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Abstract
Timed Event Graphs (TEGs) can be described by time invariant (max,+) linear systems.
This formalism has been studied for modelling, analysis and control synthesis for decision-
free timed Discrete Event Systems (DESs), for instance specific manufacturing processes
or transportation networks operating under a given logical schedule. However, many appli-
cations exhibit time-variant behaviour, which cannot be modelled in a standard TEG
framework. In this paper we extend the class of TEGs in order to include certain peri-
odic time-variant behaviours. This extended class of TEGs is called Periodic Time-variant
Event Graphs (PTEGs). It is shown that the input-output behaviour of these systems can be
described by means of ultimately periodic series in a dioid of formal power series. These
series represent transfer functions of PTEGs and are a convenient basis for performance
analysis and controller synthesis.
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Discrete Event Dynamic Systems

1 Introduction andmotivation

The class of Discrete Event Systems (DESs) studied in this paper are persistent timed DESs.
A DES is called persistent if the occurrence of an event never disables another event. In other
words an enabled event remains enabled until it occurs. Persistent DESs are often obtained
from non-persistent ones by solving the underlying conflicts, i.e., by determining the logi-
cal order in which events can occur. For many applications, such as manufacturing systems,
these logic schedules can often be computed offline. The resulting system is a persistent
DES which describes the timed dynamics of the original non-persistent DES with respect
to the predefined logic schedule. A well studied class of persistent timed DESs are Timed
Event Graphs (TEGs), which are a subclass of timed Petri nets and suitable to describe
synchronization phenomena arising in DESs. Over the last decades, TEGs have been exten-
sively studied because they admit linear representations in particular algebraic structures
called dioids (Baccelli et al. 1992; Heidergott et al. 2005). Based on dioids, many concepts
of standard control theory have been adapted to TEGs. In the particular dioid Max

in [[γ, δ]],
the input-output behaviour of TEGs can be described by transfer functions defined of a
set of formal power series in two variables γ and δ (Baccelli et al. 1992).1 These trans-
fer functions represent the main properties such as latency and throughput of a system in a
compact form. More over, based on these transfer functions, several model matching con-
trol problems have been solved for TEGs. This includes state or output feedback design
as well as observer design (Libeaut and Loiseau 1996; Maia et al. 2003; Hardouin et al.
2017; Hardouin et al. 2018). Usually the objective of the control strategy is to modify the
system behaviour such that the resulting closed-loop is bounded by the reference model.
For instance, we can specify a desired throughput (resp. latency) behaviour of a production
line in such a reference model. The resulting controller optimizes the production process
under the “just-in-time” criterion while the specified throughput is guaranteed. Thus, mate-
rials spend the minimal required time in the production line, which leads to a reduction of
internal stocks. In Hardouin et al. (2009), software tools are presented, for evaluation and
controller synthesis of TEGs based on the dioid Max

in [[γ, δ]]. Model predictive control for
(max,+)-linear systems was studied in Schutter and van den Boom (2001). Moreover, in
Declerck (2013) and Amari et al. (2012) the control of TEGs under additional time window
constraints was addressed. For these TEGs, sojourn times of tokens in some places have to
respect an upper bound. The control problem is then to find an admissible trajectory such
that these upper bounds are satisfied.

An important property of TEGs is that they are time-invariant. From an operator point of
view, for a transfer function H ∈ Max

in [[γ, δ]], we have Hδ1 = δ1H . Here δ represents the
time-shift operator.

In this paper we study time-variant DESs, which cannot be described by ordinary TEGs.
To consider time-variant behaviour is motivated by several applications. For example, time-
variant behaviour can be found in transportation networks, with traffic light control or
communication networks with time-division-multiplexing. A simple example in the field of
manufacturing is a resource which is shared by several processes on the basis of a periodic
schedule, e.g., the resource is available for process 1 at times 2n and for process 2 at times
1 + 2n, with n ∈ N0.

1In Bouillard and Thierry (2008) a similar approach, the so called network calculus, was presented to analyze
communication networks.
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First results for time-variant (max,+)-systems have been obtained in David-Henriet et al.
(2015) and David-Henriet et al. (2014). There, TEGs are extended by allowing a weaker
form of synchronization, called (PS). PS of a transition means that the transition can only
fire when it is enabled by an external signal S : N0 → {0, 1}. S enables the firing of the
transition at times ξ ∈ N0 where S(ξ) = 1. For instance, such a signal can represent a
traffic light, and a vehicle can cross a crossroad only when the traffic light is green. In the
case where such signals are predefined and ultimately periodic, it is possible to obtain a
transfer function of a TEG under partial synchronization (David-Henriet et al. 2015).

Standard TEGs are also event-invariant. From an operator point of view, for a transfer
function H ∈ Max

in [[γ, δ]] we have Hγ 1 = γ 1H , where γ is the event shift operator.
Another extension of standard TEGs refers to event-variant timed DESs, e.g., Lahaye et al.
(2008), Cottenceau et al. (2014b), Cofer and Garg (1993), and Brat and Garg (1998)). In
Lahaye et al. (2008), the authors introduce first in first out (FIFO) TEGs in which holding
times of places change periodically based on event-sequences. Therefore, these systems
can describe event-variant time behaviours. In FIFO TEGs, places must respect a FIFO
behaviour, in other words tokens must not overtake each other. In Cottenceau et al. (2014b),
it is shown that the input-output behaviour of these systems can be represented as formal
power series in the 3-dimensional dioid E∗[[δ]]. The studied system class is an extension of
TEGs which is called Weight-Balanced Timed Event Graph (WBTEG).

In this paper, we suggest a new approach to model time-variant behaviours. First, we
introduce the class of Periodic Time-variant Event Graphs, in which the holding times of
places depend on times when tokens enter the place. More precisely, the holding time H(ξ)

of a place at time ξ ∈ Z is time-variant and immediately periodic, i.e., H(ξ + ω) = H(ξ).
The main contribution of this paper is to show that the input-output behaviour (transfer
function) of PTEGs can be described by ultimately periodic series in a new dioid denoted
T ∗[[γ ]]. As PTEGs are time-variant, implying that for a transfer function H ∈ T ∗[[γ ]] of
a PTEGs Hδ1 �= δ1H . This means, the response of a PTEG to an input trajectory varies
over time. In addition to the synchronization and time delay phenomena already described
by standard TEGs, PTEG can describe phenomena that can only occur during certain time
windows. The operational representation of PTEGs allows us to extend methods for perfor-
mance evaluation and controller synthesis for TEGs to the more general class of PTEGs.
Furthermore, we elaborate the relation between the impulse response of a PTEG and its
transfer behaviour. First results on the dioid T ∗[[γ ]] were obtained in Trunk et al. (2018).

This paper is organized as follows: Section 2 summarizes the necessary facts on TEGs
and dioids. In Section 3, we present PTEGs as suitable models for some time-variant dis-
crete event systems. In Section 4, we introduce a new periodic timing operator �ω and
define the dioid T ∗[[γ ]]. In Section 5, the dioid T ∗[[γ ]] is used to model the input-output
behaviour of PTEGs. Furthermore, the relation between impulse response and transfer
function is investigated. Finally, Section 6 illustrates the controller design process for
PTEGs.

2 Timed event graphs and dioids

2.1 Timed event graphs

In the following, we briefly recall the necessary facts on TEGs (see, e.g., Baccelli et al. 1992;
Heidergott et al. 2005 for a more thorough discussion). TEGs are a subclass of timed Petri
nets, with P = {p1, · · · , pn} the set of places, T = {t1, · · · , tm} the set of transitions and,
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A ⊆ (P ×T )∪(T ×P) the set of arcs connecting places with transitions and transitions with
places. pi is an upstream place of transition tj (and tj is a downstream transition of place
pi), if (pi, tj ) ∈ A. Conversely,pi is a downstream place of transition tj (and tj is an upstream
transition of place pi), if (tj , pi) ∈ A. For TEGs, each place pi has exactly one upstream
transition and exactly one downstream transition. Note that in TEGs, each arc has weight
1. Moreover, each place pi exhibits an initial marking M0

i ∈ N0 and a nonnegative holding
time φi ∈ N0. A transition tj can fire if the marking in every upstream place is at least 1. If
tj fires, the marking Mi in every upstream place pi is reduced by 1 and the marking Mo in
every downstream place po is increased by 1. The holding time φi is the time a token must
remain in place pi before it contributes to the firing of the downstream transition of pi .
We can partition the set of transitions of a TEG into input, output and internal transitions.
Input transitions are transitions without upstream places. Output transitions are transitions
without downstream places, and all other transitions are called internal transitions.

Definition 1 (Earliest Functioning Rule) A TEG is operating under the earliest function-
ing rule if all internal and output transitions are fired as soon as they are enabled.

For the purpose of modelling a TEG, a dater function x : Z → Zmax (Zmax := Z ∪
{±∞}) is associated to each transition. x(k) gives the time (or date) when the transition
fires the (k + 1)st time. Note that dater functions are nondecreasing (Baccelli et al. 1992),
i.e. x(k + 1) ≥ x(k). Note that we assume that time is discrete and takes values in Zmax .

Example 1 Consider the TEG of Fig. 1. By assigning u1 (resp. u2) to the input transition t1
(resp. t2), x1 (resp. x2) to internal transition t3 (resp. t4) and y to the output transition t5, the
behaviour of the TEG can be described by the following inequalities

x1(k) ≥ max(x2(k − 2), u1(k) + 1, u2(k − 1) + 3),

y(k) ≥ x2(k) ≥ x1(k) + 2.

