

Automation StudioAutomation StudioAutomation StudioAutomation Studio Basis Basis Basis Basis
TM210

 2 TM210 Automation Studio Basis

Requirements

Training modules: TM200 – B&R Company Presentation

TM201 – The B&R Product Palette

Software: Automation Studio 3

Automation Runtime 2.90

Hardware: None

 Automation Studio Basis TM210 3

Table of contents

1. INTRODUCTION 4

1.1 Objectives 5

2. INSTALLATION 6

2.1 Installation wizards 6

2.2 Licensing 7

2.3 Directory structure 7

3. STARTING AUTOMATION STUDIO 8

4. THE FIRST FROJECT 10

4.1 Creating new projects 10

4.2 Creating a program 13

4.3 Compiling a project 20

4.4 Transferring the project 21

4.5 Testing the program sequence 26

5. THE AUTOMATION STUDIO CONCEPT 27

5.1 Using the AS online help system 27

5.2 Basic concept 29

5.3 The different views 30

5.4 Relationship between functionality and task 38

5.5 Teamwork 48

6. OPERATING COMFORT 50

6.1 Editor Views 50

6.2 Smart Edit 53

6.3 Open data storage 54

6.4 Cross reference 55

7. VARIABLES 56

7.1 Data types 56

7.2 Declaring variables and constants 57

8. INITIALIZATION 64

9. PROGRAMMING LANGUAGES 66

9.1 Overview 66

10. SUMMARY 70

INTRODUCTION

 4 TM210 Automation Studio Basis

1. INTRODUCTION

Automation Studio is a programming environment for the B&R automation
components, which include the controller, motion control and visualization.
The clear structure of projects and the ability to manage a wide range of
configurations and machine variations makes working in teams that much
easier.

In addition to a large number of diagnostics tools, the user is provided with
different programming languages and editors. The use of standard libraries
provided by B&R and IEC standards that are integrated in the system
enables a highly efficient workflow.

Fig. 1 The Automation Studio splash screen

This training module will use examples – with the aid of the extensive
Automation Studio help system – to demonstrate how to use the great
many tools available in Automation Studio.

 INTRODUCTION

 Automation Studio Basis TM210 5

1.1 Objectives

Participants will learn how to work with Automation Studio using examples
that outline how a typical project works.

You will master the online help system and its navigation.

You will master data types and variables as well as their declaration.

You will get an overview of the different programming languages as well as
the possibilities available for each.

Fig. 2 Overview

Installation

 6 TM210 Automation Studio Basis

2. INSTALLATION

This part of the training module will cover the Automation Studio
installation. The following points will explain which actions are needed to
select the necessary components.

2.1 Installation wizards

Your Automation Studio installation is started by the Autorun command
after inserting the CD ROM or by running "Install.exe" in Explorer.

Fig. 3: Automation Studio installation: Selecting the desired language

The installation wizard will guide your through the entire installation after
selecting the desired language.

Fig. 4: Automation Studio installation: Starting the installation setup

 Installation

 Automation Studio Basis TM210 7

2.2 Licensing

A dongle is needed to register Automation Studio. This is connected to the
parallel interface or to a USB port on your PC.

2.3 Directory structure

After Automation Studio is installed, the following folders will be added
underneath the target directory you specified during installation:

Fig. 5 Directory structure of an Automation Studio installation

Starting Automation Studio

 8 TM210 Automation Studio Basis

3. STARTING AUTOMATION STUDIO

Installation creates an entry for Automation Studio in the Start menu.
Automation Studio can now be launched from the Start menu.

Automation Studio can be started multiple times.

Fig. 6 Automation Studio user interface

The B&R Automation Studio user interface shown above is displayed once
the program has been started.

This interface consists of the following elements:

1. Main menu
The main menu in B&R Automation Studio provides access to all
available functions.

2. Toolbars
Contain buttons that provide fast access to a wide selection of
commands and functions. If the mouse is placed over a button, an
explanatory text (tooltip) is shown. Toolbars can be shown or hidden
using the View / Toolbars menu item.

 Starting Automation Studio

 Automation Studio Basis TM210 9

3. Project Explorer
When a project is open, this area shows three different tabs that provide
different views of the project and allow it to be structured.

4. Workspace
This is where the window for an open project is shown. The project
window can either be maximized to fit into this area or sized
accordingly. This area can also be shown as a workbook.

5. Output window
The output window is located at the bottom of the program window. It
is used to display compiler and debugger messages, etc. In addition, it
is where the search results for the "Find in Files" function are output

6. Status bar
The status bar at the bottom of the window displays the following
information:

• Brief help about menu commands or toolbar icons

• Brief information concerning editing procedures

• Status of the online connection between the programming device
and the target system

• Status data for the currently active window

More in-depth information about editors and how they are used – as well
as the philosophy behind an application – will be given in the next few
sections.

The First Froject

 10 TM210 Automation Studio Basis

4. THE FIRST FROJECT

In this section, we will be creating a new project, writing a program, and
transferring everything to the target system.
The individual steps for each of these will be explained in detail.

Step-by-step procedure:

• Creating a new project

• Creating a program

• Compiling a project

• Transferring the project

• Testing the program sequence

4.1 Creating new projects

To create a new project with Automation Studio, use the File: New
project... menu item.

