧ A)x = z and the proof is complete.

Lemma C.2. Let X, α and β be a real-valued random variable with bounded domain
dom(X) and two constants of R, respectively. Given that the k-th moment of X is finite,
i.e., E[Xk] =

∫
dom(X) t

kpX(t)dt is finite, then if α ≥ β we have E[(X + α)p] ≥ E[(X + β)p]
with p an integer.
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Proof. Let us explore the expansion of (X + c)p using the well known Binomial theorem

(X + c)p =
p∑

k=0

(
p

k

)
Xp−kck =

(
p

0

)
Xp +

(
p

1

)
Xp−1c1 + · · ·+

(
p

p− 1

)
X1cp−1 +

(
p

p

)
cp.

Thus

E[(X + c)p] =
∫

dom(X)
(t+ c)ppX(t)dt =

p∑
k=0

(
p

k

)
︸ ︷︷ ︸

C(p,k) positive integer

ck
∫

dom(X)
tp−kpX(t)dt︸ ︷︷ ︸

E[Xk] finite

and clearly E[(X+α)p] = ∑p
k=0 α

kC(p, k)E[Xk] ≥ E[(X+β)p] = ∑p
k=0 β

kC(p, k)E[Xk].
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Title: On the stochastic filtering of max-plus linear systems

Keywords: Max-Plus Linear Systems, Stochastic Filtering, Set-membership Estimation, Max-Plus Polyhedra

Abstract: A wide range of man-made systems, such
as •telecommunications networks; •manufacturing sys-
tems; •computer systems; in which evolution is governed
by events, typically a signal arrival or the completion of
a task, have been called since the early 1970s "Discrete
Event Systems" (DES) . Among DES, a particular class
of systems with synchronization and delay phenomena
can be modeled by linear equations in (max,+)- type al-
gebras. This property motivated the development of the
so-called Max-Plus Linear (MPL) systems theory. This
theory has many analogies with the conventional theory
of continuous linear systems and allows in particular to
address control problems. The control problem studied
in this thesis concerns the state estimation of MPL dy-
namical systems. Based on recent work on stochastic
filtering of MPL systems and inspired by Bayesian filter-
ing, we propose a new approach that is less expensive,
but equally efficient. As for classical Bayesian filtering,
our approach is two-fold: a prediction step and a cor-
rection step. The prediction step developed in this the-

sis is based on Max-Plus polyhedra. This new approach
allows, during the prediction step, to compute the sup-
port of the prior probability density function (PDF) with a
strongly polynomial complexity. We also show that, un-
der certain conditions related to the observability matrix,
the correction step, which corresponds to take into ac-
count measurement information in order to shrink the
support of the prior PDF, is computed with quadratic
complexity. We are then looking for a solution to improve
the performance of the filter. The objective is to evaluate
the quality of the prediction with respect to the errors of
the measurements induced by the noise. This leads us
to introduce a criterion to minimize the estimation error.
Finally, we devote the last part to the study of a filtering
algorithm for MPL systems in implicit form. We show that
this algorithm makes it possible to take into account the
dependency problems between the inputs of the system
matrices of MPL systems. These dependencies between
state variables being intrinsic to MPL systems.

Titre : Sur le filtrage stochastique de systèmes max-plus linéaires

Mot clés : Systèmes Max-Plus Linéaires, Filtrage Stochastique, Estimation Ensembliste, Polyèdres Max-Plus

Résumé : Dans un certain nombre de systèmes
conçus par l’homme, tels que •les réseaux de télé-
communication ; •les systèmes de production ; •les sys-
tèmes informatiques ; dans lesquels l’évolution est ré-
gie par des événements ponctuels, typiquement l’arri-
vée d’un signal ou l’achèvement d’une tâche, sont ap-
pelés depuis le début des années 70 "Systèmes à Évé-
nements Discrets" (SED). Parmi les SED, une classe
particulière de systèmes mettant en œuvre des phéno-
mènes de synchronisation et de retards peut être mo-
délisée par des équations linéaires dans les algèbres de
type (max,+). Cette propriété a motivé l’élaboration de ce
que l’on appelle communément la théorie des systèmes
Max-Plus Linéaires (MPL). Cette théorie présente de
nombreuses analogies avec la théorie conventionnelle
des systèmes linéaires continus et permet notamment
d’aborder des problèmes de commandes. Le problème
de commande étudié dans cette thèse porte sur l’esti-
mation d’état des systèmes dynamiques MPL. Partant
de travaux récents sur le filtrage stochastique des sys-
tèmes MPL et en s’inspirant du filtrage Bayésien, nous
proposons une nouvelle approche moins coûteuse, mais
tout aussi performante. Comme pour le filtrage Bayé-
sien classique, notre approche est composée de deux

étapes : une étape de prédiction et une étape de correc-
tion. L’étape de prédiction développée dans cette thèse
est basée sur les polyèdres Max-Plus. Cette nouvelle ap-
proche permet, lors de l’étape de prédiction, de calcu-
ler le support de la densité de probabilité (PDF) a priori
avec une complexité polynomiale. Nous montrons éga-
lement que, sous certaines conditions liées à la matrice
d’observabilité, l’étape de correction, qui correspond à la
prise en compte de l’information apportée par la mesure
afin de raffiner le support de la PDF a priori, est calcu-
lable avec une complexité quadratique. Nous cherchons
ensuite une solution permettant d’améliorer les perfor-
mances du filtre. L’objectif est d’évaluer la qualité de la
prédiction par rapport aux erreurs des mesures induites
par le bruit. Cela nous amène à introduire un critère per-
mettant de minimiser l’erreur d’estimation. Enfin, nous
consacrons la dernière partie à l’étude d’un algorithme
de filtrage pour les systèmes MPL sous forme implicite.
Nous montrons que cet algorithme permet de prendre
en compte les problèmes de dépendance entre les en-
trées des matrices d’état d’un système MPL. Ces dépen-
dances entre les variables d’états étant intrinsèques aux
systèmes MPL.
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