If the TEG operates under the earliest functioning rule, its behaviour is described by
equations instead of inequalities,

x1(k) = max(x2(k − 2), u1(k) + 1, u2(k − 1) + 3),

y(k) = x2(k) = x1(k) + 2. (1)

2.2 Dioid theory

In this section we briefly recall some basic facts on dioids and discuss (max,+)-algebra as
a specific case. Formally, a dioid is an algebraic structure that consists of a set D equipped

Fig. 1 A simple TEG
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with two binary operations, ⊕ (addition) and ⊗ (multiplication). Addition is commutative,
associative and idempotent (i.e. ∀a ∈ D, a ⊕ a = a). The neutral element for addition
(or zero element), denoted by ε, is absorbing for multiplication (i.e., ∀a ∈ D, a ⊗ ε =
ε⊗a = ε). Multiplication is associative, distributive over addition and has a neutral element
(or unit element) denoted by e. Note that, as in conventional algebra, the multiplication
symbol ⊗ is often omitted. Both operations can be extended to the matrix case. For matrices
A, B ∈ Dm×n and C ∈ Dn×q , matrix addition and multiplication are defined by

(A ⊕ B)ij := Aij ⊕ Bij , (A ⊗ C)ij :=
n⊕

k=1

(
Aik ⊗ Ckj

)
.

Moreover, the dioid structure carries over to the case of matrices, if nonsquare matrices are
suitably extended by zero rows or columns (for details see Baccelli et al. 1992). A dioid D
is said to be complete if it is closed for infinite sums and if multiplication distributes over
infinite sums. On a complete dioid, the Kleene star of an element a ∈ D, denoted a∗, is
defined by a∗ = ⊕∞

i=0 ai with a0 = e and ai+1 = a ⊗ ai . In any dioid, there is an order
naturally defined by a 
 b ⇔ a ⊕ b = b.

Theorem 1 (Baccelli et al. 1992) On a complete dioidD, x = a∗b is the least (in the sense
of 
) solution of the implicit equation x = ax ⊕ b.

A TEG can be conveniently modelled as a linear system in a particular dioid called
(max,+)-algebra. The (max,+)-algebra is the set Zmax endowed with max as addition ⊕ and
+ as multiplication ⊗, e.g., 5 ⊗ 4 ⊕ 7 = max(5 + 4, 7) = 9. Moreover, the zero element
is ε = −∞ and the unit element is e = 0, respectively. By convention (∞) ⊗ (−∞) =
−∞ = ε.

Example 2 In the (max,+)-algebra, the system Eq. 1 is expressed as

x1(k) = x2(k − 2) ⊕ 1u1(k) ⊕ 3u2(k − 1),

y(k) = x2(k) = 2x1(k). (2)

2.3 DioidMax
in [[γ , δ]]

Using the dioid Max
in [[γ, δ]], it is straightforward to obtain transfer functions for TEGs. It

was formally introduced in Baccelli et al. (1992) and Gaubert and Klimann (1991), and
is based on the event-shift operator γ ν and time-shift operator δτ with τ, ν ∈ Z. These
operators map dater functions to dater functions in the following way:

(
γ νx

)
(k) = x(k − ν) and

(
δτ x

)
(k) = x(k) + τ . (3)

For both operators, addition is defined as follows

((γ ν ⊕ γ ν′
)x)(k) := (γ νx ⊕ γ ν′

x)(k) = (γ νx)(k) ⊕ (γ ν′
x)(k),

((δτ ⊕ δτ ′
)x)(k) := (δτ x ⊕ δτ ′

x)(k) = (δτ x)(k) ⊕ (δτ ′
x)(k).

Furthermore, the operators γ ν and δτ commute, i.e. γ νδτ = δτ γ ν , and obey the
following simplification rules,

γ ν ⊕ γ ν′ = γ min(ν,ν′), δτ ⊕ δτ ′ = δmax(τ,τ ′). (4)

Max
in [[γ, δ]] is then the dioid of power series in γ and δ with Boolean coefficients ẽ, ε̃ and

exponents in Z, with a quotient structure induced by the simplification rules Eq. 4. A series
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s ∈ Max
in [[γ, δ]] is written as s = ⊕

ν,τ∈Z s(ν, τ )γ νδτ with s(ν, τ ) ∈ {ẽ, ε̃}. Furthermore,
for s1, s2 ∈ Max

in [[γ, δ]] addition and multiplication is defined as

s1 ⊕ s2 =
⊕

ν,τ∈Z

(
s1(ν, τ ) ⊕ s2(ν, τ )

)
γ νδτ ,

s1 ⊗ s2 =
⊕

ν,τ∈Z

( ⊕

n + n′ = ν

t + t ′ = τ

(
s1(n, t) ⊗ s2(n

′, t ′)
) )

γ νδτ .

The unit element is denoted by e = ẽγ 0δ0 and the zero element is denoted by ε =⊕
ν,τ∈Z ε̃γ νδτ .

Example 3 With the γ and δ operators, system Eq. 2 can be expressed by x1 = γ 2x2 ⊕
δ1u1 ⊕ γ 1δ3u2, y = x2 = δ2x1. Or, equivalently, with x = [

x1 x2
]T

, u = [
u1 u2

]T
, in

matrix form x = Ax ⊕ Bu; y = Cx, where

A =
[

ε γ 2

δ2 ε

]
, B =

[
δ1 γ 1δ3

ε ε

]
, C = [

ε e
]

.

Due to Theorem 1, the least solution for the output y is given by y = Hu, with transfer
function matrix

H = CA∗B = [
δ3(γ 2δ2)∗ γ 1δ5(γ 2δ2)∗

]
.

A dater function u : Z → Zmax can be expressed as a series in Max
in [[γ, δ]], such that

su =
⊕

{k|−∞<u(k)<∞}
γ kδu(k) ⊕

⊕

{k|u(k)=∞}
γ kδ∗,

see Baccelli et al. (1992) and Cohen et al. (1991). By expressing an input u as a series in
Max

in [[γ, δ]], the least output y of a single-input and single-output (SISO) system can be
obtained as the product of the transfer function h and the input series su, i.e., sy = (h⊗su) ∈
Max

in [[γ, δ]], where sy is the series associated to the output counter y (Cohen et al. 1991).
As in conventional systems theory, there is a link between the impulse response and the
transfer function of a system. An impulse is a specific dater function I such that:

I(k) =
{−∞, for k < 0,

0, for k ≥ 0.
(5)

Choosing an impulse as the input of a SISO TEG means that its input transition fires
infinitely often at time 0. This input can be expressed as a series in Max

in [[γ, δ]], s =⊕
k≥0 γ kδ0 = γ 0δ0 = e and we have h = he, i.e., the transfer function is the impulse

response in Max
in [[γ, δ]] (Baccelli et al. 1992; Cohen et al. 1991). In Hardouin et al. (2009),

software tools are introduced for the computation of rational expressions of periodic series
(matrices) in Max

in [[γ, δ]].

3 Periodic time-variant event graphs

In this section we discuss time-variant DES where the time behaviour changes in a periodic
form. Such periodic timing phenomena occur for instance in traffic networks. As an exam-
ple, let us consider a crossroad which is controlled by a traffic light. A vehicle can only
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cross during the green phase. If it reaches the crossing during this phase, it can immedi-
ately proceed. But if it reaches the crossing during the red phase, it has to wait for the next
green phase. The vehicle is delayed by a time that depends on its time of arrival. Under the
assumption that the behaviour of the traffic light is periodic, the crossroad can be modelled
as a nonstandard TEG where the timing behaviour of the traffic light is described by a peri-
odic mapping associated with a place. This periodic mapping H : Zmax → Zmax describes
the holding time of the place at each time instant ξ ∈ Zmax . We call such a mapping
holding-time-function, and it is defined as follows.

Definition 2 (holding-time-function H) A holding-time-function H : Zmax → Zmax is
an ω-periodic function, i.e., ∃ω ∈ N, ∀ξ ∈ Zmax : H(ξ) = H(ξ + ω).

Hence, ∀j ∈ Zmax

H(ξ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n0 if ξ = 0 + ωj,

n1 if ξ = 1 + ωj,
...

nω−1 if ξ = (ω − 1) + ωj,

(6)

where for i ∈ {0, · · · , ω − 1}, ni ∈ Z are the holding times in each period.
The short form of a holding-time-function is defined as a string 〈n0 n1 · · · nω−1〉. The

period ω is implicitly given by the number of elements in the string. For the modelling
process of TEGs in the (max,+)-algebra, it is necessary that tokens must enter and leave
each place in the same order (Baccelli et al. 1992)[Section 2.5.2]. In other words, a place
must respect a FIFO behaviour. This property leads to the following constraint on holding-
time-functions

∀ξ ∈ Zmax, H(ξ + 1) + 1 ≥ H(ξ). (7)

A holding-time-function which respects (7) is called FIFO holding-time-function. More-
over, a holding-time-function is called causal if all holding times are nonnegative, i.e.,
∀i ∈ {0, · · · , ω − 1}, ni ∈ N0.

Definition 3 (Periodic Time-variant Event Graph) A PTEG is a TEG where the holding
times of places are given by causal FIFO holding-time-functions.

Example 4 Consider the PTEG in Fig. 2a where the holding time of p1 is changing
according to, ∀j ∈ Zmax

H1(ξ) = 〈0 0 2 1〉 =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ξ = 0 + 4j,

0 if ξ = 1 + 4j,

2 if ξ = 2 + 4j,

1 if ξ = 3 + 4j .

The holding time is such that tokens enter and leave place p1 in the same order, hence the
function satisfies Eq. 7. In contrast, let us consider the TEG in Fig. 2a, where the holding
time of place p2 is changing according to H2(ξ) = 〈3 0 2 1〉. In this case tokens which
enter the place p2 at time instant ξ = 0 enable the firing of transition t4 at time instant
0 + H2(0) = 3. Tokens which enter the place p2 at time instant ξ = 1 immediately enable
the firing of t4, since H2(1) = 0. The function H2 violates the FIFO condition of p2, and
therefore the TEG in Fig. 2b is not in the class of PTEGs.
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Fig. 2 In (a) H1 = 〈0 0 2 1〉 satisfies the FIFO condition. In (b) H2 = 〈3 0 2 1〉 violates the FIFO condition

Example 5 Consider the following simple PTEG.

