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Prerequisites 

 

Training modules:  TM210 – The Basics of Automation Studio 

    TM211 – Automation Studio Online Communication 

TM223 – Automation Studio Diagnostics 

At least one programming language. 

 

Software:   Automation Studio 
 
 

Hardware:   none  
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1. INTRODUCTION 

This training module is all about generating application software in the field 
of automation. If you are (or are going to be) a programmer of machines or 
plants, please ask yourself a few questions:  

• Is software generation more than just coding, coding, coding? 
 

• How can I improve the quality of the software I produce? 
 

• By the way, what is software quality? 
 

• What about costs to fix defects in software? 
 

• How do I create well structured software? 
 

• Is there a way to analyze, describe and discuss machine logic in a 
formal and exact way? 
 

• How can I write better source code? 
 

• How should I test and document the code I create? 
 

Interested? Head on and dive into the following sections! HAVE FUN!  

 

 

Fig. 1 Buggy code 
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1.1 Objectives 

After successfully working through this module, the course participant will 

• have been introduced to software engineering concepts, steps in 
software generation and software quality issues 
 

• be familiar with the method of state diagrams and finite state 
machines to analyze, describe and discuss the logical function of 
machines in an exact and formal way 
 

• be familiar with the B&R Coding Guidelines to produce, test and 
document high quality source code 

 

 

Fig. 2 Overview 

 



The Software Engineering Process 
 

   6         TM230    Structured Software Generation 
 

2. THE SOFTWARE ENGINEERING PROCESS 

What is software engineering anyway? Here are two definitions: 

• Software engineering is the application of a systematic, disciplined, 
quantifiable approach to development, operation and maintenance of 
software; that is the application of engineering to software (IEEE 
Standard Computer Dictionary). 

• Software engineering is a discipline whose aim is the production of 
high quality software, delivered on time, within budget and satisfying 
users’ needs (S. R. Schach: Software Engineering). 

2.1 Steps in Software Generation 

Typical steps in software generation are: 

• Requirements analysis  

• Software specification   

• Software design (or software architecture)  

• Coding (implementation) 

• Testing 

• Documentation 

• Maintenance 
 

The first task in creating a desired software product is analyzing and 
extracting its requirements. It may require skill and experience to 
recognize incomplete, ambiguous or contradictory requirements.  

The result should be a precise description of the software to be written - 
the software specification. Typically a specification is a written agreement 
with the customer.  

The software design (software architecture) is developed based on the 
specification. It determines how the software is to function in a general 
way without being involved in details.  

Software architecture may be defined as ‘the internal conceptual design of 
software, enabling the software to exhibit a certain set of attributes’. It is 
wise to discuss the desired software architecture with the customer and 
get an agreement on it. 

In the following implementation step the software design is coded in a 
specific programming language (specified program behavior is converted 
into operational code).  

Subsequent steps are testing, documentation and maintenance. 
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Issues that must already be considered in the requirements analysis and 
software specification/design phases include: 

• machine operating modes (such as manual, semi-automatic, setup, 
automatic, stand alone, linked, …) and conditions for changing from 
one mode to another 

• emergency and safety 

• error handling 

• providing diagnostic information  

• remote access (via HMI, VNC, HTTP, etc.) 

 

2.2 Software Quality 

Important quality issues of application software in automation are:  

• clean architecture and design 

• conformance to requirements and specifications  

• absence of bugs 

• source code quality: the way a program is written can have some 
important consequences for the human maintainers, such as 
readability, logical structuring of the code into manageable sections 
low resources consumption (memory, CPU time) 

• ease of maintenance 
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2.3 Cost of Fixing Defects 

Building a software system is like any other project that takes people and 
money. People introduce errors and errors cost (additional) money.  

In software engineering it pays to do things right the first time, because the 
expense of fixing defects rises dramatically as the time from when it is 
introduced to when it is detected increases (as shown in the picture, which 
is taken from S. McConnell: Code Complete). 

Therefore the general principle is to find an error as close as possible to 
the time at which it was introduced. 

 

 

Fig. 3 Cost of fixing a defect as a function of when it is introduced and detected 
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3. PROJECT STRUCTURING 

3.1 Structured Software Design 

Clean architecture and design are the foundation of any good software.  

The capabilities and limitations of all target platforms on which the 
software will be run must be taken into account. 

Take your time in the conception phase and work on the design until you 
are satisfied with your concept. Usually the time invested in a good 
software design is well spent because it is saved many times later in the 
implementation phase.  

Studies have shown that programmers who rush to coding generally take 
longer to finish their programs than programmers who plan first. 

One approach to software design is the structured design approach. It is 
also known as top-down design, stepwise or successive refinement 
technique and decomposition approach. In this approach a problem is 
analyzed by repeatedly dividing it into smaller functional parts (modules), 
which are easier to handle (successive refinement technique).  

In human history this problem solving strategy has been known for at least 
two thousand years (‘divide et impera’ = ‘divide and conquer’ = ‘teile und 
herrsche’ was the motto of ancient Roman emperor Marcus Aurelius). 

The structured design approach is characterized by moving from a general 
statement of what the program does to detailed statements about specific 
tasks that are performed.  

In a first step sub-systems are identified, the program is partitioned into 
major components and interfaces in between are defined. In the following 
decomposition steps more details are introduced successively. 

