Structured Text (ST)
TM246

Perfection in Automation
www.br-automation.com

Requirements

Training modules:

Software:

Hardware:

TM210 — The Basics of Automation Studio
TM211 — Automation Studio Online Communication
TM213 — Automation Runtime

TM223 — Automation Studio Diagnostics

None

None

Table of contents

1.

INTRODUCTION
1.1 Objectives

STRUCTURED TEXT FEATURES

2.1 General information
2.2 Properties
2.3 Possibilities

THE BASICS OF STRUCTURED TEXT

3.1 Expressions
3.2 Assignment
3.3 Comments
3.4 Operator priorities

COMMAND GROUPS

4.1 Boolean operations

4.2 Arithmetic operations

4.3 Comparison operators

4.4 Decisions

4.5 Case statements

4.6 Loops

4.7 Calling function blocks

4.8 Pointers and dynamic variables

SUMMARY
EXERCISES

APPENDIX

7.1 Keywords
7.2 Functions
7.3 Solutions

o1

N N o o

40
41

42

42
43
45

Structured Text (ST) TM246 '

1. INTRODUCTION

Structured Text is a high level language. For those who are comfortable
programming in Basic, PASCAL or Ansi C, learning Structured Text is
simple. Structured Text (ST) has standard constructs that are easy to
understand, and is a fast and efficient way to program in the automation

@l//

X'E

The following chapters will introduce you to the use of commands, key
words, and syntax in Structured Text. Simple examples will give you a
chance to use these functions and more easily understand them.

/3
5

FARNENANNY
o

JJJJ!: ’ ’l!"

Fig. 1 Book printing: then and now

Introduction

1.1 Objectives

Participants will get to know the programming language Structured Text
(ST) for programming techincal applications.

You will learn the individual command groups and how they work together.

You will get an overview of the reserved keywords in ST.

Structured Text Features

Structured Text The Basics of Structured Text

\ Command Groups

Fig. 2 Overview

Structured Text (ST) TM246 l

Structured Text Features

2. STRUCTURED TEXT FEATURES

2.1 General information

ST is a text-based high-level language for programming automation
systems. Simple standard constructs enable fast and efficient
programming. ST uses many traditional qualities of high level languages,
including variables, operators, functions, and elements for controlling the
program flow.

So, what is Structured Text? The "Structured" refers to the qualities of a
high level language that make structured programming possible. The "Text"
refers to the ability to use text in place of symbols, as in the ladder
diagram.

No other programming language can replace ST. Every programming
language has its advantages and disadvantages. The main advantage of ST
is that complex mathematical calculations can be programmed easily.

TM246 Structured Text (ST)

Structured Text Features

2.2 Properties

Structured Text is characterized by the following features:

* High-level text language

e Structured programming

« Easy to use standard constructs
* Fast and efficient programming
» Self explanatory and flexible use
* Similar to PASCAL

» Easy to use for people with experience in PC programming
languages
* Conforms to the IEC 61131-3 standard

2.3 Possibilities

Automation Studio supports the following functions:

e Digital and analog inputs and outputs
* Logical operation

e Logical comparison expressions

e Arithmetic operations

* Decisions

» Step sequencers

e Loops

* Function blocks

* Optional use of dynamic variables

* Diagnostic tools

Structured Text (ST) TM246 7

The Basics of Structured Text

3. THE BASICS OF STRUCTURED TEXT

3.1 Expressions

An expression is a construct that returns a value after it has been
evaluated. Expressions are composed of operators and operands. An

operand can be a constant, a variable, a function call or another
expression.

Example: Expressions
b+
fa - b +) * COS(b)

SIN{a) * COS(b)

Fig. 3 Expressions

3.2 Assignment

The assignment of a value to a variable through a result of an expression or
a value. The assignment consists of a variable on the left side, which is

designated to the result of a calculation on the right side by the assignment
operator ":=". All assignments must be closed with a semicolon ;"

Example: Assignment

Warl = Warz * 2; [¥ Warl <-- [VarZd * 2] #*)
Fig. 4 Assignment

When the code line has been processed, the value of variable "Var1" is
twice as big as the value of variable "Var2".

TM246 Structured Text (ST)

The Basics of Structured Text

3.3 Comments

Comments are sometimes left out, but are nevertheless an important
component of the source code. They describe the code and make it more
easy to read. Comments make it possible for you or others to read a
program easily, even long after it was written. They are not compiled and
have no influence over the execution of the program. Comments must be
placed between a pair of parenthesis and asterix "(*comment*)".

Example: Comment
[* Thiz iz one line comment ¥)
Fig. 5 One-line comment
[* This
is more

lines
comment ¥

Fig. 6 Multi-line comment

Structured Text (ST) TM246

The Basics of Structured Text

3.4 Operator priorities

The use of several operators in one line brings up the question of priority
(order of execution). The execution is determined by priority.

Expressions are executed starting with the operator of highest priority,
followed by the next highest, and so on until the expression has been
completely executed. Operators with the same priority are executed from

left to right as they appear in the expression.

Subtraction

Comparisons

Operator Symbol / Syntax:
Parentheses () Highest priority
Function call Call argument(s)
Examples LN(A), MAX(X), etc.
Exponent *x
Negation NOT
Multiplication ¥
Division /

Modulo division (whole MOD
number remainder of

division)

Addition +

Equal to =

Not equal to <>

Boolean AND AND

Boolean exclusive OR XOR

Boolean OR OR Lowest priority

TM246 Structured Text (ST)

The Basics of Structured Text

The order of execution at runtime:

Example: Operator priorities without parentheses

Fesult = 6 + 7 ¥ 5 - 3 [*The multiplication first; higher precendence #)
Re=sult := & + 35 - 3: [*The addition; rule fromw left to right ¥*)

Result := 41 - 3: [*Z3ubstraction at the end *)

Result := 38;

Fig. 7 Order of execution

Multiplication is executed first, then addition, and finally subtraction.

