Automatic Code Generation with

MATLAB/Simulink
TM140

Perfection in Automation
www.br-automation.com

Requirements

Training modules: TM210 - The Basics of Automation Studio 3

Software: Automation Studio 3 (Version 3.0.64 and higher)
MATLAB® (Version 7.4 and higher)
Simulink® (Version 6.6 and higher)
Real-Time Workshop® (Version 6.6 and higher)

Real-Time Workshop® Embedded Coder
(Version 4.6 and higher)

Hardware: None

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop,
SimBiology, SimHydraulics, SimEvents, and xPC TargetBox are registered
trademarks and The MathWorks, the L-shaped membrane logo, Embedded
MATLAB, and PolySpace are trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of

their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents.
Please see www.mathworks.com/patents for more information.

Table of contents

1.

INTRODUCTION

1.1 Objectives
1.2 Definition

PREPARATIONS

2.1 Installation
2.2 Advanced software requirements
2.3 Hardware support

FUNCTION BLOCKS FOR AR4AMATLAB/SIMULINK

3.1 B&R Toolbox

3.2 B&R ARConfig block
3.3 B&R input block

3.4 B&R output block
3.5 B&R parameter block
3.6 Monitor mode

WORKING WITH AR4AMATLAB/SIMULINK

EXAMPLES

5.1 PID controller
5.2 Temperature model
5.3 Hydraulics applications

APPENDIX

6.1 Simulink block support
6.2 Additional links

Automatic Code Generation with MATLAB/Simulink TM140 '

10
10
11
12

13
13
14
15
17
19
21

22

38

38
40
43

45

45
46

Introduction

1. INTRODUCTION

For years, the MATLAB® program package from The MathWorks company
(www.mathworks.com), has served as a powerful tool in solving technical,
mathematical and economic problems and has been used extensively in
the industrial world. Unlike numerous other computer algebra systems on
the market, MATLAB® is designed to solve numerical problems. The
biggest strength of the program lies in its handling of large matrices, as its
name MATrix LABoratory suggests. MATLAB® can be expanded using
various add-on packages, as Simulink® for instance. This program package
allows graphic creation of simulation models used to adjust complex
technical processes under realistic conditions.

MATLAB
SIMULINK®

*The MathWorks

Accalorating the poce of enginesring and scisnce

Fig. 1: MATLAB® and Simulink® by The MathWorks, Inc.

Automatic implementation of Simulink models in C-Code, specially
optimized for use in B&R target systems, offers the developer new
possibilities for designing sophisticated simulation models and control
structures that would otherwise be impossible or very time-intensive to
implement.

TM140 Automatic Code Generation with MATLAB/Simulink

Introduction

The biggest advantage of automatic code generation comes to those
developers who already use MATLAB® und Simulink® for simulation and
solutions design and to developers for whom it was once essential to
tediously rework implemented structures in a language supported by
Automation Studio. In the procedures listed below, this represents an
innovation with unforeseen possibilities that help to productively reform
the development of control-related systems.

The basic principle is simple: The module created in Simulink®is
automatically translated using Real-Time Workshop® and Real-Time
Workshop® Embedded Coder into the optimal language (ANSI-C) for the
target system. Seamless and complete integration into an existing project
in Automation Studio guarantees system conformity.

MATLAB/Simulink
Project

i Automation Studio
L | Project

ol /
Eg.\ Automation System

Fig. 2: Workflow

The elimination of extensive porting allows simple transfer of complex and
involved simulation models to the controller (Hardware-in-the-Loop).
Control-related solutions can also be easily tested and optimized on the
target system without requiring the user to adjust large amounts of code
and run the risk of creating new errors (Rapid Prototyping).

Thus, there are two different, basic instances in which the following
Simulink® automatic code generation is used.

Automatic Code Generation with MATLAB/Simulink TM140

Introduction

Rapid prototyping: Automatic code generation makes it possible to quickly
and easily transform control or system-related innovations and implement
them in a target system. Many potentially successful ideas are immediately
rejected because of the large amount of time required for conversion into
executable machine code and the risk of developing an error is not
justified. The "Rapid Prototyping" concept brings an end to this. Using
Simulink®, any system, no matter how complex, can be intuitively built,
compiled and tested in a short amount of time. This practically eliminates
implementation errors because the automatic code generation uses
thousands of tested structures and does not make unnecessary mistakes.

Hardware-in-the-Loop: Every software modification bears the risk of
damaging a system during commissioning. The fact that only a limited part
of a system at a time can be conceived and modeled leads to control
concept defects that can significantly damage a real system. Hardware-in-
the-Loop is the key word that allows simple transfer of sophisticated
system models developed in Simulink®to a target system. The prepared
controller assumes the roll of the actual system for the duration of the first
function test. This allows quick and safe testing of new control concepts
without damaging costly machine parts. As a result, the controller and
system simulation can run on the same target system.

Although there are numerous circumstances for using Simulink® automatic
code generation, they have one thing in common: the possibility, with the
press of a button, to generate ANSI-C code from Simulink®.

TM140 Automatic Code Generation with MATLAB/Simulink

Introduction

1.1 Objectives

After completing the installation described in section 2.1, simple access to
professional application can be learned with the help of an example worked
out in section 4. More detailed examples are located in section 5. In section
6 there is a short introduction to MATLAB and Simulink functions as well as
an overview of more detailed links. A description of all B&R blocks for
Simulink is located in section 3.

Applications with
AR4MATLAB/Simulink

. B / Knowledge of B&R Simulink

blocks
AR4MATLAB/Simulink

Adjusting existing Simulink
Tmodels to AR4AMATLAB/Simulink

_Options for finding errors

Fig. 3: Objectives

After successful completion of the training module, the user should be
prepared to adjust and expand existing Simulink models so the automatic
code generation can be executed using ARIMATLAB/Simulink. An
additional part of this training module is the integration of automatically
generated tasks in existing Automation Studio projects, like recognition of
numerous options for error diagnosis. An introduction to the products of
The MathWorks company is not included in the course of this module, but
must instead be found in the documentation accompanying the respective
products.

Automatic Code Generation with MATLAB/Simulink TM140

Introduction

1.2 Definition

1.2.1 Rapid prototyping

As mentioned above, "Rapid Prototyping" offers unforeseen possibilities for
quick and flexible implementation of sophisticated control and system-
related solutions. Quickly formulated, innovative ideas that would have
earlier been rejected because of time and resource restraints can now be
quickly and easily developed using Simulink and transferred to a B&R
controller using ARAMATLAB/Simulink. Tedious manual creation of source
code, which always bears the risk of code error, is a thing of the past.

