PVI DLL Programming
TM711

Perfection in Automation
www.br-automation.com

Requirements

Training modules:

Software:

Hardware:

TM211 - Automation Studio Online Communication

TM710 - PVI Communication

Visual Basic 6.0
Windows NT/2000/XP

any SG3 or SG4 controller

Table of contents

1. INTRODUCTION
1.1 Objective

2. PVICOM.DLL PROGRAMMING

2.1 PVl installation files
2.2 Requirements for PVI programming

3. PVICLIENT APPLICATION
3.1 PVICOM functions
3.2 Establish a connection with the PVI Manager
3.3 Setting up the process objects
3.4 Evaluating the response data
3.5 Read and write access

4. SUMMARY

10
10
13
14
34
39

45

PVI DLL Programming TM711 '

Introduction

1. INTRODUCTION

This training module describes how to program the PVICOM.DLL using the
PVI functions to create a Windows visualization or Service Tool.

Visual Basic 6.0 is used to describe the PVICOM.DLL functions and
processes because the majority of applications are created in this
programming language.

The training module "TM712 PVIServices" is recommended for applications
created in Visual Studio.NET development environments.

Fig. 1: PVI DLL programming

TM711 PVIDLL Programming

Introduction

1.1 Objective

Exercise examples will help participants to create PVI Client applications.

Participants will understand the application and possibilities of PVI
functions.

The PVI user documentation will provide more in-depth knowledge of the
PVI Client application possibilities.

- ~

PVI DLL Programming

\ PVI Client Application

PVICOM.DLL

Fig. 2: Overview

PVI DLL Programming TM711 '

PVICOM.DLL Programming

2. PVICOM.DLL PROGRAMMING

The PVICOM interface is used by all Windows-based applications with PVI
access.

This is the most optimum PVl interface in regard to performance.

[PVI Client-Interface]

PVI Manager

Fig. 3: PVI Client programming

Communication via the PVICOM interface is handled with the functions in
the PVI communication library, "PviCom.dlI".

The PVI communication library is a DLL (Dynamic Link Library) based on
the Windows standard. If applications use functions of a DLL, then the DLL
has to be loaded explicitly with functions being declared, or the static
library "PviCom.lib" has to be bundled to the program (loaded implicitly).

The procedure can be found in the respective programming language
manuals.

The following development environments are supported:

e Visual C++ (Version 6.0 and up)

e Visual Basic (Version 6.0 and up)

e Borland C++ Builder (Version 3 and up)
e Borland Delphi (Version 4 and up)

I TM711 PVIDLL Programming

PVICOM.DLL Programming

2.1 PVl installation files

The PVICOM definition files for the respective programming language are
installed in the following directory after installing the PVI Server & Runtime
/ Development Package:

PVI Server&Runtime Setup:

BrAutomation\Pvi\lnc
BrAutomation\Pvi\Lib

PVI Development Setup:

Program Files\BrAutomation\Pvi\%Version%\Pvi\lnc
Program Files\BrAutomation\Pvi\%Version%\Pvi\Lib

The PVICOM definition file contains definitions and/or declaration for all
PVICOM interface functions, types, structures used, and PVI constants.

File Description
PviCom.lib Static library for Visual C
PviCom.h Definition file (include file) for Visual C
PviCom.bas Definition file (module) for Visual Basic
PviCom.pas Definition file (include file) for DELPHI

The communication library "PviCom.dlIl" is installed in the following
directory when installing a PVI package:

Windows\System32

PVI DLL Programming TM711

PVICOM.DLL Programming

2.2 Requirements for PVI programming

ARO0O0O0 is used for communication with a controller. The variables and the

corresponding data type used to do this are documented in this training
module.

2.2.1 The Automation Studio project

Automation Studio must be used to a user task in which a few variables are

used. These variables are read and written in the PVI Client application that
is created with this training module.

An existing Automation Studio project can also be used, but the variable
names in this training module must be replaced accordingly.

The first step requires a task "pvitest" with the variables "Lifesign" and
"PV1".

A% % AR | o s

Hinclude <hbur/ple.hs> ;I
#include <bur/plotypes.h>

_LOCAL TINT Lifesign:
_LoCAL TINT PVL:

_CY¥CLIC woid cylic[void”
{
Lifesign++:

4] 2

Fig. 4: Automation Studio test project

TM711 PVIDLL Programming

PVICOM.DLL Programming

2.2.2 Visual Studio programming environment Now Proect

All of the functions described in this
training module are explained using
Visual Basic 6.0 program code.

Activex EXE Al

All PVI functions are described in the PVI
user documentation using Visual C++ B N N
prog ram Code. Actived Control VB Application Wizard B Wizard Manager

Additionally, a tutorial for Visual Basic, Visual C++, Borland Delphi and
Borland C programmers is also placed in the "...\Pvi\Tutorial" directory
during the PVI Server&Runtime / Development installation. The steps in the
tutorial are described in the PVI user documentation.

PVI DLL Programming TM711

PVI Client Application

3. PVI CLIENT APPLICATION

A small PVI Client application will be created step-by-step in this chapter.
Exercises and tasks will be used to describe most of the PVI functions and
their application.

What will be covered in this practice example:

e PVICOM functions
e Establish connection with the PVI Manager

e Setup the process objects with synchronous / asynchronous
functions

e Evaluate the response data
e Read and write functions

3.1 PVICOM functions

For the first step, the definition file "PVICOM.BAS" will be added to the
newly created project. Now it is possible to use PVI functions.

Exercise: Inserting the file PVICOM.BAS to the newly
created VB project.

Select the module from the directory "...\Pvi\Inc\PviCom.bas".

=138 Project1 (TMT11.vhp)
= i
N iew Eade

=] e

Project] Properties...

5 fom
Sawe ’ﬁ:t kL1 Farm
Save b, @

% Frint... }ﬂ Claz¥dodule

ﬂﬂ Uszer Cantral

Dockable

=] Property Page
Hide E TOperty Fag

ﬁ Wzer Macumett
Add File...

Fig. 5: Adding the PVICOM.BAS module

TM711 PVIDLL Programming

PVI Client Application

Select an existing module from the "Add Module" dialog box.

Add Module
Mew Enisting |
Suchenin: |23 Inc j =

%Pviﬁlarm. @ Desklop

) Eigene Dateien
%Pv!Efg.ba i Arbeitsplatz
% F'v!l:om.b g Lokaler Datentrager [C:)
o4 Puirend |5) Bréutomation
) P

& I
wnla OO ACD-F-Lacifuwerk (O]
fx brdfs1 auf "brateqgedc.br-auton

. g Metzwerkumgebung —
Dateiname: —yrvicomroa

D ateityp: IBasic Filez [*.baz) j

Fig. 6: Add Module — Add existing module.

Caution:

Only a reference to the file is created after inserting the module. The
reference will not work anymore if the project directory is changed (e.g.
passing the project on to someone else). In this case, it is
recommended to copy the module to the VB project directory.