By associating a dater function x1 with transition t1 and a dater function x2 with transition
t2, the behaviour of this PTEG is described by

x2(k) ≥
⌈x1(k)

3

⌉
3 + 1, (8)

where �a� is the smallest integer greater than or equal to a. In standard TEGs, the effect of
constant holding times τ are expressed by inequalities of the form x2(k) ≥ x1(k) + τ . This
corresponds to a specific PTEG with H1 =< τ >. Hence, PTEG can describe a broader
class of behaviours. Moreover, when considering equality for Eq. 8, i.e., the earliest func-
tioning of the system, it is easy to see that this cannot be written as a (max,+)-linear equation.
In contrast standard TEGs, with constant holding times, have a linear representation in the
(max,+)-algebra, e.g., see Example 2.

Definition 4 (Release-time-function R) A release-time-function R : Zmax → Zmax is
defined as R(ξ) = H(ξ)+ξ , where H(ξ) is a FIFO holding-time-function. A release-time-
function is called causal if R(ξ) ≥ ξ, ∀ξ ∈ Zmax .

As H(ξ + 1) + 1 ≥ H(ξ), it follows that R(ξ + 1) = H(ξ + 1) + ξ + 1 ≥ H(ξ) +
ξ = R(ξ), i.e. R is nondecreasing. The release-time-function can be seen as an alternative
representation of the time-variant behaviour of a place in a PTEG. This function describes
the time when a token in a place is available to contribute to the firing of the downstream
transition of the place. The argument of this function is the time ξ when the token enters the
place and its value is the time when the token is available to leave the place. By defining
ni = n̄i + i, we can express a release-time-function as, ∀j ∈ Zmax

R(ξ) = H(ξ) + ξ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n0 + ωj if ξ = 0 + ωj,

n1 + ωj if ξ = 1 + ωj,
...

nω−1 + ωj if ξ = (ω − 1) + ωj .

(9)

Clearly, nonnegative holding-times ni (causal holding-time-functions) lead to causality
of R.
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Example 6 (PTEG) Figure 3 shows a PTEG with holding-time-functions of places
p1, p2, p3 given by

H1(ξ) = 〈0 0 2 1〉, H2(ξ) = 〈1〉, H3(ξ) = 〈1 3 2 1〉.
The corresponding release-time-functions are, ∀j ∈ Zmax ,

R1(ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

0 + 4j if ξ = 0 + 4j,

1 + 4j if ξ = 1 + 4j,

4 + 4j if ξ = 2 + 4j,

4 + 4j if ξ = 3 + 4j,

R2(ξ) = 1 + ξ,

R3(ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

1 + 4j if ξ = 0 + 4j,

4 + 4j if ξ = 1 + 4j,

4 + 4j if ξ = 2 + 4j,

4 + 4j if ξ = 3 + 4j .

In this example, place p2 has a constant holding time of 1 time unit, whereas the holding
times of places p1 and p3 are changing periodically with period 4. R1,R3, respectively
H1,H3, are illustrated in Fig. 4a, respectively, Fig. 4b.

The place p1 can be interpreted as the model of a traffic light which is green for time
instants {0, 1, 4, 5, · · · } and red for time instants {2, 3, 6, 7, · · · }. Therefore, if a car arrives
at times 2, 6, · · · it has to wait for 2 time instants, if it arrives at times 3, 7, · · · , it has to
wait for 1 time instant.

4 Introduction of timing operators

As in Baccelli et al. (1992), where TEGs are described by rational compositions of opera-
tors, we introduce a family of specific timing operators to handle time variation. Similar to
TEGs, for the modelling process of PTEGs, a dater function xi : Z → Zmax is associated
to each transition ti . Recall that xi(k) gives the date when the transition fires the (k + 1)st

time and that dater functions are nondecreasing functions, i.e., xi(k + 1) ≥ xi(k). The set
of dater functions is denoted by �, and on � addition, ⊕, and multiplication by constants,
⊗, are defined as follows:

x, y ∈ �, (x ⊕ y)(k) := max(x(k), y(k)),

λ ∈ Zmax, (λ ⊗ x)(k) := λ + x(k).

Fig. 3 (PTEG) with
holding-time-functions of places
p1, p2, p3 expressed in the short
form at each place
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Fig. 4 Release-time-function R1,R3 and holding-time-functions H1,H3 of places p1, p3

The ⊕ operation induces an order relation on �, i.e., ∀x, y ∈ �, x 
 y ⇔ x ⊕ y = y.
An operator ρ : � → � is linear if (a) ∀x, y ∈ � : ρ(x ⊕ y) = ρ(x) ⊕ ρ(y) and (b)
λ ⊗ ρ(x) = ρ(λ ⊗ x). An operator is additive if (a) is satisfied.

Definition 5 (Cottenceau et al. 2014a) The set of additive operators on � is denoted O. On
the set O, addition and multiplication is defined as follows: x ∈ �,∀ρ1, ρ2 ∈ O,

(ρ1 ⊕ ρ2)(x) = ρ1(x) ⊕ ρ2(x), (ρ1 ⊗ ρ2)(x) = ρ1(ρ2(x)).

Multiplication is not commutative, and the set O equipped with ⊗ and ⊕ is a non-
commutative complete dioid. The identity operator (unit element) is denoted by e : ∀x ∈
�, (e(x))(k) = x(k), and the zero operator (zero element) is denoted by ε : ∀x ∈
�, (ε(x))(k) = −∞. To simplify notation, we usually write ρx instead of ρ(x).

Definition 6 (Basic operators in PTEGs) Dynamic phenomena arising in PTEGs can be
described by the following basic additive operators in O:

ς ∈ Z, δς : ∀x ∈ �, (δςx)(k) = x(k) + ς, (10)

ν ∈ Z, γ ν : ∀x ∈ �, (γ νx)(k) = x(k − ν), (11)

ω ∈ N, �ω : ∀x ∈ �, (�ωx)(k) = �x(k)/ω�ω, (12)

where �a� is the smallest integer greater than or equal to a.

The identity operator can be expressed as: e = γ 0 = δ0 = �1. In particular, the �ω oper-
ator models a time-variant delay behaviour. For example, consider transitions t1 and t2 with
associated dater functions x1 and x2. Then, x2 = �4x1 implies x2(k) = �x1(k)/4�4,∀k ∈
Z. Hence, if the (k + 1)st firing of t1 is at time instant x1(k) = 5, the (k + 1)st fir-
ing of t2 is at x2(k) = 8, and the delay is 3. If the (k + 1)st firing t1 is at time instant
x1(k) = 8, the (k + 1)st firing time of t2 is at x2(k) = 8, and the delay is 0. Clearly,
this operator is nonlinear as �4(λ ⊗ x) �= λ ⊗ �4(x). E.g., for λ = 1 and x(k) = 1
(�4(λ ⊗ x))(k) = �(λ + x(k))/4�4 = 4 �= λ + �x(k)/4�4 = 5.
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Proposition 1 The basic operators (10)–(12) satisfy the following relations

δς δς ′ = δς+ς ′
, γ νγ ν′ = γ ν+ν′

, (13)

δς ⊕ δς ′ = δmax(ς,ς ′), γ ν ⊕ γ ν′ = γ min(ν,ν′), (14)

δ1γ 1 = γ 1δ1, �ωγ 1 = γ 1�ω, (15)

�ωδς = δ� ς
ω

�ω�ωδς−� ς
ω

�ω, δς�ω = δς−� ς
ω

�ω�ωδ� ς
ω

�ω, (16)

�ωδς�ω = δ� ς
ω

�ω�ω. (17)

Proof See Baccelli et al. (1992) for Eqs. 13, 14, 15 and Appendix C1 for Eqs. 16, 17.

4.1 A dioid of time operators

Definition 7 (Dioid of T-operators T ) We denote by T the dioid of operators obtained
by addition and composition of operators in {ε, e, δς ,�ω}, with ς ∈ Z, and ω ∈ N. The
elements of T are called T-operators (T is for time).

For example, δ3�4δ
1 ⊕ δ2�3 ∈ T . Note that the operator γ ν is not in T . A T-operator v

describes the input-output delay occurring in a system and can be represented by a release-
time-function Rv . The release-time-function associated with v is obtained by replacing x(k)

by ξ in the expression of v(x)(k), e.g., ((δ3�4δ
1 ⊕ δ2�3)x)(k) = max(3 + �(x(k) +

1)/4�4, 2 + �x(k)/3�3) and therefore Rδ3�4δ
1⊕δ2�3

(ξ) = max(3 + �(ξ + 1)/4�4, 2 +
�ξ/3�3). A T-operator v is said to be causal if its corresponding release-time-function Rv is
causal. Then Rv can be realized as a causal holding-time-function associated with a place
in a PTEG. Furthermore we define periodicity for a T-operator as follows.

Definition 8 A T-operator v ∈ T is called ω-periodic if its corresponding release-time-
function Rv satisfies, ∀ξ ∈ Zmax ,

Rv(ξ + ω) = ω + Rv(ξ).

For instance, the �4 operator is 4-periodic and the δ2�3 operator is 3-periodic, but of
course δ2�3 is not 4-periodic. In general all operators v ∈ T are ω-periodic for some
ω. There is an isomorphism between the set of T-operators and the set of release-time-
functions. The order relation over the dioid T corresponds to the order induced by the max
operation on the release-time-functions. For v1, v2 ∈ T ,

v1 � v2 ⇔ v1 ⊕ v2 = v1 ⇔ v1x ⊕ v2x = v1x ∀x ∈ �,

⇔ (v1x)(k) ⊕ (v2x)(k) = (v1x)(k) ∀x ∈ �, ∀k ∈ Z,

⇔ Rv1(ξ) ≥ Rv2(ξ) ∀ξ ∈ Zmax . (18)

Clearly, ∀ξ ∈ Zmax, Rv(ξ) ≥ Rv(ξ) − 1 = Rδ−1v(ξ), furthermore nondecreasingness of
Rv implies that: ∀ξ ∈ Zmax, Rv(ξ) ≥ Rv(ξ − 1) = Rvδ−1(ξ), therefore v � δ−1v and
v � vδ−1. This leads to the following equalities for v ∈ T ,

v = v(δ−1)∗ = (δ−1)∗v. (19)

A simple element in T is defined as: δς�ωδς ′
. A simple sum in T is a finite sum of

simple elements, i.e.
⊕I

i=0 δςi �ωi
δς ′

i . A simple element δς�ωδς ′
corresponds to a release-

time-function: R(ξ) = ς + �(ξ + ς ′)/ω�ω. Figure 5a illustrates the release-time-function
Rδ2�4δ

-1 of simple element δ2�4δ
−1. Because of Eq. 18, the shaded area corresponds to
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Fig. 5 a Rδ2�4δ-1 (ξ) > Rδ1�4δ-2 (ξ) ∀ξ , i.e., δ2�4δ
-1 � δ1�4δ

-2. b δ-3�4δ
0 and δ0�4δ

-1 are not
comparable

the domain of T-operators less than or equal to δ2�4δ
−1. Consider now the release-time-

function Rδ1�4δ
-2 associated with the operator δ1�4δ

−2. Rδ1�4δ
-2 is completely covered

by Rδ2�4δ
-1 (Rδ1�4δ

-2 is beneath “in the shade of” Rδ2�4δ
-1 ) and therefore δ1�4δ

−2 

δ2�4δ

−1. However, two operators can also be incomparable, e.g., δ−3�4δ
0
� δ0�4δ

−1 and
δ−3�4δ

0
� δ0�4δ

−1. Therefore we cannot simplify the expression δ−3�4δ
0 ⊕ δ0�4δ

−1,
see Fig. 5b.