The order of operations can be changed by putting higher priority
operations in parentheses. This is shown in the next example.

Example: Operator priorities with parentheses

As shown in the following figure, the use of parentheses influences the
execution of the expression.

Fesult = (&6 + 71 ¥ (5 - 3)1;(%Foperations inside the parentheses first *)
Fesult := 13 * 22 [FLhen the multiplication *)
Result := Z6;

Fig. 8 Order of execution

The expression is executed from left to right. The operations in
parentheses are executed first, then the multiplication, since the
parentheses have higher priority. You can see that the parentheses lead
to a different result.

Structured Text (ST) TM246

Command Groups

4. COMMAND GROUPS

ST has the following command groups:

 Boolean operations

e Arithmetic operations

e Comparison operations
e Decisions

« (Case statements

4.1 Boolean operations

The operands must not necessarily be the data type BOOL.

Boolean operations:

Symbol Logical operation Examples
NOT Binary negation a = NOT b;
AND Logical AND a .= b AND c;
OR Logical OR a=bORc;
XOR Exclusive OR a:=b XOR c;
Truth table:
Input AND OR XOR

0 0 0 0

0 0 1 1

1 0 1 1

1

These operators can be used to formulate logical expressions, or they can
be used to represent conditions. The result is always TRUE (logical 1) or
FALSE (logical 0).

TM246 Structured Text (ST)

Command Groups

Example: Boolean operation

DoValveSilo2 DoValveSilol

Disila1Up DoValveSilo3

Fig. 9 AND operation

DoValwve3ilol := [(DiS3ilolUp AND (NOT DoValwve3ilozZ) AND (NOT DoValwveZ3ilod)):
Fig. 10 Source code for AND operation

ST allows any number of parenthesis.

Task: Light control

The output "DoLight" should be ON when the button "BtnLigntOn" is
pressed. It should remain ON until the button "BtnLightOff" is pressed.

Create a solution for this task using boolean operations.

BtnLightOn / DoLight

e

7 BtnLightOff

[] DoLight

Fig. 12 Light control

Structured Text (ST) TM246

Command Groups

4.2 Arithmetic operations

A key factor in favor of using a high level language is the accessibility of
arithmetic operations.

4.2.1 Basic arithmetic operations

ST provides basic arithmetic operations for your operation:

Symbol Arithmetic operation Example
1= Assignment a:=b;
+ Addition a:=b+c;
- Subtraction a:=b-c;
* Multiplication a:=b*c;
/ Division a:=b/c;
MOD Modulo (display division a:= b modc;
remainder)

The data type is a very important factor. Note the following table:

Syntax Data types Result
Res Op 1 Op 2
Res :=8/3; INT INT INT 2
Res :=8/3; REAL INT INT 2.0
Res := 8.0/ 3; REAL REAL INT 2.6667
Res := 8.0/ 3; INT REAL INT Error

* Compiler error message: Type mismatch: Cannot convert REAL to INT.

You can see the that the result is dependent of the syntax as well as the
data types used.

Note:
Left data type := right data type;
i

TM246 Structured Text (ST)

Command Groups

4.2.2 Implicit data type conversion

This type of conversion is done by the compiler. It automatically converts
the smaller data types to the larger one used in the expression. If an

expression contains one or more operators with different data types, they
are all converted to the same data type before the expression is resolved.

Data | BOOL | SINT INT DINT | USINT | UINT | UDINT | REAL
type

BOOL | BOOL | x X X X X X X
SINT | x INT DINT USINT | UINT UDINT | REAL

INT X INT DINT INT UINT UDINT | REAL
DINT | x DINT DINT DINT UDINT | UDINT | REAL
USINT | x USINT | INT DINT UINT UDINT | REAL
UINT | x UINT UINT DINT UINT UDINT | REAL
UDINT | x UDINT | UDINT | UDINT | UDINT | UDINT REAL
REAL | x REAL REAL REAL REAL REAL REAL

Original Data Type of Variable
Data Type after Implicit Data Type Conversion

Fig. 13 Implicit data type conversion by the compiler

Example: Data conversion

INT Result := INT Warl + 3INT Var:z
[+ [INT] [INT] [ZINT] *)
Fig. 14 Implicit data type conversion

SINT_Var2 is converted to INT, then added, then assigned to the result
variable (INT_Result).

Structured Text (ST) TM246

Command Groups

4.2.3 Explicit data type conversion

Explicit data type conversion is also known simply as type conversion or as
Typecast. As you already know, the expression should have the same data
type on both sides, but there is something else to remember.

Example: Overflow?!

INT TotalWeight := INT Weightl + INT Weightz
[+ [INT] [INT] [INT] *)

At first sight, everything looks OK. However, the sum (INT_Weight1 +
INT_Weight2) can be larger than can be stored as data type INT. In this
case, an explicit data type conversion must be carried out.

Example: Overflow taken into consideration.

DINT TotalWeight := INT TO DINT(INT Weightl) + INT Weightz
{* [DINT] [INT] [INT] *)

The variable DINT _TotalWeight must be the data type DINT. At least one
variable on the right side of the expression must be converted to the data
type DINT. The conversions functions are found in the OPERATOR library.

