PVI OPC
TM730

Perfection in Automation
www.br-automation.com

Requirements

Training modules:

Software:

Hardware:

TM700 — Automation Net PVI

TM710 - PVI Communication

Windows NT/2000/XP
PVI Server & Runtime / Development

PC

Table of contents

1.

o

INTRODUCTION

1.1 Objective 5
PVI OPC 6
PVI OPC CONFIGURATOR 7
3.1 The controller project 7
3.2 Starting the PVI OPC configurator 7
3.3 Components in the PVI OPC configurator 8
3.4 Creating a new OPC database 9
3.5 Configuring the connection to the controller 9
3.6 Manually configuring variables 18
3.7 Configuring variables via Online Import 22
3.8 Data format and attributes 23
3.9 Activating the PVI OPC database 25
3.10Testing the PVI OPC database 25
3.110PC configurator summary 28
PVI OPC SERVER 29
4.1 Connecting and setting up PVI process objects 30
4.2 Reading and writing data 30
4.3 Disconnecting and deleting PVI process objects 33
PVI OPC PROGRAMMING 34
5.1 OPC Custom and Automation Interface 34
5.2 Visual Basic — OPC Client 35
5.3 Summary of OPC programming 45
SUMMARY 46
APPENDIX 47

PVIOPC TM730 '

Introduction

1. INTRODUCTION

OPC (OLE for Process Control) is the standard interface — based on the
DCOM component model from Microsoft — for Windows-based SCADA
packages (Supervisory Control and Data Acquisition) to access various
control systems.

Fig. 1: PVI OPC

The OPC Server allows you to use SCADA packages from a variety of
manufacturers and can also work with a number of programming
languages including C+ +, Visual Basic and script languages.

This training module will explain how an OPC database is created for
accessing a SCADA package and will then test it using an OPC Sample
Client. This training module will also take a look at programming the OPC
interface using Visual Basic / Visual Basic for Applications.

I TM730 PVIOPC

Introduction

1.1 Objective

Participants will be able to create an OPC database after performing the
exercises and tasks and will know the possibilities of the OPC configuration
and its access possibilities.

Access to the controller via OPC can be tested using the OPC Sample
Client, or any other OPC Client.

Participants will learn how to program the OPC interface by using a self-
made OPC Client created in Visual Basic.

PVI OPC

-
PVI OPC Configurator

PVI OPC
PVI OPC Server

PVI OPC Programming

Fig. 2: Overview

PVIOPC TM730 l

PVI OPC

2. PVIOPC

OPC (OLE for process control) is an industrial standard that was created
with the participation of numerous worldwide-

leading automation and hardware manufacturers .
in cooperation with Microsoft. 0LF for Provess Contral

Note:
Administration and specification of the OPC interface is handled by the

OPC Foundation. This foundation is made up of members from well-
known visualization and controller manufacturers.

www.opcfoundation.org

B&R uses a toolkit for creating the PVI OPC Server, which contains the
standard interface for accessing SCADA packages or for programming.

OPC is based on Microsoft's OLE (Object Linking and Embedding) and
DCOM (Distributed Component Object Model)

technology and comprises a set of standard Client Application(s)
interfaces, features and methods used by
automation clients for process control and
manufacturing.

The OLE/COM technologies determine how
individual software components work together
and exchange data. OPC provides a general (D)COM
interface for communication with various
process control devices, independent of the
control software used in the process.

The standardized interface enables the user to
select any SCADA package that supports OPC
or to create his own OPC Client based on VC+ + or VB.

I TM730 PVIOPC

PVI OPC Configurator

3. PVI OPC CONFIGURATOR

The PVI OPC Configurator is contained in the PVI Server & Runtime /

Development package. The configurator can only be installed together with
the OPC Server and its components.

3.1 The controller project

A controller project is needed in order to test the OPC configuration.

Any existing control application can be used for this. In this training
module we will be accessing an AR00O project with the following variables:

A% AR R F e

#include <khur/pleo.hs :I
#include <bur/plotypes.h:

_LoCAL UINT Lifesign:
_LoOCAL UINT PV1:

_CYCLIC woid cylic[void”
i
Lifesign++;

4] 20

Fig. 3: Automation Studio task "pvitest"

This task will be expanded as necessary in the individual exercises.

3.2 Starting the PVI OPC configurator

The OPC configurator is started via <Start> / <All Mg DPC Sample Client
Programs> / <B&R Automation> / <Server> / OPC -r--
Configurator. [OPC Configurator

. k" eb Server

;118 PVI OPC Server veision2.40

@© copyright by B&R
www._br-automation.com

%'
R N P Gl -
Pariectian in Au

PVIOPC TM730 7

PVI OPC Configurator

3.3 Components in the PVI OPC configurator

A sample database is loaded when opening the OPC configurator for the
first time (PviOPC.mdb).

EPviDPE_mdh - P¥1 OPC Configurator
File Edit “iew Go Toole Help

D e e &= EmEFIE &

___gt‘.z 400 e Mame | Simulate | Simulation 5... | PvI Cornec... | Line | Devic
: Eﬁ Cammunication Paths |7 i Variables Ma

Conversions [CAPLC variables Mo

@ Simulation Signals [Z3 Simulated Variables Mo
- (@] Alarm Defiritions

d | | 2l
Ready |3 Object(s) | | S

Fig. 4: PVI OPC configurator — Default view

The PVI OPC configuration is made up of the following parts:

 Address Space

¢ Communication Paths
 Conversions

e Simulation Signals

e Alarm Definitions

All control variables (also called Items) are managed in logical groups
(folders) in the Address Space.

The controller connection up to the task object is configured in the
Communication Path using configuration dialog boxes.

The component Conversions, Simulation Signals and Alarm Definitions
will not be covered explicitly in this training module. Further information
can be found in the PVI user documentation "PV/ Server/PVI OPC".

TM730 PVIOPC

PVI OPC Configurator

3.4 Creating a new OPC database

A new OPC database will be created for the following exercises. This is
created by selecting <File> / <New> or by clicking on the "New" button L.

Now specify a directory and the file name TM730.mdb in the Save dialog
box that appears.

A new - blank — database is then created.