Note that the representation of a simple element is not unique since, because of Eq. 16, δω

commutes with the �ω operator, i.e., δς�ωδς ′ = δς+ω�ωδς ′−ω. To simplify calculations
we define a canonical form for simple elements. A simple element δς�ωδς ′

can always be
written in canonical form such that −ω < ς ′ ≤ 0. This follows from Eq. 16. We choose

this particular form, since, for −ω < ς ′ ≤ 0, R
δς�ωδς ′ (0) = ς +

⌈
0+ς ′

ω

⌉
ω = ς . As, in

general R
δς�ωδς ′ (ξ) = ς + iω for −ς ′ + (i − 1)ω < ξ ≤ −ς ′ + iω, the ordering of two

simple elements δς1�ωδς ′
1 and δς2�ωδς ′

2 in canonical form can be checked by

δς1�ωδς ′
1 � δς2�ωδς ′

2 ⇔
{

ς1 ≥ ς2 and ς ′
1 ≥ ς ′

2,

or ς1 − ω ≥ ς2.
(20)

Proposition 2 A release-time-function R(ξ), as given in Eq. 9, can be expressed by an
operator p ∈ T in the following form:

p = δn0�ωδ1−ω ⊕ δn1−ω�ω ⊕ δn2−ω�ωδ−1 ⊕ . . . ⊕ δnω−1−ω�ωδ2−ω

= δn0�ωδ1−ω ⊕
ω−1⊕

i=1

δni−ω�ωδ1−i (21)

Proof See Appendix C2.

Corollary 1 Since H(ξ) = R(ξ) − ξ , the T-operator associated with a holding-time-
function 〈n0 n1 · · · nω−1〉 can be obtained by

p = δn0�ωδ1−ω ⊕
ω−1⊕
i=1

δni+(i−ω)�ωδ1−i .
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Proof This follows immediately from ni = n̄i + i.

Recall that the operator p ∈ T associated with a causal release-time-function R(ξ) is
causal.

Example 7 Consider H1(ξ) = 〈0 0 2 1〉 given in Example 6. This holding-time-function
corresponds to an operator given by

p = δ0�4δ
−3 ⊕ δ−3�4δ

0 ⊕ δ0�4δ
−1 ⊕ δ0�4δ

−2,

= δ−3�4δ
0 ⊕ δ0�4δ

−1 ⊕ δ0�4δ
−2 ⊕ δ0�4δ

−3,

= δ−3�4 ⊕ �4(δ
−1 ⊕ δ−2 ⊕ δ−3) = δ−3�4 ⊕ �4δ

−1,

because of Eq. 14: δ−1 ⊕ δ−2 ⊕ δ−3 = δ−1. Respectively, H3(ξ) = 〈1 3 2 1〉 corresponds
to the operator �4 ⊕ δ1�4δ

−3.

Proposition 3 (Canonical form of an ω-periodic T-operator) An ω-periodic operator
v ∈ T has a canonical form given by a finite sum: v = ⊕I

i=1 δςi �ωδς ′
i of canonical simple

elements where I is minimal. Furthermore, the simple elements are strictly ordered such
that ∀i ∈ {1, · · · , I − 1}, ςi < ςi+1.

Proof Recall the isomorphism between T-operators and release-time-functions. Because of
Proposition 2 the release-time-function Rv of operator v ∈ T can be represented by a finite
sum of simple elements in T . The canonical expression can then be obtained by removing
dominated elements according to the order relation in Eq. 20.

Remark 1 For a canonical T-operator (
⊕I

i=1 δςi �ωδς ′
i ), I ≤ ω.

Remark 2 Note that in the canonical form of v, every basic � operator has the same period
ω and therefore vδω = δωv.

Remark 3 Clearly an ω-periodic T-operator is also nω-periodic, with n ∈ N. Thus an ω-
periodic T-operator v can be represented as an nω-periodic T-operator. This form can be
obtained by expressing the release-time-function Rv of v with a multiple period and then
applying Proposition 2.

4.2 DioidT ∗[[γ ]]
Since the γ operator commutes with all T-operators, see Eq. 15, we can define a dioid of
formal power series in the variable γ with coefficients in T and exponents in Z. All elements
of this dioid can be written as

⊕
i viγ

i , with vi ∈ T .

Definition 9 (Dioid T ∗[[γ ]]) We denote by T ∗[[γ ]] the quotient dioid in the set of formal
power series in one variable γ with exponents in Z and coefficients in the noncommutative
complete dioid T induced by the equivalence relation, ∀s ∈ T ∗[[γ ]],

s = (γ 1)∗s = s(γ 1)∗. (22)

A monomial in T ∗[[γ ]] is defined by vγ ν , where v ∈ T . A polynomial is a finite sum
of monomials, i.e.,

⊕
i viγ

ν
i . Moreover, we call a monomial in T ∗[[γ ]] simple, if it can be
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written as δς�ωδς ′
γ ν , i.e., if v is a simple element in T . A series s ∈ T ∗[[γ ]] can be written

as s = ⊕
ν∈Z s(ν)γ ν , where s(ν) ∈ T .

Definition 10 Let s1, s2 ∈ T ∗[[γ ]], then addition and multiplication are defined by

s1 ⊕ s2 =
⊕

ν∈Z

(
s1(ν) ⊕ s2(ν)

)
γ ν,

s1 ⊗ s2 =
⊕

ν∈Z

⎛

⎝
⊕

n+n′=ν

(
s1(n) ⊗ s2(n

′)
)
⎞

⎠ γ ν .

As before, ⊕ defines an order on T ∗[[γ ]], i.e., for a, b ∈ T ∗[[γ ]], a ⊕ b = b ⇔ a 
 b.
The quotient structure in T ∗[[γ ]], given by Eq. 22, is interpreted as a simplification rule
on T ∗[[γ ]]. Given two monomials m1 = v1γ

ν1 , m2 = v2γ
ν2 with v1, v2 ∈ T then

m1 � m2, iff v1 � v2 and ν1 ≤ ν2. Consider, for example, the polynomial δ2�4δ
−1γ 1 ⊕

δ1�4δ
−3γ 7. Because of Eq. 20, δ2�4δ

−1 � δ1�4δ
−3 (in the dioid T ), the second mono-

mial, δ1�4δ
−3γ 7, is dominated by δ2�4δ

−1γ 1, therefore δ2�4δ
−1γ 1 ⊕ δ1�4δ

−3γ 7 =
δ2�4δ

−1γ 1.
A series s = ⊕

i viγ
νi ∈ T ∗[[γ ]] has a graphical representation in Z

2
max × Z. For

every exponent νi ∈ Z the coefficient vi is represented by its release-time-function Rvi
in

the (input-time × output-time) plane. For instance, recalling that the release-time-function
Rδ2�4δ

−1 of δ2�4δ
−1 is given in Figs. 5a, 6a illustrates the graphical representation of

δ2�4δ
−1γ 1 = δ2�4δ

−1γ 1 ⊕ δ2�4δ
−1γ 2 ⊕ δ2�4δ

−1γ 3 ⊕ · · · . For every event-shift value
k ≥ 1 the (input-time × output-time) plane in Fig. 6a shows the release-time-function
Rδ2�4δ

−1 . Figure 6b shows the graphical representation of

δ2�4δ
−1γ 1 ⊕ δ3�4δ

−2γ 4 = (δ2�4δ
−1)γ 1γ ∗ ⊕ (δ3�4δ

−2)γ 4γ ∗

=
⊕

i

viγ
i ,

with vi = δ2�4δ
−1, for i = 1, 2, 3 and vi = δ2�4δ

−1 ⊕ δ3�4δ
−2 for i ≥ 4. Here

for the event shift values k = 1, 2, 3 the release-time-function Rδ2�4δ
−1 is depicted in

the (input-time × output-time) plane and respectively for event shift values k > 3 the
release-time-function Rδ2�4δ

−1⊕δ3�4δ
−2 .

Remark 4 Let us note that, due to Proposition 3 and Remark 3 a polynomial p =⊕I
i=1 viγ

ni ∈ T ∗[[γ ]] can always be represented as

p =
I⊕

i=1

⎛

⎝
Ji⊕

j=1

δςij �ωδ
ς ′
ij

⎞

⎠ γ ni . (23)

In this form, all monomials of the polynomial p have the same period ω, Ji ≤ ω.

Definition 11 (Ultimately Periodic Series in T ∗[[γ ]]) A series s ∈ T ∗[[γ ]] is said to
be ultimately periodic if it can be written as s = p ⊕ q(γ νδτ )∗, where ν, τ ∈ N0
and p, q are polynomials in T ∗[[γ ]]. Moreover, the asymptotic slope of s is defined by
σ(s) := ν/τ .