Developer PC B&R Target
+ MATLAB
+ Simulink
+ RTW

+RTWEC E I Controller
Task

Controller Model

Fig. 4: Rapid prototyping

The procedure is quite simple — the task created in Simulink and transferred to
the controller via AR4AMATLAB/Simulink is ready for application in a matter of
a few steps.

1.2.2 Hardware-in-the-Loop

In order to avoid damaging the actual system when applying newly
developed algorithms, it is recommended that critical system parts are
replaced in advance with an emulation system. For this purpose, a second
target system is implemented in the form of a B&R controller using
"Hardware-in-the-Loop". The emulation task runs on this system, which
mimics the behavior of the actual system as accurately as possible. New
developments are thus tested on the target system without putting the
system operator at risk of experiencing damage to hardware components.

TM140 Automatic Code Generation with MATLAB/Simulink

Introduction

Developer PC B&R Target #1
+ MATLAB
+ Simulink
+RTW
+ RTW EC jcb N Controller
Task
Controller Model +
N7
E I Emulation
Task
Plant Model
B&R Target #2

Fig. 5: Hardware-in-the-Loop on two separate target systems

Because there is generally enough free processing power available on the
controller being used, both tasks can be run on the same B&R controller,
thanks to the task structure of B&R systems. It must be noted, however,
that the behavior of the actual inputs and outputs is only mimicked by the
emulation model as long as is relevant for functionality.

Developer PC B&R Target
+ MATLAB
+ Simulink
+ RTW
+RTWEC E o Controller
Task
Controller Model g’ ‘\;
A/
E - Emulation
Task
Plant Model

Fig. 6: Hardware-in-the-Loop

Automatic Code Generation with MATLAB/Simulink TM140

Preparations

2. PREPARATIONS

2.1 Installation

The components required for using AR4MATLAB/Simulink can be installed
easily and without any user input, using the standard installation of
Automation Studio Version 3.0.71 and higher.

& Automation Studio ¥3.0.64 SP10 Installation i P] |

Wahlen Sie die Kemponenten aus, die Sie installieren machten und wahlen Sie diejenigen ab,
die Sie nicht installieren wollen, Klicken Sie auf Weiter, um fortzufahren,

Wahlen Sie die Komponenten Autornation Studio ¥3.0.64 SP10
aus, die Sie installieren
midchten: ARAMATLAB/Simulink

~Beschreibung

Bewegen Sie den Mauszeiger Gber eine Komponente, unm
ihte Beschreibung zu sehen,

BRR. Installation

< Zuriick I Weiter = I Abbrechen

Fig. 7: Automation Studio setup

A prerequisite for using AR4AMATLAB/Simulink is a one-time execution of
installation script "Install.m" in directory
"X:\Programme\BrAutomation\AR4MATLAB" ("X:" is the drive on which
Automation Studio was installed — generally "C:"). The order in which
Automation Studio and MATLAB are installed does not matter here.

& AR4MATLAB «| 2| (3] x|
Datei Bearbeiten Ansicht Favoriben Extras 7 | #
e Zuriick. = @ - [% ‘/C) Suchen E}Ordner -
Adresse I[Eh Ci\Programme Brautomation|AR4MATLAE j ‘Wechseln zu | Links

Datei- und Drdneraufgaben ¥ [__J L_J

br_library BuR_Target

Andere Orte S

=) BrAutomation D

Eigene Dateien

a Arbeitsplatz install.m

g hetzwerkumgebung

]

Details

AR4AMATLAB
Dateiordner

Fig. 8: Setup script for MATLAB

TM140 Automatic Code Generation with MATLAB/Simulink

Preparations

2.2 Advanced software requirements

For use of automatic code generation with ARIMATLAB/Simulink, the
following software components are required:

* Automation Studio 3 (Version 3.0.64 and higher)
e The MathWorks Release 2007a
o MATLAB® (Version 7.4 and higher)
o Simulink® (Version 6.6 and higher)
o Real-Time Workshop® (Version 6.6 and higher)
o]

Real-Time Workshop® Embedded Coder (Version 4.6 and
higher)

Also, the following components are needed depending on area of use and
hardware configuration:

« Simulink® Fixed Point (Version 5.4 or higher)
» Fixed Point Toolbox (Version 2.0 or higher)
« Stateflow® (Version 6.6 or higher)

« Stateflow® (Version 6.6 or higher)

The following components are also recommended for
ARAMATLAB/Simulink to function smoothly:

e Control System Toolbox (Version 8.0 or higher)
« Simulink® Control Design (Version 2.1 or higher)

Automatic Code Generation with MATLAB/Simulink TM140 H

Preparations

2.3 Hardware support

Automatic code generation with AR4MATLAB/Simulink can be used on all
B&R hardware components. For use on SG3 and SGC CPU systems, the
following two software modules

e Simulink® Fixed Point and
e Fixed Point Toolbox

are recommended, because there is no support on these processor
systems for floating point operations.

TM140 Automatic Code Generation with MATLAB/Simulink

Function blocks for ARAMATLAB/Simulink

3. FUNCTION BLOCKS FOR AR4AMATLAB/SIMULINK

In this section, the individual components of ARIMATLAB/Simulink are
described and explained step by step.

» B&R Toolbox

« B&R ARConfig block
* B&R input block
 B&R output block

« B&R parameter block
* Monitor mode

3.1 B&R Toolbox

When the Simulink Library Browser is opened and ARAMATLAB/Simulink
has been installed, there is an additional entry labeled "B&R Toolbox". This
contains four different blocks that are described in the following sections.

=) Simulink Library Browser | =] — 0] x|

File Edit Wiew Help

D& 4 4 |
ARConhg: BuR_blocks AR Config

- Nl Simulink

----- W BaR Toolbox
- W Real-Time Workshop
W Real-Time Workshop Embedded Coder D Input
E Simulink Extras

----- B stateflow Cutput

- W] wirtual Reality Toolbo

ARCanfig

Parameter

Ready 5

Fig. 9: B&R Toolbox in Simulink

Automatic Code Generation with MATLAB/Simulink TM140 H

Function blocks for ARAMATLAB/Simulink

3.2 B&R ARConfig block

During runtime, the "B&R ARConfig block" establishes a connection
between the code executed on the the target system and the Simulink
environment. The monitor mode described in paragraph 3.6 can be
activated using this block's settings or deactivated for all the other blocks.