An especially important issue of software design is the design of data and 
information flow, which defines:  

• where data resides in your software modules  

• data exchange between software modules 

• how data is organized into data structures 

 

In general, software design is not a deterministic process but requires 
creativity and is often an iterative process.  
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Software design with the structured design approach can be summarized 
as follows: 

• Design top level first 

• Postpone details to lower levels 

• Formalize each level  

• Verify each level (if it complies with the specification) 

• Move on to the next level 

• Stop decomposing, when it is easier to code the next level than to 
decompose it. The design should seem obvious and easy then. 
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3.2 Case Study: Injection Molding Machine 

Let's have a look now at an injection molding machine. The top level of the 
software design is the machine in total. Every detail is postponed to lower 
levels. 

 

Fig. 4 Software architecture at top level 

 

At level 2, the machine is decomposed into its basic functional (in this case 
mechanical) parts. Injection Unit, Hydraulic Clamp Cylinder, Mold, 
Transport, Feeder, Dosage and a General module,  which is responsible for 
the basic logical function of the machine.  

The next pciture shows the level 2 software architecture including data 
dependencies and data interfaces.   

 

Fig. 5 Level 2 software architecture 
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At level 3 the basic functional parts are further refined: the functional part 

Transport  is decomposed into Scales  and Conveyor belt .  

 

Fig. 6 Decomposition of functional part Transport 

The Scales  module performs weight checking of the product and signals 

the Conveyor belt  module what to do with the product (further 

processing if product weight is ok or throw away otherwise). Conveyor 
belt  gives feedback if it is ready to process the next piece. 

The functional part Mold  is decomposed into Hydraulic ejector , Cores  
and Mold Heating . Hydraulic ejector  and Cores  must not be active 
at the same time. Both have no functional connection to Heating , which 

exchanges data with the General  module.    

 

Fig. 7 Decomposition of functional part Mold 

 

Injection Unit is decomposed into Injection Piston and Barrel Heating. 
There is no data connection and dependency between Injection Piston and 
Barrel Heating, these modules get their commands from General. 
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Fig. 8 Decomposition of functional part Injection Unit 

 

The next picture outlines the data dependency and connection between the 
modules General, Mold and Transport. 

 

Fig. 9 Inter module data dependencies 
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4. STATE DIAGRAMS 

One of the most common tasks for software engineers in the field of 
automation is the programming of machine or plant logic, which 
determines the general function of a machine or plant. 

Usually the machine or plant logic is specified by a textual description, 
which is often inaccurate. With the help of state diagrams you can describe 
machine or plant logic in an exact and formalized way. State diagrams are 
also a convenient way of discussing machine logic with customers on a 
formal level. 

Once you have developed a state diagram for your desired logic, the 
implementation (coding) is a straight forward and easy task. This section 
should familiarize you with state diagrams as a powerful method to analyze 
and describe machine sequences and plant procedures.  

In this section all code fragments are given in the ANSI C programming 
language. For those who are not familiar with C, here is a short table with a 
description of operators in ANSI C: 

! logical negation operator   

= assignment operator 

== comparison operator 

&& logical AND operator 

++ increment operator 
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4.1 Types of Logic 

4.1.1 Combinatorial Logic 

Let’s have a look now at a water tank:  

  

Fig. 10 Water tank temperature control 

 

water is taken from the tank if an external valve is opened. The water level 
in the tank is held constant with a pump, which is switched on if the water 
level falls below a certain level, detected by a level switch: 

pumpOn = (!levelSwitch) 
 

Furthermore, the water should be conditioned to temperature Tset  with a 
heating element. The actual water temperature Tact  is measured with a 
temperature sensor. The heating element is switched on, if the water level 
in the tank is ok and if the actual water temperature is below the set 
temperature: 

heaterOn = ((levelSwitch == 1) && (Tact < Tset)) 
 

In this simple example we have three inputs,  

• set temperature Tset  (of data type INT ) 

• actual temperature Tact  (INT ) 

• level switch senor levelSwitch  (BOOL) 

 

and two outputs: 

• pumpOn (BOOL) 

• heaterOn (BOOL) 
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The outputs are a function of, and only of, the present inputs. There is a 
static relation between inputs and outputs. Such type of logic is called a 
combinatorial logic. It does not have memory (or storage).  

Because of this static input to output relation there is no inherent system 
dynamic with possible associated stability problems (e.g. deadlocks) in a 
combinatorial logic. 

Because of this missing ability to remember what happened in the past, 
combinatorial logic is too simple for the desired functionality of common 
machines or plants. 

This is a severe limitation and some drawbacks of this approach can be 
seen easily even in our simple example:  

• If the water level falls below the level switch, our simple logic will 
switch on the pump. The water level will increase causing the logic 
to switch off the pump. The result is a continuous switching with 
negative effects on the lifetime of the pump.  
 

• The same thing happens with the heater: when the heater is on, the 
water temperature will increase causing the heater to shut down. 
Then the water will get cooler causing the heater to start and so on. 
The same effect may be caused by a flickering temperature sensor. 
Both will lead to a decreasing contactor lifetime. 
 

In the next section we will make our simple logic a little more intelligent to 
overcome these disadvantages. 
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4.1.2 Sequential Logic 

First, we do not switch off the pump immediately when levelSwitch 
changes to 1, but after a time delay of tDelay  seconds. 

 

Fig. 11 Sequential water level control logic: time delay 

Our second improvement is to add a hysteresis to the threshold value for 

switching off the heater: we do not switch off the heater when Tact  
reaches Tset , but when  Tact > (Tset+deltaT) .  