Remark 5 Note that a polynomial p = ⊕I
i=1 viγ

ni can be considered as a specific
ultimately periodic series s = ε ⊕ p(γ 0δ0)∗ where ν = 0 and τ = 0.
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Proposition 4 An ultimately periodic series s ∈ T ∗[[γ ]], s = p⊕q ′(γ ν′
δτ ′

)∗ has a specific
form s = p ⊕ q(γ νδτ )∗ in which (γ νδτ )∗ commutes with the polynomial q, i.e., s =
p ⊕ q(γ νδτ )∗ = p ⊕ (γ νδτ )∗q. We call this form commute form.

Proof For s = p ⊕ q ′(γ ν′
δτ ′

)∗, the polynomial q ′ can be represented with a com-
mon period ω, see Eq. 23. Then we can choose τ such that it is a multiple of ω, i.e.,
τ = lτ ′ = lcm(τ ′, ω), thus the monomial δτ γ ν commutes with q. Now we rewrite (γ ν′

δτ ′
)∗

as q̄(γ νδτ )∗ = (e ⊕ γ νδτ ⊕ · · · ⊕ γ (l−1)νδ(l−1)τ )(γ νδτ )∗. Finally q = q̄ ⊗ q ′.

4.3 Operations in the dioidT ∗[[γ ]]
When we want to compute the transfer function of a given PTEG, we have to perform
addition, multiplication and the Kleene star operation on series s ∈ T ∗[[γ ]]. We investigate
these calculations in this section. The product of two simple monomials in T ∗[[γ ]] with the
same period ω is a simple monomial in T ∗[[γ ]]. Because of Eq. 17,

δς1�ωδς ′
1γ ν1 ⊗ δς2�ωδς ′

2γ ν2 = δς1+�(ς ′
1+ς2)/ω�ω�ωδς ′

2γ ν1+ν2 .

The Kleene star of a simple monomial m = δς�ωδς ′
γ ν is an ultimately periodic series in

T ∗[[γ ]] and can be obtained by

m∗ = e ⊕ δς�ωδς ′
γ ν ⊕ δς�ωδς ′

γ νδς�ωδς ′
γ ν ⊕ · · ·

= e ⊕
(
δ�(ς+ς ′)/ω�ωγ ν

)∗
δς�ωδς ′

γ ν . (24)

Hence, the Kleene star of a simple monomial in T ∗[[γ ]] can be calculated based on the
Kleene star of a monomial in the dioid Max

in [[γ, δ]], as δ�(ς+ς ′)/ω�ωγ ν is a monomial in
Max

in [[γ, δ]]. Clearly �(ς + ς ′)/ω�ω is a multiple of ω, therefore

m∗ = e ⊕ δς�ωδς ′
γ ν

(
δ�(ς+ς ′)/ω�ωγ ν

)∗
.

In the following we extend the basic operations (⊕, ⊗ and ∗) for simple monomials to poly-
nomials and ultimately periodic series in T ∗[[γ ]]. The sum of polynomial p1 ∈ T ∗[[γ ]] with

Fig. 6 a graphical representation of δ2�4δ
−1γ 1 and b graphical representation of δ2�4δ

−1γ 1⊕δ3�4δ
−2γ 4.

To improve the readability the 3D representations have been truncated to positive values
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period ω1 and p2 ∈ T ∗[[γ ]] with period ω2 can be obtained by expressing both polynomials
with common period ω = lcm(ω1, ω2) see Remark 4. Then,

p1 ⊕ p2 =
I⊕

i=1

⎛

⎝
Ji⊕

j=1

δ
ςij �ωδ

ς ′
ij

⎞

⎠ γ ni ⊕
L⊕

l=1

⎛

⎝
Kl⊕

k=1

δτlk �ωδ
τ ′
lk

⎞

⎠ γ νl , (25)

where Ji ≤ ω, Kl ≤ ω. The complexity of this operation is O(ω(I + L)).

Proposition 5 (Product of polynomials) Let p1 = ⊕I
i=1 viγ

ni with period ω1 and p2 =⊕L
l=1 v̄lγ

νl with period ω2 be two polynomials in T ∗[[γ ]], then the product p1 ⊗p2 is again
a polynomial in T ∗[[γ ]] with period ω = lcm(ω1, ω2). The complexity of the operation is
O(2ωIL).

Proof See Appendix C3.

The domination lemma given in Gaubert (1992) for series in Max
in [[γ, δ]] can be adapted

to series in T ∗[[γ ]] as follows.

Lemma 1 (Ultimate domination) Let s1 = δς1�ωδς ′
1γ n1(γ ν1δτ1)∗ ∈ T ∗[[γ ]] and s2 =

δς2�ωδς ′
2γ n2(γ ν2δτ2)∗ ∈ T ∗[[γ ]] be two series in the commute form (Proposition 4) with

asymptotic slopes σ(s1) = τ1/ν1 > σ(s2) = τ2/ν2 then there exists a nonnegative integer
K ∈ N such that,

δς2�ωδς ′
2γ n2(γ Kν2δKτ2)(γ ν2δτ2)∗ 
 s1. (26)

Therefore, s1 ultimately dominates s2.

Proof See Appendix C4.

Proposition 6 (Sum of series) The sum of two ultimately periodic series s1, s2 ∈
T ∗[[γ ]] is an ultimately periodic series with an asymptotic slope given by σ(s1 ⊕ s2) =
max(σ (s1), σ (s2)).

Proof See Appendix C5.

Proposition 7 (Product of series) Let s1, s2 ∈ T ∗[[γ ]] be two ultimately periodic series,
then the product s1 ⊗ s2 is again an ultimately periodic series in T ∗[[γ ]] with an asymptotic
slope σ(s1 ⊗ s2) = max (σ (s1), σ (s2)).

Proof See Appendix C6.

Proposition 8 (Kleene star of a polynomial) The Kleene star of a polynomial p ∈ T ∗[[γ ]]
(p = ⊕I

i=1 δςi �ωδς ′
i γ ni ) is an ultimately periodic series in T ∗[[γ ]].

Proof See Appendix C7.

Proposition 9 (Kleene star of a series) The Kleene star of an ultimately periodic series
s ∈ T ∗[[γ ]] is again an ultimately periodic series in T ∗[[γ ]].
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Proof See Appendix C8.

Moreover, in Appendix C5, C6, C8 it is shown that operations between ultimately
periodic series can be reduced to operations between polynomials. The size of those poly-
nomials (i.e., the number of their constituent monomials) depend of the point K of ultimate
domination of the positive integer introduced in Lemma 1. Hence, complexity of operations
between series also critically depends on this point.

Let us note that the dioid T ∗[[γ ]] with periodic time operators is the counterpart to the
dioid E∗[[δ]] with periodic event operators introduced in Cottenceau et al. (2014a). The
dioid E∗[[δ]] is used to model dynamic phenomena arising in Weight-Balanced Timed Event
Graphs (Cottenceau et al. 2014a; Cottenceau et al. 2017).

5 Modelling of PTEGs

We can use T-operators and the event shift operator γ to describe the transfer behaviour
of PTEGs. The firing-relation between the two transitions ti , tj in Fig. 7 is represented by

xj = vkγ
M0

k xi , where M0
k is the initial marking in place pk , vk is the T-operator associated

with the holding-time-function Hk of place pk and xi, xj are the dater functions associated
with ti , tj . Thus, the relation between input, output and internal transitions of a general
PTEG can be modelled by

x = Ax ⊕ Bu, y = Cx, (27)

where x (resp. u, y) refers to vector of dater functions of the n internal (resp. m input, p

output) transitions of the PTEG. The relations between internal transitions are modelled by
the system matrix A ∈ T ∗[[γ ]]n×n, the relation between input and internal transitions by
the input matrix B ∈ T ∗[[γ ]]n×m, and the relation between internal and output transitions
by the output matrix C ∈ T ∗[[γ ]]p×n. This modelling procedure is similar to the modelling
procedure of TEGs in Max

in [[γ, δ]], see Example 3.

Example 8 Consider the PTEG in Fig. 3 of Example 6. The firing relation between its
transitions can be modelled by the following representation

x = [
(�4 ⊕ δ1�4δ

−3)γ 2
]
x ⊕ [

δ−3�4 ⊕ �4δ
−1

]
u,

y = [
δ1
]
x,

where �4 ⊕ δ1�4δ
−3 and δ−3�4 ⊕ �4δ

−1 are the T-operators corresponding to H3 =
〈1 3 2 1〉 and H1 = 〈0 0 2 1〉, see Example 7.

Fig. 7 Simple PTEG with
transitions ti , tj and place pk
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Theorem 2 (Transfer function matrix of PTEG) The input-output behaviour of an m-
input and p-output PTEG, defined by Eq. 27, can be represented by a transfer function
matrix H ∈ T ∗[[γ ]]p×m of ultimately periodic series in T ∗[[γ ]]. This transfer function
matrix is obtained by H = CA∗B.

Proof Holding-time-functions in PTEGs correspond to causal periodic T ∗[[γ ]]-operators
(Proposition 2). Note that because of Remark 5 a monomial (resp. polynomial) in T ∗[[γ ]]
can be expressed as an ultimately periodic series. Hence, the entries of the A,B, C matrices
are composed of ultimately periodic series in T ∗[[γ ]]. Due to Proposition 6, Proposition 7
and Proposition 9 the sum, product and Kleene star of ultimately periodic series in T ∗[[γ ]]
are again ultimately periodic series in T ∗[[γ ]]. Therefore the matrix CA∗B is composed of
ultimately periodic series in T ∗[[γ ]].

As indicated above, the entries of the A∗ matrix are ultimately periodic series in T ∗[[γ ]].
The domination point between series depend on their asymtotic slope and therefore on the
circuits of the PTEG, in particular on their marking and time configuration. As argued in
Section 4, complexity of operations on series depend critically on the point of domination
between these series. Hence the complexity of forming an transfer function matrix is criti-
cally affected by the circuits of the PTEG. In Max

in [[γ, δ]], we have a similar situation, but
without the dependence on a time-variant holding times. Hence, the complexity difference
between the class of TEGs and PTEGs is the multiplication factor related to the period-
icity of time operators �. Finally let us note that in Bouillard and Thierry (2008) more
detailed results on operational complexity are given for the class of network calculus, which
is similar to operations in Max

in [[γ, δ]].