The PVICOM.BAS module is now displayed in the project explorer.

=B Project1 (TM711.vbp)
E-E3 Forms

-4 Form1 (Form?.Frm)

E@ Modules

viCom (PviCom. bas)

Fig. 7: Project explorer — PviCom.bas

All PVICOM constants, structures and function descriptions are contained
in this module.

Caution:

The user is not allowed to make any changes to this module.

Descriptions of the functions can be found in the PVI user documentation.

PVI DLL Programming TM711

PVI Client Application

Inhalt | Index I ﬁuchenl Favariten

@ Pl Presentation
-l PYI hase system

----- @ Owerview

----- @ Terms

..... [£] PVI Manager

----- @ Pl b onitor
E-U[PYICOM interface
..... a User guidB"nES
----- E Client/Server communication
----- % Global events
----- % Objects

----- % Object descriptions
----- E Uzer messages

----- % Requests and responzes
----- % Access lppes

..... E Object events

----- E Event types

----- E Process data

----- % Process data properties
----- % Process data functions
E-A PYICOM functions

<lnitialize functions
| ™ —_ e N

Fig. 8: PVICOM Help

----- E Ohject names and connection description

Pvilnitialize, PviXInitialize Functions

Definition for C/C++

int Pwilnitialize (INT Timeout, INT RetryTime, LPCSTR
pInitParam, LPYOID pRes)

int Pwiklnitialize (LPDWORD phPvi, INT Timeout, INT
RetryTime, LPCSTR pInitParam, LPYOID pRes)

Definition for Basic

Pvilnitialize (ByWal Timeout As Long, ByVal RetryTime As
Long, By¥al plnitParam As String, Byval pRes As Long) As
Long

PvixInitialize {ByRef phPwi As Long, By'Yal Timeout As Long,
ByVal RetryTime As Long, Byval pInitParam As String, ByVal
pRes As Long) As Long

Arguments

As you can see already with the first function, there is always a Pvi... and
PviX... function for the same task.

The Pvi... functions are sufficient for a simple PVI Client application.
However, if the application will be accessing multiple server PCs on a
distributed network, then the PviX... functions must be used.

This training module only uses the Pvi... functions.

TM711 PVIDLL Programming

PVI Client Application

3.2 Establish a connection with the PVI Manager

The connection with the PVI Manager is established using the "Pvilnitialize"
function.

Exercise: Establish and then cancel a connection with the
PviManager.

The "Pvilnitialize()" function and its parameters are used in the form's
"Load" event. The "PviDeinitialize()" function is called in the "Unload"
event.

The function's arguments can be found in the PVI user documentation.

Private Zub Formw Load()

Dim Tiweout Az Long

Dim RetryTime Az Long

Dim InitParameter As 3tring

Timelut = 0 ' Default timeout 30 =5

FetryTime = 0O ' no retry (default)

InitParameter = "LM=0"

Pvilnitialize TimeOut, RetryTime, InitParaunseter
End 3ub

Private 3Zub Forw Tnlogd(Cancel Az Integer)
PwilDeinitialize
End 3ub

This example shows local communication between the PVI application and
the PVl Manager. A remote connection is transferred using the parameters
PN and IP with the argument "InitParameter".

InitParameter = "LM=0 PT=0 PN=20000 IP=HostName"

Caution:

The "PviDeinitialize" function should always be used. Communication
between the application and the PVI Manager is cancelled at this point.
The application could crash if this function is not called because
accumulated callbacks can no longer be processed.

PVI DLL Programming TM711

PVI Client Application

Result:

The PVI Manager is started after starting the application. PVI objects
can then be created or accessed on already existing PVI objects.

If the PVI Manager is already """“"““ |
. . . . ile Options Help
run_nlng’ then the appllcatlon IS Pl \-"l_alsil:ln 2.5.2.30!]3 [12.01.2008] Engligh
registered on the PVl Manager S LU RN 00,
— the PVI Manager detects a new Time: 0:00:08
Client. Existing PVI objects (static) Link Dbjects: 0
Process Objects: 1 [active: 0, eror: 0]
can be accessed. Service Objects: 1 [active: 0, emor: 0)
Qiata Objects: O
Requests: 0
Responges 0
Ewents: O

3.3 Setting up the process objects

The process objects can be put together according to
the PVI object hierarchy once the application has
established a connection with the PVI Manager.

Internal PV's

When doing this, you should determine whether these
objects will be set up as static or temporary before
creating the objects (see TM710 or the PVI user

i
documentation). obal PVs

Functions used:

e PviCreate / PviCreateRequest
e PvilLink / PviLinkRequest

TM711 PVIDLL Programming

PVI Client Application

3.3.1 Setting up temporary process objects

The process object is created including the link object (Create + Link) when
setting up a temporary process object. When disconnecting the link object
(unlink) or when terminating the PVICOM application, the temporary

process object is also disconnecting again (i.e. deleted on the PVI
Manager).

Exercise: Creating temporary process objects with
synchronous PVI functions.

All process objects up to and including variable objects are set up and

the response data (see also 3.4) from the "Lifesign" variable is displayed
in a textbox.

Steps for creating the process objects:

e Add a module with the name "myPviFunc" for creating the global
variables and the callback functions for evaluating the data

e Place a button on the form with the name "emdCreateTempSync"
e Place a textbox with the name "txtLifesign"

e Create the callback function in the module "myPviFunc"

A variable must be set up in the "myPviFunc" module for each PVI object.
These variables are required for returning the handle (reference) of a PVI

object. This handle can be used for read or write access to a PVI object
during runtime.

Option Explicit

Public hlLine Az Long

Pubhlic hDewvice Az Long
Pubhlic h3tation Az Long
Public hipu Az Long

Pubhlic hTask Az Long

Pubhlic hPVW Lifesign As Long

PVI DLL Programming TM711

PVI Client Application

The following code is entered to the button's "Click" event:

Private Zub cmdCreatedync Clicki()

Dim
Dim
Dim
Dim

End

Feturnval L= Long ' Beturnvalue of each function
ObiName Lz String ' wariable for proceszs object name
Obijlegcription Az 23tring ' wariabhle for connection descr.

LinkDezcription Az 3tring ' wariable for link object

' Create Line Cbhject

ChilNasme = "@/Pwvi/LnInaz™

ObjDEScriptiDn = rrCD=rr & FEFFFFFP & ranInaz rr & FEFFFFFP
LinkDezcription = wvhMNullZtring

FeturnWal = PviCreate (hlLine, ByWal CbjMame, POEJ LINE, EyVal _
Chijbescription, Address0f PviCallback,
SET PVICALLEACE, 0, LinkDescription)
If BeturnWal Then
M=gEox "Error create Line object EfT™ &£ BEeturnial
Exit Sub
End If

Sub

Description of the setup procedure:

Variables are created for the object name (path name), the
connection description and the link object.