Now the outputs (heaterOn  and pumpOn) are no longer determined by the 
present inputs:  

• When  Tset < Tact < (Tset+deltaT)  it depends on the history 

of Tact , if the heater is on or off: The heater will now be on if less 
time has passed since the last occurrence of event ‘Tact == Tset’  

than time passed since the last occurrence of event ‘Tact == 
(Tset+deltaT)’ , otherwise the heater will be off.  

 

• The pump can now be on, even if (levelSwitch == 1 ). Again in 

this case it depends on the history of levelSwitch  if the pump is on 

or off. The pump will now be on if less than tDelay  seconds have 

passed since the last occurrence of event ‘levelSwitch  changes 

from 0 to 1’.   
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Fig. 12 Sequential water temperature control logic: hysteresis 

 

The outputs of our improved logic depend not only on present inputs but 
also on past inputs. Such type of logic is called a sequential logic. 
Sequential logic is capable of storing and remembering information. 

To describe the behavior of a sequential logic we need additional variables 
to represent the information the logic remembers. Such variables are called 
state variables because they uniquely define the state the logic is in. 

Remark: In the last picture there are some overshoots (Tact > 
(Tset+deltaT) ) and undershoots (Tact < Tset ) in the temperature 

signal. This is a consequence of some dead time in the control loop. 
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4.2 Finite State Machines 

The first step in the analysis of a sequential logic is to determine the 
number of state variables and all their possible values. 

In our example we can choose the following state variables:  

• pumpState  with three possible values of: 
 

PUMP_OFF 
PUMP_ON_LEVELTOOLOW 
PUMP_ON_TIMEDELAY 

 

• heaterState  with two possible values of: 
 

HEATER_OFF 
HEATER_ON 
 
 

Our sequential logic has two state variables, where state variable 1 can 
have three possible values and state variable 2 can have two possible 
values. 

A finite state machine is the description of a sequential logic with a finite 
number of states. A finite state machine consists of  

• States: one state is the init or default state, in which the machine is, 
when turned on 
 

• Events: they trigger transitions between states and must be 
prioritized, if more than one event can occur at the same time in a 
specific state (see following example) 
 

• Actions: there are two types of actions: 

• actions, which are taken at state transitions (e.g. setting outputs) 

• actions, which are taken while being in a state (e.g. increasing 
counters)  
 

• Transitions between states, which are triggered by events and cause 
actions (‘if we are in state x1 and event y occurs take action z and 
transit to state x2’) 
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In our example a transition between states can be triggered by the 
following events: 

• TooCold: (Tact < Tset)  changes from FALSE to TRUE 

• TooHot:(Tact > ((Tset+deltaT))  changes from FALSE to TRUE 

• LevelOk : levelSwitch  changes from FALSE to TRUE 

• LevelNotOk : levelSwitch  changes from TRUE to FALSE 

• TimerElapsed : tDelay  seconds have passed since last occurrence 

of LevelOk  

 

We have to take the following actions: 

• SwitchPumpOn 

• SwitchPumpOff 

• SwitchHeaterOn 

• SwitchHeaterOff 

• ResetTimer 

• IncrementTimer  (this action is not taken at a state transition, but is 

performed while being in state TIMER_ON) 

 

4.2.1 State Transition Table  

A state transition table is the description of transitions in a tabular form: 

State Event Action Transit to state 

HEATER_OFF TooCold SwitchHeaterOn HEATER_ON 

HEATER_ON TooHot SwitchHeaterOff HEATER_OFF 

 

State Event Action Transit to state 

PUMP_OFF LevelNotOk SwitchPumpOn PUMP_ON 

PUMP_ON LevelOk ResetTimer TIMER_ON 

TIMER_ON TimerElapsed SwitchPumpOff PUMP_OFF 
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4.2.2 State Diagrams 

State diagrams are graphical representations of state machines. 

 

Fig. 13 State diagram for the heater 

 

Fig. 14 State diagram for the pump 
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4.3 Implementation 

If you have successfully described and formalized the sequential machine 
logic in a state diagram, implementation is an easy and straight forward 
task. 

In pseudo code a simple implementation of a finite state machine could 
look like: 

switch(state) 
for all states i 

case (state i) 
perform actions in state i 
for all events j 

   if event j 
then take action k 
transit to state l 
 
 

This is a pretty compact notation. A real implementation can get lengthy as 
our simple example demonstrates:  

 

 
/************************************************** ***************** 
 * COPYRIGHT – B&R Industrial Automation 
 ************************************************** ***************** 
 * Program: TankControl 
 * File: TankControl.c 
 * Created: 04-March-2005 
 ************************************************** ***************** 
 * Implementation of program TankControl 
 ************************************************** *****************/ 
 
#include <bur\plctypes.h> 
 
#ifdef _DEFAULT_INCLUDES 
 #include <AsDefault.h> 
#endif 
 
#define PUMP_OFF   0 
#define PUMP_ON    1 
#define TIMER_ON   2 
 
#define HEATER_OFF 0 
#define HEATER_ON  1 
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/* ----------- events -------------- */ 
 