Fig. 7 Creating a new project

The New Project Wizard helps you to complete this task.

 The First Froject

 Automation Studio Basis TM210 11

The following settings need to be made:

Fig. 8 Creating a new project

• Give your project a name (e.g. MyFirstProject).

• Select the path where your project will be stored (e.g. C:\Projects).

• Copy Automation Studio Runtime support files into projects means
that operating system files will be stored in the project.

• Select the option Use default target (AR000 – Automation Runtime
W32), to use the simulation in the new project.

• Enter a short description of the project.

Click on Finish once you have made all of the settings mentioned above.

The First Froject

 12 TM210 Automation Studio Basis

Now you'll see the following view:

Fig. 9 New project

 The First Froject

 Automation Studio Basis TM210 13

4.2 Creating a program

The following steps are necessary to insert a ladder diagram into the
project:

• Inserting a ladder diagram program

• Declaring variables

• Programming the ladder diagram

4.2.1 Inserting a ladder diagram program

Fig. 10 Adding an object

The wizard for inserting an object is opened in the shortcut menu: Append
Object.

Fig. 11 Selecting the object type

Select Categories - Program and then choose New Program. Clicking on
Next will continue with the wizard.

The First Froject

 14 TM210 Automation Studio Basis

Fig. 12 Object properties 1

Enter a Program name (e.g. MyProg1). A short description can also be
entered in the Description field. The Data type declaration is not needed
now for the purpose of this example and can therefore be disabled.

Selecting Variable declaration generates a file for the variable declaration
of local variables for the new program. Continue with the wizard by clicking
on Next.

Fig. 13 Object properties 2

Deselect the option Init program and select Ladder Diagram as Language.

 The First Froject

 Automation Studio Basis TM210 15

Clicking on Next will continue with the wizard.

Fig. 14 Hardware-related object setting

Assigning the object to the CPU (Yes to active CPU) means that the created
program is automatically assigned the software configuration.

Click on Finish to close the wizard.

Fig. 15 New object in the project explorer

Three items have now been added in the Project Explorer. The variables for
the Ladder Diagram will now be created in the next step.

The First Froject

 16 TM210 Automation Studio Basis

4.2.2 Declaring variables

Fig. 16 Opening the declaration window

The variable declaration, for adding new variables, is opened by right-
clicking MyProg1.var and selecting Open as Table.

A blank white area now appears in the right half of the screen. Add a new
variable by right-clicking and selecting Insert Variable.

Fig. 17 Inserting a variable

Enter the name of the variable here. Use the name "diLight".

Fig. 18 Setting the variable name

We now just have to set the variable data type. This should be set to the
data type "BOOL".

Fig. 19 Setting the variable type

A variable's data type can be changed by entering the data type name

directly in the Type column or by double-clicking on the icon.

 The First Froject

 Automation Studio Basis TM210 17

Repeat this procedure on your own for the variable "doLight" and you will
arrive at the following variable declaration.

Fig. 20 Variables for MyProg1

Now save your changes using the save icon .

The variables that we want to use in our ladder diagram are now defined.
That means that they can now be used in ladder diagram.

The First Froject

 18 TM210 Automation Studio Basis

4.2.3 Programming the ladder diagram

The following actions are necessary to program the ladder diagram.

Open the ladder diagram editor by double-clicking on MyProg1Cyclic.ld in
the Project Explorer.

Fig. 21 Editing the Ladder Diagram

The ladder diagram editor appears on the right side of the screen.

Fig. 22 Ladder Diagram editor

The cursor (shown as a cross) blinks in the editor.

Now click on the icon to insert a normally open contact. A field with a
blinking cursor appears over the contact.
Press the space bar.

This opens the following window.

Fig. 23 Connecting a normally open contact

Click OK to connect the variable diLight to the contact.

 The First Froject

 Automation Studio Basis TM210 19

Insert a coil by clicking on the icon. Repeat the same procedure as
earlier with the variable doLight for the normally open contact.

Fig. 24 Connecting a coil

Your ladder diagram now looks like this:

Fig. 25 Finished ladder diagram

Save your work with the icon.

The First Froject

 20 TM210 Automation Studio Basis

4.3 Compiling a project

We have now successfully finished creating the project and programming
the ladder diagram. We will now compile our project. In this step, we are
going to learn about any errors that might exist in our project or program.

Compile your project using the icon.

The following window appears after the project has been successfully
compiled:

This window informs us that the entire project has been compiled is now
up to date. It is also contains the note informing us that the project can
now be transferred to the target system.

In the following section we will learn how to define a target system for the
project.

 The First Froject

 Automation Studio Basis TM210 21

4.4 Transferring the project

We will use Simulations Runtime AR000 as target system. This allows us to
test program sections during cyclic operation, even without any physical
hardware.

4.4.1 Starting the emulator

The AR000 must first be started before it can be used.

To do this, click on the Tools: AR000 menu item.

Fig. 26 Starting the emulator

This opens the following dialog box:

Fig. 27: Choosing the AR000 version

Here you can choose which AR000 version to use. We will use the default
version and confirm our selection by clicking OK.