Example 9 (Transfer function) Consider the PTEG in Fig. 3 of Example 6. We can describe
the firing relation between input transition t1 and output transition t3 by a transfer function
h in T ∗[[γ ]], i.e., y = hu, where

h = δ1[(δ1�4δ
−3 ⊕ �4)γ

2]∗(δ−3�4 ⊕ �4δ
−1)

= (γ 4δ4)∗
(
(δ1�4δ

−1 ⊕ δ−2�4) ⊕ (δ1�4 ⊕ δ2�4δ
−1)γ 2

)

=
(
δ1�4δ

−1 ⊕ δ−2�4

)
γ 0 ⊕

(
δ1�4 ⊕ δ2�4δ

−1
)

γ 2

⊕
(
δ5�4δ

−1 ⊕ δ2�4

)
γ 4 ⊕

(
δ5�4 ⊕ δ6�4δ

−1
)

γ 6 ⊕ · · ·
This transfer function has a graphical representation, see Fig. 8a.

5.1 Impulse response of a SISO PTEG

An impulse is a specific dater function I(k), see Eq. 5. As in conventional linear systems
theory, the impulse response of a (max,+) linear system provides complete knowledge
of the input-output behaviour, see Baccelli et al. (1992) and the paragraph immediately
following Eq. 5. More precisely, the system’s impulse response equals its transfer func-
tion. In contrast, the impulse response of a PTEG is not sufficient to describe its complete
behaviour, because a PTEG is a time-variant system. Hence, the moment when the impulse
is applied matters. One single impulse gives only partial information. In order to obtain
complete knowledge, we need the system responses of ω consecutive time shifted impulses,
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Fig. 8 a transfer function h of Example 9. b the gray slice at input time 2 (resp. time 8) (event-shift/output-
time plane) corresponds to the response to an impulse at time 2: δ2I (resp. time 8: δ8I) of the system
(Example 10)

i.e. δςI, ς ∈ {0, · · · , ω − 1}. Each single response corresponds then to one slice in the
3D representation of the transfer function. The impulse response of a simple monomial
δς�ωδς ′

γ ν is given by
(
δς�ωδς ′

γ νI
)

(k) =
⌈I(k − ν) + ς ′

ω

⌉
ω + ς = I(k − ν) +

⌈ς ′

ω

⌉
ω + ς,

= I(k − ν) + R
δς�ωδς ′ (0).

As I(k − ν) = 0 for k − ν ≥ 0 and −∞ otherwise, the impulse response of a sim-
ple monomial is again an impulse which is event-shifted by ν units and time-shifted by

R
δς�ωδς ′ (0) = ς + � ς ′

ω
�ω units, i.e., δς�ωδς ′

γ νI = δ(ς+� ς ′
ω

�ω)γ νI . For a simple canon-

ical monomial δς�ωδς ′
, with −ω < ς ′ ≤ 0, this reduces to δς�ωδς ′

γ νI = δςγ νI . The
impulse response of a series s = p ⊕ qr∗ ∈ T ∗[[γ ]] can be obtained by applying the above
rule to every simple monomial in the p (resp. q) polynomial of s.

Example 10 The response of an impulse at time 2 of the system in Example 6 - with a
transfer function given in Example 9 - is (δ5 ⊕ δ6γ 2)(γ 4δ4)∗I . This response corresponds
to the slice at input-time 2 (event-shift/output-time plane) in Fig. 8b. The system response
of an impulse at time 8 is (δ9 ⊕ δ10γ 2)(γ 4δ4)∗I . We can interpret the 3D representation of
a transfer function in T ∗[[γ ]] as the juxtaposition of its time-shifted impulse responses.

6 Control of PTEGs

In general, the product in a dioid is not invertible. However, with residuation theory it is
possible to find a greatest solution of inequality A ⊗ X 
 B. Therefore, this theory is
suitable to solve some model matching control problems for PTEGs. This approach is well
known for TEGs, see e.g., Baccelli et al. (1992).
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6.1 Complete dioids and residuation theory

Residuation theory is a formalism to address the problem of approximate mapping inver-
sion over ordered sets, see Baccelli et al. (1992). Recall that a complete dioid is a partially
ordered set, with a canonical order � defined by a ⊕ b = a ⇔ a � b. The infimum, or
greatest lower bound, operator can then be defined by a, b ∈ D, a∧b = ⊕{x ∈ D |x⊕a =
a, x ⊕ b = b}.
Definition 12 (Residuation) Let F and L be partially ordered sets and f : F → L a
nondecreasing mapping. The mapping f is said to be residuated if for all y ∈ L, the least
upper bound of the subset {x ∈ F |f (x) 
 y} exists and lies in this subset. It is denoted
f �(y), and mapping f � is called the residual of f .

It can be shown (e.g. Baccelli et al. 1992) that, on a complete dioid, the mappings Ra :
x �→ xa, (right multiplication) resp. La : x �→ ax (left multiplication) are residuated. The
residual mappings are denoted (right division by a) resp.

(left division by a). In analogy to the extension of the
product to the matrix case, we can extend left and right division to matrices with entries in
a complete dioid. Since T and T ∗[[γ ]] are complete dioids, left and right multiplication in
these dioids are residuated.

Lemma 2 Let v ∈ T , then:

(28)

Proof To prove Eq. 28, recall that by definition of the residuated mapping, is the
greatest solution of the inequality v � �ωx. This greatest solution is given by

Therefore, ∀ξ ∈ Zmax

Observe that,
⌈Ru(ξ)

ω

⌉
ω ≤ Rv(ξ)

⇔
⌈Ru(ξ)

ω

⌉
≤ Rv(ξ)

ω

⇔ Ru(ξ)

ω
≤
⌊Rv(ξ)

ω

⌋
=
⌈Rv(ξ) − ω + 1

ω

⌉

⇔ Ru(ξ) ≤
⌈Rv(ξ) − ω + 1

ω

⌉
ω

where the equality above chain of equivalence follows from the basic properties of the
“floor” and “ceil” operations listed in Appendix B. Consequently

The proof for is analogous.
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Proposition 10 Let s ∈ T ∗[[γ ]], then:
(29)

(30)

(31)

Proof For the proof of Eqs. 29 and 30, note that the operators δς and γ ν are invertible,
since δς δ−ς = γ νγ −ν = e. Moreover, for the proof of Eq. 31, recall
with v ∈ T (Lemma 2) and with vi, w ∈ T , see
Baccelli et al. (1992) Remark 4.96. Therefore, for a series s = ⊕

i viγ
ni ∈ T ∗[[γ ]], one

has

The proof of the second expression in Eq. 31 is analogous.

Left and right division of a series in T ∗[[γ ]] by a T-operator can be generalized to left
and right division by polynomials and series in T ∗[[γ ]].

Proposition 11 (Infimum of series) Let s1, s2 ∈ T ∗[[γ ]] be two ultimately periodic series,
then the infimum s1 ∧ s2 is an ultimately periodic series in T ∗[[γ ]].

Proof The proof is similar to the sum of two series, therefore we only give a brief sketch.
If σ(s1) = σ(s2), then the asymptotic slope of the result is σ(s1 ∧ s2) = σ(s1) = σ(s2). If
σ(s1) > σ(s2), then the result is a series with asymptotic slope given by the slope of s2, i.e.
σ(s1 ∧ s2) = σ(s2).

Proposition 12 Let p1 and p2 be two polynomials in T ∗[[γ ]], then and are
polynomials in T ∗[[γ ]].

Proof

The proof for is analogous.

Lemma 3 (Baccelli et al. 1992) The greatest fixed-point of (resp. �r(x) =
is (resp. ).
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Proposition 13 (Left and Right Residuation of Product) Let s1 = p1⊕q1(γ
ν1δτ1)∗, s2 =

p2 ⊕ q2(γ
ν2δτ2)∗ ∈ T ∗[[γ ]] be two ultimately periodic series, then (resp. ) is a

series in T ∗[[γ ]], if the mapping (resp. )has a fixed
point.

Proof The proof is similar to the proof for the division of series in E∗[[δ]], see Cottenceau
et al. (2014a). Because of Eq. 34, can be written as

If has a fixed point then can be expressed as a infimum of a finite
set of periodic series with the same slope, see Proposition 11.

To obtain the fix point of is a particular method to compute the
residuation of the product of two ultimately periodic series in T ∗[[γ ]], for more detail see
also Cottenceau et al. (2014a).

6.2 Model reference control

Model reference control for the case of TEGs was discussed in Libeaut and Loiseau (1996),
Maia et al. (2003), and Hardouin et al. (2018). For the class of PTEG the model reference
control problem is as follows: Given a transfer matrix H describing the input-output relation
of a PTEG and a reference transfer matrix G with entries in T ∗[[γ ]]. Find the greatest
feedback matrix F with entries in T ∗[[γ ]] such that the closed loop transfer matrix in Fig. 9
Hcl = (HF)∗H 
 G. In particular we are interested in the case G = H . This implies
that we seek feedback that delays the firing of plant input transitions as much as possible
without “slowing down” the transfer behaviour. This is often called a neutral “just in time”
policy. As T ∗[[γ ]] is a complete dioid, the maximal solution of (HF)∗H 
 H is given by

, i.e., it has the same structure as for ordinary TEGs.

Example 11 The following example illustrates model reference control for the simple PTEG
of Example 6, with transfer function given in Example 9. For this system, the neutral “just-
in-time” feedback is: ((�4δ

−1 ⊕ δ1�4δ
−2)γ 2 ⊕ (δ1�4δ

−1 ⊕
δ4�4δ

−2)γ 4). Recall the control law u = fopty⊕v. To realize the feedback fopt we rewrite
fopty as

ρ = fopty

= (γ 4δ4)∗
[
(�4δ

−1 ⊕ δ1�4δ
−2)γ 2 ⊕ (δ1�4δ

−1 ⊕ δ4�4δ
−2)γ 4

]
y.

Fig. 9 Closed loop structure with an output feedback F
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The former expression is the solution of the following implicit equation

ρ = [
γ 4δ4

]
ρ ⊕ [

(�4δ
−1 ⊕ δ1�4δ

−2)γ 2 ⊕ (δ1�4δ
−1 ⊕ δ4�4δ

−2)γ 4
]
y.