3.5 Configuring the connection to the controller

The first step when creating the configuration is to create the
Communication Paths so that a connection can be established with the
controller.

During development:

e Online import of variables
» Testing the configuration in the Monitor view

During runtime:

* Connection to the controller and registering the variables

Exercise:

Creating the communication path

A new PVI connection is added using the shortcut menu (right-click) in
the "Communication Path".

.. E?WI

0[] Corversi

Pl Connection Chil+k

Note:

The configuration must be adjusted accordingly depending on the
media being used to connect to the controller (TCPIP, serial, etc).
In this exercise, the connection to the AR00O is established via TCPIP.

The connection description of the corresponding PVI process object is
defined in the PVI parameter dialog boxes.

PVIOPC TM730

PVI OPC Configurator

Note:

All changes must be confirmed by clicking the <Apply> button. The
next PVI object cannot be added until this has been done.

Experienced users have the option
to deactivate this behavior. This
setting can be made via <Tools> /
<Options>.

3.5.1 PVI object

Global PVs

Fig. 5: PVI process object

A PVI object is added to the Communication Paths folder after completing
the configuration by selecting <Apply>.

o Ha Address Space
=5 Communication Paths

TM730 PVIOPC

PVI OPC Configurator

3.5.2 Line object

The line must now be selected from the shortcut menu of the PVI object
added above.

@
Con MNew ;

No changes are necessary here because the INA2000 line is already shown
as the default line.

¢ MName: NIV =] —
Fil object

Stations
Description: IIN!—\EDDD com. protocal j Pl Parameters. .. |

Earanmeters; ICD="LNIN.&2"

Apply I Rezet Lol [Itern References. .. |

Global PVs

Fig. 6: Line process object
A line object with the name of the line LNINAZ2 is added to the

Communication Paths folder under the PVI object after completing the
configuration by selecting <Apply>.

Caution:

The connection description is displayed in the "Parameters" line.
Experienced users can also enter the connection description manually.
This option is enabled via the menu <Tools> / <Options> / <PVI> /
"Enable direct PVI parameter input".

However, we recommend always using the <PVI Parameters> dialog
box to make the settings.

PVIOPC TM730

PVI OPC Configurator

3.5.3 Device object

The medium (i.e. the device) must now be selected from the shortcut menu
of the line object and configured.

g L |
Corvers I W

The Ethernet interface is selected by default. The connection to the AR00O
is made via the TCPIP medium.

(3 Hame: TCFIP =]

Pl object

Stations
Dezcription: IEthernet[TCF';’IF']interface ﬂ P Paramneters. . |

Earameters: |CD="£IF=TI:F'IF' #58=1 /FN=1 /LOPO=0x2B97"

Global PVs

Apply | Beset ielel =

Local PVs

Fig. 7: Device process object

A device object with the name of the device TCPIP is added to the
Communication Paths folder under the line object after completing the
configuration by selecting <Apply>.

3.5.4 Station object

A station must now be added using the shortcut menu of the device object.
This object does not have to be configured.

Devices

A station object with the name Station is added to
the Communication Paths folder under the device
object after completing the configuration by
selecting <Apply>.

Global PVs

Local PVs

TM730 PVIOPC

PVI OPC Configurator

3.5.5 CPU object

A CPU must now be added using the shortcut menu of the station object.

CPU Crl+l

o Davices |

Global PVs

Fig. 8: CPU process object

The configuration dialog box for the CPU object is opened by clicking the
button <PVI Parameters>.

The following entries must be changed in this dialog box:

« 1: Destination Address = 2
¢ 2: Remote Port Number = 2B98
e 3:IP Address = 127.0.0.1

PVIOPC TM730 H

PVI OPC Configurator

P¥l Parameters

Fig. 9: PVI Linien Dokumentation

- Automation Met
Q Software ingtallation
= P
- PVI Presentation
- PV base system
----- Overview
----- Tems
----- Fl Manager
----- Fl Monitar
[PYICOM interface
=) P lines
=-(0) INA2000 fine
----- a INA2000 communication
..... [E] IMA2000 CPU ohjects
..... [£] INA2000 module objects
..... [£] INA2000 task objects
..... [£] INA2000 variable objects
----- a Tranzlating BR modules
----- a Link node vaniables

The parameters in the configuration dialog
box depend on the medium being used.

A description of this parameter can be found
in the documentation for the PVI INA2000 line.

A CPU object with the name CPU is added to the Communication Paths
folder under the station object after completing the configuration by

selecting <Apply>.

TM730 PVIOPC

PVI OPC Configurator

3.5.6 Manually adding a task object

A task object is created as the last PVI process object.

Note:

A task object is not necessary if only global variables are being used.
However, we also recommend registering all global variables in one
task object because this can speed up the variable registration using the
save path (configuration on the CPU object).

The task object is created in the shortcut menu of the CPU object.

E

The task name of the control project that the OPC variables will refer to
must be entered in the task object.

Ry Mame: [TASKD =]
Pl obiect Stations
Description: ITASK [global, local wariables) ﬂ

Esrameters: ICD ="Tasko"

Ao | HEset Agdd Mew Item References... |

Fig. 10: Task process object

Global PVs

Local PVs

The configuration dialog box for the task object is opened by clicking the
button <PVI Parameters>.

The name of the Automation Studio task in this practice example is
"pvitest".

F¥l Parameters Ed Elz CPU

- Cuclic #1 - [100 ms]
TASE, parameters for INAZ2000— puitest

e)

Task name ;

Ipvitesﬂ

ak I Cahicel

PVIOPC TM730

PVI OPC Configurator

In the next step, the user is asked whether the task name should also be
used for the name of the task object. This step is confirmed by selecting
<Yes>.

The connection to the controller — in our case the AR0O0O — is now

configured.
o +9 addiess Space
The Communication Paths folder should now =5 Commuriic ation Pathrs
. . § kel Pwi
look like this: BT LNINGZ
=- 4 TCRIR
E|=~ Station
= CPU
Ly pitest

3.5.7 Adding task objects via Online Import

The task objects can be added via "Online Import" once the CPU object has
been defined and a connection to the controller has been established.