The First Froject

 22 TM210 Automation Studio Basis

The simulation is then started and the following window appears.

Fig. 28 AR000 runtime emulation

The AR000 has now been successfully started and can now be used as
target system for testing our first project.

Before we can transfer the project, we must first establish a connection to
the target system.

4.4.2 Creating a connection

In order to be able to work with a controller, it's necessary to establish a
connection to it. This connection is needed for transferring the project to
the target system.

The following describes how to specify the type of connection.

Open the menu item Online:Settings.

Fig. 29 Connection menu

 The First Froject

 Automation Studio Basis TM210 23

This opens the following window:

Fig. 30 Connection settings

Pre-defined connection configurations can be selected from this window.
Select AR000_TCPIP from the Online Configuration combo box.

Accept the settings by clicking on OK.

As we can see on the status bar (online connection status "RUN"), a
connection has been established to the target system (AR000).

Fig. 31: Online connection status

The First Froject

 24 TM210 Automation Studio Basis

4.4.3 Transferring a project

To transfer the ladder diagram to the target system, click on the icon.

The following dialog box is shown:

Fig. 32 Dialog box before project transfer

This dialog box will inform you if there are already modules on your CPU.
Delete all gets rid of all of the objects on the target system that don't
belong to your project.

You are also informed whether the system requies a warm or cold restart.
Operating system parameters can only be applied after the system is
restarted.

 The First Froject

 Automation Studio Basis TM210 25

Successful transfer of the project is confirmed with the following dialog
box.

Fig. 33: Project successfully transferred

The ladder diagram program is now running on the target system. Now we
can test the program to make sure that it's working correctly.

The First Froject

 26 TM210 Automation Studio Basis

4.5 Testing the program sequence

To enable monitor mode for the ladder diagram, click on the icon.

The following view then appears.

Fig. 34: Monitor view of the Ladder Diagram with signal flow display

Now you can check whether the value changed at the input produces the
desired result at the output.

The signal flow display can be turned on with the icon.

The signal flow is shown by coloring both the lines and the symbols. In
addition to the values in the program, this provides another way to carry
out diagnostics.

We have now created an empty project with Automation Studio in addition
to establishing a connection to the target system.
After a new program was inserted, we added new variables to it. The
variables we created were connected in the ladder diagram editor. After
the transfer, we used the ladder diagram monitor to check the cause and
effect of entering different values.

 The Automation Studio Concept

 Automation Studio Basis TM210 27

5. THE AUTOMATION STUDIO CONCEPT

There are several windows and menus in Automation Studio that can be
accessed when a project is opened. The relationship of these parts must be
explained and understood.

5.1 Using the AS online help system

The Automation Studio online help is a reference guide for working with
Automation Studio.
It contains all the information you need about operating Automation
Studio, its editors, and its user interface. Hardware documentation for
modules is also included.

Fig. 35 Excerpt from the online help system

We recommend getting as much information as possible from the
Automation Studio online help. Like Automation Studio itself, this
documentation is constantly being revised and improved.

Pressing the F1 key opens up the help topic for the element that is selected
in Automation Studio. You can also use the search function in the help to
find information about a certain topic.

The Automation Studio Concept

 28 TM210 Automation Studio Basis

Exercise: Using the Online Help system

Look for information about monitor mode in Automation Studio.
Determine which information you can find out about monitor mode.
Open up the online help for "Automation Software – Automation Studio -
Diagnosis".

Note:

Using the Tools:Options menu item, the language of the Automation
Studio online help can be set (German/English).

Fig. 36: Setting the language for the Automation Studio online help

 The Automation Studio Concept

 Automation Studio Basis TM210 29

5.2 Basic concept

Creating software is structured in an Automation Studio project using the
machine structure. This allows a software organization with a clear
overview, because a real reference to the programs can be seen.

Fig. 37 Structure and principle of Automation Studio

The programmed machine parts can be assigned different configurations.
As a result, different delivery states for certain machine types, which vary
in the software used and the hardware design, can be managed in a
project.

This basic concept creates many configuration possibilities, which will be
described in greater detailed for the following views.

The Automation Studio Concept

 30 TM210 Automation Studio Basis

5.3 The different views

In this section we will use a concrete example to describe the different
views in Automation Studio.

The following image illustrates our example.

 The Automation Studio Concept

 Automation Studio Basis TM210 31

Let's assume someone wants to make three different vehicles, a van, a
convertible and a pickup. All vehicles have certain features in common, but
differ from one another in aspects such as engine, gears, chassis and
carriage. Our different machine parts (vehicle parts) should represent these
various components.

The four "machine parts", engine, gearbox, carriage and chassis are
represented in the upper section. These are located one layer deeper in the
Automation Studio software. These software packages are now used to put
together different vehicle models.

Let's take a look at the tree structure with the higher-order name Cars. A
lower-level hierachy contains three definitions (Cars.typ, Cars.var,
Libraries) that pertain to all "car parts".
These are followed by the four sub-trees Engines, Gears, Carriage and
Chassis.

The Engines sub-tree consists of definitions (Engines.typ, Engines.var),
which are valid for both motor types and the two additional sub-categories,
DieselEngines and PetrolEngines each with their own different
performance types.