TM246 Structured Text (ST)

Task: Aquarium

The temperature of an aquarium is measured at two different places. Create a
program that calculates the average temperature and displays it at an analog
output.

Don't forget that analog inputs and outputs must be data type INT.

Fig. 15 Aquarium

Command Groups

4.3 Comparison operators

In high level languages like ST, simple constructs can be used to compare
variables. These return either the value TRUE or FALSE.

Symbol Logical comparison Example
expression
= Equal to IFa =bTHEN
<> Not equal to IFa <> b THEN
> Greater than IFa>bTHEN
>= Greater than or equal to IFa >=b THEN
< Less than IFa <bTHEN
<= Less than or equal to IFa <= b THEN
Note:
The comparison operations and logical operations are mainly used as
logical conditions for IF, ELSEIF, WHILE and UNTIL statements.
(IF (a > b) AND (d >= e) THEN)

4.4 Decisions

The IF statement is used to create decisions in the program. You are
already familiar with the comparison operators, and they can be used here.
There are several types of IF statements:

e Simple IF statement
« |F - ELSE statement
 |F - ELSIF statement

* Nested IF
Decision Syntax Description
IF THEN IFa>bTHEN 1. Comparison
Result := 1; 1. Statement(s)
ELSIF THEN ELSIF a > ¢ THEN 2. Comparison (optional)
Result := 2; 2. Statement(s)
ELSE ELSE Above IF statments are not TRUE (optional)
Result := 3; 3. Statement(s)
END_IF END_IF End of decision

TM246 Structured Text (ST)

Command Groups

4.4.1 IF

This is the most simple IF statment.

IF
Condition &
THEM

|:******************************j

R R Single IF EEEE L L)
|:******************************j
Statement A IF v1 = V2 THEN
W3 1= 899; [* comment *)
END_IF

|:******************************j

m Fig. 17 Simple IF statement in a program

Fig. 16 Simple IF statement

The IF statement is tested for the result TRUE. If the result is FALSE, the
program advances to the line after the END_IF statement. The function of
the IF statement can be a single comparison, but it can also be multiple
comparisons connected by AND, OR, etc..

Example: IF statement with multiple comparisons

IF {({(Uzerlevel > 10) OR (diKeySwitch = TRUE)) AND {operationMcde = 0) 1 THEN
LedEdit:= TRUE;
END_IF

Fig. 18 Statement with multiple comparisons

Structured Text (ST) TM246

Command Groups

4.4.2 ELSE

The ELSE statement is an extension of the simple IF statement. Only one
ELSE statment can be used per IF statement.

IF
Condition A
THEM

Statement(s)
A

Statement(s)
B

Y

Y

END_IF

Fig. 19 IF — ELSE statment

EEEEE e e
[FEwEEw IF ELSE HEEERH WA
EEEEE e e

IF V1 > VZ THEN

V3 1= 99; [¥ Ccomoent ¥)
ELZE

Vg 1= 66; [¥ Ccomoent ¥)
ENDL IF

|:ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'ﬁ'ﬂ'ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ]

Fig. 20 IF — ELSE in a program

If the IF meets condition A, then the A instruction(s) are executed. If the IF
does not meet condition A, then the B instruction(s) are executed.

TM246 Structured Text (ST)

Command Groups

4.4.3 ELSIF

One or more ELSE_IF statements allow you to test a number of conditions
without creating a confusing software structure with many simple IF
statements.

IF
Condition A
THEM

FALSE

ELSIF
Condition B
THEM

FALSE

ELSIF
Condition C
THEN

FALSE

Y
Statement(s) Statement(s) Statement(s) Statement(s)
A, B C]

[v Y Y

Fig. 21 IF-ELSIF-ELSE statement

|:ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'ﬁ'ﬂ'ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ]

jv#wwww IF, ELIIF, ELSE wwwwwww)
EEEEE e e

IF V1 > VZ THEN

V3 1= 99; [¥ Ccomoent ¥)
EL3IF W1 > Vw4 THEN

V5 1= 8&; [¥ Ccomoent ¥)
EL3IF W1 > V& THEN

Vo= T [¥ Ccomoent ¥)
ELZE

ViE 1= 66; [¥ Ccomoent ¥)
ENDL IF

|:ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'ﬁ'ﬂ'ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ]

Fig. 22 IF-ELSIF-ELSE in a program

At runtime the decisions are processed from top to bottom. If the result of
a decision is TRUE, the corresponding statements are executed. Then the
program continues from after the END _IF. Only those decisions that

Structured Text (ST) TM246

Command Groups

correspond to the first TRUE decision are executed, even if subsequent
decisions are also TRUE. If none of the IF or ELSE_IF decisions is TRUE, the
statement in the ELSE branch is executed.

Task: Weather station - Part |

A temperature sensor measures the outside temperature. The
temperature is read via an analog input (1°=10), and should be
displayed inside the house in text form.

e If the temperature is under 18°C, the display should read "Cold".

e If the temperature is between 18°C and 25°C, the display should
read "Opt".

» If the temperature is over 25°C, the display should read "Hot".

Create a solution using IF, ELSEIF, and ELSE statements.

s 40 H
ot
%0 10
80
70 20 Oﬂt
B0
50 i
g Cold
30 &
20 "
10 1o
0 20

Fig. 23 Thermometer

Note:

In ST, text is assigned to a string variable as follows:
StringVar := 'COLD’

H TM246 Structured Text (ST)

Command Groups

4.4.4 Nested IF statement

A nested IF statement is tested only if previous condidions have been met.
Every IF requires its own END _IF so that the order of conditions is correct.