Exercise:

Using the online import

Delete the pvitest task object and use the Online Import function. The
same structure should then appear in the Communication Paths folder
as with the manual configuration of the task object.

The Online Import function is opened from the shortcut menu of the CPU
object:

ETMTBI]_mdh - P¥1 OPC Configurator
File Edit “iew Go Toole Help

NS Bl CE| § e[
48 Address Space Mame
-5 Communication Paths
Bl P
=¥ LNINA2
=4 TCFIF
E|=~ Station
- g‘ ﬁ"‘ Mew 3
[-{E1] Conversions
(&) Simulation Signals W
F-{@g] Alarm Defiritions
Renarme 5
Muiltiply...

Ehatae Eul Eath..
[etiamae Betiest ime ..

Fig. 11: Online Import for task objects

TM730 PVIOPC

PVI OPC Configurator

All of the tasks in the controller project are displayed in the next dialog box
after the connection to the controller has been successfully established.

Import List - PyisLNINAZATCPIPAStation\CPU

; preitest Tazk | ‘Yes

Fig. 12: Online Import of the task list

After selecting the "pvitest" task and pressing the <Import> button, the
user is queried in the next dialog box whether all of the tasks or only the
selected tasks should be imported.

The import procedure is started with
the default settings by pressing the
<Import> button.

The following window is displayed after successfully importing the
selected task. Click <OK> to continue.

P¥l OPC Configurator x|

LiJ

—

The task object "pvitest" is placed under the CPU object.

82 Address Space
El Carmmunication Paths
B P
L E¥T LNINAZ
= TCPIP
E|=~ Statian
=8 CPU

Fa |
------ o et

PVIOPC TM730 17

PVI OPC Configurator

3.6 Manually configuring variables

The data items (i.e. the control variables), which are required for accessing
the OPC Client during runtime, are configured in the Address Space folder.

These variables can either be configured manually or via the Online Import.

To do this, each of these data items must be linked to a PVI object (CPU or
task).

Note:

To manage the variables in a more clear and organized manner, we
recommend distributing them in logical folders instead of placing all of
the variables right in the Address Space folder.

All data items are managed in folders.

3.6.1 Creating a new folder

A new folder is added by selecting <New> / <Folder> from the shortcut
menu of the Address Space or by using the shortcut <CTRL> + "F".

= . s — = I]
B P et Orline. . Datalt gCtthJ I

Fig. 13: Creating new folders

A folder can be added to any level of an existing folder.

Task:

Create a new logical folder with the name:
"PLC Variables"

TM730 PVIOPC

PVI OPC Configurator

3.6.2 Adding a data item

A data item with a reference to a controller variable in the pvitest user task
is created under the newly created folder.

#include <bur/ple.hs
#include <bur/plotypes.h:

_LoCAL UINT Lifesign:
_LoOCAL UINT PV1:

_CYCLIC woid cylic[void”
i
Lifesign++;

Fig. 14: "pvitest" user task

A new data item is added by using the shortcut menu of the folder or by
using the shortcut <CTRL> + "J".

=-+8 Addiess Space
: éw@EFLEHmEHm

Fig. 15: Adding a new data item

The configuration
dialog box for the data
item is shown on the
right side.

[NT32 7
Lengti [Eytes]]

r
r
I
I
r

PVIOPC TM730

PVI OPC Configurator

The data item is configured in the following steps:

The Name line specifies the symbolic item name. The connection to the
OPC Client is made using this name.

I ame: INew Drata ltem

The controller's physical variable name is entered in the Tag Address line.

Tag address: I j

Variable addresses are not limited to single variables. Elements of a
structure and elements of an array can also be entered.

For example: Structure.Element
Structure[0].Element[0]
Element[0]
Note:

The symbolic name is used as variable name if the Tag Address line is
left empty.

The variable is linked to a CPU or task object by selecting the
corresponding PVI path.

All configured PVI objects are displayed by pressing the <Selection>

button _I

P¥1 Path - PLC Yariables\New Data Item
Select a Pl path:
M ame | Type |
<Mat Azsighed:

& Pvi PVl Connection

BT PiLNINA2 Line:

g PyisLMINAZNTCRIP Device

:u Pt LMINAZNT CPIPYStation Station

T3 PisLNINAZST CPIPAS tation\CPL CPU

E] Pt LMIMAZST CPIPAS tation CPU S pitest Task

Set Default SEECtIeraut ak I Cahicel

Fig. 16: Selecting the PVI object

TM730 PVIOPC

PVI OPC Configurator

All new subsequent data items are immediately linked with the
corresponding PVI object by clicking the <Set Default> button.

If there is a valid online connection to the controller, then the Tag Address
can be selected from the combo box after the PVI path has been defined.

& Mame: INew Data ltem =Tag Addressl

Dezcription: I
Pl path: IF'vi'\LNIN.-’-‘«2\TI:F'IF"\Statinn'\CF'U'\pvitest . |
Tag addregs: I ﬂ Element... |

= MCEM

Fig. 17: Selection of the Tag Address with online connection

Task:

Add the two variables contained in the control task.

Add the two variables configured in the pvitest task to the OPC
configuration.

The symbolic names of the variables in the "Name" line should describe
the variable's function.

There should now be two data items in the PLC Variables folder.

ﬂTMTﬂU.mdh - P¥l OPC Configurator

File Edit “iew Go Toolz Help
DS B e E] & 2R E
E|°g Addrezs Space

=3 PLC Variables Mame: IVisu_F‘W
! Wisu_Lifesign
iz PV

ElF [6] 2

Drescription: I

P Communication Paths P path: [PYRLNINAZ\T CPIPAStation CPUspuitest
: Corversions
@ Sirulation Signals Tag address: IP\.-'1

Fig. 18: Configured data item

PVIOPC TM730

PVI OPC Configurator

3.7 Configuring variables via Online Import

Similar to importing a task, variables can also be imported from the
controller online.

Imported variables or data items are placed in the folder where the cursor
is located at the time of importing.

Exercise:

Online import of variables

Create a new folder called "Test". The online import function can be
started using the shortcut menu in this folder.