INFO

Activating the monitor mode only establishes the connection to the
target system and adds the setting option "Monitor Mode" to the blocks
described above. In order to access to individual variables during
runtime, the option must be manually activated for all relevant blocks.

IMPORTANT

Exactly one instance of the B&R block ARConfig must always be
contained in the Simulink model - even if no online connection has been
established.

=) Block Parameters: ARConfig | 2| x|

— BR - Monitor Block [mask] [link]

— Parameter

Monitar Made

k. Carnicel Help Apply

Fig. 10: B&R ARConfig block configuration

TM140 Automatic Code Generation with MATLAB/Simulink

Function blocks for ARAMATLAB/Simulink

3.3 B&R input block

The "B&R input block" serves as the interface between the work
environment on the controller and the Simulink model. For every "B&R
input block", a variable is created on the target system that helps the model
communicate with the other parts of the project.

In this instance, the following settings can be used:

Scope: This specifies scope (global or local) of the variables.

INFO

Local variables are created automatically. However, when the option
"PREDEFINED (GLOBAL)" is selected, the user must ensure that the
corresponding variables are defined in the Automation Studio project.

Type: The data type of the created variable can be selected from all types
available in Automation Studio and Simulink:

Automation Studio Simulink Value range
BOOL boolean FALSE, TRUE
DINT int32 -2.147.483.648 ... 2.147.483.647

INT int16 -32768 ... 32767

LREAL (Standard) double -1.7E+308 ... 1.7E+308
REAL Single -3.4E+38 ... 3.4E+38
SINT int8 -128 ... 127
UDINT uint32 0 ...4.294.967.295
UINT uint16 0...65535
USINT uint8 0...255

IMPORTANT

When manually declaring variables in Automation Studio, the user must
make sure that the data type of the variable in the project matches the
selected data type in the dialog field.

Automatic Code Generation with MATLAB/Simulink TM140 H

Function blocks for ARAMATLAB/Simulink

Value: The start value of the variables is defined in this entry field.

Monitor mode: Monitor mode, described in section 3.6, can be activated or
deactivated for each variable.

=] Source Block Parameters: Input | B3] x|
— BF - Input Block [mazk] [link]

Thiz Block provides the simulation with input values. Simulation
containing the "BR P4l Loop" block activate an addiional ophion,
enabling the "Manitar Mode". The input values will the be
obtained from the target device.

— Parameter

b amitar h-'lu:u:lelu:lisal:uleu:l ;I

()% Cancel Help

Fig. 11: B&R input block configuration

TM140 Automatic Code Generation with MATLAB/Simulink

Function blocks for ARAMATLAB/Simulink

3.4 B&R output block

The "B&R output block" serves as the interface between the work
environment on the controller and the Simulink model. For every "B&R
output block", a variable is created on the target system that helps the
model communicate with the other parts of the project.

In this instance, the following settings can be used:

Scope: The scope (global or local) of the variables is specified here.

INFO

Local variables are automatically created. However, when selecting the
option "PREDEFINED (GLOBAL)", the user must ensure that the
corresponding variables are defined in the Automation Studio project.

Type: The data type of the created variable can be selected from all types
available in Automation Studio and Simulink:

Automation Studio Simulink Value range
BOOL boolean FALSE, TRUE
DINT int32 -2.147.483.648 ... 2.147.483.647

INT int16 -32768 ... 32767
LREAL (Standard) double -1.7E+308 ... 1.7E+308

REAL Single -3.4E+38 ... 3.4E+38
SINT int8 -128 ... 127
UDINT uint32 0...4.294.967.295
UINT uint16 0...65535
USINT uint8 0...255

Automatic Code Generation with MATLAB/Simulink TM140

Function blocks for ARAMATLAB/Simulink

IMPORTANT
When manually declaring variables in Automation Studio, the user must

make sure that the data type of the variable in the project matches the
selected data type in the dialog field.

Monitor mode: Monitor mode, described in section 3.6, can be activated or
deactivated for each variable.

=] sink Block Parameters: Output | e x|

— BR - Output Block [mazk] [link]

— Parameter

b aritar Mu:udeldisal:uled ;I

] Cancel Help Apply

Fig. 12: B&R output block configuration

TM140 Automatic Code Generation with MATLAB/Simulink

Function blocks for ARAMATLAB/Simulink

3.5 B&R parameter block

"B&R parameter blocks" are used to make the internal parameters of
individual blocks accessible in Simulink and during operation on the target
system. For every "B&R parameter block", a variable is created on the
controller.

In this instance, the following settings can be used:

Scope: The scope (global or local) of the variables is specified here.

INFO

Local variables are automatically created. However, when selecting the
option "PREDEFINED (GLOBAL)", the user must ensure that the
corresponding variables are defined in the Automation Studio project.

Type: The data type of the created variable can be selected from all types
available in Automation Studio and Simulink:

Automation Studio Simulink Value range
BOOL boolean FALSE, TRUE
DINT int32 -2.147.483.648 ... 2.147.483.647

INT int16 -32768 ... 32767
LREAL (Standard) double -1.7E+308 ... 1.7E+308

REAL Single -3.4E+38 ... 3.4E+38
SINT int8 -128 ... 127
UDINT uint32 0...4.294.967.295
UINT uint16 0...65535
USINT uint8 0...255

Automatic Code Generation with MATLAB/Simulink TM140 H

Function blocks for ARAMATLAB/Simulink

IMPORTANT
When manually declaring variables in Automation Studio, the user must

make sure that the data type of the variable in the project matches the
selected data type in the dialog field.

Value: The start value of the variables is defined in this entry field.

Monitor mode: Monitor mode, described in section 3.6, can be activated or
deactivated for each variable.

[=]Block Parameters: Parameter | = x|

— BR - Parameter Block [mazk] [link]

— Parameter

b anitar Mndeldisahled ;I

k. Carnicel Help Apply

Fig. 13: B&R parameter block configuration

TM140 Automatic Code Generation with MATLAB/Simulink

Function blocks for ARAMATLAB/Simulink

3.6 Monitor mode

Monitor mode is a simple and convenient option for debugging. The values
from the application running in the target system can be accessed from
Simulink via an online connection. It is therefore possible to read or modify
controller values via the functions made available by MATLAB and
Simulink.

