

Automation Basic (AB)Automation Basic (AB)Automation Basic (AB)Automation Basic (AB)
TM247

 2 TM247 Automation Basic (AB)

Requirements

Training modules: TM210 – The Basics of Automation Studio

 TM211 – Automation Studio Online Communication

 TM213 – Automation Runtime

 TM223 – Automation Studio Diagnostics

Software: None

Hardware: None

 Automation Basic (AB) TM247 3

Table of contents

1. INTRODUCTION 4

1.1 Objectives 5

2. AUTOMATION BASIC FEATURES 6

2.1 General information 6

2.2 Properties 6

2.3 Possibilities 6

3. THE FUNDAMENTALS OF AUTOMATION BASIC 7

3.1 Expressions 7

3.2 Assignment 7

3.3 Line break 8

3.4 Comments 8

3.5 Operator Priorities 9

4. COMMAND GROUPS 11

4.1 Boolean operations 11

4.2 Arithmetic operations 14

4.3 Comparison operators 18

4.4 Decisions 18

4.5 Case statements 26

4.6 Select statement 30

4.7 Loops 33

4.8 Calling function blocks 38

4.9 Pointers and dynamic variables 41

5. EXERCISES 42

6. SUMMARY 43

7. APPENDIX 44

7.1 Keywords 44

7.2 Functions 45

7.3 Solutions 47

Introduction

 4 TM247 Automation Basic (AB)

1. INTRODUCTION

Automation Basic is a high-level language. For those who are comfortable
programming in Basic, PASCAL or ANSI C, learning Automation Basic is
simple. Automation Basic (AB) has standard constructs that are easy to
understand, and is a fast and efficient way to program in the automation
industry.

Fig. 1 Book printing: then and now

The following chapters will introduce you to the use of commands, key
words, and syntax in Automation Basic. Simple examples will give you a
chance to use these functions and more easily understand them.

 Introduction

 Automation Basic (AB) TM247 5

1.1 Objectives

Participants will get to know the programming language Automation Basic
(AB) for programming technical applications.

You will learn the individual command groups and how they work together.

You will get an overview of the reserved keywords in AB.

Fig. 2 Overview

Automation Basic Features

 6 TM247 Automation Basic (AB)

2. AUTOMATION BASIC FEATURES

2.1 General information

Automation Basic is a text-based high-level language specially developed
for programming modern automation tasks.

The language constructs mostly correspond to the ones used for
Structured Text according to IEC61131-3 since Automation Basic is based
on the standards from the late 1980's.

Automation Basic originated from the programming language PL2000 and
is therefore used as its successor.

In addition, AB has been substantially expanded to include elements of a
modern programming language.

2.2 Properties

Automation Basic is characterized by the following features:

• High-level text language
• Structured programming
• Easy to use standard constructs
• Fast and efficient programming
• Self explanatory and flexible use
• Similar to PASCAL
• Easy to use for people with experience in PC programming
languages

2.3 Possibilities

Automation Studio supports the following functions:

• Digital and analog inputs and outputs
• Logical operation
• Logical comparison expressions
• Arithmetic operations
• Decisions
• Step sequencers
• Loops
• Function blocks
• Use of dynamic variables
• Diagnostic tools

 The Fundamentals of Automation Basic

 Automation Basic (AB) TM247 7

3. THE FUNDAMENTALS OF AUTOMATION BASIC

3.1 Expressions

An expression is a construct that returns a value after it has been
evaluated. Expressions are composed of operators and operands. An
operand can be a constant, a variable, a function call or another
expression.

3.2 Assignment

The assignment of a value to a variable through a result of an expression or
a value. The assignment consists of a variable on the left side, which is
designated to the result of a calculation on the right side by the assignment
operator "=". Alternatively, the assignment operator ":=" can also be used
as in Structured Text. Assignments do not have to be closed with a
semicolon ";".

When the code line has been processed, the value of variable "Var1" is
twice as big as the value of variable "Var2".

Example: Expressions

Fig. 3 Expressions

Example: Assignment

Fig. 4 Assignment

The Fundamentals of Automation Basic

 8 TM247 Automation Basic (AB)

3.3 Line break

It is possible to divide a line of code over several editor lines. For example,
this might be useful to make the code more organized and easier to read.

The line break is made using the "\" character because delimiters do not
have to be used in AB.