The variables are set with the path name and the connection
description of the respective process object. The link object does not
have to be preset for the line object.

Call the synchronous function "PviCreate".

The global variable "hLine" is transferred as handle with the object
type "POBJ_LINE".

A temporary process object is set up by specifying the callback
function with "AddressOf PviCallback". A static object would be set
up if "NULL" were transferred for these arguments.

By specifying the callback without the data "SET_PVICALLBACK", the
data in the callback function must be read with "PviReadResponse".
"0" is transferred as object number because response data is not
necessary on this object. This is first evaluated and transferred
starting at the CPU object.

TM711 PVIDLL Programming

PVI Client Application

Note:

The program cannot be started until the callback function has also been
set up. This item "evaluating the response data" is now anticipated, a
function is created where the response data from each PVI object is

evaluated.

The callback function is used without data in the "myPviFunc" module.

Publice Sub PwviCallback (ByWal WPARAM As Long, ByWal LPARAM As Long)
Dim BeturnWal As Long

Zelect Case LPARAM

Case Else
PwviReadResponse WRARLAM, 0O, O

End Selecﬂ
End ZSub

The message sent by the PVI Manager is acknowledge by calling the
"PviReadResponse" function.

Caution:

All messages from the PVI Manager must be acknowledged in the
callback, even if no PVI object data or errors are evaluated.

Task: Start the program and set up the line object.

After starting, the result should be tested in the PVI Monitor or in the
PVI SnapShot Viewer.

PVI DLL Programming TM711 17

PVI Client Application

Result:

Two process objects are displayed in the PVI Monitor (PVI object + line
object). A link object is also set up at the same time as the line object.

Link, Objects: 1
Process Objects: 2 [active: 1, emar; 0]

If the application is closed now, the process object including link object is
also deleted.

The following program code is added to the function in the
"emdCreateSync" button - click event:

' Create Dewvice Ohject

ChiName = "QR/Pvi/LnInaz/TCPIP"

Objlescription = MCD=m g rreer o 0/TF=TCPIP /fSA=1" g e
LinkDescription = whlull3tring

RetcurnWal = PviCreate (hDevice, ByWal OhbjlName, POEJ DEVICE, ByVal
Chjbescription, Address0f PviCallback,
SET PVICALLEACE, 0, LinkDescription)
If EeturnWal Then
MagBox "Error create Device ohject Ef™ &£ Eeturnial
Exit Sub
End If

' Create Ztation Chiject

Chilawe = "@/Pvi/LnInaz/TCPIP/3tation”
ChijDescription = "CD="

LinkDescription = whlull3tring

ReturnWal = PviCreate(h3tation, ByVal ObjMName, POBJ 3TATION, ByWal
Chjbescription, AddressOf PviCallback,
SET PVICALLEACE, 0, LinkDescription)
If Eeturn¥Wal Then
MagBox "Error create S3tation object E#™ & ReturnVal
Exit Sub
End If

As you can see here, the path name (ObjName) is expanded for each object.
The variable for the handle and the object type also change for each
process object.

TM711 PVIDLL Programming

PVI Client Application

Further in the program code:

' Create CPFU Chiject

Chilamwe = "@/Pvi/Lnlnaz/TCPIP/3tation/CPU"
Chibescription = MCh=r g e ¢ o f/ D=2 SDAIP=127.0.0.1 JREPO=11160" g rrrrrerer
LinkDescription = "EV=ed®

FeturnWal = PviCreate (hCpu, BEyWal ObjlNawe, POBJ CPU, ByWal
Objlescription, Addressof Pwvicallback,
SET PVICALLEACE, 1, LinkDescription)

If ReturnVal Then|
M=gEox "Error create Device obhject E#™ & ReturnVal

Exit Sub
End If

Response data should be evaluated when creating the CPU object. To do
this, the event mask "EV" is set up for "e=Error" and "d=Data" in the link
description (variable LinkDescription). That means that the error is
registered in the callback for the user or object number "1" if the
connection to the controller is lost.

Task: Expanding the callback and evaluating a link error:

The user number is transferred to the callback in the "LPARAM"
argument.

Publice Sub PwviCallback (ByWal WPARAM As Long, ByWal LPARAM Ls Long)
Dim BeturnWal As Long

Select Case LPARAM
Case 1: ' CPU object

FeturnWal = PviReadResponse (WPARLM, 0O, 0O)

If ReturnWal Then ' error detected
Formwl.Caption = "E#"™ & ReturnWVal
El=e
Forml.Caption = "Connection to PLC QKT
End If

Case Else
PwviFeadPResponse WPARAM, 0O, O

End Select
End Sub

PVI DLL Programming TM711

PVI Client Application

A CPU object error is evaluated in the callback function with LPARAM = 1
and then written to the form's caption. The caption also shows when the
connection to the controller has been established.

Task:Add the task and variable object and evaluate the data
changes and errors in the callback function.

The task object for the "pvitest" user task and the "Lifesign" variable are
set up.

' Create Task COhject

Chilawe = "@/Pvi/LnInaz/TCPIP/3tation/CPU/ Taskl™
Chijlbescription = "Ch=" g "UFr ¢ Fpvitest™ g mrere
LinkDhezcription = whiull3tring

RetcurnWal = PviCreate (hTask, ByVal CbjMName, POBJ _TASK, ByWal
OhijDescription, Address0Of PviCallback,
SET PVICALLEACE, 0, LinkDescription)
If ReturnWal Then
MagBox "Error create Task object Ef"™ & Returnval
Exit Sub
End If

' Create Variabhle Chiject

ChiMName = "QB/Pvi/LnInaz/TCPIP/3tation/CPU/ Taskl/PV Life"
Chilescription = "Ch=" g "*rr g Flifegign™ & """" g " AT=rw RF=250"
LinkDezscription = "EV=ed VT=Lfa4"

ReturnWal = PviCreate (hPV Lifesign, BEyVal ObjMName, POBJ PVAR, ByVal
Chijlescription, Addresz0f PviCallback,
SET PVICALLEACE, 10, LinkDescription)

If ReturnVWal Then
MzgEBox "Error create Variable object Ef"™ & ReturnVal

Exit Sub
End It

The attribute for read and write access "AT=rw" as well as the refresh time
"RF=250" (in [ms]) are also specified in the connection description (CD=) of

the variable object.

The event mask "EV" is set up for "e=Error" and "d=Data" in the
description of the link object. A cast to a "Double" data type is performed
using the parameter "VT=f64".

TM711 PVIDLL Programming

PVI Client Application

When changing the type, a controller data type is converted to a data type
used in the VB.

This makes it possible to also display and process a UDINT data type from
a control variable in Visual Basic in its entire value range.

Data type Value range
Automation Runtime — UDINT 0 - 4294967295
Visual Basic - LONG -247483648 - 247483647
Caution:

The value range of the data type used in VB is not automatically
monitored when writing. Therefore, the data function = scaling had to
be used with the parameter "FS".