Fig. 38 Engines sub-tree

The Automation Studio Concept

 32 TM210 Automation Studio Basis

In the Gears sub-tree we find again general definitions (Gears.typ,
Gears.var) that are valid for both gear types and sub-categories for the two
special gear types AutoGear and ManuGear.

Fig. 39 Gears sub-tree

The Carriages sub-tree also contains definitions (Carriages.typ,
Carriages.var) that are the same for all contained vehicle carriage types,
but also a special function for each carriage type.

Fig. 40 Carriages sub-tree

The same principle applies to the Chassis sub-tree which consists of Brake,
Steering, Front Wheel Drive and Rear Wheel Drive.

The previous described view / tree structure is called a "Logical View" in
Automation Studio.

 The Automation Studio Concept

 Automation Studio Basis TM210 33

5.3.1 Logical view

All software elements are arranged in the Logical View in the form of a
tree. The elements in this tree are folders and objects. The folders will also
be referred to as packages.

Each package in the logical view represents e.g. the complete software and
documentation for a specific machine part. This makes is possible to
structure a project using the machine structure.

Each machine part can be configured individually. Any data type can be
added to the respective package for the documentation.

Packages can be imported/exported individually, which makes it possible
for each member of a team to work on one package or machine part.

There is no reference to hardware in this view. The focus here is on the
structuring and arrangement of program sections.

Fig. 41 Logical view

Let's go back to our "car example". As we determined earlier, we now have
all of the software components and definitions available that are needed to
start making different vehicle models.

The Automation Studio Concept

 34 TM210 Automation Studio Basis

But how can we now allocate parts to a single vehicle from all of these sub-
components?
Automotion Studio contains a Configuration View for this very purpose
which makes it possible to create and manage different configurations.

 The Automation Studio Concept

 Automation Studio Basis TM210 35

5.3.2 Configuration view

The different configurations are managed in this view. Managing in this
case stands for creating, changing, deleting and activating a configuration.
Each of these configurations contains hardware and software.
Only one configuration may be active at a time. The active configuration is
shown in bold and contains the add-on [Active].
Depending on which configuration is activated, the hardware selected for
the configuration is displayed in the Physical View.

All settings for the target system can be made in the Configuration View.

Fig. 42 Configuration view

The Automation Studio Concept

 36 TM210 Automation Studio Basis

5.3.3 Physical view

The hardware tree of the configuration selected in the Configuration View
is shown in the Physical View.
The hardware for the corrersponding configuration can be defined and
adjusted here.

The following actions can be performed here:

• Set the interface cards (e.g. for the online connection)

• Set I/O modules

• Assign I/O data points

• Open the software configuration

Fig. 43 Physical view

 The Automation Studio Concept

 Automation Studio Basis TM210 37

5.3.4 Output window

The output window displays warnings with green text, errors with red text
and information with normal text. This is important information when
solving errors during compilation.

Fig. 44: Automation Studio output window

The output window combines the following:

• Compiler warning and error messages
Double-clicking on a message brings you to the program line that
caused the error.

• Progress and status display when downloading a project

• Message display when inserting and deleting objects in the project
or on the target system

• Output window for debugger messages

Output of results for the "Find in Files" function that searches all the files in
the project

The Automation Studio Concept

 38 TM210 Automation Studio Basis

5.4 Relationship between functionality and task

The logical view shows us the available software components which we
can now use for creating our project.

Fig. 45 Logical view

Configuration example - "Pickup"

Now we're going to make the configuration for the pickup in accordance
with our "car example".

Solution approach:

• Create a new configuration called "Pickup"

• Add the required hardware

• Open the software configuration

• Assign the software

 The Automation Studio Concept

 Automation Studio Basis TM210 39

5.4.1 Creating a new configuration

The Insert Configuration shortcut menu in the configuration view can be
used to insert a new configuration.

Fig. 46 Inserting a new configuration

The name of the new configuration is defined in the following dialog box.
We will choose Define a new hardware configuration and continue the
setup wizard by clicking on Next.

Fig. 47 New configuration – Define settings

The Automation Studio Concept

 40 TM210 Automation Studio Basis

We will now select the CPU for the pickup in the following dialog box. In
our example we will use a 4PP420.1043-75. Clicking on Next will continue

with the wizard.

Fig. 48 Selecting the CPU for the new configuration

We will now complete the insertion of the configuration by clicking Finish.

Fig. 49 Finished inserting the new configuration

 The Automation Studio Concept

 Automation Studio Basis TM210 41

The newly created configuration "Pickup" has not been successfully
inserted. You can change between individual configurations by double-
clicking on the configuration names.

Fig. 50 New configuration "Pickup" successfully created

The Automation Studio Concept

 42 TM210 Automation Studio Basis

5.4.2 Adding the required hardware

The corresponding hardware tree of the configuration activated in the
Configuration View is shown in the Physical View. The required hardware
can now be entered here for the pickup.

The following hardware should be added:

Fig. 51 List of the hardware required for the pickup

The corresponding interface module can be inserted by right-clicking on
SubSlot.