BOOL TooCold(void) 
{ 
    return(Tact < Tset); 
} 
 
BOOL TooHot(void) 
{ 
    return(Tact > (Tset + deltaT)); 
} 
 
BOOL LevelOk(void) 
{ 
    return(!levelSwitch); 
} 
 
BOOL LevelNotOk(void) 
{ 
    return(levelSwitch); 
} 
 
BOOL TimerElapsed(void) 
{ 
    return(timer == tDelay); 
} 
 
/* ---------- actions ---------- */ 
 
void SwitchPumpOn(void) 
{ 
    pumpOn = 1; 
} 
 
void SwitchPumpOff(void) 
{ 
    pumpOn = 0; 
} 
 
void SwitchHeaterOn(void) 
{ 
    heaterOn = 1; 
} 
 
void SwitchHeaterOff(void) 
{ 
    heaterOn = 0; 
} 
 
void ResetTimer(void) 
{ 
    timer = 0; 
} 
 
void IncrementTimer(void) 
{ 
    timer++; 
} 
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/* ---------- transitions -------- */ 
 
void _CYCLIC WaterTankCYCLIC(void) 
{ 
 

/* ---------- pump ----------- */ 
 

    switch (pumpState) 
    { 
        case PUMP_OFF: 
            if (LevelNotOk()) 
            { 
                SwitchPumpOn(); 
                pumpState= PUMP_ON; 
            }     
            break; 
 
        case PUMP_ON: 
            if (LevelOk()) 
            { 
                pumpState = TIMER_ON; 
                 ResetTimer(); 
            }    
            break; 
 
        case TIMER_ON: 
            IncrementTimer(); 
            if (TimerElapsed()) 
            { 
                SwitchPumpOff(); 
                pumpState = PUMP_OFF; 
            }    
            break; 
 
    }  /* end switch */ 
 
    /* ---------- heater ---------- */ 
 
    switch (heaterState) 
    { 
        case HEATER_OFF: 
            if (TooCold()) 
            { 
                SwitchHeaterOn(); 
                heaterState= HEATER_ON; 
            }     
            break; 
 
        case HEATER_ON: 
            if (TooHot()) 
            { 
                SwitchHeaterOff(); 
                heaterState= HEATER_OFF; 
            }     
            break; 
 
    }  /* end switch */ 
 
} /* end WaterTankCYCLIC */ 
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4.4 Case Study: Sorting Material on a Conveyor Belt 

Now let's take a look at a conveyor belt transporting pieces with different 

lengths. A control logic should sort out pieces, which length L ≤ A1  or L ≥ 
A2. The length is determined with photoelectric barrier sensors with digital 
input signals B1, B2 and B3. A signal is high if a piece passes through a 
barrier.   

Sorting is done by setting the digital signal lengthOk = 1  for one clock 

period which causes the pneumatic actuator to push a piece of correct 
length onto another conveyer belt. We do not have to worry about the 
actuator. It will return to its original position automatically. 

Distances between the photoelectric barriers are A1 and A2, where A1 > 
A2/2 . The distance between different pieces of material is much larger than 

A2. 

 

Fig. 15 Sorting arrangement 

Our job is to design a control logic for the pneumatic actuator. In this 
example we focus on the process logic and explicitly neglect error 
handling (which is an important part in real life applications).  

In the following, (B 1B2B3)  denotes the actual input signals of all photo-
electric barriers, e.g. (010)  means B1 = 0 ,  B2 = 1  and  B3 = 0 . 
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The input sequence for a piece with the correct length is: 

A1 < L < A2: (000),(100),(110),(010),(011),(001),(0 00) � lengthOk = 1 
 

Input sequences for incorrect lengths are: 

L > A2:    (000),(100),(110),(111),(011),(001),(000 )  
 
L = A2:    (000),(100),(110),(011),(001),(000)  
 
L = A1:    (000),(100),(110),(010),(001),(000)  
 
A4 < L < A1: (000),(100),(110),(010),(000),(001),(0 00)  
 
L = A4:    (000),(100),(010),(000),(001),(000)  
 
L < A4:    (000),(100),(000),(010),(000),(001),(000 )  

 
 

Events:  

• Enter1 : B1 changes from 0 to 1 (piece enters photoelectric barrier 1) 

• Enter2 : B2 changes from 0 to 1 (piece enters photoelectric barrier 2) 

• Enter3 : B3 changes from 0 to 1 (piece enters photoelectric barrier 3) 

• Pass1 :  B1 changes from 1 to 0 (piece leaves photoelectric barrier 1) 

• Pass2 :  B2 changes from 1 to 0 (piece leaves photoelectric barrier 2) 

• Pass3 :  B3 changes from 1 to 0 (piece leaves photoelectric barrier 3)  
 

Actions: 

• Push:  set lengthOk = 1   

• Reset: set lengthOk = 0  

 

A solution with 13 states and 19 transitions is depicted in the state diagram 
in Fig. 23. 