IF
Condition A
THEM

IF
Condition B
THEM

FALSE

|:********************************J

[FEETEE MNested IF EEETETEL
|:********1;***********************J
IF V1 > V2 THEN
IF V2 > V4 THEN
V3 o= 989; [* comment *)
END IF

END IF
[P F AR T EFF R AR F TR F R AR ST T T T T A

Statement B

Fig. 25 Nested IF statement in a program

END_IF

Fig. 24 Nested IF statement

It is helpful to indent every nested IF statement and the corresponding
expressions. As many IF statments can be nested as needed. It is possible,
however, that the compiler will run out of memory after the 40" level. Also,
that kind of extensive nesting is evidence of poor programming style. It
becomes nearly impossible to get a clear overview of the code.

After three nesting levels, it is better to find another way to structure the
program,

Structured Text (ST) TM246

Command Groups

Task: Weather station - Part Il

Evaluate the temperature and the humidity.

The text "OPT" should only appear when the humidity is between 40 and
75% and the temperature is between 18 and 25°C. Otherwise "Temp.
OK" should be displayed.

Solve this task using a nested IF statement.

TM246 Structured Text (ST)

Command Groups

Two simple IF statements produce nearly the same effect as one nested IF
statement. A marker variable, or flag, can be requested in multiple
statements. The first IF statment describes the flag, which is then utilized
by other IF statements.

IF
Condition A
THEM

iﬁ'ﬁ'ﬂ'ﬂ'ﬁ'ﬂ'ﬂ'ﬂ'ﬁ'ﬁ'ﬂ'ﬂ'ﬁ'ﬁ'ﬂ'ﬂ'ﬁ'ﬂ'ﬂ']
Statement A (* 1. IF Statement *)
iﬁ'ﬁ'ﬂ'ﬂ'ﬁ'ﬂ'ﬂ'ﬂ'ﬁ'ﬁ'ﬂ'ﬂ'ﬁ'ﬁ'ﬂ'ﬂ'ﬁ'ﬂ'ﬂ']

IF V1 > V2 THEN
Vi := 99;
: i?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f]

i?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f]

(¥ 2. IF Statement ¥)

iwwww-.nrw-.nrwwwwwwwwww]

IF V3 = 99 THEN
Burner := CN;:

END IF

i?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f]

IF
Condition B
THEN

Fig. 27 Two IF statements

Statement B

Fig. 26 Two IF statements

In this case, both IF statements have the same priority. If both IF
statements evaluate the same variable for different values, you should use

a CASE statement.
The CASE statement should be used when:

e IF constructs require too many levels
» Too many ELSE_IF statments are used

The CASE statement is much easier to read in these cases.

Structured Text (ST) TM246

Command Groups

In comparison to the IF statment, the CASE statment also has the
advantage that comparisons are only made once, which makes the
program code more effective.

TM246 Structured Text (ST)

Command Groups

4.5 Case statements

The CASE statement compares a step variable with multiple values. If one
of these comparisons is a match, the steps that compare to that step are
executed. If none of the comparisons is a match, there is an ELSE branch
similar to an IF statement that is then executed.

After the statements have been executed, the program continues from after
the END_CASE statement.

Keywords Syntax Description
CASE OF CASE step variable OF Beginning of CASE
1,5: Display := MATERIAL For 1 and 5
2: Display := TEMP For 2
3,4,6..10: Display := OPERATION For 3,4,6,7,8,9,10
END_CASE END _CASE End of CASE
CASE
expression
OF
n0: n1.n3: Constant: ELSE
I I I]
Statement(s) Statement(s) Statement(s) Statement(s)
A B C]

v

L

Y

v

Fig. 28 CASE statement

Structured Text (ST) TM246

27

Command Groups

Only one step of the CASE statement is processed per program cycle.

|:ﬁ'ﬁ'ﬁ'ﬁ'WWﬁﬁﬁﬁﬁﬁﬁﬁ'ﬁ'WWﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ]
iﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ CASE Wﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ]
|:ﬁ'ﬁ'ﬁ'ﬁ'WWﬁﬁﬁﬁﬁﬁﬁﬁ'ﬁ'WWﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ]

CASE NumbSelectItem OF

O: heat:= LOW; [*Comnands L¥)
fan:= LOW:
1..3: heat:= MEDIUH: [*Commands EB¥)

fan:= MEDITH:

SELECTIONHIGH:
heat:= HIGH: [*Comnands CF)
fan:= HIGH:

ELZE
heat:= QOFF; [*Commands D¥)
fan:= OFF:;

END_CAZE

Fig. 29 CASE statement in a program

Note:

Constants can be used instead of numbers for the steps in a CASE
statement. This makes the program much easier to read.

Syntax of the CASE statement:

» A CASE statement begins with CASE and is terminated with
END_CASE. Each of these key words must occupy its own line.

* The variable between CASE and OF must be a UINT variable.

* Only whole number numerical expressions can be used for the
definition of the individual steps in the CASE statement.

 The ranges and values of the step variable(s) may not overlap each
other.

TM246 Structured Text (ST)

Command Groups

Task: Brewing tank

The fill level of a brewing tank is monitored for low, ok, and high levels.
Use an output for each of the low, ok, and high levels.

The level of liquid in the tank is read as an analog value and is internally
converted to 0-100%. If the contents sink below 1%, a warning tone
should be triggered.

Create a solution using the CASE statement.

A L, =

<25% - low

Fig. 30 Brewing tank

Structured Text (ST) TM246

Command Groups

4.6 Loops

In many applications, it is necessary for sections of code to be executed
multiple times during a cycle. This type of processing is also referred to as
a loop. The code in the loop is executed until a defined termination
condition is met.