The variable's data is written to the text property of the "txtLifesign"
textbox in the callback. The error number is output to the text box when
return value <> 0 comes from the response function.

Public 2ub PviCallback (ByWal WPARAM As Long, ByWal LPARAM As Long)
Dim BReturnWal As Long

Dim DataPV Ls Double
ZGelect Case LPARLM
Caze 1: ' CPUT object
BeturnWal = PviReadResponse (WPARLM, 0O, 0O)

If PeturnVal Then ' error detected
Forml.Caption "E#" & ReturnWal

Else
Forml.Caption = "Connection to PLC OE®
End If
Ca=ze 10: ' wrariable Lifesign

BeturnWal = PviReadResponse (WPARLM, DataPV, 8)
If ReturnWal Then

Forml.txtLifesign.Text = "EH#" & ReturnWVal
Elzse

Forml.txtLifesign.Text = DataPV
End If

Caze Else
PviReadResponse WPARLAM, 0O, O
End 3S3elect
End Suhb

PVI DLL Programming TM711

PVI Client Application

When the project is started and the button for creating the process object
is pressed, the connection to the controller is established and the value of
the variable is output to the textbox.

. Connection to PLC OK

|395?5

Fig. 9: Starting the application — Displaying the value

Task: Test a loss of connection with the controller

Cancel the connection to the controller. If it is being used, the AR000
must first be exited and the effects must be tested on a running VB
program. With other types of communication, the connection cable must
be disconnected from the controller.

The connection is automatically re-established once the connection is
made again or the AR0O0O has been restarted.

Result:

The variable object is automatically read by the PVI Manager (active
process object) when using the event mask "EV=ed".

The callback is automatically called only for active process objects each
time a value change occurs and in the event of an error.

As a result, it is not necessary to read cyclically from the application.

Error evaluation does not have to be specially programmed. Instead, the
application is automatically notified by the connection with the
controller and via errors in the project setup.

The process objects on the PVI Manager are also deleted when ending
the PVI Client application.

TM711 PVIDLL Programming

PVI Client Application

3.3.2 Setting up static process objects

A static process object is only set up (created) once and remains active
throughout the entire runtime of PVI Manager. As many link objects as
necessary can be linked to this static process object and unlinked again.

Exercise: Creating static process objects with asynchronous
PVI functions.

All process objects are set up into a variable object and the response
data from the "Lifesign" variable is displayed in a textbox.

When setting up a static process object, a PviCreate (in this case the
asynchronous call "PviCreateRequest()") is used without specifying the
callback.

This is specified with "PviLink()" when the link object is set up.
Steps for creating the process objects:

e The same global variables are used for the object references
(handles) as for the temporary process objects

e Pace a button on the form with the name - oo

| Create Sync |

"emdCreateStatAsync" Temon | 0

e Pace a button on the form with the name -
ucmdLinkStatObju EIE;::SE-'{'”C Link Static Obj. | .

e Create a separate callback for the event data
and for response data

PVI DLL Programming TM711

PVI Client Application

Static process objects are not set up with asynchronous PVI functions in
the "emdCreateStatAsync" button's "Click" event.

Private Jub cmdCrestedtatlsync Click()

Dim FeturnWal ks Long ' Beturnvalue of each function
Dim Chijlame As 3Itring ' wariable for process oblject name
Dim ChijDescription As 3tring ' wvariable for connection descr.
Dim LinkDescription As 3tring ' wariable for link obhject

' Create Line CObhject
ChilName = "@/Pwvi/LnInaz™
Ob:lDESC]‘.'lIJtan = "CD:" & FFFF PP PP & "LnInaz rr & FFFF PP PP

FeturnWal = PviCreateRecquest (ByVal ObjName, POEJ LINE, EByWal
Cbjlescription, 0, 0, 0, 0, LddressOf RespCreate,
SET PVICALLEACE, 1)
If EeturnWal Then
M=gEox "Error create Line object Ef™ & Eeturnial
Exit Sub
End If

End Sub

The PviCreateRequest function requires two callback functions. One for the
response from Create and one for evaluating the response data and error
from the process object.

If the callback is only specified for "Create", then a static process object is
created.

A callback is not required for the synchronous function PviCreate because
the response to "Create" is contained in the function call.

In the next step we will create the callback function in the "myPviFunc"
module for evaluating the Create function.

Pubhlice Subh RespCreate (ByWal WPARLM L= Long, BvyWal LPARAM As Long)
Dim ReturnWal A= Long

Select Case LPARAM
Caze 1: ' Line okhject

FeturnVal = PviCreateResponse (WPARAM, hLine)

Case Else
PwviCreateResponse WPARLM, O

End Select
End Sub

TM711 PVIDLL Programming

PVI Client Application

A PviCreateRequest is acknowledged with PviCreateResponse in the
callback for the response from the function call.

Note:

Error evaluation is not covered in this example. The user can implement
this individually.

Task: Start the program and check the process objects in the
PVI Monitor

Two process objects, the PVl and the Line object are set up. Unlike the
temporary process objects, there is still no link object.

Link Objects: 0

Process Objects: 2 [active: 0, eror: 0]
Service Objects: 2 [active: 0, emor: 0]
Drata Objects: O

Clients: 1

Further in the program code for creating all process objects:

' Create Device Obhject
ObiWName = "@/Pvi/Lnlnaz/TCPIP" -
Objlescription = ®CDh=m g mrer g 0/ TF=TCPIP /3Aa=1m g rrrreer

RBeturnWal = PviCreateRequest (ByVal ObjName, POBEJ DEVICE, EByVal
Objbescription, 0, 0O, O, 0, Address0Of RespCreate,
SET PVICALLEACK, 2)
If REeturnWal Then
MagBox "Error create Device ohject Ef™ &£ EeturnVal
Exit Sub
End If

PVI DLL Programming TM711

PVI Client Application

' Create Ztation Object
ChilNawme = "@/Pvi/LnInaz/TCPIPS3tation'™
ObjlDescription = "CDh="

FeturnWal = PviCreateRecquest (ByVal ObjMName, POEJ STATION, EByWal
Objlescription, 0, 0O, 0O, 0O, Address0f RespCreate,
SET PVICALLEACE, 3)
If EeturnWal Then
M=gEox "Error create 3tation object EHT & ReturnVal
Exit Sub
End If

' Create CPU Chiject
Chilame = "@/Pvi/Lnlnaz/TCPIP/3tation/CPU™
Chibescription = MCh=t g e g /D=2 SDAIP=127.0.0.1 fJREPO=11160" g rrorrreer

FetcurnWal = PviCreateRecquest (ByVal ObjMName, POEJ CPU, ByWal
Objlescription, 0, 0O, 0O, 0O, Lddress0f RespCreate,
SET PVICALLEACE, 4)