=-+2 Address Space | Mame ©
ED PLC W ariables
-[1] Wisu_Lifesign

| oo Orige
-fe Simulatic .

The OPC configurator attempts to establish a connection with the controller
after the task object has been selected from the next dialog box.

Reading P¥I Item List... x|

From: '@Pvi/LNINAZ/TCRIP/Station/CPU /pvitest!
Seconds elapzed: 3

UL Cancel I

Fig. 19: Reading the variable list

The variables of the selected task, pvitest, are displayed once the
connection has been established. Highlight the desired variables, press the
<Import> button and confirm your selection in the subsequent window to
import the variables.

Import List - P¥isLNINAZAT CPIPAS tationACPU A pyitest

Select items ta be imported:

Mame | Tupe | Mew | Scope | Location |
@ Lifesign UINT1E | Yes | Local | Test
Pt UINTIE | ¥es | Local | Test

Fig. 20: Dialog box for importing variables

TM730 PVIOPC

PVI OPC Configurator

The imported variables are shown in the Test folder with the item name of
the controller variable (tag address).

=72 Addiess Space

=8 @ PLC Wariables

17 Wisu_Lifesign
Wisu_ P

------ m Lifesign

Note:

The symbolic variable name might have to be manually edited when
importing variables.

3.8 Data format and attributes

The format defines the data type, the configuration of arrays (= vector)
and the Cast Mode of the data item.

UNT1E 7]
Lenghi [ERLES:

]
|
|
|
]

Fig. 21: Data item format

Information for the individual entries =W PV Server

be f d in the PVI OPC -4 Pyl DDE Server
can e toun n t e user EQI'.II P OPC
documentation. | - Overview

-----] Mewin PV OPC

EIQE] Running P OPC Server

B - @ Configurator User Interface
EI Qﬂ] P|-specific Features

. Folders

Qﬂ] Data ltems

Pl Path

Tag Address

. Drata Tupe / Length
. Refrezh Time
Cast Mode

=

Fig. 22: PVI OPC - Data item documentation

PVIOPC TM730

PVI OPC Configurator

The attributes are defined in the Access folder and define the access rights,
the setting for the event-controlled communication and the refresh time.

Format Access |Va|ues| Simulatinnl Eonversionl Alarmsl

— Refrezh —Acoess
0 Off Tupe: IDATA 'I

[Ewvent mode " Once Select an access pe to obtain
special in[ormalion [far example

¥ wiite access % ith tine: LCPU wersion] or ta perform a
function [for example caold start).

WAfrib I

[wike responise 10007 [ms] The available access types vary
with the aszigned Pl path and if

I Fastecho a Tag address is specified.

Fig. 23: Data item - Access

Only the attributes that are important for communication performance are
described in this training module. All other attributes can be found in the
PVI OPC user documentation.

The event mode and the refresh time can considerably influence
communication performance.

Caution:

The defined refresh time is not a guarantee for the variable update in
the OPC Client because the OPC Client reads the data from the OPC
Cache using a predefined time.

Information about the OPC Client's defined update time can be found in
the documentation of the software being used.

A detailed description of the event mode and the refresh time can be
found in the TM710 training module.

The read access and write access attributes define whether read or write
access is allowed by the OPC Client.

The write response attribute defines whether the program will wait for a
response from the OPC Server during a write task from the OPC Client
(controller response). A response to the write task is immediately sent to
the OPC Client if this option is deactivated.

TM730 PVIOPC

PVI OPC Configurator

3.9 Activating the PVI OPC database

The database should be activated if the PVI OPC configurator is closed or
the Monitor View is activated in the configurator.

The OPC Server uses the active database (reference to *.mdb file) during
runtime.

The database can also be activated via <File> / "Make active...".

The OPC Client can then access the active database once the dialog box
has been confirmed by clicking <Yes>.

P%1 OPC Configurator B
i" Current active database is:
- 'C:\Brautarnation\PyitClghPwlPC. mdb'.
Active database is the database that the zerver will load when started.

Currently edited database iz
T ark P SO PCAT k730, mdb"

Do vou want to set edited database as active databaze?
Ja | Mein I

Fig. 24: Activating the database

3.10 Testing the PVI OPC database

There are two ways to test the new database:

* Monitor View of PVI OPC configurator
e OPC Sample Client

3.10.1Testing with the Monitor View (read only)

The PVI OPC configurator can be used to check whether or not a
connection can be established with the controller and to read values from
the configured data item.

Note:

Values can only be displayed in the Monitor View. It is not possible to
write to data items.

PVIOPC TM730

PVI OPC Configurator

If a folder is selected in the Address Space, then the

Monitor View can be activated by pressing the Monitor
View button.

.. h' | Connec

All data items are shown in the lower part of the PVI OPC configurator
with their values including the time stamp of the data change and the

quality.
Item ID | Walue | Timestamp | Guality | Subguality |
PLC Wariables Vizu_Lifesign 51350 04/04/06 14:17:48.013 Good Maon-zpecific
PLL Wariab 04/04/05 14:17.39.500 Non-specific
1| | o

Fig. 25: OPC Monitor View

Appearance when the connection to the controller is not working:

Item ID | Walue | Timesztanmp | Quality | Subguality |
PLC % ariables Yizu_Lifegign e 04/04,/06 14.26:45.151 Bad Comm Failure

PLC Y ariables. Visu 04,/04/06 14:26:45.151 Bad Cornm Failure I
1] | i

Fig. 26: OPC Monitor View with connection error

3.10.2Testing using the OPC Sample Client (read and write)

When installing the OPC Server & configurator, an OPC Sample Client is
also automatically installed.

It is started via <Start> / <All Programs> / <B&R Automation> /
<Server> / OPC Sample Client.

B 0FC Sample Client
E| Pl DDE Serv File 0OPC ‘“iew Help

'ﬁ 0OPC Caonfigurator il’i‘lul %l E'-;l I%l ?l

. wieb Server Tag | W alue

w

w

Fig. 27: OPC Sample Client

TM730 PVIOPC

PVI OPC Configurator

All of the OPC Servers registered in the system are shown by pressing the

<Connect> button .