Loops help make programs shorter and easier to follow. Program
expandability is also an issue here. Loops can be nested.

Depending on the structure of a program, it is possible for an error in the
program to cause the processing gets stuck repeating the loop until the
time monitor in the central unit responds with an error.

To prevent such endless loops from occuring, one should almost always
include in the programming a way for the loop to be aborted after a
defined number of repetitions or to run to a certain limit.

ST offers several types of loops to choose from:

* Limited
* FOR

e Unlimited
« WHILE
. REPEAT

TM246 Structured Text (ST)

Command Groups

4.6.1 FOR

The FOR statement is used to run a program section for a limited number
of repetitions. For all other applications, WHILE or REPEAT loops are used.

Key words Syntax Description
FOR TO BY DO FOR i:=StartVal TO StopVal {BY Step} DO The section in {}
is optional.
Res := value + 1; Loop body
statement(s)
END_FOR END_FOR End of FOR
[#*ﬂ'ffﬁ#1;ﬂ'*ﬁ#1;ﬂ'*ﬁﬁ'*ﬂ'*ﬁ#1;#*ﬂ'**#***ﬁ#***ﬁ#***ﬁ#*ﬁ*]
? (wﬁﬁwﬁﬂ'wﬂ'wﬁﬂ'wﬂ' FOR wﬁﬂ‘ﬁﬁwﬁwﬁﬁwﬁﬂ'ﬁﬁwj
|:1?1?1?1?1?1?1?ﬂ‘wﬂ‘1?1?ﬂ‘wﬂ‘wwﬂ‘wﬂ‘1?1?ﬂ‘wﬂ‘wwﬁwﬁwﬁﬁwﬁwﬁwﬁﬁwﬁwﬁﬁw)
FOR 1 := StartValue TO EndVWalue BY StepValue DO
PV := Start WVarFor := VarFor + 1;
EMNDL FOR
|:ww;wﬁwwn-wﬁwwn-wﬁwwn-wa-wwn-wwwwxwﬁwﬁxwtwﬁwﬁwﬁﬁwﬁﬁwj

Fig. 1 FOR statement in a program
true 1 he statements in the FOR loop are
repeated. At every repetition, the loop
counter is raised by "StepVal". The
>y FALSE two control variables "StartVal" and

"EndVal" determine the start value and
PV := PV + StepVal Statement(s) end value of the loop counter. After
the end value is reached, the program
continues from after the END_FOR
statement. The control variables must
both be the same data type and
cannot be described by any of the
statements in the loop body.

i

END_FOR

Fig. 31 FOR statement

The FOR statement raises or lowers the loop counter until it reaches the
end value. The step size is always 1, unless otherwise specified with "BY".

The termination condition, the loop counter, is evaluated with every
repetition of the loop.

Structured Text (ST) TM246

Command Groups

Task: Crane

5 separate loads are suspended from a crane. In order to determine the
total load, you have to add the individual loads together.

ovarall load

L
0T 0 0 0 O

load load load load load

Fig. 32 Crane

Create a solution for this task using a FOR loop.

TM246 Structured Text (ST)

Command Groups

4.6.2 WHILE

The WHILE loop can be used in the same way as the FOR loop, except that
the condition can be any boolean expression. If the condition is met, then
the loop is executed. The WHILE loop is used to repeat statements as long
as a particular condition remains TRUE.

Keywords Syntax Description
WHILE DO WHILE i<4 DO Boolean condition
Res := value + 1; Statement
ir=i+1; Statement
END_ WHILE END_ WHILE End of WHILE

WHILE

7fW7fﬁ'ﬂ'7fﬂ'7fﬂ'7fﬂ'7fWﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ]
FALSE {

[FHEEEEE TGS WHILE WHEEEEH T HHE AW
REEEEEEE RS EEEEE R R R R

WHILE (indexWhile < EndIndexWhile)Do

Varlhile := VarWhile + 1:
indexWhile := WVarWhile:
END_WHILE

|:WWWWWWWﬁ'ﬁ'ﬁ'WWWﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ]

Statement(s)

Fig. 2 WHILE statement in a program

END_WHILE

Fig. 33 WHILE statement

The instructions are executed repeatedly for as long as the condition
returns TRUE. If the condition returns FALSE during the first evaluation, the
instructions are never executed.

Note:

If the condition never assumes the value FALSE, the statements are
repeated endlessly, resulting in a runtime error.

Structured Text (ST) TM246

Command Groups

4.6.3 REPEAT

The REPEAT loop differs from the WHILE loop in that the termination
condition is only checked once the loop has been executed. This means
that the loop runs at least once, regardless of the termination condition.

Keywords Syntax Description
REPEAT REPEAT Start loop
Res := value + 1; Statement
ir=i+1; Statement
UNTIL UNTILi > 4 Termination condition
END_REPEAT END_REPEAT End loop

REPEAT

Slatement{sj [FHREFFRRTFFRRTFFRATFFF AT
EREFELT
Varl:=Varl®*Z;
Counter:=counter-1;
THTIL
Counter=0
END REPEAT: i

|:***********************]

i******* REFPELT ********]

Condition

Fig. 35 REPEAT statement in a program

END_REPEAT

Fig. 34 REPEAT statement

The statements are executed repeatedly until the UNTIL condition is TRUE.
If the UNTIL condition is true from the beginning, the statements are only
executed once.

Note:

If the UNTIL condition never assumes the value TRUE, the statements
are repeated endlessly, resulting in a runtime error.