Possible applications are value entry via an external MATLAB script or
continuous, automatic evaluation of values read by the controller. The clear
layout of the Simulink interface also makes it simple to compare simulation
results with the actual system.

The configuration of monitor mode is very easy to operate. The mode for
the entire model can be activated via the corresponding selection box in
the ARConfig block. Each process variable can then be activated or
deactivated separately.

The connection can be established via TCP/IP as well as via serial
interface, although the serial connection is not recommended in fast
systems.

Automatic Code Generation with MATLAB/Simulink TM140

Working with ARAMATLAB/Simulink

4. WORKING WITH AR4AMATLAB/SIMULINK

The example on the following pages will help clearly explain the use of the
blocks introduced above.

Example:

The following introductory example illustrates, in simple steps, how an
existing Simulink model is prepared for automatic code generation with
AR4MATLAB/Simulink, and which preparations must also be made in
Automation Studio.

Origin

Interfaces and parameters
Project and target configurations
Debugging

Using Simulink and preparing system and control-related models is not
included in this training module and is a prerequisite for working with
the following excerpts.

4.1.1 The model: A simple algebraic system

The algebraic system displayed in Fig. 13 serves as the output in the
implementation example, which adds the inputs a and b, multiplies them
by a constant factor k and displays the result equal to variable c:

c=k*(a+Db)

Because basic knowledge of the use of MATLAB and Simulink is
prerequisite, the implementation of the basic model will not be discussed
here. It is recommended to those users who are not yet experienced
enough with the use of MATLAB and Simulink to first read the appropriate
sections in the appendix before proceeding.

H TM140 Automatic Code Generation with MATLAB/Simulink

Working with ARAMATLAB/Simulink

Slsample +| = _ 10|

File Edit View Simulation Format Tools Help

Ready [125% |ode4s 4

Fig. 14: Output model

4.1.2 Basic settings: B&§R ARConfig block

Inserting the ARConfig block completes the first step towards automatic
code generation. The ARConfig block not only serves as the online
connection to the target system, but is also responsible for most of the
basic settings and must, without exception, be present in every model that
generates code.

Slsample +| = _ 10|

File Edit View Simulation Format Tools Help

ARConfig q

ARCanfiy

Ready [125% |ode4s 4

Fig. 15: Model with B&R ARConfig block

Automatic Code Generation with MATLAB/Simulink TM140

Working with ARAMATLAB/Simulink

For now, monitor mode remains deactivated for the whole model.

E! Block Parameters: ARConfig | 2| x|

— BR - Monitor Block [mask] [link]

— Parameter

b aritar kode (RS

k. Carnicel Help Apply

Fig. 16: B&R ARConfig block configuration

4.1.3 Interfaces: B&R input und output block

In order to make the process variables visible on the controller, and to
allow communication with other processes in the system application, the
corresponding external interfaces must be defined. In the course of the
automatic code generation, a variable is created in the target system for
every input and output block, which bears the name of the corresponding

block.
Slsample g e e] 1|
File Edit View Simulation Format Tools Help
DIEE&S @ 2R et (92 r sfio [- BB nEBE
ARConfig q
ARCanfiy
IN >I>—> ouT q
a Fain c
IN
b
Ready [125% |ode4s 4

Fig. 17: Model with B&R input and output blocks

TM140 Automatic Code Generation with MATLAB/Simulink

Working with ARAMATLAB/Simulink

In addition to naming the variables, the scope, data type, start value, and
data source must be adjusted. The value and source are only available for
input variables.

The variables can be declared as either local or global using the scope
option. In Automation Studio, local variables are created automatically in
the course of the code generation. Global variables, however, must be
declared manually by the user in the Automation Studio project.

WARNING

When manually declaring variables in Automation Studio, the user must
make sure that the data type of the variable in the project matches the
selected data type in the dialog field.

The data type of the variables can be modified using the Type entry. The
following data types are allowed when using AR4MATLAB/Simulink:

Automation Studio Simulink Value range
BOOL boolean FALSE, TRUE
DINT int32 -2.147.483.648 ... 2.147.483.647

INT int16 -32768 ... 32767

LREAL (Standard) double -1.7E+308 ... 1.7E+308
REAL Single -3.4E+38 ... 3.4E+38
SINT int8 -128 ... 127
UDINT uint32 0...4.294.967.295
UINT uint16 0...65535
USINT uint8 0...255

INFO

The correct data type for local output variables is internally defined in
Simulink and cannot be set.

Automatic Code Generation with MATLAB/Simulink TM140 H

Working with ARAMATLAB/Simulink

The start value of the active variables at initialization is defined in the value
input field. Default value: 0, or FALSE

In our example, variables a, b and ¢ will have the following settings:

a: Scope: LOCAL
Type: LREAL
Value : 1
b: Scope: PREDEFINED (GLOBAL)
Type: INT
Value: 2
c: Scope: LOCAL
[SJsource block Parametersta ————IE]

— BR - Input Block [mazk] [link]

Thiz Block provides the simulation with input values. Simulation
containing the "BR Pl Loop" block activate an additional option,
enabling the “tanitar Mode". The input values will the be
obtained from the target device.

— Parameter

Type|LREAL =l

YWalue

[1

k. Cancel Help

Fig. 18: Settings for variable a

TM140 Automatic Code Generation with MATLAB/Simulink

Working with ARAMATLAB/Simulink

E! Source Block Parameters: b | = x|

— BF - Input Block [mazk] [link]

Thiz Block provides the simulation with input values. Simulation
containing the "BR P4l Loop" block activate an addiional ophion,
enabling the "Manitar Mode". The input values will the be
obtained from the target device.

— Parameter

()% Cancel | Help

Fig. 19: Settings for variable b

E! Sink Block Parameters: c | 2| x|

— BR - Output Block [maszk] [link]

— Parameter

k. Carnicel Help Apply

Fig. 20: Settings for variable c

4.1.4 Online configuration of factors: B&R parameter block

To make factor k accessible during operation, a B&R parameter block must
be inserted. Again, the variable name is determined from the label located
under the block — in this case, k.

Automatic Code Generation with MATLAB/Simulink TM140 27

Working with ARAMATLAB/Simulink

ols] il

File Edit W%iew Simulation Format Tools Help

ARConfig q]Parameter q

ARConfig k

ouT

Ready [125% |odeds 4

Fig. 21: Model with B&R parameter block

As described for the input and output blocks, the settings scope, type and
value apply for parameter blocks.