Select OPC Server

B&R.Fvi0PC
BiR.Pvi0PC.2
F/1.OPC

Fig. 28: Connecting the OPC Server

Either the OPC Server B&R.PviOPC or B&R.PviOPC.2 can be selected. At
the moment, there is not difference between the two.

Individual variables from the x|
configuration can be selected from the I
Add Item dialog box by pressing the s |

<Add> button .

Fig. 29: Add Item dialog box

The highlighted variable object is
selected by clicking <OK>. The |F"LE Variables Visu_Lifesign 23317
current value is also displayed if a

connection already exists.

A write procedure is possible by pressing the <Write Item> button and
entering the desired value.

PVIOPC TM730 27

PVI OPC Configurator

3.11 OPC configurator summary

The PVI objects are configured in the Configuration
Path according to the object hierarchy. The
connection description of the process objects is made
in parameter dialog boxes.

All data items are put into logical groups in the
Address Space and normally connected to a PVI task
or CPU object in the Configuration Path.

Global PVs

Local PVs

Note:

The data items are connected directly to the device object in the MTC
and ADI lines.

The task objects in the Configuration Path and the data items can be
configured via online import if an online connection is available. In this
case, only one connection to the CPU object has to be configured.

The configuration can be tested using the Monitor View or the OPC
Sample Client if an online connection is available. An additional client is
not necessary.

TM730 PVIOPC

PVI OPC Server

4. PVI OPC SERVER

The B&R PVI OPC Server is an OPC-compatible server that can
communicate with various I/O devices and protocols as well as send data
to OPC Clients when using the B&R Process Visualization Interface (PVI).

OPC OPC

Client1 Client2 .

i1 1 1
. peom

A connection to the OPC Server is already provided when setting up a
project with the PVI OPC configurator. The data items in the database can
already be accessed at this point.

Select OPC Server

BiR.Pvi0FPC
B&R . PwiOPC.2
FWIL.OPC

=
.
—

CounterR esetdlarm

FampLimitélarm

Array
Bits
Conter

b athennatic:

PVI OPC
Database

Fig. 30: B&R PVI OPC Server

PVIOPC TM730

PVI OPC Server

Note:

The PVI OPC server supports OPC Data Access Version 1.0 and 2.0 as
well as OPC Alarms & Events Version 1.0 and can be used with DCOM
for Intranet and Internet applications.

4.1 Connecting and setting up PVI process objects

When a data item is registered for the first time (added to a group), the PVI
OPC Server attempts to connect the corresponding PVI process object.

If the connection fails, then the server attempts to set opc

up static PVI process objects that have been assigned \ 4

to data items for each item in the PVI path and the Tag L eroup

Address, before trying to connect the PVI process o

object again. |E —
Item

Each process object must be "identified" the first time a
connection is established. This increases the time until the first data
change in the OPC Client.

By default, the data items are only adjusted the first time they are used. For
example, when a page is changed on the OPC Client, the data items
connected to the new screen page will be registered again.

This behavior can be changed in the runtime system's OPC configurator. All
process objects could then be set up when starting the server — select
<Tools> / <Options> / <Runtime> / "Create PVI process objects at start".

All process objects are set up as static. That means that these will remain
registered even when the OPC Client is ended on the PVI Manager.

Caution:

Changes made to the connection description (Tag Address, Format,
Attribute) in the OPC configuration are not effective until the PVI
Manager has been restarted.

4.2 Reading and writing data

The server performs a synchronous read task after a data item is registered
for the first time in order to acquire the item's data for the first time.

Changes made to the data in a process object are sent from the PVI to the
server via callbacks and are then saved in a CACHE by the server.

TM730 PVIOPC

PVI OPC Server

client application
(OPC client)

OPC server

PVI

Fig. 31: OPC cache

The CACHE is updated according to the refresh time defined in the PVI
OPC configuration. The data stored in the CACHE is sent to the client either
during a client read task (read from cache) or via a data event with an
update rate defined by the client.

4.2.1 Data item properties

Every data item is represented by three properties:

e Value: Numeric or textual
 Time stamp: Time stamp of the data item's last value change
e Quality: Quality of the data item

Caution:

The time stamp is generated by the OPC Server as soon as a data
change event is received. The time does not correspond to the value
change on the controller!

PVIOPC TM730

PVI OPC Server

4.2.2 Read from cache / Read from device

There are two possibilities for acquiring the data (read tasks) using the OPC
Client.

The OPC Client reads the data from this CLIENT CACHE =ERVER/PVI
cache when using the "Read from cache"
access type.

However, this also means that the read
access occurs asynchronous to the data
acquisition and the update of the cache via
the PVI.

OO0 OO

Fig. 32: Read from cache

The "Read from device" access type leads CLIENT CACHE SERVER/PVI
to a synchronous PVI read task in the PVI
OPC Server. This type of access causes the

application to "freeze" in the OPC Client O
until the response data has been read from
the controller. -

O OO

Fig. 33: Read from device

Caution:

This type of access should only be used when synchronous access to
controller variables is necessary. Otherwise, the access type "read from
cache" should be used.

TM730 PVIOPC

PVI OPC Server

4.2.3 Writing values

If the OPC Client sends a write task to the controller, then it is processed
according to the "Write response" data item attribute.

The write task is ended with "Write response" if a response was received
from the controller.

Without "Write response”, the write task will be ended right after the data
has been sent.

4.3 Disconnecting and deleting PVI process objects

The server maintains the connection to the process object throughout the
lifetime of the data item. That means that the connection to the process
object is broken by the server (inactive process object) once the data item
is no longer being used by a client.

The process object is activated again the next time the data item is
registered on the PVI OPC.

This behavior can be changed in the runtime system's OPC configurator. All

process objects could then be set up when ending the server — select
<Tools> / <Options> / <Runtime> / "Delete PVI process objects at end".

PVIOPC TM730

PVI OPC Programming

5. PVI OPC PROGRAMMING

When accessing the OPC Server from a programming language such as
C++, Visual Basic or a Script language, there are two types of interfaces in
the OPC specification; the OPC Custom interface and the OPC Automation
interface.

5.1 OPC Custom and Automation Interface

Custom interfaces are used in programming languages such as Visual C /
C++.