Fig. 52 Inserting the interface card

 The Automation Studio Concept

 Automation Studio Basis TM210 43

The desired interface module (with X2X) can be selected here. The
selection is completed by clicking on OK.

Fig. 53: Selecting the interface module

The configuration area for the I/O connection is opened on the right side of
the screen by right-clicking on the interface card and selecting Open X2X
Link.

Fig. 54 Opening the X2X connection

All of the required I/O modules can be inserted at the same time by right-
clicking the selected interface. This procedure can be repeated as many
times needed until all specified I/O modules have been added to the
hardware tree.

Fig. 55: Inserting I/O modules

The Automation Studio Concept

 44 TM210 Automation Studio Basis

5.4.3 Open the software configuration

Now that the hardware has been configured for the pickup, we can get
started assigning software.

The software configuration for our pickup is opened by double-clicking on
the CPU entry in the Physical View.

Fig. 56 Opening the software configuration

The corresponding software configuration appears on the right side of the
screen. The software elements in the cyclie system are managed here.

Fig. 57 Software configuration

 The Automation Studio Concept

 Automation Studio Basis TM210 45

5.4.4 Assigning the software

Programs from the logical view can be added to the software
configuration at any time when the software configuration is opened on
the right side of the screen and the logical view is active on the left side.

Fig. 58 Relationship between software configuration and logical view

You can assign an object by dragging it from the Logical View into the
desired task class of the Software Configuration.

This is how all software components required for the pickup can be
assigned.

The Automation Studio Concept

 46 TM210 Automation Studio Basis

Our software configuration then looks like this.

Fig. 59: Finished software configuration for the pickup

Note:

Only programs from the active configuration can be carried over to the
software configuration (selected in the configuration view by double
clicking).
Programs (logical view) become control tasks when transferred to the
software configuration.

Task: "Integrating your own configuration"

With the help of the "Pickup" configuration example, try to create your
own configuration.

Solution approach:

• Create the project structure

• Create a new configuration

• Add the required hardware

• Open the software configuration

• Assign the software

 The Automation Studio Concept

 Automation Studio Basis TM210 47

5.4.5 Directory structure of a project
A project is divided up between several folders. This division is based on
the project views.

• AS
The operating systems and libraries
used in the project

• Binaries
Compiled programs separated by
configuration

• Diagnosis
Diagnostics information (e.g. saved
watch window) separated by
configuration

• Logical
Packets and files, which can be found
in the logical view

• Physical
Configurations, which can be found in
the physical view.

Fig. 60 Project structure

The Automation Studio Concept

 48 TM210 Automation Studio Basis

5.5 Teamwork

In a project team, responsibilities must be split and assigned to team
members. Automation Studio supports working in a project team with
dedicated functionalities. It provides functionalities for efficient project data
exchange with minimum data sizes.

5.5.1 Project Export

When selecting the point File – Export Project from the main menu it is
possible to export any desired subset of objects in your project. First,
select all objects to be exported from the logical project view and the
configurations view.

Fig. 61: Selecting software objects from the Logical View

Fig. 62: Selecting configurations from the Configuration View

The ZIP-archive will be generated with the selected compression level in
the selected directory.

 The Automation Studio Concept

 Automation Studio Basis TM210 49

5.5.2 Project Import

Exported projects may be imported by selecting the point File – Import
Project from the main menu.

If objects with identical names exist in your project you will be prompted
for confirmation of replacement:

Fig. 63: Confirm Object Replace dialogue

5.5.3 Clean Project

With the point Project – Clean Project from the main menu the size of a
project can be substantially reduced. This is especially convenient if the
project is sent to other team members by email.

If you choose the options in the clean dialogue the project will be reduced
to a minimum size. In any case no source information will be lost.

Fig. 64: Clean project dialogue

Note that deleting all temporary files will destroy information necessary for
debug purposes.

Operating Comfort

 50 TM210 Automation Studio Basis

6. OPERATING COMFORT

6.1 Editor Views

The division of the Automation Studio workspaces into different views
makes it possible to simultaneously open multiple working environments.

6.1.1 Switching via menu or shortcut key

Switching between windows can be done either from the Window menu or
using the <CTRL + TAB> key combination.

Fig. 65 Switching between the individual windows

Note:

It is helpful to close windows that are not needed (if finished editing for
quite a while). This leaves only those windows open that are actually
needed.
The result is a cleaner, more efficient method of working.

 Operating Comfort

 Automation Studio Basis TM210 51

6.1.2 Workbook mode
The individual windows can also be managed as workbooks. This option
can be switched on using the setting in the main menu View:Workbook.

Fig. 66 Workbook view

The windows can now be switched using tabs in the workbook.

Fig. 67 Using the workbook mode

Operating Comfort

 52 TM210 Automation Studio Basis

6.1.3 Open as text or table

All declaration tables can be displayed as either text or table in Automation
Studio using the open data storage as IEC files.

The option Open as Text or Open as Table can be selected from the
shortcut menu by right-clicking on the declaration object.

Fig. 68 Open as table or text

This causes the declaration to be displayed as a table or as text, in
accordance to the IEC-Norm 61131-3.