[C]Block Parameters: k | = x|

— BR - Parameter Block [mazk] [link]

— Parameter

Type|LREAL =l
alue
10

k. Carnicel Help Apply

Fig. 22: Settings for variable k

4.1.5 Preparations: Automation Studio project

To allow automatic integration of code produced from the model in an
existing Automation Studio project, a few minor preparatory measures
must be met. First, an Automation Studio task is created, which bears the
same name as the Simulink model — in our case "sample". ANSI C is
selected as the programming language.

TM140 Automatic Code Generation with MATLAB/Simulink

Working with ARAMATLAB/Simulink

IMPORTANT
Before executing the automatic code generation, an empty task bearing

the same name as the Simulink model must be created in Automation
Studio.

Snppendobpe:

Cateqaries: Templates:

~{7) Package B Eisting Program
-4 Program . I ew Program
i File

{7 Data Object
4= Mation

4= Library
47 Wisualization

A new proarar

et > Cancel Help

Fig. 23: Creating a new task in Automation Studio

When creating an Automation Studio task, it is imperative that its name
matches that of the Simulink model.

Automatic Code Generation with MATLAB/Simulink TM140

Working with ARAMATLAB/Simulink

x|

A new program

Program name: :Isample

% Desoription: [ARaMATLAB /Simulnk task

What kind o les da you want o gznerate?

v E-&ra'.gpe'&éclatal'i'm: 1Isample. typ

¥ Wariable declaratior: Isample. war

< Back | Mest > I - Cancel Help

Fig. 24: Naming an Automation Studio task

It is also imperative that only one file is created for the initialization part,
the cyclical part and the exit procedure.

B New Program E{ Xl

A new piogram:

= I?rbgramw‘rame: Isan"lp[e
% Desciiptiar: [ER4MAT LAR Simulink task,

“wihiat kind of files da you want o generate?

¥ Init pragram: [samplee

Language: Jansic 7
P Gl progim [rame

Language: fansic =
WV Esit progiam: |sampleie

Language: fansic |

W Merge :Hit.,:-t;_y.ellié‘-a‘r'rd:'es-i'!‘-'pm%ram'ihto- are file

< Back | et > I Cancel | Help |

Fig. 25: Automation Studio task settings

TM140 Automatic Code Generation with MATLAB/Simulink

Working with ARAMATLAB/Simulink

Dbject Mame | Dezcription |
= = Project_1

Global.typ Global data pes

Global.war Global variables

F- I Libraries Glabal libraries

=] Jzample | AR 4MAT LAR ASimulink task,

zample.typ Local data types
zample. var Local wariables
zample.c Implementation code

Fig. 26: Automation Studio task in the project directory

Additionally, all global variables used with the Simulink model must be
created — in our case, only variable b. Local variables are created
automatically during automatic code generation.

IMPORTANT

It is important to note that the type of global variables created in
Automation Studio corresponds with the type selected in Simulink (see
B&R input block).

Hame IT_l,lpe I @ Constant I‘v"alue IDescription[‘I] I

xxx

“COPYRIGHT - Bemecker + Rainer

* File: Global.war
* Authar:
* Created:

* GGlobal vanables of project Project_1

Fig. 27: Global variable b

4.1.6 Settings for the target system: B&R target preferences

Since ARAMATLAB/Simulink is used not only to generate code from
Simulink models, but also to automatically integrate the source code in
Automation Studio, settings must be made in MATLAB with respect to the
current Automation Studio project. These can be found in the MATLAB
Start menu under Start - Simulink > Automation Studio - Target
Preferences.

Automatic Code Generation with MATLAB/Simulink TM140

Working with ARAMATLAB/Simulink

oL MATLAE b
‘ Toolboxes]
Sirnulink: 3 Wb Library Browser
Shortcuts b @ Help
3% Desktop Tools » TJ- Demos

0 Weh b O Froduct Page (‘Weh)

% Preferences. .. Aukamation Skudio b w Target Preferences

@ Find Files. .. W Real-Time Workshop P Bi Apply Target Preferences
@ Help W Real-Time Workshop Embedded Coder # o ARAMATLAE Help

% Demos W Simulink Fixed Paint » @ Product Page (Web)

I" Start T Stateflow b I

Fig. 28: B&R Target system settings

The following points are adjusted:

AS_Configuration_Name: Configuration name of the current Automation
Studio project

AS_PLC_Name: PLC name of the current Automation Studio project

AS_Project_Directory: Root directory of the current Automation Studio
project

Package_Name: Name of the package in the current Automation Studio
project, in which the source code should be added

Simulink_Model_Directory: Directory in which the Simulink model is
located

IMPORTANT

The entries listed above represent a frequent source of error in
automatic code generation. All settings must match those of the
Automation Studio project exactly.

o) i x]
Configl &

AS_PLC_Mame PLC1 &
A35_Project_Direckary A5 _ProjecksiProject_1 &
Package_Mame &
Simulink_Model_Direckory CAMATLAE _ProjectsiProject_1 &

Fig. 29: Target settings for the example program

TM140 Automatic Code Generation with MATLAB/Simulink

Working with ARAMATLAB/Simulink

INFO

File Edit %iew Insert Open Projeck

The configuration and PLC names of the current Automation Studio
Project can be easily checked — as seen below - in Automation Studio.

U Project_1,; Configl - Automation Studio

PEH@| BB~ [X e SdE

Online Tools Window Help

‘|T=|'|

|Praject Explarer

b adel no.

T 2005 PLC
-5 PS
B 5L1

- 3CP3B0.60-2 sL1

t-& AF7I7.9-1 551
9

5K
L “§ 3ATEROE 5L3
[3004806 5L4
Ly 5L5

Dezcription

Base Plate

Central Processar, 10 aPCl, 32MBRAKM 26EkHz
Interface Module RS232, CAM, =&

3 Inputs Temperature Senzor
16 Outputs, 24 WOIC /2 4

The configuration created as described above must then be applied to the
respective Simulink model. This is done using the menu item Start >
Simulink 2 Automation Studio - Apply Target Preferences. In the
process, all the necessary basic settings - such as switching to a fixed step
solver or increasing the duration of the simulation to infinite simulation (inf)

- are adjusted in the model.