Programming languages such as Visual Basic or Visual Basic for
Applications do not support function pointers. The Automation interface
was introduced so that OPC Client applications could also access DCOM
objects.

The Automation interface uses a standard interface which calls methods by
their names instead of using function pointers.

T+ Custom Interface

S -
Application

OFC
_ server

Yisual Basic Automation Automation Custam

g * ™ Wrapper * ’
Application Interface Interface

Fig. 34: Automation interface

An automation object provides features that make it possible to read or set
the static properties of an object.

The OPC client is notified of changes via events.

The Automation interface functions are provided in an Automation wrapper
type library (DLL).

TM730 PVIOPC

PVI OPC Programming

5.2 Visual Basic — OPC Client

Access via the Automation interface for data access to the OPC Server is
described using a small Visual Basic application.

The following image shows the object model provided by the Automation

wrapper.
OPC Server
OPC Groups L OPC Browser
(Callection)
L OPC Group
L DPC ltems

(Callection)

L OPC temn

Fig. 35: Automation wrapper

Note:

Programming a Visual Basic program is not a requirement for this
example. Even Visual Basic beginners can create a program capable of
running by following the individual steps.

The OPC database created in section 3 is used for accessing the data items.

PVIOPC TM730

PVI OPC Programming

5.2.1 Starting Visual Basic and creating a VB application

Exercise:

Starting Visual Basic and creating a new standard
* EXE program.

Activex EXE Activex DLL

a\’ N\

EN BN

Ackivel Control VB Application Wizard YE Wizard Manager
Fea 4y P &y P 4
S i SR

A new executable program is created after starting Visual Basic 6.0.

The VB interface appears after clicking the <Open> button and a new
"Form" screen is opened.

Note:

It is recommended to give each component a meaningful name. This
gives programs a more clear and organized overview.

The name and the caption are changed in the properties of the "Form1"
screen according to the subsequent page.

Properties - Form1 E

|Furm1 Form ;I
Alphabetic |Categnrized I

AutoRedraw False

BackColor] aHs000000Fe:
BorderStyle Z - Sizable
(apkion OPC Client

TM730 PVIOPC

PVI OPC Programming

5.2.2 Integrating the OPC Automation wrapper library

The Automation wrapper DLL must be integrated in the project before the
VB components can be accessed or programming is possible on the OPC
Server.

This is done using the menu <Project> / <References>. Select the OPC
Automation 2.0 object from this dialog box.

Available References:

[JodService 1.0 Type Library :l
[]odServicelialogs 1.0 Type Library

[officeinkeqgrationScripting 1.0 Type Library

[l offProwlD 1.0 Type Library

[C]0OLE DB Errors Type Library

[Jaleprn 1.0 Type Librar
FOPC Aukornation 2,0
[l OpcEnum 1.0 Type Library

[]opksHald 1.0 Type Library —
[IPackage and Deplayment vizard

[IPagekeyhction 1.0 Type Library

[[]PageMavbar DTiZ 1.0 Type Library

[JPassword 1.0 Type Library

|_|IPDCube 2.0 Tvoe Library | _ILI
“ »

Fig. 36: OPC Automation wrapper library

The following classes are available after integrating the OPC Automation
object:

IOPCAutnmatinn

= o]] 2
| =] Al

Classzes Members of 'OFCSemver’
@ =qglobals= E&!' Bandwidth

=F OPCAccessRights & Buildbumber

B OPCBrowser 2 Clienttame

=7 OFCDataSource =S Connect

2® OPCErrors =% CreateBrowser
B OPCGroup EH CurrentTime

B OPCGroups =& Disconnect

B OPCltern =% GetErrarString

B OPCltems =& GetlternProperties
=P OPCMamespaceTypes| = GetOPCSerears
INE CFCServer e LastUpdateTime
27 OFCServerState e LocalelD

=% LookupltemIDs
B WMajorversion
& MinoryYersion
) OFCGroups

Fig. 37: PC automation class overview

This overview can be opened by pressing the <F2> key.

PVIOPC TM730 37

PVI OPC Programming

5.2.3 Variable declaration

The necessary variables must be declared before the objects can be
accessed.

Double-clicking on the form opens the Program Editor for entering the
following program code:

I{General} j I{I]et:lar
Option Base 1 ' Liwmit of datafield index to 1
Priwvate vbrOPCServer Lz OPC3erver ' Variabhle of type OPCS3erwver

' WithEwvents sets the control of the OPC Group events
Private WithEwvents warOPCGroup As OPCGroup
Private warOPCItem(d) ALs OPCItem ' field wariable of type OPCItem

Fig. 38: Variable declaration for OPC access

5.2.4 Visual Basic objects on the form

Two CommandButton objects with the name emdConnectOPC and caption
Connect and the name cmdDisconnectOPC and caption Disconnect are
placed.

Two TextBox controls are also required for displaying and entering values.
These are given the names txtVisuLifesign and txtVisuPV1.

. OPC Client =] =S

Fig. 39: Objects in the Visual Basic project

Caution:

The "Enabled" property for the disconnect button should be set to false.
Otherwise, a program exception occurs if the button is pressed while
executing the program before connecting.

TM730 PVIOPC

PVI OPC Programming

5.2.5 Connect function

The first access to the OPC Server writes the Connect, (i.e. establishes the
connection).

Programming is possible by double-clicking on the <Connect> button.
The following procedure occurs with Connect:

* Declare variables for the collection objects
* Create a new OPC Server Automation object

» Call the Connect method for this object. The Wrapper starts the Data
Access Server with custom interfaces

e Output the Vendorinfo (i.e. the OPC Server name) to the output
window

* Create an OPCGroup object and add a group with the name
OPCSample via the Add method

» Set the refresh time (UpdateRate) and the status
 Enable the callback connection

The following program code should be entered:

Private Jub cmdConnectOPC Click()

Dim warOPCGroups As OPCGroups ' wariable of type COPCGroups
Dim wvarOPCItems As COPCItems ' wariable of type COPCItems
Dim setltemlD A= 3tring

Jet wvarOPC3erver = New QOPC3erver ' create object "OPCIerver'
varOPC3erver.Connect "B&R.PviOPC™ ' connect to OFC Server
Debugy.Print wvarOPClerver.VendorInfo ' display OFPC server hname

PVIOPC TM730

PVI OPC Programming

Task:

Starting the program for the first time to check the connection to the
OPC Server.