From this expression we can implement the feedback fopt by a PTEG as follows:
The feedback has one transition, denoted by tc, associate with the dater-function ρ.
Because of operator γ 4δ4 transition tc is attached with a self loop, constituted by place
pc1 with 4 initial tokens and a constant holding time of 4 time units. The polyno-
mial (�4δ

−1 ⊕ δ1�4δ
−2)γ 2 ⊕ (δ1�4δ

−1 ⊕ δ4�4δ
−2)γ 4 describes the influence of the

plant output transition t3 onto the transition tc of the feedback. Observe that we have
two monomial, therefore we obtain two parallel path between t3 and tc, each with one
place. First (�4δ

−1 ⊕ δ1�4δ
−2)γ 2 is described by the place pc2 and the arcs (t3, pc2)

and (pc2, tc). Because of the exponent of γ 2 the place pc2 contains 2 initial tokens.
The holding-time-function of pc2 is determined by the T-operator �4δ

−1 ⊕ δ1�4δ
−2 as

follows:

Hpc2
(ξ) = max

(
R�4δ

−1(ξ),Rδ1�4δ
−2(ξ)

)− ξ,

= max

(⌈
ξ − 1

4

⌉
4, 1 +

⌈
ξ − 2

4

⌉
4

)
− ξ,

= 〈1 0 2 2〉
Respectively, (δ1�4δ

−1 ⊕ δ4�4δ
−2)γ 4 is described by the place pc3 and the arcs (t3, pc3)

and (pc3, tc). Because of the exponent of γ 4 the place pc3 contains 4 initial tokens.
Moreover, the holding-time-function of pc3 is

Hpc3(ξ) = max
(
Rδ1�4δ

−1(ξ),Rδ4�4δ
−2(ξ)

)− ξ,

= max

(
1 +

⌈
ξ − 1

4

⌉
4, 4 +

⌈
ξ − 2

4

⌉
4

)
− ξ,

= 〈4 3 3 5〉
The controller is is connected to the plant input transition t1 via the arcs (tc, pc4) and
(pc4, t1). Finally, transition tv is associated with the new input v and is connected to the
plant input transition t1 via the arcs (tv, pv) and (pv, t1). Fig. 10 illustrates the closed loop

Fig. 10 Closed loop system
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system. The feedback keeps the number of tokens in places p1, p2 as small as possible,
while the throughput of the system is preserved.

7 Conclusion

In this paper, we have introduced an extension of TEGs called Periodic Time-variant Event
Graphs, where the holding times vary periodically over time. These time-variant systems
allow to model particular time phenomena such as traffic light control, for which we need
to describe varying waiting times. We show that the transfer behaviour of these systems
can be modelled by ultimately periodic series in a dioid denoted T ∗[[γ ]]. These transfer
functions are useful for performance evaluation and controller synthesis of PTEGs. In this
paper, we have focused on fundamental results and simple examples that illustrates our
theoretical results. In future work, we aim at applying the obtained results to more
complex systems. For this purpose, the software tools ETVO has been developed (Cot-
tenceau et al. 2019).

The class of PTEGs can be seen as the counterpart of Weight-Balanced Timed Event
Graphs (Cottenceau et al. 2014a). In future work, we also aim at combining the results for
PTEGs with the results for WBTEGs in a comprehensive modelling formalism. This would
allow to describe a class of periodic time- and event-variant discrete event systems with a
common set of algebraic tools.

Appendix A: Formula of residuation

In a complete dioid, the following formula hold for the residuation of left and right
multiplication see Baccelli et al. (1992, Chap.4).

(32)

(33)

(34)

Appendix B: Formula for floor and ceil operations (Graham et al. 1989)

For x ∈ R,

⌊�x�⌋ = �x�, ��x�� = �x�.

For x ∈ R, m ∈ Z and n ∈ N,

⌊
x + m

n

⌋
=
⌊�x� + m

n

⌋
,

⌈
x+m

n

⌉
=
⌈ �x�+m

n

⌉
.

For m ∈ Z and n ∈ N,

⌊m

n

⌋
=
⌈

m − n + 1

n

⌉
,

⌈
m
n

⌉
=
⌊

m+n−1
n

⌋
.
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Appendix C: Proofs

C.1 Proof of Proposition 1 (relations between T-operators)

Let us recall that y ∈ R, ∀n ∈ Z, �y+n� = �y�+n. To prove Eq. 16, because of Definition
6, ∀x ∈ �,

(
�ωδςx

)
(k) =

⌈
x(k) + ς

ω

⌉
ω =

⌈
x(k)

ω
+ ς

ω
+
⌈ς

ω

⌉
−
⌈ς

ω

⌉⌉
ω

=
⌈ς

ω

⌉
ω +

⌈
x(k) + ς − ω�(ς/ω)�

ω

⌉
ω

=
(
δ� ς

ω
�ω�ωδς−� ς

ω
�ωx

)
(k).

Second,

(
δς�ωx

)
(k) = ς +

⌈
x(k)

ω

⌉
ω

= ς −
⌈ς

ω

⌉
ω +

⌈ς

ω

⌉
ω +

⌈
x(k)

ω

⌉
ω

= ς −
⌈ς

ω

⌉
ω +

⌈
x(k) + �ς/ω�ω

ω

⌉
ω

=
(
δς−� ς

ω
�ω�ωδ� ς

ω
�ωx

)
(k).

To prove Eq. 17, note that �(a + ς)/ω�ω = �ς/ω�ω + �(a + ς − ω�ς/ω�)/ω�ω, and
therefore

(
�ωδς�ωx

)
(k) =

⌈�x(k)/ω�ω + ς

ω

⌉
ω

=
⌈ς

ω

⌉
ω +

⌈⌈
x(k)

ω

⌉
+ ς − ω�ς/ω�

ω

⌉
ω

since: �x(k)/ω� ∈ Z and −1 < (ς − ω�ς/ω�)/ω ≤ 0, finally,

(
�ωδς�ωx

)
(k) =

⌈ς

ω

⌉
ω +

⌈
x(k)

ω

⌉
ω =

(
δ� ς

ω
�ω�ωx

)
(k).

C.2 Proof of Proposition 2 (operator representation of a release-time-function)

First recall that release-time-functions are nondecreasing. Hence, in Eq. 9, nω−1−ω ≤ n0 ≤
n1 ≤ · · · ≤ nω−1 ≤ n0 + ω. Moreover, recall that the release-time-function R

δς�ωδς ′ (ξ) of

an operator δς�ωδς ′
is defined by

R
δς�ωδς ′ (ξ) = ς + �(ξ + ς ′)/ω�ω,

where ξ = x(k) is a date. Thus, Rp associated with Eq. 21 is

Rp(ξ) = max(n0 + �(ξ − (ω − 1))/ω�ω, n1 − ω + �ξ/ω�ω,

· · · , nω-1 − ω + �(ξ − (ω − 2))/ω�ω). (35)
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We can evaluate the expression Eq. 35 for all dates ξ . If we choose ξ = jω, ∀j ∈ Zmax ,
we have

Rp(jω) = max(n0 + �(jω − (ω − 1))/ω�ω, n1 − ω + �jω/ω�ω,

· · · , nω-1 − ω + �(jω − (ω − 2))/ω�ω)

= max(n0 + jω, n1 − ω + jω, · · · , nω-1 − ω + jω)

= n0 + jω.

Similarly ∀i = {1, · · · , (ω − 1)},

Rp(i + jω) = max(n0 + �(i + jω − (ω − 1))/ω�ω,

n1 − ω + �(i + jω)/ω�ω,

· · · , nω-1 − ω + �(i + jω − (ω − 2))/ω�ω)

= ni + �(i + jω − (ω − 1))/ω�ω = ni + jω.

Hence we have shown that,

Rp(ξ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n0 + ωj if ξ = 0 + ωj,

n1 + ωj if ξ = 1 + ωj,
...

nω−1 + ωj if ξ = (ω − 1) + ωj .

C.3 Proof of Proposition 5 (product of polynomials)

Due to Eq. 23 p1 = ⊕I
i=1 viγ

ni and p2 = ⊕L
l=1 v̄lγ

νl can be expressed with a common
period ω = lcm(ω1, ω2):

p1 =
I⊕

i=1

( Ji⊕

j=1

δ
ςij �ωδ

ς ′
ij

)
γ ni , p2 =

L⊕

l=1

( Kl⊕

k=1

δτlk �ωδ
τ ′
lk

)
γ νl .

Then the product is obtained by

p1 ⊗ p2 =
( I⊕

i=1

( Ji⊕

j=1

δ
ςij �ωδ

ς ′
ij

)
γ ni

)( L⊕

l=1

( Kl⊕

k=1

δτlk �ωδ
τ ′
lk

)
γ νl

)

=
I⊕

i=1

L⊕

l=1

(( Ji⊕

j=1

δ
ςij �ωδ

ς ′
ij

)( Kl⊕

k=1

δτlk �ωδ
τ ′
lk

))
γ ni+νl

=
I⊕

i=1

L⊕

l=1

( Ji⊕

j=1

Kl⊕

k=1

δ
ςij �ωδ

ς ′
ij δτlk �ωδ

τ ′
lk

)
γ ni+νl

=
I⊕

i=1

L⊕

l=1

( Ji⊕

j=1

Kl⊕

k=1

δ
ςij

+�(ς ′
ij

+τlk
)/ω�ω

�ωδ
τ ′
lk

)
γ ni+νl ,

with Ji ≤ ω, Kl ≤ ω and complexity O(2ωIL).
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C.4 Proof of Lemma 1 (ultimate domination)

Recall that (γ νδτ )∗δς�ωδς ′ = δς�ωδς ′
(γ νδτ )∗ (Proposition 4, therefore τ1 = k1ω, k1 ∈

N (resp. τ2 = k2ω, k2 ∈ N) and inequality Eq. 26 can be expressed by
⊕

j≥K

δς2+jτ2�ωδς ′
2γ n2+jν2 


⊕

i≥0

δς1+iτ1�ωδς ′
1γ n1+iν1 .