If EeturnWal Then
M=gEox "Error create CPU object Ef"™ & Eeturnial
Exit Sub

End If

' Create Task CObhject
ChilNawme = "@/Pvi/LnInaz/TCPIPS3tation/CPU/ Taskl™
O}:I:IDESC]‘.'I]_‘JEIDH = "CD:" & FFFF PP PP & Ffpvitest" \5 FFFFFF PP

FeturnWal = PviCreateRecquest (ByVal ObjMName, POBEJ TASK, EBEyiWal _
Objlescription, 0, 0O, 0O, 0O, iddressOf RespCreate,
SET PVICALLEACE, 5)

If EeturnWal Then
M=gEox "Error create Task object Ef"™ & Eeturnial
Exit Sub

End If

' Create Variable Chiject
ObjMeme = "B/Pvi/LnInazZ/TCPIP/3tation/CPU/Taskl/PV Life"
COhijDescription = MCDh=r g *0rr ¢ Mlifesign®™ & """ g " AT=rw RF=Z250"

FeturnWal = PviCreateRecquest (ByVal ObjMName, FPOEJ PVAR, EBEvyiWal
Objlescription, 0, 0O, 0O, 0O, iddressOf RespCreate,
SET PVICALLEACE, 10)

If EeturnWal Then
M=gEox "Error create Task object Ef"™ & Eeturnial
Exit Sub

End If

TM711 PVIDLL Programming

PVI Client Application

The callback for the CreateResponse function is also expanded:

FPubhlic Z3ub RespCreate (EyWal WPARLM iz Long, Bvval LPARAM As Long)
Iim ReturnVal Az Long

Gelect Case LPARAM

Cazse 1: ' Line obhject

FeturnvVal = PviCreateResponse (WPARAM, hlLine)
Case 2: ' Device object

Feturnval = PviCreateResponse (WPARAM, hlevice)
Case 3: ' Btation obhject

Feturnval = PviCreateResponse (WPARAM, h3tation)
Caze 4: ' CPT okbject

FeturnvVal = PviCreateResponse (WPARAM, hCpu)
Caze S ' Tazk object

FeturnvVal = PviCreateResponse (WPARAM, hTask)
Caze 10: ' Variabhle okbject

RecurnWal = PviCreateResponse (WPALRAN, hPV Lifesign)

Case El=se
PviCreateResponse WPARLM, O

End Zelect

Task: Start the program and check the process objects in
the PVI Monitor

All process objects are displayed in the PVI Monitor after starting the
program.

Link Objects: 0

Process Objects: 7 [active: O, emar: 0]
Service Objects: 6 [active: O, error O]
Data Objects: 0

Clients: 1

Result:

The process objects remain on the PVI Manager even when the
application is ended.

A link object is not created for any process objects.

PVI DLL Programming TM711 27

PVI Client Application

If the program is started again, then the error 12002 is returned at the
PviCreateResponse.

That means that the object name already exists. In this case, a link object
can be set up immediately on the existing process object.

Caution:

If a static or temporary process object is set up by two different
applications with the same path names (@/Pvi/LnIna2...) but with
different connection descriptions, then the connection description of
the existing process object is used.

That means that it is not possible if a second application has the same
path name and must communicate with e.g. another device.

When setting up an application with static objects you should also be
aware that a change to the connection description due to a program or
configuration error does not take effect until after terminating the PVI
Manager.

TM711 PVIDLL Programming

PVI Client Application

3.3.3 Creating a link object

A link object with the function "PviLink()" or "PviLinkRequest()" must be
created for a static process object. As many link objects as necessary can
be connected to the same process object.

Note:

It is recommended to use the asynchronous "PviLinkRequest()"
functions because they can also be called in a loop. This also
significantly speeds up the processing of the functions for simultaneous
linking and unlinking multiple link objects.

Each of these link objects can have different parameters e.g. for the data
type or scaling. This makes it possible for example to simultaneously
process a control variable in the application as raw value (i.e. the physical
value of the controller) as well as the scaled and converted process value.

Exercise: Create the link objects up to the task object

The link objects are set up in the click even of the "cmdLinkStatObj"
button.

The same callback function is used as the one for the temporary objects
"PviCallback".

Frivate Zubh cmdlink3tatCh) Clicki()

Dim BeturnWal As Long ' Returnwvalue of each function
Dim ChjNsgne As String ' wrariasble for process object name
Dim LinkDescription As String ' wariable for link object

' Link Line Ohject
ChiName = "d/Pvi/Lnlnaz'™
LinkDescription = wvbNull3tring

FeturnWal = Pwvilink{hlLine, ByWal ChjlMNamwe, Address0f PwviCallback,
SET PVICALLBACE, 0, LinkDescription)
If FeturnWal Then
M=gBox "Error link Line object E#"™ & ReturnWal
Exit Sub
End If

PVI DLL Programming TM711

PVI Client Application

' Link Device Chject
Chilame = "@d/Pvi/LnInaz/TCPIP™
LinkDhezcription = whiull3tring

FeturnvVal = PvilLink(hDevice, EByVal ObhjName, ALiddress0Of PvicCallback,
SET PVICALLEACE, 0, LinkDescription)
If ReturnWal Then
MzgBox "Error link Dewvice object Ef"™ & Returnval
Exit Sub
End If

' Link 3tation Chiect
Chilatwe = "@/Pvi/LnInaz/TCPIP/3tation™
LinkDezcription = wvhiull3tring

Feturnval = PvilLink(h3tation, BvVal Oh]jlName, Lddress0Of PviCallback,
SET PVICALLEACE, 0, LinkDescription)
If ReturnWal Then
MagEBox "Error link Station ohject Ef™ &£ EeturnVWal
Exit Sub
End If

' Link CPU Chiect
ChiNamwe = "@/Pvi/LnlInaz/TCPIP/3tation/CPU"
LinkDezcription = "EV=ed™

FeturnvVal = PviLink(hCpu, EBvyVal ChilName, Aiddress0Of PvicCallback,
SET PVICALLEBACE, 1, LinkDescription)
If ReturnVWal Then
MagBox "Error link Dewvice object Ef"™ & REeturnval
Exit Sub
End If

' Link Task Chiect
ChiName = "@i/Pvi/LnInaZ/TCPIP/3tation/CPU/ Taskl"™
LinkDezcription = wvhiull3tring

FeturnvVal = PvilLink(hTask, EBEvyVal CObhjilame, Address0f PvicCallbhack,
SET PVICALLEACE, 0, LinkDescription)
If ReturnVWal Then
MzgBox "Error link Task object E#™ & ReturnVal
Exit Sub
End If

End 3Jub

As with the temporary process objects, the event mask is activated in the
LinkDescriptor for errors and data "EV=ed" in the CPU object.