After pressing the <Connect> button, the server name is displayed in
the Visual Basic output window using the line "Debug.Print
varOPCServer.Vendorinfo'.

Immediate

| B&R PVI OPC DA & AE 3Server

Once the info has been successfully output, the program should be ended
and the program code for the "Connect" should be added:

Debug.Print warOPC3erver.VendorInfo ' display OFPC server name
' ponnect wardPCGroups wvariable to DPCGroups obiject

Get warOPCGroups = warOPC3erwver . OPCGroups

' add to collection object a Group (OPCS3ample)

Get warOPCGroup = warOPCGroups. Add | "OPC3ample™)

warOPCGroup. IsSubscribed = True

warOPCGroup. Ishctive = True ' actiwvate group
warOPCGroup. UpdateRate = 50 ' define refresh with 500ms

In the next step, the OPCltem Automation objects are added (i.e. access to
the controller's variables).

The folder name and the name of the item from the OPC database should
be used as variable name.

'connect warOPCItems wvariable to OPCItems of OPCGroups obhject
Jet varOPCltems = warOPCGroup. OPCItems

If wvarCPCItems Iz Nothing Then '"gxit 1f no OPCItems availabhle
Exit Sub

End If

' define itew with "Folder.Wame"™ from OPC database

secltemId = "PLC Variables.Wisu Lifesign®™

' oonhect variable to OPCItem (1)

Jet varOPCIltem(l) = wvarOPCltems. AddItem(setItemID, 1)

' define itew with "Folder.Wame"™ from OPC database

secItemIl = "PLC Variables.Wisu PV1T

' oonnect variable to OPCItem(Z2)

Jet varOPCltem(2) = wvarOPCltems. AddItem(setItemlID, 2)

TM730 PVIOPC

PVI OPC Programming

To complete the connect function, the <Connect> button is locked and
the <Disconnect> button is enabled.

ciwdConnectOPC.Enabled = False
cidlisconnectOPC.Enabled = True

End Sub

The data items can now be written to and value changes are now
automatically registered by the server via events.

Note:

As many items as are needed can be added to the "ltem Collection", as
long as they are also available in the database.

5.2.6 Disconnect function

The references to the collection objects are queried by pressing the
<Disconnect> button and cleared using the Remove method for the
OPCltem objects and finally for the OPCGroup objects. A Disconnect
function is then called on the Server object.

Program code for the disconnect function:

Private Zub cmdDisconnectOPC Clicki)

Dim warQPCGroups Az QPCGEoOups ' wariable of type OPCGroups
Dim warQPCGroup Az OPCGroup ' wariabhle of type OPCGroup
Dim warQPCItemz Az OPCItems= ' wariabhle of type OPCItems=
Dim warQOPCItemLocal As OPCItem ' wariasbhle of tLype OPCItem

' link OPCGroups wvariable to server obhject

Zet wvarQPCGroups = varOPCServer . OPCGroups
' loop to remove all groups of type OPCGroups
For Each warOPCGroup In warQPCGroups
If Mot (wvarOQPCGroup Iz Nothing) Then
varQPCGroup. Iskctive = False
varQOPCGroup. Is2ubacribed = Falsze
Zet wvarOPCltemz = wvaroPCGroup.OPCItems
For Each warOPCItemLocal In warOPCItems
Dim ZerwverHandle(l) Az Long
Dim Errorsi) Az Long
ServerHandle (1) = wvarOoPCItemlocal.ServerHandle
' remove item from collection
varOPCItems.Femove 1&, ZerwverHandle, Errors
Next wvarOPCItemLocal
' remove group from collection

varOPCGroups. Bemove warOPCGroup. ServerHandle
End If
Next warOPCGroup

PVIOPC TM730

PVI OPC Programming

For i = 1 To 2

If Mot (wvarOQPCItem(i) Iz Nothing) Then
Set varQPCItem(i) = MNothing

End If

Next 1

' releazse obhject wvariables

If Mot (wvarQPCGroup Is MNothing) Then
Set varQPCGroup = Nothing

End If

' release connection to sServer

If Not [wvaroPC3erver Is MNothing) Then
wvarPCSierver.Disconnect
et waroOPC3erver = Nothing

End If

crodConnectOFC.Enabled = True

crdlisconnectOPC.Enabled = False

End Zuhl

When the disconnect method is called, the last interface to the OPC Server
is enabled and the OPC Server is stopped.

5.2.7 Event function for value changes from the OPC Server

To maintain value changes to data items in the OPC Server, the
DataChange event from the OPCGroup which was set up in the variable
declaration with "WithEvents" is called automatically.

Select the varOPCGroup object and the DataChange procedure from the
program code.

‘w5, Project] - Microzoft ¥izual Basic [design] - [frm0OPC [Code]]

ﬁ File Edit “iew Project Format Debug Bun Guerny Diagram Toaol: Ac
|B-a-2el =ndlo o,) M

IuarﬂPCGruup j Il]atal:hange

General I

Fig. 40: Data Change event

TM730 PVIOPC

PVI OPC Programming

The following program code should be created for this event:

Frivate Zubh warOPCGroup DataChange (ByWal TransactionlID A= Long,
EvvWal MNuwmltem=s iz Long, ClientHandle=() Ahz Long,
IterWaluez() Az Variant, Qualitie=s() Az Long,
TimeZtamp=() Az Date)

Dim warOPCItem=s As OPCItems

Dim Itewm A=z OPCItem

Dim i A= Integer
' obhject OPCItems iz linked to existing items
Jet wvarOPCltems = warOPCGroup.OPCItems

For i = 1 To NumlItems
If [(ClientHandles(i) = 1) Then
'ToDD: check the quality here
LxtVWisulifesign.Text = ItemWalues (i)
Elzelf (ClientHandles(i) = 2] Then

'ToDD: check the quality here
CLxtWisuPVWl.Text = Itemvalues (i)
End If
Mext i
End 3ub

The values of the data items Visu_Lifesign and Visu_PV1 will now be
displayed in the TextBox controls when the program is started and the
connect function is executed.