It exists a positive integer K such that inequality Eq. 26 holds, if and only if x ∈ N,∀x ≥
K, ∃y ∈ N such that

δxτ2δς2�ωδς ′
2 
 δyτ1δς1�ωδς ′

1; n2 + xν2 ≥ n1 + yν1. (36)

Since δς1�ωδς ′
1 and δς2�ωδς ′

2 are assumed to be canonical monomials then ς ′
1 < ω and

ς ′
2 < ω. Furthermore, since s1 is in the commute form τ1 is a multiple of ω and therefore

τ1 + ς ′
1 > ς ′

2. We can now rewrite Eq. 36,

δxτ2δς2�ωδς ′
2 
 δ(y−1)τ1δς1�ωδς ′

1+τ1; n2 + xν2 ≥ n1 + yν1

⇔ ς2 + xτ2 ≤ ς1 + (y − 1)τ1; n2 + xν2 ≥ n1 + yν1

⇔ ς2 + xτ2 − ς1 + τ1

τ1
≤ y ≤ n2 + xν2 − n1

ν1
.

Such an integer y ∈ Z exists, if

1 ≤ n2 + xν2 − n1

ν1
− ς2 + xτ2 − ς1 + τ1

τ1
.

This holds for a sufficiently large x, given by

x ≥ K1 =
⌈

2ν1τ1 + ν1(ς2 − ς1) + τ1(n1 − n2)

τ1ν2 − τ2ν1

⌉
.

In addition y has to be positive, which is guaranteed, if x ≥ K2 = �(n1 − n2)/v2�. Hence,
we can give an upper bound for K in Eq. 26, i.e., K = max (0,K1, K2).

C.5 Proof of Proposition 6 (sum of ultimately periodic series)

We distinguish two cases first: σ(s1) = σ(s2). By defining N = lcm(ν1, ν2) = k1ν1 = k2ν2
and T = k1τ1 = k2τ2, then (γ ν1δτ1)∗ and (γ ν2δτ2)∗ can be written as

q ′
1(γ

NδT )∗ = (e ⊕ γ ν1δτ1 ⊕ · · · ⊕ γ (k1−1)ν1δ(k1−1)τ1)(γ k1ν1δk1τ1)∗,
q ′

2(γ
NδT )∗ = (e ⊕ γ ν2δτ2 ⊕ · · · ⊕ γ (k2−1)ν2δ(k2−1)τ2)(γ k2ν2δk2τ2)∗.

Thus the sum can be written as: s1 ⊕ s2 = p1 ⊕ p2 ⊕ (q1q
′
1 ⊕ q2q

′
2)(γ

NδT )∗.
Second, σ(s1) > σ(s2). Note that series s1, s2 can be expressed with a common period

thus one can write,

s1 ⊕ s2 = p̃1 ⊕ p̃2 ⊕
⊕I

i=1
δς1i �ωδς ′

1i γ n1i (γ k1ν1δτ̄1)∗

⊕
⊕J

j=1
δς2j �ωδ

ς ′
2j γ n2j (γ k2ν2δτ̄2)∗.

Due to Lemma 1, we can show that s1 ⊕ s2 is ultimately dominated by s1.
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C.6 Proof of Proposition 7 (product of ultimately periodic series)

Recall that s1 and s2 can be expressed in the commute form, Proposition 4. Then product of
two series s1 = p1 ⊕ q1(γ

ν1δτ1)∗ and s2 = p2 ⊕ (γ ν2δτ2)∗q2 can be written as

s1 ⊗ s2 = p1p2 ⊕ p1q2(γ
ν2δτ2)∗ ⊕ p2q1(γ

ν1δτ1)∗ ⊕ q1(γ
ν1δτ1)∗(γ ν2δτ2)∗q2.

Clearly, p1p2 is a polynomial (Proposition 5). (γ ν1δτ1)∗(γ ν2δτ2)∗ = (γ ν1δτ1 ⊕ γ ν2δτ2)∗ =
s3 is an ultimately periodic series in Max

in [[γ, δ]], therefore it is also a series in T ∗[[γ ]] and
q1s3q2 = s̃3 as well. p1q2(γ

ν2δτ2)∗ = s̃2 (resp. p2q1(γ
ν1δτ1)∗ = s̃1) are two series in

T ∗[[γ ]]. Finally we have a sum p1p2 ⊕ s̃1 ⊕ s̃2 ⊕ s̃3 of ultimately periodic series in T ∗[[γ ]],
Proposition 6 Appendix C5.

C.7 Proof of Proposition 8 (Kleene star of a polynomial)

We first investigate a particular case, in which the star of a series in T ∗[[γ ]] can be calculated
similarly to the star of a simple monomial in T ∗[[γ ]], see Eq. 24. Consider the following
series s ∈ T ∗[[γ ]] where w.l.o.g. τ is a multiple of ω, see Proposition 4 commute form,

s = S̃�ωδς ′ =
( I⊕

i=1

γ n1i δς1i ⊕
J⊕

j=1

γ n2j δς2j (γ νδτ )∗
)
�ωδς ′

,

where S̃ = P ⊕ Q(γ νδτ )∗ ∈ Max
in [[γ, δ]]. The product ss can be written as

ss = (P ⊕ Q(γ νδτ )∗)�ωδς ′
(P ⊕ Q(γ νδτ )∗)�ωδς ′

= S̃�ωδς ′
P�ωδς ′ ⊕ S̃�ωδς ′

Q(γ νδτ )∗)�ωδς ′

since, �ω(γ νδτ )∗ = (γ νδτ )∗�ω

= S̃�ωδς ′
P�ωδς ′ ⊕ S̃(γ νδτ )∗�ωδς ′

Q�ωδς ′

due to (17),�ωδς ′
P�ω = P ′�ω, �ωδς ′

Q�ω = Q′�ω

= S̃(P ′ ⊕ Q′(γ νδτ )∗)�ωδς ′ = S̃Ŝ�ωδς ′

where Ŝ = P ′ ⊕ Q′(γ νδτ )∗ ∈ Max
in [[γ, δ]] is a series given by

Ŝ =
I⊕

i=1

γ n1i δ�(ς1i+ς ′)/ω�ω ⊕
J⊕

j=1

γ n2j δ�(ς2j +ς ′)/ω�ω(γ νδτ )∗.

The star s∗ is an ultimately periodic series in T ∗[[γ ]], which can be obtained by

s∗ = e ⊕ S̃�ωδς ′⊕ S̃�ωδς ′
S̃�ωδς ′

︸ ︷︷ ︸
S̃Ŝ�ωδς ′

⊕ S̃�ωδς ′
S̃�ωδς ′

S̃�ωδς ′
︸ ︷︷ ︸

S̃Ŝ2�ωδς ′
⊕ · · ·

= e ⊕ Ŝ∗S̃�ωδς ′ = e ⊕ Ŝ∗s. (37)
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Second, a polynomial in T ∗[[γ ]] can be partitioned into a sum of sub-polynomials in the
following form

p =
(⊕I

i=1
γ ν1i δς1i

)
�ω ⊕

(⊕J

j=1
γ ν2j δς2j

)
�ωδ−1 · · ·

⊕
(⊕K

k=1
γ νωk δςωk

)
�ωδ1−ω,

=
⊕ω−1

l=0
pl = p0 ⊕ p1 ⊕ · · · ⊕ pω−1.

where, pl = ⊕
i γ νi δςi �ωδ−l . Since (a ⊕ b)∗ = (a∗b)∗a∗,

p∗ =
(
(p0 ⊕ · · · ⊕ pω−2︸ ︷︷ ︸

p̄ω−2

)∗pω−1

)∗
(p0 ⊕ · · · ⊕ pω−2︸ ︷︷ ︸

p̄ω−2

)∗.

Let us define by p̄l := p0 ⊕ · · · ⊕ pl , thus we can write the star p̄∗
l in a recursive form

p̄∗
l = (

p̄∗
l−1pl

)∗
p̄∗

l−1. (38)

When we choose l = 1 we obtain p̄∗
1 = (

p∗
0p1

)∗
p∗

0 , since p̄0 = p0 = ⊕I
i=1 γ ν1i δς1i �ω.

Due to Eq. 37, p∗
0 is given by

p∗
0 = e ⊕

(⊕I

i=1
γ νi δ�ςi/ω�ω)∗ ⊕I

i=1
γ ν1i δς1i

︸ ︷︷ ︸
S̃0

�ω.

This star can be rewritten as p∗
0 = e ⊕ (S̃0)�ω where S̃0 is a series in Max

in [[γ, δ]]. The
product p∗

0p1 is ultimately periodic series in T ∗[[γ ]], since

p∗
0p1 = (e ⊕ (S̃0)�ω)

(⊕J

j=1
γ ν2j δς2j �ωδ−1

)
,

=
⊕J

j=1
γ ν2j δς2j �ωδ−1 ⊕ S̃0�ω

(⊕J

j=1
γ ν2j δς2j �ωδ−1

)
,

=
(⊕J

j=1
γ ν2j δς2j ⊕ S̃0

⊕J

j=1
γ ν2j δ�ς2j /ω�ω

)
�ωδ−1,

= S̃01�ωδ−1,

where S̃01 is again a series in Max
in [[γ, δ]]. Therefore, the star (p∗

0p1)
∗ can be calculated

by using Eq. 37. It is an ultimately periodic series T ∗[[γ ]]. Then p̄∗
1 = (p∗

0p1)
∗p∗

0 is the
product of two ultimately periodic series in T ∗[[γ ]], see Proposition 7 Appendix C6. In a
similar way with p̄∗

1 we can solve successively the recursive Eq. 38 ∀i ∈ {1, · · · , ω − 1}.

C.8 Proof of Proposition 9 (Kleene star of an ultimately periodic series)

Recall that for r = (γ νδτ ), qr∗ = r∗q, Proposition 4. The star of ultimately periodic series
can be rewritten as a star of polynomials s∗ = (p ⊕ qr∗)∗ = p∗(qr∗p∗)∗ = p∗(q(r ⊕
p)∗)∗ = p∗(e ⊕ q(q ⊕ r ⊕ p)∗), Baccelli et al. (1992).
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