Automatic Code Generation with MATLAB/Simulink TM140

Working with ARAMATLAB/Simulink

Slsample g e e] 1|

File Edit View Simulation Format Tools Help

D|b‘ﬂ§|éﬂﬁ|4==‘.>ir|:es?:|r-|linf [homal ~|| DD g [2 0 | e BB

ARConfig q Parameter q
ARCanfiy ke
IN >[>—> ouT q
a Fain c
IN
b
Ready [125% |Fixedstepbiscrate | 4

Fig. 30: Adjusted Simulink model

All preparations are now complete, and automatic code generation can be
started.

4.1.7 Integration: Automatic code generation and project download

Once the above preparations have been successfully completed, you can
begin with the automatic code generation in Simulink. This is done using
the menu item Tools > Real-Time Workshop - Build Model... (Ctrl+B) or
using the corresponding button on the toolbar.

D2EH&G fER| &t (22 aff [C|HEIR:: BB

A message will appear in the MATLAB command window indicating that
the code generation was successful. Then the newly created source code is
compiled in Automation Studio and transferred to the target system.

Hf¥ Cleaning up

H## Generating Main File

Postprocessing

f### Logging variables for Automation Studio

H### Felocating

HH#E AS-Setup

###| SJuccessful completion of Real-Time Workshop build procedure for model: ssmple
i

TM140 Automatic Code Generation with MATLAB/Simulink

Working with ARAMATLAB/Simulink

Object Mame | Dezcrption |
B = Project 1
Global.typ Global data bypes
Global.war Global variables
& I Libraries Glabal libraries
| 8- [zamnple | AR ARATLAR ASimdlink. task,
[~ E| zample.typ Local data types
[~ D zample.var Local wanables
[~ E zample.c Implementation code
------ Globals ar. tat M atlab code
------ emilrt.h K atlab code
------ engine.h K atlab code
...... firutef. by Matlab code
------ fizedpoint. b Matlab code
------ 0G4 h K atlab code
------ rnat.h K atlab code
------ rnatriz. b K atlab code
------ =] K atlab code
------ mvwdebug. b K atlab code

Fig. 31: Automatically integrated program code from the example program

4.1.8 Put it to the test: Debugging in Automation Studio

Taking a look at the watch window in the Automation Studio project, we
can see that all the specified variables, including their data type and scope,
can be found on the target system. The function test of our simple
algebraic system also goes as expected.

Hame Tupe | Scope | Force | W alue
¢ a LREAL local 1.0
@ b IMT global 2
¢ ¢ LREAL local 0.0

Ok LREL el 100

Fig. 32: Watch window in Automation Studio

4.1.9 Online connection: Monitor mode

As already mentioned in section 3.6, it is possible to read out and edit
process variables in Simulink on the controller. To do this, activate monitor
mode in the B&R block ARConfig for the current model and for all relevant
variables.

Automatic Code Generation with MATLAB/Simulink TM140

Working with ARAMATLAB/Simulink

=) source Block Parameters: a | 2| x|

— BR - Input Block [mazk] [link]

Thiz Block provides the simulation with input values. Simulation
containing the "BR Pl Loop" block activate an additional option,
enabling the “tanitar Mode". The input values will the be
obtained from the target device.

~ Parameter
Scope|LOCAL =l
Type |LREAL =l
Walue

|1
Monitor Mode

k. Cancel Help

Fig. 33: Activate monitor mode for variable a

When the simulation is started in Simulink, the respective process variables
are added in MATLAB Workspace, and can be read out and edited either
directly or by a script.

INFO
Monitor mode can be activated without having to restart the automatic
code generation.

IMPORTANT
To activate monitor mode, the simulation must be started.

TM140 Automatic Code Generation with MATLAB/Simulink

Working with ARAMATLAB/Simulink

= sample e _ (O] x|
File Edit View Simulation Format Tools Help
D|D“H§|%E|4==ﬁ>ﬁ|fﬁc’l||u l"inf INormal j|$lﬁ||ﬁ@
ARConfig q Parameter q
ARConfig ke
=
IN q G, pD—p ouT q
= a Gain c
IN
1
Running 175% Illllll [T=2.188e+005 |odel 5

Fig. 34: Running simulation in monitor mode

In the MATLAB Workspace, the values of the variables can be read out on
the target system.

\Current Directory | Workspace e D 8 x_
': - Eﬁ % | ’i | - T|5l:Eu:k:|Ehﬂse vI

Mame £ |'u'a|ue IMin |I"-'1ax | |
LY 10blocklist <5x3 cell>

H - 1 1 1

Hb 2 2 2

H - 30 30 30

Hk 10 10 10

Fig. 35: MATLAB Workspace

Automatic Code Generation with MATLAB/Simulink TM140 37

5. EXAMPLES

The following examples will provide an overview of the extensive
possibilities for utilizing AR4MATLAB/Simulink in the field of automation
technology. Using a simple discrete-time PID controller, we will show how
quickly and easily control technology solutions can be created using
Simulink and transferred to the target system using ARIMATLAB/Simulink.
Then, using a simulation model of a temperature system, we will
demonstrate the implementation of a continuous-time simulation model for
hardware-in-the-loop applications. In the third and final example, we will
present the option of using external, self-generated Simulink libraries
together with ARAMATLAB/Simulink.

5.1 PID controller

Example:

As you can imagine, it is easy to implement a simple PID controller
using Simulink. After the control deviation has been established with the
set and actual values, the equations listed below are used to calculate
the manipulated variable directly on the controller's output. All that is
needed to install the controller on the target system is to add the B&R
blocks described in section Function blocks for ARAMATLAB/Simulink
and start the code generation.

TM140 Automatic Code Generation with MATLAB/Simulink

D EH&) eR 5t 2 ih o D HE0S: BEES

ARConfig - Parameter EN

ARConfig Kp
T

n

Tw

Kiz1)

Tsz

Discrete Derivative

| Ready foew | [r=0.00 [FixedstepDiscrete. Y

Fig. 36: Discrete-time PID controller

The control concept for the PID controller:

Y, =K, W = X) ... Proportional element
K
Y, = % EI(VV— X) [oit ... Integral element
d . .
Y, = K T, IZ-Id—t(\N = X) ... Differential element
Y=Y, +Y, +Y, ... Entire manipulated variable

Since the controller code is executed on the target system in fixed scan
cycles, it is recommended to ensure that all integrator and differentiator
blocks are also discrete-time.