. OPC Client _ O] x|

Eammest I531 84
— P

Dizconnect

Fig. 41: Displaying values

Remember:

The ClientHandle was defined by the Connect function when assigning the
varOPCltem(1).

setltemID = "PLC Variables.Visu_Lifesign"
Set varOPCltem(1) = varOPCltems.Addltem(setltemID, 1)

PVIOPC TM730

PVI OPC Programming

5.2.8 Writing to data items

Values are written to a data item using the Visu_PV1 variable because this
variable is not changed in the controller program.

The Write method is used for writing to a data item.

Task: Writing to the "Visu_PV1" data item and testing the
function.

The change event is called by double-clicking on the "txtVisuPV1"
TextBox.

This event should be changed to "KeyPress".

The following program code should be entered:

Private Jub txtWisuPV1 KeyPress(Keylhscii As Integer)
Dim WriteValue Az Long

If Eeviscii = wvhEevyEeturn Then
TriteValue = Val (txtWisuPVvl.Text)
If Not wvarOPCItem(2) Iz Mothing Then
varOPCItem(2) .Write WriteValue
End If
End If
End 3Sub

Caution:

The entry will not be automatically checked. However, the user can do
this on his own if necessary.

A numerical value should be entered in the second TextBox txtVisuPV1
once the program has been started. The value is transferred to the data

item by pressing the <Enter> key and is therefore also written to the PV1
controller variable.

Resultat:

Es wird der Wert im TextBox Control ,,txtVisuPV1“ beim Dricken der
<ENTER> Taste auf die Variable geschrieben.

TM730 PVIOPC

PVI OPC Programming

5.3 Summary of OPC programming

With just a few program lines and a small Visual Basic project, a connection
to the OPC Server can be set up and values can be read/written.

The functions and methods that were used in this training module
represent only a small portion of the possibilities available with OPC

programming, but you can see that reading and writing variables is not
hard to do.

More detailed information about programming is available through the OPC

Foundation. Help for the OPC Automation interface is not included in the
PVI installation.

PVIOPC TM730

Summary

6. SUMMARY

The B&R PVI OPC Server provides the user with extensive access to the
world of B&R control systems.

The possibility for the user to freely select finished SCADA visualizations
for Windows means that there are essentially no limitations for accessing a
controller's variables.

If the possibilities offered in a visualization are not sufficient, then the user
still has the option to program the OPC Server (i.e. access to functions,
methods and events via the Automation interface).

As a result, it should be possible to meet the demands of the OPC
visualization for any application.

Fig. 42: PVI OPC

TM730 PVIOPC

Appendix

7. APPENDIX

OPC
OLE for Process Control

OLE
is the abbreviation for Object Linking and Embedding. The term is used for
the dynamic linking of objects in different Office applications.

DCOM

stands for Distributed Component Object Model and describes an object
model for implementing distributed applications according to the client -
server principle. This allows a client to simultaneously use multiple servers
and a server to simultaneously provide its functionalities to multiple clients.

OPC database
The OPC configuration is managed in an "access database". "Access" stores
all of the database data in a single file with its own .mdb file format.

PVIOPC TM730

Appendix

Notes

TM730 PVIOPC

Appendix

Overview of training modules

TM200 — B&R Company Presentation **

TM201 — B&R Product Spectrum **

TM210 — The Basics of Automation Studio
TM211 — Automation Studio Online Communication
TM212 — Automation Target **

TM213 — Automation Runtime

TM220 — The Service Technician on the Job
TM223 — Automation Studio Diagnostics

TM230 — Structured Software Generation

TM240 — Ladder Diagram (LAD)

TM241 — Function Block Diagram (FBD)

TM246 — Structured Text (ST)

TM247 — Automation Basic (AB)

TM248 — ANSI C

TM250 — Memory Management and Data Storage
TM260 — Automation Studio Libraries |

TM261 — Closed Loop Control with LOOPCONR

TMA400 — The Basics of Motion Control
TMA410 — The Basics of ASIM

TM440 — ASiM Basic Functions
TM441 — ASiM Multi-Axis Functions
TM445 — ACOPOS ACP10 Software

TM450 — ACOPOS Control Concept and Adjustment

TM460 — Starting up Motors

TM500 — The Basics of Integrated Safety Technology

TM510 — ASIST SafeDESIGNER

TM600 — The Ba®f Visualization
TM610 — The BasidsASiV
TM630 —14bzation Programming Guide
TNG4 ASiV Alarm System
TM650 — ASiV Internatialization
TM660 — ASiV Remote
TM670SA\AAdvanced

TM700 — Audition Net PVI
TM710 — PVI Communicat
TM711 - PVI DIProgramming
TM712 — PVIServices
TM730 — PVI OPC

TM8BPROL System Concept
TM810 — APR@etup, Configuration and Recovery
TM811 PROL Runtime System
TM812 — APROL Operator Management
TM813 — APRGML Queries and Audit Trail
TM830 — APROL Projectdimeering
TM840 — APROL Paraméfimnagement and Recipes
TM850 — APROL Cuawoller Configuration and INA
TM860 — APROL Libré&nygineering
TM865PROL Library Guide Book
TM870 — APROL Python gramming
TMB890 — The Basics of LINUX

**) see Product Catalog

140 offices in more than 55 countries - www.br-automation.com/contact

Australia » Argentina « Austria « Belarus < Belgium ¢ Brazil « Bulgaria « Canada « Chile » China « Colombia « Croatia « Cyprus
Czech Republic « Denmark « Egypt . Emirates « Finland < France . Germany - Greece + Hungary - India - Indonesia
Ireland < Israel « Italy « Japan « Korea « Luxemburg « Kyrgyzstan . Malaysia « Mexico « The Netherlands « New Zealand
Norway - Pakistan < Poland « Portugal «+ Romania Russia - Serbia « Singapore < Slovakia < Slovenia + South Africa
Spain + Sweden - Switzerland « Taiwan < Thailand - Turkey « Ukraine United Kingdom « USA - Venezuela « Vietnam