Fig. 69 Open as table or text

 Operating Comfort

 Automation Studio Basis TM210 53

6.2 Smart Edit

The following language elements can be automatically complemented
using the CTRL-Space shortcut:

• Variable names

• Structure member

• Function name

• Language constructs (IF THEN, CASE,..)

The following navigation aids are available:

• Goto

• Locating the variable declaration

• Locating the variable declaration

• Use in the source code

• Corresponding brackets

Move the mouse pointer over objects to display the following tooltips:

• Parameter lists for functions and function blocks

• Variable data type

Fig. 70: Smart Edit

The Zoom-In option offers more operating convenience when editing
project sections.

Operating Comfort

 54 TM210 Automation Studio Basis

6.3 Open data storage

The data storage in Automation Studio offers an open entrance. The
following possibilities result:

• All project data stored in ASCII files

• External generation possible

• Separation of source data and compiled data

• Use of version checking systems possible

• Zip export/import

Fig. 71: Open data storage

 Operating Comfort

 Automation Studio Basis TM210 55

6.4 Cross reference

Common search tasks can be handled easily with the help of the cross
reference list.

For example, all variables that are used in a program can be listed.
Additionally, information about where and how a variable is used is made
available (read or write access).

To use the cross reference list, go to the menu item Project: Settings in
the General tab and activate the option "Generate cross reference data
during build".

After compiling, cross reference list features are available.

Detailed information about the cross reference list can be found in the
online help.

Variables

 56 TM210 Automation Studio Basis

7. VARIABLES

Variables are symbolic elements that are used in programming.
They represent memory positions that can be either read or written by
accessing a variable.
Using these symbolic elements allows the user to not worry so much about
memory management since this is handled by the programming task.

Constants are much like variables. Unlike variables, however, constants
can only be assigned an initial value when the software is being created.
Constants can no longer be written during runtime.

7.1 Data types

Data types describe the properties of a variable. For example, these can
include the possible range of the number stored in the variable, its
accuracy, or which operations are possible with it.

7.1.1 Basic data types

The following data types are among what are called basic data types. They
can be used in all programming languages.

Binary Unsigned Signed Floating
point

Time, date, string

BOOL USINT SINT REAL TIME

 UINT INT LREAL DATE_AND_TIME

 UDINT DINT STRING

Data type Memory
requirements
[bytes]

Value range

BOOL 1 TRUE (1), FALSE (0)
Digital inputs and outputs

SINT 1 -128 ... +127

INT 2 -32768 ... +32767
Analog inputs and outputs

DINT 4 -2147483648 ... +2147483647

USINT 1 0 ... 255

UINT 2 0 ... 65535

UDINT 4 0 ... 4294967295

 Variables

 Automation Studio Basis TM210 57

REAL 4 -3.4E38 ... +3.4E38

LREAL 8 -1.79769313486231E308 ...
+1.79769313486231E308

TIME 4 T#-24d_20h_31m_23s_648ms
...T#24d_20h_31m_23s_647ms

DATE_AND_TIME 4 DT#1970-01-01-00:00:00 ...
DT#2106-02-07-06:28:15

STRING Variable Character string display

7.2 Declaring variables and constants

Variables and constants are declared in Automation Studio as follows.

Open the variable declaration in the desired packet by double clicking.
Variable declarations use the file extension *.var.

Fig. 72 Opening the variable declaration

The declaration window is opened on the right side of the screen.
Select shortcut menu: Insert Variable to add variables.

Fig. 73 Adding variables

Choose a name for the variable and the desired data types, then save the
declaration. The variable / constants can now be used in your programs.

Variables

 58 TM210 Automation Studio Basis

The variable can be declared as a constant by selecting the checkbox. An
initial value can also be determined for a variable or constant.

Fig. 74 Variable

A variable's data type can be changed as follows: Either write the data
types directly in the Type column, or double click on the variable and then

click on the icon.

The following window is opened.

Fig. 75 Selecting the data type

You can choose from Basic data types, Structured data types and
Function blocks in the Category pull-down menu. This enables you to
assign your variables the suitable data type.

The size of fields is determined by the Array index range text field. For
example the entry for a size 4 field could be 0..3.

 Variables

 Automation Studio Basis TM210 59

7.2.1 Structures (user data types)

The user can group a collection of variables in a structure. This allows
individual values that would otherwise be scattered around to be grouped
together to form structures that reflect a certain function or task.

Example: User data type

You have been given an assignment in which you have to create a
program that can bake two types of bread.
One type of bread is defined using the variables Water, Flour, Salt and
Yeast. The bread data type could consist of the following elements:

Water
Flour
Salt
Yeast

You need the bread types mixed and homemade. One advantage of the
structure is that you only have one variable "mixed_bread" and one
variable "homemade_bread" in your software. These variables each
contain the elements water, flour, salt and yeast.

To expand your program to include an extra type of bread, you only
have to create an additional variable (e.g. "white_bread") and have all of
the respective data. If you notice later that you also have to specify the
baking time for each type of bread, then you can simply expand the
structure to include the "baking time" element. As a result, you
immediately have a "backing_time" for all bread types.

In this example, you have three variables with the bread data type
instead of 15 individual variables.