TM246 Structured Text (ST)

Command Groups

4.6.4 EXIT

The EXIT statement can be used with all types of loops before their
termination condition occurs.

Startﬂfthe |:*****1‘1‘1‘1‘1‘1‘*****************]
loop [#**%#x* REFPELT & EXIT wEEEF
- |:*****1‘1‘1‘1‘1‘1‘*****************]
i FEFELT
VarFepeat = VarRepeat + 1;
UNTIL VarRepeat > 3
TRUE IF WarBRepeat = VarExit THEN
EXIT; [#*% EXIT loop *%%)
END IF
:FALSE END EREPEAT

|:1‘1‘1‘*1‘1‘*1‘1‘*1‘1‘*1‘**************]

End of the Fig. 37 EXIT statement in a program
loop

Fig. 36 EXIT statement

|:ﬁ'WWﬁﬁﬁﬁﬁﬁﬁﬁ'ﬁ'Wﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ]

jrwwwwss EXIT NESTED LOOP #wws®wwdws)
EEEEEEEEEEE SRR R EEEEE R EE R

WHILE (indexWhile < EndIndexWhile) Do

Varlhile = VarWhile + 1;
LGDP—E FOR 1 := StartValue TO EndiValue DO
WarFor 1 := WVarFor 1 + 1:

IF WarFor 1 = VarExit THEN
EXIT; (%% <«<<—= EXIT loop *%%)

ﬁ END_IF
END_FOR
indexWhile := WarWhile:
END WHILE
|:WWﬁ'ﬁ'?fﬁ'Wﬁ'ﬁ'ﬁ'ﬁ'WWﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ]
. If the EXIT statement is used in a nested
j loop, only the loop in which the EXIT
statement is located is ended. After the
loop is ended, the program continues
from after the END_ statement.

Fig. 39 EXIT statement in a nested FOR statement in a
program

Fig. 38 EXIT statement in a nested FOR
statment

Structured Text (ST) TM246

Command Groups

4.7 Calling function blocks

In ST, a function block is called a function block instance, and the
necessary transfer parameters are placed in parentheses.

1.
Sel Input Parameters

|:7f7f7f7fW?f?f?f7f7f7f7f7f7f7fW?f?f?fthttttﬁttttttttttﬁt]

* [#*¥%% (Calling of Function EBElock wWEEE)
ol ol ol el ol
I |

3 PresetTime := T#3s:
Call Function Block TON 0(IN:= DiZensConvl, PT:= PresetTime]:
DoConvl := TOMN 0.0;
* |:wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww]
Fig. 41 Calling a function block in a program
3

Read FB Output(s)

Fig. 40 Calling a function block

Before a function block is called, one must describe the variables that are
to be used as input parameters. The code for calling a function block
occupies one line. Then the outputs of the function block can be read.

TM246 Structured Text (ST)

Command Groups

Function block call in detail:

FE name
T Assigning variables to FB inputs

t

TON_1 (IN:= DiSensConv1 , PT:=PresetTime) ;

!

Farentheses shutting input parameter values
Input parameters should be separated by comma
Parentheses shutting input parameter values

Fig. 42 Detail view of a function block call

First the function block name is entered, then the transfer parameters are
assigned in parentheses, separated by commas. The code for calling a
function block is closed with a semicolon.

Structured Text (ST) TM246 37

Command Groups

Task: Bottle counter

Create a program that counts the bottles on a conveyor belt. Use the CTU
(up counter) function block found in the STANDARD library.

Fig. 43 Bottle counter

Note:

The Automation Studio online help comes in handy when working with
function blocks.

TM246 Structured Text (ST)

Command Groups

4.8 Pointers and dynamic variables

B&R offers the option of using pointers in ST.

A dynamic variable can be assigned a memory address during runtime.
This procedure is referred to as the referencing or initialization of a
dynamic variable.

As soon as the dynamic variable is initialized, it can be used to access the
memory content to which it now "points".

DynVar ACCESS ADR(StatVar) ;

L Address of the static variable
|—> Access instruction

Dynamic Varale name

Fig. 44 Referencing a dynamic variable

As you can see, the operator ADR() is used. It returns the memory address
of the variable in parentheses. The data type of this address is UDINT. The
statement is then closed with a semicolon.

Structured Text (ST) TM246

5. SUMMARY

Structured Text is a high level language that offers a wide range of
functionality. It contains all the tools necessary for an application.

Fig. 45 Book printing: then and now

After completing this training module, you are ready to program your own
ST tasks. You can always use the module as a reference.

This programming language is especially powerful when using arithmetic
functions and formulating mathematical calculations.

6. EXERCISES

Task: Box lift

Two conveyor belts (doConvTop, doConvBottom) transport boxes to a
lift.

If the photocell is (diConvTop, diConvBottom) is activated, the
corresponding conveyor belt is stopped and the lift is called.

If the lift has not been called, it returns to the appropriate position
(doLiftTop, doLiftBottom).

When the lift is in the correct position (diLiftTop, diLiftBottom), the lift

conveyer belt (doConvLift) is turned on until the box is completely on
the lift (diBoxLift).

Then the lift moves to the unloading position (doLiftUnload). When it
reaches this position (diLiftUnload), the box is moved to the unloading
belt.

As soon as the box has left the lift, the lift is free for the next request.

top conveyor
bottom unload position
conveyor

N e M S

Fia. 46 Box lift

lift

Structured Text (ST) TM246 H

Appendix

7. APPENDIX

7.1 Keywords

Key words are commands that can be used in ST. In the Automation Studio
Editor, these are displayed in blue. You are already familiar with many of
them; here is a list of more. Key words may not be used as variable names.