TM711 PVIDLL Programming

PVI Client Application

If the program is started now and the buttons "emdCreateStatAsync" and
"emdLinkStatObj" are pushed consecutively, then a connection to the task
object is established. All process objects (PVI- up to variable object) and
link objects (PVI- up to task object) are displayed in the PVI Monitor.

Link Objects: &

Proceszs Objects: ¥ [active: B, error: 0]
Service Objects: B [active: 4, emar: 0]
[ata Objects: 0

Clients: 1

Exercise: Create the link object to the variable's process object

The process object is activated by linking to the variable object (event
mask "EV=ed" in the LinkDescriptor). From this point on, the variable is
read by the Manager and displayed in the "txtLifesign" textbox.

A new "emdLinkVar" button should be created and a PvilLink() to the
variable object should be established in the click event.

Private 3ub cmdLinkWVar Clicki)

Dim ReturnWVal ALz Long ' Returnvalue of each function
Dim ChiMame L=z 3Itring ' wariakble for procezz object name
Dim LinkDescription As 3tring ' wvariable for link obhject

' Link Variahle Chject
ChiNamwme = "@fPvifLnInazfTCPIPIStatinnKCPUKTasklfP?_Life"
LinkDezcription = "EV=ed VT=Lfa4dr"

BeturnWal = PvilLink (hPV Lifesign, ByVal ChjName, Lddress0f PviCallback,
SET_PVICALLEACE, 10, LinkDescription]

If ReturnWal Then
MzgBox "Error link Variable ohject Ef™ £ ReturnVal
Exit Sub

End If

End Sub

PVI DLL Programming TM711

PVI Client Application

After restarting the program, the variable's link object can be created by
pressing the button "emdLinkVar" without creating the static process
objects because the process objects up to the task object already exist.

The variable is read by the PVI Manager and displayed on the form's
textbox.

Create Sync
TempQbi |49551

Create Aspnc : : _
StatOhj Link Static Obj. |

Fig. 10: Link to variable object

Exercise: Create multiple link objects to the same variable
object

If the "emdLinkVar" button is now pressed multiple times, then multiple
link objects are created on the variable's process object.

This can be seen in the PVI Monitor with the number of link objects.

Link, Objects: &

Frocess Objects: ¥ [active: 1, emor; 0]
Service Objects: B [active: 1, emrar O]
Drata Objects: 0

Clents: 1

Result:

Static process objects are set up one time and stay the same while the
PVI Manager is running, even if the application is ended.

The process object is activated when one ore more link objects have
been created.

TM711 PVIDLL Programming

PVI Client Application

3.3.4 Deleting a link object

The link to the process object is unlinked by "deleting" the link object with
"PviUnlink()" or "PviUnlinkRequest()".

If there are multiple link objects on the same process object, then it is not
“inactive" until the last link object has been deleted.

Exercise: Delete the link object for the variable object

The link object is deleted using the function "PviUnlink()".

A new button with the name "emdUnlinkVar" should be created and the
function should be called in the click event. The handle (i.e. the
reference of the variable object) should be transferred to the function
"hPV_Lifesign".

Frivate Zubh cmdlUnlinkWar Click()
Dim returnwval Az Long

returnval = Pwillnlink (hPV Lifesign)
If returnwval Then
txtLifesign. Text = "E#"™ £ returnval
End If
End Suhb

After starting the program, one or more link objects can be created by
pressing the "emdLinkVar" button. The value of the "Lifesign" variable is
displayed in the textbox and refreshed cyclically.

The link object is deleted by pressing the "emdUnlinkVar" button. The
variable is no longer read once the last link object has been deleted.

An error is output by evaluating the return value from the "PviLink()" if the
function is called when there are no more link objects.

PVI DLL Programming TM711

PVI Client Application

3.4 Evaluating the response data

Two different types of callback functions can be used in Visual Basic.

e C(Callback without data
e C(Callback with data

The user messages are signaled with "Post Messages" for programming
environments that support Window Messages.

"Asynchronous callbacks" are another possibility for evaluating response
data. This method is used for Visual C+ + applications without windows
(DLL driver).

3.4.1 General information about evaluating response data

In general, you should make sure that the response data or event data is
not evaluated in the respective callback / Window Message (e.g. access to
databases).

Caution:

Within a callback function, unrestricted asynchronous PVICOM
functions can be used, but synchronous PVICOM functions CANNOT.

3.4.2 Callback without data

In the previous exercises, the callback function was used without data.

With this type of callback, the data must be read with the corresponding
Pvi...Response() function — the "PviCreateResponse()"' function must be
called in the callback for the "PviCreateRequest()" or "PviCreate()" function.

H TM711 PVIDLL Programming

PVI Client Application

The "WPARAM'" and "LPARAM" arguments transferred in the function are
required to arrange the response function assigned to the request function.

Public Sub PviCallback(ByVal WPARAM As Long, ByVal LPARAM As Long)
Dim returnval As Long
Dim DataPV As Double

Select Case LPARAM

Case 1: 'CPU object
returnval = PviReadResponse(WPARAM, 0, 0)

Case 10: 'variable object
returnval = PviReadResponse(WPARAM, DataPV, 8)
Case Else:

PviReadResponse WPARAM, 0,.0
End Select

End Sub

The "LPARAM" argument indicates the user number specified in the
respectively called function (e.g. PviCreate).

returnval = PviLink(hPV_Lifesign, ByVal ObjName, AddressOf PviCallback, _
SET_PVICALLBACK, 10, LinkDescription)

Caution:

If the return value that was transferred in the response function is <> 0,
then an error has occurred and the data contained in the function is not

valid.
Therefore, it is recommended to always evaluate the return value!

PVI DLL Programming TM711

PVI Client Application

3.4.3 Callback with data

In this type of callback function, the response data and event data are
transferred together in the callback function. Calling the corresponding
response function is no longer necessary or possible.

The CallbackData is transferred with the function call instead of the normal
callback function.

ReturnVal = PviLink(hPV_Lifesign, ByVal ObjName, AddressOf
PviCallbackData, SET_PVICALLBACK_DATA, 10, LinkDescription)

Public Sub PviCallbackData(ByVal WPARAM As Long, ByVal LPARAM As Long,
ByVal pData As Long, ByVal dataLen As Long, _
ByRef pResInfo As T_RESPONSE_INFO)

End Sub

Exercise: Use the callback with data to evaluate the event
data for the "Lifesign" variable

The callback with data is used in the "emdLinkVar" button's click event
instead of the normal callback.

The callback function "PviCallbackData" is created in the "myPviFunc"
module.

"REeturnWal = PwilLink (hPV Lifesign, EByWal COhjlNamwe, Lddress0of PviCallback,
SET PWICALLEACE, 10, LinkDescription)

FeturnWal = PwilLink (hPV Lifesign, ByWal COhjlNawe, Lddress0Of PwviCallbackData,
SET PVICALLEACE DATA, 10, LinkDescription)

TM711 PVIDLL Programming

PVI Client Application

In the callback function with data, a query is made in the
"T_RESPONSE_INFO" PVI structure asking whether this is data or if an
error has occurred. The data is then valid and can be evaluated.