In the state transition table, events with highest priority are marked with 

(P).  This means, that e.g. if we are in state OK1 and the event Pass1  
happens, we will transit to state TOOSHORT1 - but if Pass1  and Enter2  

happen at the same clock cycle, we will transit to state TOOSHORT2. 
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state event action transit to state 

INIT Enter1 - OK1 

OK1 Pass1 & Enter2 (P) - TOOSHORT2 

OK1 Pass1 - TOOSHORT1 

OK1 Enter2 - OK2 

OK2 Pass1 & Enter3 (P) - TOOLONG2 

OK2 Enter3 - TOOLONG1 

OK2 Pass1 - OK3 

OK3 Pass2 & Enter3 (P) - FAILED 

OK3 Pass2 - TOOSHORT3 

OK3 Enter3 - OK4 

OK4 Pass2 - OK5 

OK5 Pass3 Push FINALOK 

FINALOK - Reset INIT 

TOOSHORT1 Enter2 - TOOSHORT2 

TOOSHORT2 Pass2 - TOOSHORT3 

TOOSHORT3 Enter3 - FAILED 

TOOLONG1 Pass1 - TOOLONG2 

TOOLONG2 Pass2 - FAILED 

FAILED Pass3 - INIT 

 

Please note that actions are to be taken only in 2 out of 19 transitions. The 

transition from FINALOK to INIT  need not be triggered by an event. This 

happens by default at the next clock cycle.  
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Fig. 16 State diagram for the conveyor belt logic 
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5. B&R CODING GUIDELINES  

Computer programming is an engineering discipline (software engineering) 
and as usual in engineering there is an absolute truth … whether a program 
does work or it does not work. 

But computer programming also is an art (see the famous book 'The Art of 
Computer Programming' by Donald E. Knuth which has been named 
among the best twelve scientific monographs of the century) as sometimes 
it is more a question of aesthetics how a program does it's job and if the 
code looks appealing. Without question programming is a creative process.  

Software production costs money - and - earns you money. It is the B&R 
philosophy to produce high quality products, and software is no exception 
here. So let's produce high quality software code! 

Attributes of high quality code are (among others): 

• clean architecture and design 

• easy to read and understand 

• easy to maintain 

• re-usable 

• well commented 

• bug free 
 

This document should assist you in improving your code quality. If you 
follow the guidelines outlined here your code should be of reasonable 
quality.  

You are working in a team so please be considerate of your colleagues, 
who maybe won't appreciate dealing with those quick'n’dirty completely 
undocumented routines you hacked at 2:00 am Saturday night.  

In the end you (the author) are responsible for the code you create. Do it 
well and then be proud of what you have created and achieved!  
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5.1 Before You Code 

The foundations of any good software are a clean architecture and design. 
Take your time in the conception phase and work on the design until you 
are happy with your software concept. 

Before you actually code please mind the concepts and methods discussed 
in sections of this document. 

5.2 Naming Conventions 

Good variable and data type names are a key element of program 
readability. All names should be descriptive and easy to read. Use either 
underscores or capital letters (don’t mix them) in composite names to 
enhance readability, like 

actPressure = actForce / pistonArea; 
cmdCount++; 
 

or  

act_pressure = act_force / piston_area; 
cmd_count++;  

 

An identifier may contain letters and numbers and must start with a letter. 
You cannot use reserved keywords as identifiers. A complete list of 
reserved key words for each programming language can be found in the 
Automation Studio online help.  

5.2.1 Language 

If no different specification is given by the customer it is strongly 
recommended to code and comment in English for trouble-free 
international usage of software. Within B&R this recommendation is 
compulsory. 
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5.2.2 User Data Types (Structures) 

User data types start with an upper case letter and end with the postfix 

‘_type’ , in between lower and upper case letters may be mixed. 

TYPE 
    Recipe_type:  STRUCT  
        base:     UINT; 
        binder:   UINT; 
        additive: USINT; 
    END_STRUCT; 
    MachineParams_type: STRUCT  
        speed:       REAL; 
        pressure:    REAL; 
        temperature: INT; 
        pRecipe:     REFERENCE TO Recipe_type; 
    END_STRUCT; 
END_TYPE 
 
 

5.2.3 Constants 

Constants are all upper case. Use underscores ‘_’ to enhance readability.  

 

VAR CONSTANT 
    STEP_CONDITIONING: USINT := 23;       (* [-] *)  
    HEATING_TIME_OUT:  UINT  := 5000;     (* [s] *)  
    MAX_PRESSURE:      REAL  := 6.7e+006; (* [Pa]*)  
END_VAR 

 

These rules also apply to constants defined by the #define  pre-processor 

directive and the enum statement in C source code. Please note that 

declarations via the #define  directive and enum statement are local to the 
scope of your C code!  
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5.2.4 Local Variables 

Local variables start with a lower case letter. Upper case-letters (or under-
scores ‘_’) are only used to enhance readability. 

VAR 
    machineStep:    USINT; (* [-]     *) 
    actPressure:    REAL;  (* [bar]   *) 
    avgTemperature: INT;   (* [0.1°C] *) 
END_VAR 
 
VAR 
    machine_step:    USINT; (* [-]     *) 
    act_pressure:    REAL;  (* [bar]   *) 
    avg_temperature: INT;   (* [0.1°C] *) 
END_VAR 

 

In the following, only examples without underscores are included. If you 
prefer naming with underscores you will be able to figure it out.  

5.2.5 Global Variables 

Global variables start with the pre-fix ‘g’ followed by an upper-case letter or 
‘_’:  

VAR 
    gHeaterOn: BOOL; 
 gActCmd:   Cmd_typ; 
 gCmdCount: UINT; 
END_VAR 

 

This convention is reserved for global variables - do not use it for non-
global variables. 
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5.2.6 Pointers 

Local pointers start with the pre-fix ‘p’ followed by an upper-case letter or 
‘_’. Global pointers start with the pre-fix ‘gp’ followed by an upper-case 
letter or ‘_’: 

VAR 
    pActRecipe: REFERENCE TO Recipe_type; 
END_VAR 
 
VAR 
    gpActRecipe: UDINT; 
END_VAR 

 

The above convention is reserved for pointers - do not use it for other 
variables. 