Automatic Code Generation with MATLAB/Simulink TM140

5.2 Temperature model

In order to properly test the controller created in section 5.1 without having
to have a real system at hand, a simplified model of a temperature system
must be created and transferred to the target system using
ARIMATLAB/Simulink.

Example:
The system is based on the following mathematical model:

_9(9) _ K, —
y(s) (1+s0T,)[{@+sT,)

G(s)

A simulation is also made of white noise during measurement and
quantization to tenths of a degree by the measurement sensor. All
system parameters are - just like the ambient temperature - accessible

as local parameters.

Fle Edt View Siation Fornet Tooks Help

= = = e S e e [[P | Bl REE®

ARConfig

ARConfig

enable

T

Parameter -‘ ‘Pammeter -‘

Temp_amb T2

Feady [106% I | [pdel 7

Fig. 37: Temperature system

Since the simulation model at hand is a continuous-time model, you must
activate support for continuous-time systems.

TM140 Automatic Code Generation with MATLAB/Simulink

Configuration Parameters: 5im_Temp/BuRConfigSet {Active)

Select:

E

- Solver

- D ata Import/E sport
- O ptimization

[~ Diagnostics

- Sample Time

- Data W alidity

- Type Conversion
- Connectivity

- Compatibility

- Model Referencing

ardware Implementation
odel Referencing
eal-Time Workshop

- Comments:

- Sumbiolz

- Cugtom Code

- Debug

- [nterface

- Code Style

- Templates

- Data Placement

- Data Type Replacement

- Memony Sections

ol 5|

r Software envirohment

Target floating-point math environment: ICBS.-"CSD [AMSI)

Utility function generation |Aut0

™ norvfinite numbers

¥ continuous time

Suppart: W foating-paint rurmbers

[~ absolute time

Lol

™ complex rumbers

™ narvinlined S-functions

r Code interface
™ GRT compatible call interface ¥ Single outputAupdate function
™ Generate reusable code

[T Suppress emor status in reaktime model data structure

Configure Functions ...

V' Teminate function required

— Werification

Suppart zoftware-in-the-loop [SIL) testing
’7|_ Create Simulink [S -Function] black.

™ Enable porkable word sizes

™ MAT file logging

— Data exchange

Interface: INone

o]

Cancel Help

Apply

Fig. 38: Settings for continuous-time Simulink models

In order to be able to run the continuous-time system on the target system
with fixed equidistant scan steps, a fixed step solver (e.g. ode1 - Euler)
must be selected.

Configuration Parameters: 5im_Temp/BuRConfigSet {Active)

Select:

E

- Solver

- D ata Import/E sport
- O ptimization

[~ Diagnostics

- Sample Time

- Data W alidity

- Type Conversion
- Connectivity

- Compatibility

- Model Referencing
ardware Implementation
odel Referencing
eal-Time Workshop
- Comments:

- Sumbiolz

- Cugtom Code

- Debug

- [nterface

- Code Style

- Templates

- Data Placement

- Memony Sections

- Data Type Replacement

ol 5|

— Sirmulation time

Stark time: ID.D

Stop time: |inf

— Solver option

Type: IFixed-step

Lli Solver: |EEIEE]

Periodic sample time constraint: |Unconstrained

Fixed-step size (fundamental sample time]: ID.‘I

Tazking mode for periodic sample times: ISingIeTasking
™ Higher priority value indicates higher task priority

™ Automatically handle data transfers between tasks

o]

Cancel Help Apply

Fig. 39: Fixed step solver

Or, alternatively, the system can be converted to an adequate discrete-time
system. This can be done either manually using transformations that are

Automatic Code Generation with MATLAB/Simulink

TM140

described in detail in the corresponding literature, or by using the "Model
Discretizer", a tool from the company The MathWorks. This can be found -
as long as the two program packets Control/ System Toolbox and Simulink®
Control Design are installed - in Simulink under Tools > Control Design >
Model Discretizer (see section 6.1).

TM140 Automatic Code Generation with MATLAB/Simulink

5.3 Hydraulics applications

Many external libraries can also be used with ARAMATLAB/Simulink (see
section Appendix). This includes the hydraulics library "hydroLib" from the
Institute of Machine Design and Hydraulic Drives of the Johannes Kepler

University in Linz, Austria. This library is available at
http://imh.jku.at/ftp/index.en.php, and is maintained and continuously

expanded by members of the institute.

L-":,;;Lihrary: hydrolib3
Fie Edt Wew Fommet Help
DZHE| B e i|ocnan

imb hydrolib 3.0.2, hay 1 0th, 2007
(£} 2006-2007 by Insitute of Machine Design and Hydraulic Drives
Johannes Kepler University, Linz, Austria

R I e

hagic elements L
accumulators utilities

cylinders pumps & motors

transmissian lines

100% |Locked Z

Ready

Fig. 40: Hydraulics library from the JKU Linz

The included example "example1.mdl" can be expanded using the B&R
blocks described in section 3 so that you can generate complete,
executable machine code for any B&R target system.

IMPORTANT
In order for external libraries to be supported, you must not use any

Simulink function blocks that are not supported by Real-Time Workshop
(see section Appendix). Also, "non-inlined S-functions" (see
www.mathworks.com) cannot be used with ARAMATLAB/Simulink.

Automatic Code Generation with MATLAB/Simulink TM140

p [bar]

fluid parameters

@ min]

valve opening

Ready

p sensar Qsensor
7 ; /;
_ P e -
p=const arifice Z j 2i2 valva
volume 27 =
& S
7‘/7//// 4
»
[
100 [Ideds A

Fig. 41: Hydraulics model without B&R blocks

The addition of B&R blocks allows the example that accompanies the
library to be transferred to the target system quickly and easily. The scan
time must be set low enough (e.g. Tms) to meet the demands of the highly

dynamic system.

r"’zenamplelhr
File Edi Visw Simlstion Formst Took Help.

D& e8| e i (2| ol (im]| He @S

b W Em e

fluid parameters

psensar

@[l per min]
uT

FReady

. e
p=canst otifice Z‘ f
volume 2? -
24]
Grrrariris
ARConfig i
ARConfig Sy tank
[100% [[T=0.00 ode1 %

Fig. 42: Hydraulics model with B&R blocks

IMPORTANT

Special characters such as spaces at the end of the character string
must be avoided when naming the Simulink blocks, as they cause
problems during automatic code generation.