Public Sub PviCallbhackDatsa (ByWal WPARAM A=z Long, ByWVal LPARALM L= Long,
EvWal pData A= Long, ByWal datalen A= Long,
EyRef pResInfo As T REIPCNSE INFO)

Select Case LPARLM
Caze 10:

If pResInfo.nMode = POEJ MODE EVENT Then
If pResInfo.Errcode Then

Forml.txtLifesign.Text = "Ef™ &£ pResInfo.ErrCode
El=e
GetDatalnformation phata, datalen
End If
End If
End Select

End Sub

The corresponding process object is assigned again when evaluating the
user parameter "LPARAM".

The "nMode" Member in the "T_RESPONSE_INFO" structure evaluates
whether or not it is a data event (POBJ_MODE_EVENT).

The "ErrCode" member determines whether an error has occurred or if the
transferred to "pData" is valid.

The point to the data and the data length are transferred in the self-made
function "GetDatalnformation".

The APl "CopyMemory" is used in Visual Basic to copy the data to a
variable. This API is declared in the declaration part of the module
"myPviFunc".

Option Explicit

Publice hline As Long

Public hlewvice As Long
Publice h3tation As Long
Publie hCpu As Long

Public hTask As Long

Public hPV Lifesign As Long

Public Declare 3ub CopyMemory Lib "EEBMEL3Z"™ Aliss "EtlMoveMemory™
[lpwDhest As Any, lpwv3ource As Any, BvyWal chlopy As Long)

PVI DLL Programming TM711 37

PVI Client Application

In the "GetDatalnformation" function, the data is now copied to the Visual
Basic "DataPV" variable and to the "txtLifesign" textbox.

Private Zubh GetDatalnformation(ByWal pData As Long,
ByWal Datalen Ls Long)
Dim DataPWV As Double

CopyMemory ByVWal VarPtr (DataPV), ByVal pData, Datalen
Forml.txtLifesign.Text = DataPV
End Suhb

Note:

In this example "VT=164" is specified in the LinkDescriptor of the
variable object. This results in a type conversion to "double" in the PVI
Manager.

In the callback with data, the corresponding length is included for each
data type — in this case "8" for the data type "double".

The function "GetDatalnformaton" is implemented for simple data types in
this example.

To implement the function for all data types, The "Format Event" can also
be evaluated. This event is sent before the first data event.

More information about the creating and evaluating the format event can
be found in the PVI user documentation.
Result:

After starting the program and pressing "emdLinkVar" button, the value
of the variable object is output to the textbox as in the exercise for the
callback function without data.

TM711 PVIDLL Programming

PVI Client Application

3.5 Read and write access

Process objects that are switched to "active" by the "EV=ed" event mask
are automatically monitored for data changes by the PVI Manager -
regardless of whether these process objects are polled by the PVI Line or
setup as event variables by the "AT=re" attribute.

That means that these process objects no longer have to be additionally
read by the application.

PVI offers read and write access for =0 Automation Net

. . . . @ Saftvare installation
accessing the respective process objects in] Pl
the PVI object hierarchy. - PVl Presentation

L:_|q1| Pl base systemn
. . A S A [E] Overview

These access functions are described inthe = .] Tems
PVI user documentation <PVI Base :% o e
System> / <PVICOM interface> / <Access =) PYICOM intertace
types>. 2] User quidelines

----- % Client S erver communication
----- % Global events

----- % Objects

----- % Object names and connection «
----- % Object dezcriptions

----- % User messzages

----- £] Requests and responzes

fooess ypes:

Fig. 11: Access functions

This training module uses various exercises to describe three access
functions for read and write access to a process object.

3.5.1 Writing a value

The function "PviWriteRequest()" and the access function
"POBJ_ACC_DATA" are used to perform asynchronous write access with
data to a variable object.

The application is notified of the successful write task in the corresponding
callback. Any errors that occurred are reported in the response function's
return value.

PVI DLL Programming TM711

PVI Client Application

Exercise:

Write to the "lifesign" variable with the value "0"

The function is implemented in the click event of a new button
"emdWriteLifesign". A callback function for write access should be
created in the "myPviFunc" module.

Private Jub cwdllritelifesign Click()
Dim ReturnWal Az Long
Dim WriteWalue A= Double

WriteWalus = 0O
FeturnWal = PvillriteRequest (hPV _Lifesign, POBJ _ACC DATA, WriteValue,
Len(WriteWalue), Address0f ResplWrite, 3ET PVICALLEACE, 10]
'TODD error handling
End 3ub

Data access to the variable object is specified by defining the LinkID
(handle) of the variable object and the access type "POBJ_ACC_DATA".

In the callback function, the return value notifies the application whether
the write access was successful (ReturnVal = 0) or if an error occurred
(ReturnVal <> 0).

Public Zubh Respllrite(ByWal WPARAM A= Long, EBvvwal LPARAM As Long)
Dim ReturnVal Az Long

Jelect Case LPARAM
Cazse 10: ' Response wvariabhle object
Feturnval = PvillriteResponse (WPARLHM)
'TODD error handling
Case Else ' Aoknowledge unhandled write regquests
PvilWlriteResponse WRPARALAM
End 3elect
End 3ub

Result:

After starting the program and setting up the process objects
(regardless of whiter these were created as static or temporary), the
value of the variable is set to "0" when pressing the "emdWriteLifesign"
button.

TM711 PVIDLL Programming

PVI Client Application

3.5.2 Changing the event mask

With static process objects, the "active" switching of the process object by
specifying the event mask "EV=ed" is controlled by the link / unlink
procedure.

With temporary process objects, this is done by writing the process
object's event mask with the access type "POBJ_ACC_EVMASK".

This access type can be used to enable or lock the different types of events
for a process object — both static and temporary — during runtime.

Exercise:

Enabling and disabling the event types "Error" and "Data"

The event mask is "disabled" at index [0] and "re-enabled" at index [1]
using an OptionButton field with the name "optEventMask" on the form.

These accesses can be performed using a synchronous write task
because this change is made right on the PVI Manager and does not
have to wait for a confirmation from the controller.

Friwvate Zub optEventMask Click(Index As Integer)
Dim ReturnWal Az Long

Dim =2trHlp Az String

Dim =trlen Az Long

If Index = 0 Then ' Ewventmask "TEWV=
sLrHlp = ¢

El=e ' Ewventmask "EV=sd"
S2LrHlp = Med"

End If

FeturnWal = Pvillrite (hPV_Lifesign, POBJ _ACC EVMASE, ByWal strHlp,
Len(strHlp) + 1, 0O, O]
' ToODO error handling
End 3Suhb

PVI DLL Programming TM711

PVI Client Application

Result:

When the program is started, each value change in the variable is
displayed in the textbox after setting up the process objects.