Variables

 60 TM210 Automation Studio Basis

Creating a user data type:

To create data types in Automation Studio, the data type declaration of the
desired packet must be opened by double-clicking. Data type declarations
use the file extension *.typ.

Fig. 76 Opening the data type declaration

The declaration window is located on the right half of the screen. A new
data type can be inserted by selecting Insert Datatype from the shortcut
menu. Enter a name.

Fig. 77 Adding and naming a data type

The individual elements, which the datatype will contain, are added by
selecting Insert Datatype Member from the shortcut menu.

Fig. 78 Adding elements

 Variables

 Automation Studio Basis TM210 61

Data types and their elements can also be inserted using the following
toolbar.

Fig. 79 Toolbar for creating data types

A finished data type might look something like this:

Fig. 80 Data type

After being saved, this can be used immediately in your programs.

Variables

 62 TM210 Automation Studio Basis

7.2.2 Function block data types

Each function block has inputs and outputs that are grouped together in
the form of a structure. When the function block is called, the actual
program behind the function block receives this data structure.
In the Watch window, you can clearly see that a function block consists of
individual elements when it is added.

7.2.3 Arrays

Arrays are variables that contain several elements with the same data type.
These elements are accessed using an index. These elements can be
declared either as basic data types (simple array) or as a user data type
(array of structures).

The array index always begins with 0. This means that the array index can
only receive values 0 to (size of the array - 1) when accessing the
individual variables.

Accessing an element in a simple array looks like this:

ArrayVariable[ArrayIndex]

Arrays of structures would look like this:

ArrayVariable[ArrayIndex].Element

In Automation Studio, a variable can be declared as an array in the variable
declaration window when selecting a data type.

Fig. 81 Setting the size of an array

Arrays are used when variables of the same data type are needed (array of
base data type or structure).

 Variables

 Automation Studio Basis TM210 63

7.2.4 Variable scope

A project's packages can be as deeply nested / structured in the logical
view as needed. This enables the encapsulation of data.

This structure determines the scope / visibility of the declared variables
and data types. This allows us to define variables "logically" at a suitable
location in the project.

This results in the following difference regarding the visibility of variables
in Automation Studio:

• Global variables at the highest level are visible in the entire project.
These are also global from the standpoint of the controller.

• Package-local variables, declared within a package are valid in the
respective package and all subordinate package and programs.
However, the validity of these variables is global from the standpoint
of the controller.

• Local variables, declared in a program and only visible in this
program. These are also local from the standpoint of the controller.

Fig. 82 Variables declared within packets

For example, we have two equal packages, package A and package B. We
define the variable "MachineType" in both packages. What would happen if
we were to compile the project?

Initialization

 64 TM210 Automation Studio Basis

8. INITIALIZATION

Initializing data – in this case, variables and constants – is an important
topic.
Variables should have defined values at all times. There are several ways
for variables to be initialized – either by the system or by the user.

The initializations become accomplished in this order:

• Variable declaration window

• Task initialization

• Cyclic task section

Variable declaration: Initialization values can be entered for variables and
constants in the variable declaration window.
The Value column is used to set the initialization value. There are two
possibilities:

• Variables can be initialized with a fixed value (numeric value within
the value range of the variable).

• Variables can be identified as remanent (RETAIN). These values are
backed up in a buffered memory area before a system restart and
reloaded during the restart (remain after a warm restart).

Fig. 83 Declarations

Task initialization: If available, each task cycles through its initialization
subprogram (Init-Sp) when the cyclic system starts (this occurs before the
cyclic part of the program is executed).
This Init-Sp can contain program code that defines variable values.

Cyclic task section: The cyclic part of the program starts after the variable
declaration and the task initialization. Variables that are assigned values
there retain them until they receive new ones or the system is restarted
(see the sections on variable declarations and remanent variables).

 Initialization

 Automation Studio Basis TM210 65

Remanent / RETAIN and permanent variables: As mentioned above, remanent
variables are stored in a secure memory area during a system restart
(warm restart of power loss) where they can be read back once the system
is finished restarted. Permanent variables are handled in much the same
way, except they can withstand cold restarts, too. In both cases, the
buffering (battery, rechargeable battery) in the CPU or backplane is
responsible for holding on to the data.

Fig. 84 Inserting a permanent variable

For variables to be created in the permanent area, they have to be defined
as RETAIN in the variable declaration window.

Programming Languages

 66 TM210 Automation Studio Basis

9. PROGRAMMING LANGUAGES

9.1 Overview

Programs can be created in several different programming languages in
Automation Studio. For this reason, mixing several programming
languages together within a project is both allowed and desired as long as
it gets you to your goal.

The following programming languages are available:

Programming language Comment

Ladder diagram (LD) Graphical

Function Block Diagram (FBD) Graphical

Continuous Function Chart (CFC) Graphical

Sequential Function Chart (SFC) Graphical & textual

Instruction List (IL) Textual

Structured Text (ST) Textual

Automation Basic (AB) Textual

ANSI C (C) Textual

In Automation Studio, all textual programming languages use the same
editor. Diagnostic tools are therefore always the same and are operated in
the same way. This uniformity makes it easier to work and increases
productivity.
The Watch window for checking and setting values is operated the same
way regardless of whether the programming language is textual or
graphical.