Global pointers have the data type ‘UDINT’ because IEC doesn’t support 
pointers to generic data types. Cast the global pointer to a generic local 
pointer to access structure members: 

pActRecipe = (Recipe_type*)gpActRecipe;  
actSpeed   = pActRecipe->speed; 
 

5.2.7 Hardware-Connected Variables 

Variables assigned to hardware I/O points start with a pre-fix defining the 
I/O point type:  

Prefix Type 

di digital input 

do digital output 

ai analog input 

ao analog output 

 

The pre-fix is followed by an upper-case letter or ‘_’: 

VAR 
    diEmergencyOff: BOOL; 
    doSolidStateOn: BOOL; 
    aiActTemp:      INT;  (* [0.1°C]                 *) 
    aoValvePos:     INT;  (* 0=closed, 32767=open    *) 
END_VAR 
 

This convention is reserved for HW connected variables - do not use it for 
other variables. 
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5.2.8 C-local Variables 

Variables defined in C source code are not visible outside their definition 
scope – you cannot see them e.g. in a Watch or Trace window.  

Recipe_type* pPrevRecipe = 0; 
USINT        cmdCount    = 0;  
REAL     actSpeed    = 0; /* [m/s] */ 
 
 

If not declared ‘static’  they are allocated from stack each time the C 

routine is executed (and therefore non-remanent) and are not initialized! It 
is therefore wise to initialize them in the declaration (as done above).   

5.2.9 Instances of Function Blocks 

Instances of function blocks should be named to contain the name of the 
function block: 

VAR 
    valveSwitchTON: TON_type; 
    solidStateTOF:  TOF_type; 
    pressureLCPID:  LCPID_type;    
END_VAR 
 

5.3 Code Format 

Visual layout of the code should accurately represent the logical structure 
of a computer program. Thus visual information acquisition of the human 
brain can support the reader in code understanding.  

5.3.1 Indentation 

Proper indentation is a key element for the readability of a code and is a 
must in all programs! 

The whole idea behind indentation is to clearly visualize where a block of 
control starts and ends. 

A large indentation size (6 or 8 characters) makes the code structure easier 
to see, while a smaller indentation size (2 or 4 characters) saves space on 
the right hand side of your screen.  

We suggest an indentation size of 4 characters. If you have good reasons 
choose another indentation size that you prefer and stick to it.  
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5.3.2 File Header 

Every file must have a header, which includes: 

• Information about author and copyright  

• Short description (summary comments) with a focus on purpose of 
the code, input and output variables, global effects of the routine, 
limitations and interface assumptions 

• Timing behavior and memory requirements (if critical) 

• Revision number, history and date (in an international unmistakable 
format, e.g. 04-March-2005 instead of 04-03-05 or 03/04/05) 

 

A template header is automatically included when you create a program in 
Automation Studio™.  

Revision number format is Vxx.yy, where xx is incremented with every 
major code update (e.g. when new features are added or incompatibilities 
to the previous version are introduced) and yy is incremented with minor 
improvements and bug fixes. 

5.3.3 Placing Braces 

There are a lot of brace placement strategies around. The preferred method 
is putting each brace on a line by itself combined with proper indentation: 

if (inst.request > 0) 
{ 
    inst.ok2jump = 1; 
    inst.status  = 0;     
} 
else 
{ 
    inst.ok2jump = 0; 
    inst.status  = 5;     
} 
 
UINT CheckStatus(REAL xDeviation, REAL yDeviation) 
{ 
    function body 
} 
 

If this doesn’t look visually appealing to you, choose another consistent 
style, e.g. as suggested by Kernighan and Ritchie:  

if (inst.request > 0) { 
    inst.ok2jump = 1; 
    inst.status  = 0;     
} 
else { 
    inst.ok2jump = 0; 
    inst.status  = 5;     
} 
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5.3.4 Spaces 

For readability reasons add a space before and after each operator: 

xAxisPos = x0 + deltaX; 
if (machineState == STATE_RUN)    
   ... 
 

with exception of: 

. member selection operator 

-> member selection operator 

[] subscription operator 

() function call and function declaration operator 

(type) unary casting operator 

++ pre- and post increment operator 

-- pre- and post decrement operator 

! unary negation operator 

~ unary one’s complement 

 

If the assignment operator ‘=’ is placed directly behind the variable, a 

search (or search and replace) in the editor for e.g. ‘someVariable=’  will 

only find assignments to this variable in the code. If this is important for 
you, format assignments this way: 

 xAxisPos= x0 + deltaX; 
 

We recommend placing the reference ‘&’  and dereference operators ‘*’  

near the type in declarations: 

void GetCtrlParams(REAL deadTime, REAL dXmax, Param s_type* 
pCtrlParams) 
 

5.3.5 Visual Alignment 

Visual alignment of elements that belong together reinforces the visual 
binding of these elements: 

stPar.X0     = pIntern->X0; 
stPar.deltaX = stPar.dir * abs(inst.options.deltaX) ;  
stPar.t1set  = 0; /* [ms] */ 
stPar.t2set  = 0;   
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5.4 Programming Techniques 

5.4.1 GOTO statement 

You should not use the GOTO statement because it will prevent you from 
clearly structuring your code.  