TM140 Automatic Code Generation with MATLAB/Simulink

Appendix

6. APPENDIX

6.1 Simulink block support

Nearly all standard Simulink blocks are supported by the automatic code
generation. You can call up an overview in MATLAB using the command
showblockdatatypetable. Only a few blocks are explicitly incompatible
with the Real-Time Workshop from The MathWorks. However, it is not
recommended to use continuous-time blocks for industrial applications.
These blocks should be replaced by a corresponding discrete-time scan
system. One option here is to use the Model Discretizer mentioned in
section Temperature model.

More detailed information regarding the company The MathWorks can be
found at http://www.mathworks.com/products.

B&R cannot guarantee problem-free implementation of blocks other than

the standard Simulink blocks. In this case we recommend contacting The
MathWorks Support to inquire whether a particular block is supported by
the products Real-Time Workshop and Real-Time Workshop Embedded

Coder.

Technical support: http://www.mathworks.com/contact TS.html

Automatic Code Generation with MATLAB/Simulink TM140 H

Appendix

6.2 Additional links

The following links will take you to The MathWorks corporate website. B&R
can therefore not make any guarantees regarding the site's content. Any
questions should be directed to The MathWorks support.

Contact information: The MathWorks

For questions regarding The MathWorks products, you can find the
appropriate contact information here:
http://www.mathworks.de/company/aboutus/contact us/

To contact the technical support department for The MathWaorks (for
customers with a valid maintenance contract), it is recommended to use a
"MathWorks Account” — free registration at

http://www.mathworks.com/accesslogin/createProfile.do - since this is
the only way to submit an online query regarding the current processing
status: http://www.mathworks.com/accesslogin/createProfile.do

Industrial automation and industrial machines

Industry-specific portal with access to the most important sources of
information regarding implementation of MATLAB & Simulink, including
user reports, book program and event calendar.
http://www.mathworks.com/industries/iam/

Tech notes / How-to guides

Tips & tricks for MATLAB & Simulink.
http://www.mathworks.com/support/tech-notes/list all.html

MATLAB Central

Public exchange platform for MATLAB & Simulink users, including
exchange for files and links as well as access to the public MATLAB
Newsgroup. http://www.mathworks.com/matlabcentral/

TM140 Automatic Code Generation with MATLAB/Simulink

Appendix

Product documentation

Online access to the complete HTML & PDF documentation for the current
MATLAB release — currently R2007b.

Note: Access to individual product documentations, such as "Real-Time
Workshop Embedded Coder", requires a "MathWorks Account" - free
registration at http://www.mathworks.com/accesslogin/createProfile.do.
http.://www.mathworks.com/accesslogin/createProfile.do

MATLAB tutorial

Online tutorial for introduction to MATLAB.
http://www.mathworks.com/academia/student_center/tutorials/launchp
ad.html

Simulink tutorial

Online tutorial for introduction to Simulink.
http://www.mathworks.com/academia/student_center/tutorials/index.ht
mi?link=body#

The MathWorks Newsletter

Access to The MathWorks newsletter "News&Notes" as well as other

publications.
http://www.mathworks.com/company/newsletters/?s cid=HP NL

Recorded Webinars

Presentation of the latest The MathWorks solutions in approx. 1 hour long
online presentations (in English and German).
http://www.mathworks.com/company/events/archived webinars.html?s
cid=HP _E RW

Automatic Code Generation with MATLAB/Simulink TM140 47

Appendix

Notes

TM140 Automatic Code Generation with MATLAB/Simulink

Overview of training modules

TM200 - B&R Company Presentation **

TM201 - B&R Product Spectrum **

TM210 - The Basics of Automation Studio

TM211 - Automation Studio Online Communication
TM212 — Automation Target **

TM213 — Automation Runtime

TM220 - The Service Technician on the Job
TM223 — Automation Studio Diagnostics

TM230 - Structured Software Generation

TM240 - Ladder Diagram (LAD)

TM241 - Function Block Diagram (FBD)

TM246 - Structured Text (ST)

TM247 — Automation Basic (AB)

TM248 — ANSI C

TM250 — Memory Management and Data Storage
TM260 — Automation Studio Libraries |

TM261 - Closed Loop Control with LOOPCONR

TMA400 - The Basics of Motion Control

TM410 - The Basics of ASiM

TM440 - ASiM Basic Functions

TM441 — ASiM Multi-Axis Functions

TM445 — ACOPOS ACP10 Software

TM450 — ACOPOS Control Concept and Adjustment
TM460 - Starting up Motors

TM500 - The Basics of Integrated Safety Technology
TM510 — ASiST SafeDESIGNER

Appendix

TM600 — The Basics of Visualization
TM610 — The Basics of ASiV

TM630 - Visualization Programming Guide
TM640 — ASiV Alarm System

TM650 — ASiV Internationalization

TM660 — ASiV Remote

TM670 — ASiV Advanced

TM700 — Automation Net PVI
TM710 — PVI Communication
TM711 - PVI DLL Programming
TM712 - PVIServices

TM730 - PVI OPC

TMB800 — APROL System Concept

TM810 — APROL Setup, Configuration and Recovery
TM811 — APROL Runtime System

TM812 — APROL Operator Management

TM813 — APROL XML Queries and Audit Trail
TM830 — APROL Project Engineering

TM840 — APROL Parameter Management and Recipes
TM850 — APROL Controller Configuration and INA
TM860 — APROL Library Engineering

TM865 — APROL Library Guide Book

TM870 — APROL Python Programming

TMB890 — The Basics of LINUX

*¥) see Product Catalog

Immer in Ihrer Nahe - 140 Biiros in Gber 55 Landern - www.br-automation.com/contact

Australia « Argentina « Austria » Belarus « Belgium < Brazil « Bulgaria « Canada « Chile « China « Colombia - Croatia « Cyprus
Czech Republic « Denmark + Egypt . Emirates - Finland « France - Germany - Greece - Hungary - India - Indonesia
Ireland « Israel - Italy « Japan < Korea « Luxemburg - Kyrgyzstan « Malaysia « Mexico « The Netherlands - New Zealand
Norway - Pakistan < Poland « Portugal « Romania Russia ¢ Serbia < Singapore Slovakia < Slovenia South Africa
Spain + Sweden - Switzerland « Taiwan e Thailand « Turkey « Ukraine United Kingdom « USA - Venezuela - Vietnam