Note:

Function blocks from B&R standard libraries can be called and used in
all programming languages.

 Programming Languages

 Automation Studio Basis TM210 67

9.1.1 Possibilities

It is possible to set the desired application with any programming
language. Each language has its special strengths.

The following table lists the programming languages in the header
columns. The rows represent different function groups.

 LAD FBD CFC SFC IL ST AB C

Logic √ √ √ √ √ √ √ √

Arithmetic √ √ √ √

Decisions √ √ √ √ √ √ √ √

Loops √ √ √

Step sequencers √ √ √ √

Dyn. variables (√) √ √

Function blocks √ √ √ √ √ √ √ √

Note:

Using function blocks allows functions that are not supported by a
programming language to be expanded.

Programming Languages

 68 TM210 Automation Studio Basis

A graphic editor is used to create the logic for ladder diagram
programming.

Fig. 85 Ladder diagram programming

The function chart editor offers another possibility for graphical
programming.

Fig. 86: Function chart programming

 Programming Languages

 Automation Studio Basis TM210 69

Sructured text is a type of textual high-level language programming.

Fig. 87 Structured Text programming

ANSI C is also a text-based high-level language. It has a different notation
and syntax than B&R Automation Basic.

Fig. 88 ANSI C programming

Summary

 70 TM210 Automation Studio Basis

10. SUMMARY

Automation Studio makes it possible to program all of the automation
components provided by B&R. The ability to clearly structure the software
based on machine parts and to work with different configurations makes it
possible to manage multiple machine variations in one project and allows a
whole team to work on the same project.

Fig. 89 Basic concept of Automation Studio

 Summary

 Automation Studio Basis TM210 71

The structure of data types and variable declarations are always the same,
which limits the number of different user interfaces. In turn, this makes it
easier to find your way around and work with the system.

The scopes for variables, constants and data types are clearly structured
using the logical view.

You are now familiar with Automation Studio and have gotten to know the
Automation Studio online help system that will support you in the future
while you are working.

The programming language overview allows you to select the language
that is best suited to your application.

More details about them can be found in later training modules.

Summary

 72 TM210 Automation Studio Basis

Notes

 Summary

 Automation Studio Basis TM210 73

Overview of training modules

TM200 – B&R Company Presentation ** TM600 – The Basics of Visualization
TM201 – B&R Product Spectrum ** TM610 – The Basics of ASiV
TM210 – The Basics of Automation Studio TM630 – Visualization Programming Guide
TM211 – Automation Studio Online Communication TM640 – ASiV Alarm System
TM212 – Automation Target ** TM650 – ASiV Internationalization
TM213 – Automation Runtime TM660 – ASiV Remote
TM220 – The Service Technician on the Job TM670 – ASiV Advanced
TM223 – Automation Studio Diagnostics
TM230 – Structured Software Generation TM700 – Automation Net PVI
TM240 – Ladder Diagram (LAD) TM710 – PVI Communication
TM241 – Function Block Diagram (FBD) TM711 – PVI DLL Programming
TM246 – Structured Text (ST) TM712 – PVIServices
TM247 – Automation Basic (AB) TM730 – PVI OPC
TM248 – ANSI C
TM250 – Memory Management and Data Storage TM800 – APROL System Concept
TM260 – Automation Studio Libraries I TM810 – APROL Setup, Configuration and Recovery
TM261 – Closed Loop Control with LOOPCONR TM811 – APROL Runtime System
 TM812 – APROL Operator Management
TM400 – The Basics of Motion Control TM813 – APROL XML Queries and Audit Trail
TM410 – The Basics of ASiM TM830 – APROL Project Engineering
TM440 – ASiM Basic Functions TM840 – APROL Parameter Management and Recipes
TM441 – ASiM Multi-Axis Functions TM850 – APROL Controller Configuration and INA
TM445 – ACOPOS ACP10 Software TM860 – APROL Library Engineering
TM450 – ACOPOS Control Concept and Adjustment TM865 – APROL Library Guide Book
TM460 – Starting up Motors TM870 – APROL Python Programming
 TM890 – The Basics of LINUX
TM500 – The Basics of Integrated Safety Technology
TM510 – ASiST SafeDESIGNER
 **) see Product Catalog

Summary

 74 TM210 Automation Studio Basis

Hinteres Deckblatt (auf durch 4 Teilbarer Seitenzahl)

Kontakt (Headquarter)

Weblink

Internationalität

Copyright – Bestellnummer

T
M
2
1
0
T
R
E
.3
0
-E
N
G

0
9
0
7

©
2
0
0
7
 b
y
 B
&
R
.
A
ll
 r
ig
h
ts
 r
e
s
e
rv
e
d
.

A
ll
 r
e
g
is
te
re
d
 t
ra
d
e
m
a
rk
s
 a
re
 t
h
e
 p
ro
p
e
rt
y
 o
f
th
e
ir
 r
e
s
p
e
c
ti
v
e
 o
w
n
e
rs
.

W
e
 r
e
se

rv
e
 t
h
e
 r
ig
h
t
to
 m

a
k
e
 t
e
c
h
n
ic
a
l
c
h
a
n
g
e
s
.