Keyword Description

ACCESS Assignment of an address to a dynamic variable.

BIT_CLR A := BIT_CLR(IN, POS) A is the value of the variable IN that
results when the bit at position POS is deleted. IN remains
unchanged.

BIT_SET A := BIT_CLR(IN, POS) A is the value of the variable IN that
results when the bit at position POS is set. The IN operand
remains unchanged.

BIT_TST Determination of a bit within a value. A is the state of the bit of
the IN value that is at position POS.

BY See FOR statement.

CASE See CASE statement.

DO See WHILE statement.

EDGE Determines the negative and positive edges of a bit.

EDGENEG Determines the negative edge of a bit.

EDGEPOS Determines the positive edge of a bit.

ELSE See IF statement.

ELSIF See IF statement.

END_CASE See CASE statement.

END_FOR See FOR statement.

END_IF See IF statement.

END_REPEAT See REPEAT statement.

END_WHILE See WHILE statement.

EXIT See EXIT statement.

FOR See FOR statement.

IF See IF statement.

REPEAT See REPEAT statement.

RETURN Can be used to end a function.

THEN See IF statement.

TO See FOR statement.

UNTIL See REPEAT statement.

WHILE See WHILE statement.

TM246 Structured Text (ST)

Appendix

7.2 Functions

There are some functions that can be used in ST that do not require you to
insert a library into the project. In the Automation Studio Editor, these
function calls are displayed in blue. You are already familiar with some of
them. More are listed here.

Function Example

ABS Returns the absolute value of a number. ABS(-2) returns 2.

ACOS Returns the cosine of a number. (inverted cosine function).

ADR Returns a variable's address.

AND Logical AND for bit operations.

ASIN Returns the arc sine of a number (inverse function of sine).

ASR Arithmetic shifting of an operand to the right: A := ASR (IN, N) IN is
shifted N bits to the right, the left is filled with the sign bit.

ATAN Returns the arc tangent of a number (inverse function of tangent).

COoSs Returns the cosine of a number.

EXP Exponential function: A := EXP (IN).

EXPT One operand raised to the power of another operand:
A := EXPT (IN1, IN2).

LIMIT Limitation: A = LIMIT (MIN, IN, MAX) MIN is the lower limit, MAX is

the upper limit for the result. If IN is less than MIN, then the MIN
result is returned. If IN is greater than MAX, then the MAX result is
returned. Otherwise, the IN result is returned.

LN Returns the natural logarithm of a number.

LOG Returns the base-10 logarithm of a number.

MAX Maximum function. Returns the larger of two values.

MIN Minimum function. Returns the lesser of two values.

MOD Modulo division of a USINT, SINT, INT, UINT, UDINT, DINT type

variable by another variable of one of these types.

MOVE The contents of the input variable are copied to the output variable.
The := symbol is used as the assignment operator.

"A := B;" is the same as "A := MOVE (B);"

MUX Selection: A = MUX (CHOICE, IN1, IN2, ... INX);
CHOICE specifies which of the operators IN1, IN2, ... INX is returned
as a result.

NOT Negation of a bit operand by bit.

OR Logical OR operation by bit.

ROL Rotates an operand's bits to the left: A := ROL(IN, N); The bits in IN

are shifted N times to the left, the far left bit being pushed in again
from the right.

Structured Text (ST) TM246

Appendix

ROR Rotates an operand's bits to the right: A := ROR (IN, N); The bits in
IN are shifted N times to the right, the far right bit being pushed in
again from the left.

SEL Binary selection: A := SEL (CHOICE, IN1, IN2) CHOICE must be type
BOOL. If CHOICE is FALSE, then IN1 is returned. Otherwise, IN2 is
returned.

SHL Shifts an operand's bits to the left: A := SHL (IN, N); IN is shifted N
bits to the left, the right side is filled with zeroes.

SHR Shifts an operand's bits to the right: A := SHR (IN, N); IN is shifted N
bits to the right, the left side is filled with zeroes.

SIN Returns the sine of a number.

sizeof This function returns the number of bytes required by the specified
variable.

SQRT Returns the square root of a number.

TAN Returns the tangent of a number.

TRUNC Returns the integer part of a number.

XOR Logical EXCLUSIVE OR operation by bit.

TM246 Structured Text (ST)

Appendix

7.3 Solutions
Task: Light control

DoLight:= (BtnLighltOn OR DolLight) AND NOT(EtnLightOff);

Task: Aquarium

éDAngemp:= DINT _TO UINT({ (UINT _TQ DINT (aiTempl) + aiTemp) ;o2

Task: Weather station - Part |

IF (ATtmp < 150} THEN

gtxt:= ' COLD' ;

EL3IF (AItmp > 250) THEN
gtxt:= 'HOT' ;

EL3E
gtxt:= 'CPT';

END IF

Task: Weather station - Part Il

IF {AItmp < 180) THEN

gtxt:= 'COLD!
EL3IF (AItmp > 250 THENI
gtxt:= '"HOT':
ELZE
IF (4Thum > 400) AND (ATIhwn < 750) THEN
gtxt:= '"CPT':
ELZE
gtxt:= 'Temp.COK';
END IF
END IF

Structured Text (ST) TM246

Appendix

Task: Brewing tank

[*conwert to percent wvalue®)
lewvel:= DINT TO UIINT((INT TO DINT(ailLewvel) *100)/32767);

doHorn:= Dl

doLow:= 0;
do0k:= 0;
doHigh:= 0Q;