The value change is no longer refreshed after pressing the OptionButton
with index [0] (i.e. the variable is no longer read).

The variable is read again after "enabling" the event mask with "EV=ed".

3.5.3 Reading the controller time

In this last exercise, the controller's time will be read and output.

Note:

In addition to reading the controller's time, this function can also be
used to read the time and the data from a module or a user task for
service applications.

The differentiation between CPU and module objects is made by
specifying the respective handle in the object hierarchy.

The access function "POBJ_ACC_DATE_TIME" on the CPU object is used to
read the time from the controller.

Exercise: Read the time from the controller

Reading the time is started by pressing a new button "emdReadTime".
The response from the read task is displayed on a Visual Basic label
control with the name "lbITime".

The time is saved on a structure variable in Visual Basic. The Member
variables of this structure are used to perform the evaluation and
formatting for the display.

The necessary time structure is created in the "myPviFunc" module.

TM711 PVIDLL Programming

PVI Client Application

Option Explicit

Public hlLine A= Long

FPubhlic hDewvice Az Long
FPubhlic h3tation As Long
Public hipu Az Long

FPubhlic hTask Az Long

Public hPVW _Lifesign As Long

FPriwvate Type nwbhateTime
l3econd A= Long
1Minute A= Long
l1Hour A= Long
1Day Az Long
1Month A= Long
1¥ear Az Long
lwDay Az Long
lyDay Az Long
lisDhay Az Long

End Type

Pubhlic Declare Sub CopyMemory Lik "EERNEL3IZ™ Llias "RrtlMovelemory™
[lpwDest Az Any, lpv3iource Az Any, BvyWVal chCopy A= Long)

The read task for the time is started in the Click event of the
"cmdReadTime" button:

Private Sub cmdReadTime Click()
Dim BReturnwval As Long

Returnwval = PviReadRequest (hCpu, POBEJ ACC DATE TIME, AddressOf
RespService, 3ET PVICALLEBACK, 1)
' ToDD error handling

End Sub

A separate callback function with the name "RespService" is created in
which the time that was read is then evaluated. An existing callback
function can also be used.

PVI DLL Programming TM711

PVI Client Application

Correct formatting of the display is not taken into consideration here.

Public Zub Resplervice (BEyVal WPARLAM A=z Long, EBEvvWal LPARALAMN L= Long)
Dim Returnwval A=z Long
Dim t3truct As mbhateTime

Zelect Case LPARLM
Caze 1: ' Rezponze date time
Returnval = PviFReadBesponse (WPARLM, t3truct, Len(t3truct))
If Returnwval Then
Forml.lhlTime.Caption = "EH#"™ & Returnval
El=e
" note: +1 for month hecause in Struct_ tim
' the month iz defined with 0-11
' the wvear =tarts from 1200
Forml.lhlTime.Caption = t3truct.lDay & /" & _
(t3truct. 1Minute + 1) & "/"™ & [(tStruct.l¥ear + 1900) & _
"orog t3truct.lHour & ":T & titruct.lMinute & "M oE
titruct. l3econd
End If
Caze El=e ' Acknowledge unhandled write reguests
PviBeadRespon=e WPARLAM, 0O, 0O
End Z3elect
End 3Zuhl

Result:

The controller's time is displayed on the form after starting the program
and pressing the "emdReadTime" button.

To set the time on the controller, the time structure must be written with
that of the PC and written to the controller with the "PviWriteRequest()"
function.

TM711 PVIDLL Programming

Summary

4. SUMMARY

The PVI functions make it possible implement any Windows Client
application, from visualizations that require data for displaying and
operating up to creating Service Tools — such as the PviTransfer tool.

This training module covered a small range of the PVI functionalities. The
PVl user documentation as well as the PVlI Samples and the PVI Tutorial for
the supported program language included in the PVI Server&Runtime /
Development installation can be used to build upon basic knowledge.

The PviTutorial uses several steps to explain application of the PVI
functions from creating a process object up to using most of the access
functions.

Borland

C Builder)

Fig. 12: PVI DLL programming

PVI DLL Programming TM711

Summary

Notes

TM711 PVIDLL Programming

Overview of training modules

TM200 - B&R Company Presentation **

TM201 - B&R Product Spectrum **

TM210 - The Basics of Automation Studio

TM211 — Automation Studio Online Communication
TM212 — Automation Target **

TM213 — Automation Runtime

TM220 - The Service Technician on the Job *

TM221 — Automation Components and Sources of Errors *

TM223 - Automation Studio Diagnostics

TM230 - Structured Software Generation

TM240 - Ladder Diagram (LAD)

TM243 - Sequential Function Chart (SFC) *
TM245 — Instruction List (IL) *

TM246 — Structured Text (ST)

TM247 — Automation Basic (AB) *

TM248 — ANSI C

TM250 — Memory Management and Data Storage
TM260 — Automation Studio Libraries |

TM400 - The Basics of Motion Control

TM402 - Dimensioning Motion Control Systems *
TM410 - The Basics of ASiM

TM440 — ASiM Basic Functions

TM441 — ASiM Multi-Axis Functions

TM445 — ACOPOS ACP10 Software

TM450 — ACOPOS Control Concept and Adjustment
TM460 — Starting up Motors *

Summary

TM600 — The Basics of Visualization
TM610 — The Basics of ASiV

TM630 - Visualization Programming Guide
TM640 — ASiV Alarm System

TM650 — ASiV Internationalization

TM660 — ASiV Remote

TM670 — ASiV Advanced

TM700 - Automation Net PVI
TM710 - PVI Communication
TM711 - PVI DLL Programming
TM712 - PVIServices

TM730 - PVI OPC

TM800 — APROL System Concept

TM801 — APROL Engineering Basics

TM810 — APROL Setup, Configuration and Recovery
TM811 — APROL Runtime System

TM812 — APROL Operator Management

TM813 — APROL XML Queries and Audit Trail
TM830 — APROL Project Engineering

TM840 — APROL Parameter Management and Recipes
TM850 — APROL Controller Configuration and INA
TM860 — APROL Library Engineering

TM865 — APROL Library Guide Book

TM870 — APROL Python Programming *

TM880 — APROL Report *

*) upon request
*¥) see Product Catalog

120 offices in more than 50 countries - www.br-automation.com/contact

Australia - Austria - Belarus - Belgium - Brazil - Bulgaria - Canada - Chile - China - Croatia - Cyprus - Czech Republic
Denmark - Egypt - Emirates - Finland - France - Germany - Greece - Hungary - India - Indonesia - Ireland - Israel - Italy - Korea
Kyrgyzstan - Malaysia - Mexico - The Netherlands - Norway - Pakistan - Poland - Portugal - Romania - Russia - Singapore
Slovakia - Slovenia - South Africa - Spain - Sweden - Switzerland - Taiwan - Thailand - Turkey - Ukraine - United Kingdom - USA