Should you feel tempted to include a GOTO into your code think of Edsger 
W. Dijkstra’s famous classic paper ‘Go To Statement Considered Harmful’ 
published in 1968 (http://www.acm.org/classics/oct95/):  

“For a number of years I have been familiar with the observation that the 

quality of programmers is a decreasing function of the density of GOTO 
statements in the programs they produce.” 

We have nothing to add to Dijkstra. 

5.4.2 Usage of Standard Algorithms 

If you need to include a standard algorithm (e.g. for ring buffers, sorting, 
searching, etc.) don’t implement it yourself. Most likely your 
implementation will not be bug free without some time invested in testing 
and debugging.  

The better way is to copy it in electronic form from a trusted source (e.g. 
CDs that come with standard text books).  

5.4.3 Usage of IEC Data Types 

For consistency and target independent code, use the IEC data types in C 
source code. They are automatically defined with the following statement: 

 
#include <bur\plctypes.h>   

5.4.4 Handling Hardware-Connected (I/0) Variables 

It is a good idea to copy (and scale or negate if desired) hardware-
connected variables to/from data structures of your software modules in a 
special task which does just that and nothing else.  

You can easily disable this task and disconnect all I/Os for testing 
purposes. As another benefit you will only have to make minor changes at 
one single place in the code if external sensor or actor logic changes 
(which happens quite frequently).   
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5.4.5 Dynamic Memory Management 

Please take care when using dynamically allocated memory. Access to 
memory which you have not properly allocated leads to errors which are 
really hard to discover! 

Don’t allocate and free memory frequently in cyclic code because it will 
lead to memory fragmentation. As a consequence the system will 
sometimes run out of memory. 

5.4.6 Communication between Software Modules 

Inter-module communication has to be implemented with global data 
structures. Therefore it needs to be designed with special care. Please 
mind appropriate naming of your communication data structures. 

5.4.7 Compiler Warnings 

Compiler warnings may indicate some unexpected program behavior. Be 
sure to understand the warning message and correct your code to avoid 
the warning. If this is not possible or not intended, document the warning 
at the corresponding line of code. 

5.4.8 Determining Array Size 

If you need to determine the size of an array (e.g. if you need to check the 
last array element or need to loop over all elements) use the sizeof 
function: 

for (i = 0; i < (sizeof(array)/sizeof(array[0])); i ++) 
{ 
  loop body 
} 

5.4.9 Data Alignment 

When defining user-defined data types you should note data alignment: in 
general the compiler has to add empty storage (typically 1 – 3 bytes) 
between structure members to place (or ‘align’) the members to specific 
(e.g. even) memory addresses for memory access.  

The actual compiled data size is then larger than the sum of individual 
member sizes. You can easily check the compiled size with the sizeof 
function. It may be different for different target hardware architectures.   

If you have to write platform-independent code take data alignment into 
consideration (especially when using data modules). You may place 
unused alignment bytes into your data structure by yourself to force 
identical data layout on all your target hardware: 
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TYPE 
    Cutter_type: STRUCT  
        speed:     REAL;     (* 4 bytes                *) 
        cmdcount:  USINT;    (* 1 byte                 *) 
        reserve1:  USINT;    (* alignment              *) 
        xPosition: UINT;     (* 2 bytes                *) 
        yPosition: UINT;     (* 2 bytes                *) 
        reserve2:  USINT;    (* alignment              *) 
        reserve3:  USINT;    (* alignment              *) 
        cutterTON: TON_type; (* align like 4 byte t ype *) 
    END_STRUCT; 

 

Please see the Automation Studio online help for details about compiler 
data alignment.  

 

5.5 Testing 

Software testing is a crucial issue for software quality issue. It ensures that 
the behavior of the code is compliant to the specifications.  

Usually the first task in testing is the definition of test cases on the basis of 
software specification. Testing of special situations and functionalities 
(special and corner cases) requires special care, e.g. what happens if an 
incorrect value is passed to a function (‘An effective way to test code is to 
exercise it at its natural boundaries.’ – Brian Kernighan, one of the creators 
of the C language).  

If you are working in a project team consider testing your code mutually 
(the code you create is tested by one of your colleagues as an independent 
tester and vice versa).     

Automation Studio™ provides excellent features for software testing: 
watching, tracing and forcing of variables. These diagnostic methods are 
extensively discussed in B&R Training Module ‘Automation Studio 
Diagnostics’. 

5.5.1 Unit Testing 

The goal of unit testing is to show that isolated individual parts (libraries, 
modules, functions, …) are correct. 

5.5.2 Integration Testing 

In integration testing, individual software modules are combined and tested 
as a group to verify if they properly work together.  
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5.5.3 System Testing 

System testing is conducted on a complete, integrated system to evaluate 
the system’s compliance with its specified requirements (IEEE Standard 
Computer Dictionary). System testing is typically performed at machine or 
plant commissioning. 

5.5.4 Usability Testing 

Usability testing measures how well people can handle the machine or 
plant you have programmed. Usability testing typically focuses on the HMI. 

5.6 Documentation 

Documenting the software you have created is an important task. On the 
one hand it supports the users in working with all the functionalities you 
have provided for him and on the other hand it provides valuable 
information for other programmers who have to fix a bug or implement 
some additional functionality into your code. 

Documentation on a software project typically consists of information both 
inside the source-code listings (the code itself and ‘comments’) and outside 
them (typically in the form of separate documents).  

5.6.1 Comments 

Documentation at code level is always aimed at other developers and not 
at users.  