CASE lewel OF
[* «<1% turn the horn on¥)

o,1:
doHorn:= 1;
doLow:= 1;
[* «2by *)
2..24:
doLow:= 1;
[* =80% *)
ai..100:
doHigh:= 1;
ELZE
dolk:= 1;
END CA3E

Task: Crane

[* cyolic program *)
overall load:= 0;
FOR i:=0 TO 4 DO
overall load:= overall load + load[i]:;
END FOR

Task: Bottle counter

CTU _0CT:=EDGEPO3 (diBottle], REZET:=diReset, PV:=cntCompare);
cntBottle:= CTU 0O.CV;

TM246 Structured Text (ST)

Appendix

Task: Box lift

[* convewyor ¥)
doConvTop:= NOT [(diConvTop) OF ConwvTopOn;
doConvEBottom:= NOT [(diConvBottom) OF ConvBottomon;
[# lift +)
CA3E selectLifrt OF
[* walt for redquest)
WATT:
IF (diConvTop = TRUE] THEN
selectlLift:= TOP POSITICHN:
EL3IF (diConvBottom = TEUE) THEN
selectLift:= BOTTOM POIITION:
END IF
[* mowve lift to top position ¥)
TOP POSITION:
doLiftTop:= TRUE;
IF (diLiftTop = TRUE] THEN
doLiftTop:= FAL3E:;

ConvTopOn:= TRUE:!
zelectLift:= GETEBOX;
END IF

[* move lift to bottom position ¥)
EOTTOM POSTITION:
doLiftBottom:= TRUE:
IF (diLiftEottom = TRUE) THEN
doLiftBottom:= FAL3IE;

ConvBottomOn:= TRUE:
selectlLift:= GETEBOX:
END IF
[* mowve hox to 1lift #)

GETEOX:
doConvLift:= TRUE:
IF (diBoxLift = TRUE) THEN
doConvLift:= FAL3IE:!
ConvTopOn:= FALZE;
ConvBottomOn:= FAL3IE:;
gelectlLift:= UNLOAD POIITION:
END_TF
[* mowve lift to unload position ¥)
UNLOAD POSTTICH:

doLiftUnload:= TRUE:

IF (diLiftUnload = TREUE) THEN

doLiftUnload:= FAL3IE;
selectLift:= UNLOAD BOX:
END IF
[* unload the hox ¥)
UNLOAD BOX:

doConvLift:= TRUE:

IF (diBoxLift = FALL3E) THEN
doConvLift:= FAL3IE:!
selectLift:= WAIT:

END IF

END CASE

Structured Text (ST) TM246 47

Appendix

Notes

TM246 Structured Text (ST)

Appendix

Overview of training modules

TM200 — B&R Company Presentation **

TM201 — B&R Product Spectrum **

TM210 — The Basics of Automation Studio
TM211 — Automation Studio Online Communication
TM212 — Automation Target **

TM213 — Automation Runtime

TM220 — The Service Technician on the Job
TM223 — Automation Studio Diagnostics

TM230 — Structured Software Generation

TM240 — Ladder Diagram (LAD)

TM241 - Function Block Diagram (FBD)

TM246 — Structured Text (ST)

TM247 — Automation Basic (AB)

TM248 — ANSI C

TM250 — Memory Management and Data Storage
TM260 — Automation Studio Libraries |

TM261 — Closed Loop Control with LOOPCONR

TM400 — The Basics of Motion Control
TM410 — The Basics of ASiM

TM440 — ASiM Basic Functions
TM441 — ASiM Multi-Axis Functions
TM445 — ACOPOS ACP10 Software

TM450 — ACOPOS Control Concept and Adjustment

TM460 — Starting up Motors

TM500 — The Basics of Integrated Safety Technology

TM510 — ASIST SafeDESIGNER

TM600 — The Baf Visualization
TM610 — The BasifsASiV
TM630 —14bzation Programming Guide
TNG4 ASiV Alarm System
TM650 — ASiV Internahalization
TM660 — ASiV Remote
TM670GA\AAdvanced

TM700 — Aation Net PVI
TM710 — PVI Communicat
TM711 — PVI DIProgramming
TM712 — PVIServices
TM730 — PVI OPC

TM8APROL System Concept
TM810 — APR@etup, Configuration and Recovery
TM811 PROL Runtime System
TM812 — APROL Operator Management
TM813 — APRA&ML Queries and Audit Trail
TM830 — APROL Projectdiireering
TM840 — APROL Paraméfimnagement and Recipes
TM850 — APROL Cuawoller Configuration and INA
TM860 — APROL Libr&nygineering
TM865PROL Library Guide Book
TM870 — APROL Python gramming
TMB890 — The Basics of LINUX

**) see Product Catalog

140 offices in more than 55 countries - www.br-automation.com/contact

»
.ol.'

Australia » Argentina « Austria « Belarus « Belgium « Brazil - Bulgaria « Canada - Chile « China » Colombia « Croatia « Cyprus
Czech Republic « Denmark « Egypt Emirates + Finland - France « Germany - Greece + Hungary - India + Indonesia
Ireland « Israel « Italy « Japan - Korea « Luxemburg ¢ Kyrgyzstan - Malaysia « Mexico « The Netherlands « New Zealand
Norway - Pakistan « Poland Portugal « Romania « Russia - Serbia « Singapore Slovakia < Slovenia + South Africa
Spain + Sweden - Switzerland « Taiwan - Thailand + Turkey « Ukraine United Kingdom « USA - Venezuela « Vietnam