The main contribution to code-level documentation isn’t comments, but 
good programming style: good code is its own best documentation.  

However, in every program some comments are necessary to explain 
things about the code that the code can’t say about itself (e.g. high-level 
and low-level organization of programs). 

Types of comments:  

• Summary comments: should give an overview and a summary of the 
program at the beginning of the code (like a preface) 

• Intent comments (comments on the code’s intent): should explain 
the purpose of a section of code and operate more at the level of the 
problem than at the level of the solution (explaining the why more 
than the how).  

• Marker comments: should mark locations where you suspect a bug 
may exist or where code improvements are planned. They are useful 
in the development phase and should not appear in completed code.  
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What you should document: 

• Data types (structures) 

• Variable declarations (including physical units if applicable) 

• Major steps of your routines 

• Limitations of your routines 

• Global effects of routines 

• Interface assumptions 

• Timing issues and memory requirements (if critical)  

• Revision history 

 

What not to comment: 

• Do not use comments to explain things that are obvious to 
programmers!  

• If your code is too difficult to be understood by others rewrite it! 

 

Remember to keep comments up to date when changing the code! 

5.6.2 External Documentation 

There are two types of external documentation: 

• User documentation: contains all information relevant to users of the 
software (HMI pages, alarms, errors, etc.) 

• Developer documentation: contains information for software 
programmers (description of software design, flow charts, interfaces, 
etc.) 

5.6.3 Documentation Standards 

The American National Standards Institute (ANSI) provides ANSI/ANS 10.3-
1995 standard for documentation of engineering and scientific computer 
software at their website http://www.ansi.org for purchase. 

The military standard MIL-STD-498 defines software development and 
documentation standards and is  is approved for use by all departments 
and agencies of the department of defense of the USA 
(http://www.pogner.demon.co.uk/mil_498/). 

Both standards do not focus on industrial automation application software 
but may provide some valuable general information. 

This is version V1.40 [19/07/05] of the B&R Coding Guidelines. 
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6. SUMMARY 

In this module we have discussed structured software generation in the 
field of automation.  

Section “The Software Enineering Process” presented concepts of software 
engineering. We have seen that computer programming is not just coding, 
but that typical steps in software generation are requirements analysis, 
software specification, software design, coding, testing, documentation 
and maintenance.  

We have also seen that software quality is much more than a bug-free 
code, it involves (among others) conformance to requirements and 
specifications, readability, ease of maintenance and logical structuring into 
manageable sections.  

 

Fig. 17: Objectives 

Section “Project Structuring” focused on software architecture and design 
as the foundations of all good software.  We have seen that good 
programmers don’t rush into coding, but design their software architecture 
first.  

Section “State Diagrams” presented combinatorial and sequential logics, 
where the latter is capable of storing and remembering information and 
therefore is perfectly suited to describe the logical function of machines.  

Finite state machines are a formal and exact description of sequential 
machine logics and consist of states, events, actions and transitions. State 
diagrams are graphical representations of finite state machines.   

The concept of state diagrams and finite state machines is not only useful 
to develop correct code but also to discuss machine functions on an exact 
and formalized level with customers and for software specification. 

Section “B&R Coding Guidelines” presented the B&R Coding Guidelines for 
automation application software which should guide the user in developing 
a programming style to produce, test and document high quality source 
code. 
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Overview of training modules 

 

TM200 – B&R Company Presentation ** TM600 – The Basics of Visualization 
TM201 – B&R Product Spectrum ** TM610 – The Basics of ASiV 
TM210 – The Basics of Automation Studio TM630 – Visualization Programming Guide 
TM211 – Automation Studio Online Communication TM640 – ASiV Alarm System 
TM212 – Automation Target ** TM650 – ASiV Internationalization 
TM213 – Automation Runtime TM660 – ASiV Remote 
TM220 – The Service Technician on the Job TM670 – ASiV Advanced 
TM223 – Automation Studio Diagnostics  
TM230 – Structured Software Generation TM700 – Automation Net PVI 
TM240 – Ladder Diagram (LAD) TM710 – PVI Communication 
TM241 – Function Block Diagram (FBD) TM711 – PVI DLL Programming 
TM246 – Structured Text (ST) TM712 – PVIServices 
TM247 – Automation Basic (AB) TM730 – PVI OPC 
TM248 – ANSI C  
TM250 – Memory Management and Data Storage TM800 – APROL System Concept 
TM260 – Automation Studio Libraries I TM810 – APROL Setup, Configuration and Recovery 
TM261 – Closed Loop Control with LOOPCONR TM811 – APROL Runtime System 
 TM812 – APROL Operator Management 
TM400 – The Basics of Motion Control TM813 – APROL XML Queries and Audit Trail 
TM410 – The Basics of ASiM TM830 – APROL Project Engineering 
TM440 – ASiM Basic Functions TM840 – APROL Parameter Management and Recipes 
TM441 – ASiM Multi-Axis Functions TM850 – APROL Controller Configuration and INA 
TM445 – ACOPOS ACP10 Software TM860 – APROL Library Engineering 
TM450 – ACOPOS Control Concept and Adjustment TM865 – APROL Library Guide Book 
TM460 – Starting up Motors TM870 – APROL Python Programming 
 TM890 – The Basics of LINUX 
TM500 – The Basics of Integrated Safety Technology  
TM510 – ASiST SafeDESIGNER  
 **) see Product Catalog 
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