3.4 Comments

Comments describe the code and make it easier to understand. Comments
make it possible for you or others to read a program easily, even long after
it was written. They are not compiled and have no influence over the
execution of the program. Comments can be single or multi-line.

Example: Multi-line assignment

Fig. 5 Multi-line assignment

Fig. 7 Multi-line comment

Example: Comment

Fig. 6 Single-line comment

 The Fundamentals of Automation Basic

 Automation Basic (AB) TM247 9

3.5 Operator Priorities

The use of several operators in one line brings up the question of priority
(order of execution). The execution is determined by priority.

Expressions are executed starting with the operator of highest priority,
followed by the next highest, and so on until the expression has been
completely executed. Operators with the same priority are executed from
left to right as they appear in the expression.

Operator Symbol / Syntax:

Parentheses () Highest priority

Function call

Examples

Call argument(s)

LN(A), MAX(X), etc.

Exponent EXP(IN1,IN2)

Negation NOT

Multiplication

Division

Modulo division (whole
number remainder of
division)

*

/

MOD

Addition

Subtraction

+

-

Boolean AND AND

Boolean exclusive OR XOR

Boolean OR OR

Equal to

Not equal to

=

<>

Comparisons <=

>=

<

>

Lowest priority

The Fundamentals of Automation Basic

 10 TM247 Automation Basic (AB)

The order of execution at runtime:

Example: Operator priorities without parentheses

Fig. 8 Order of execution

Multiplication is executed first, then addition, and finally subtraction.

The order of operations can be changed by putting higher priority
operations in parentheses. This is shown in the next example.

Example: Operator priorities with parentheses

As shown in the following figure, the use of parentheses influences the
execution of the expression.

Fig. 9 Order of execution

The expression is executed from left to right. The operations in
parentheses are executed first, then the multiplication, because the
parentheses have higher priority. You can see that the parentheses lead
to a different result.

 Command Groups

 Automation Basic (AB) TM247 11

4. COMMAND GROUPS

Automation Basic uses the following command groups

• Boolean operations (logical operations)
• Arithmetic operations
• Comparison operations
• Decisions
• Step sequencers

4.1 Boolean operations

The operands must not necessarily be the data type BOOL.

Boolean operations:

Symbol Logical operation Examples

NOT Binary negation a = NOT b

AND Logical AND a = b AND c

OR Logical OR a = b OR c

XOR Exclusive OR a = b XOR c

Truth table:

Input AND OR XOR

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

These operators can be used to formulate logical expressions, or they can
be used to represent conditions. The result is always TRUE (logical 1) or
FALSE (logical 0).

Command Groups

 12 TM247 Automation Basic (AB)

AB allows any number of parenthesis.

Example: Boolean operation

Fig. 11 AND operation

Fig. 11 AND operation source code

 Command Groups

 Automation Basic (AB) TM247 13

Exercise: Light control

The output "DoLight" should be ON when the button "BtnLigntOn" is
pressed. It should remain ON until the button "BtnLightOff" is pressed.

Create a solution for this task using boolean operations in Automation
Basic.

Fig. 12 Light control

Command Groups

 14 TM247 Automation Basic (AB)

4.2 Arithmetic operations

A key factor in favor of using a high level language is the accessibility of
arithmetic operations.

4.2.1 Basic arithmetic operations

Automation Basic provides basic arithmetic operations for your
application:

Symbol Arithmetic operation Example

= Assignment a = b

+ Addition a = b + c

- Subtraction a = b – c

* Multiplication a = b * c

/ Division a = b / c

mod Modulo (display division
remainder)

a = b mod c

The data type is a very important factor. Note the following table:

Data types Syntax

Res Op 1 Op 2

Result

Res = 8 / 3 INT INT INT 2

Res = 8 / 3 REAL INT INT 2.0

Res = 8.0 / 3 REAL REAL INT 2.6667

Res = 8.0 / 3 INT REAL INT *Error

* Compiler error message: Type mismatch: Cannot convert REAL to INT.

You can see that the result is dependent on the syntax as well as the data
types used.

Note:

Left data type = right data type;

 Command Groups

 Automation Basic (AB) TM247 15

4.2.2 Implicit data type conversion

This type of conversion is done by the compiler. It automatically converts
the smaller data types to the larger one used in the expression. If an
expression contains one or more operators with different data types, they
are all converted to the same data type before the expression is resolved.

Data
type

BOOL

SINT INT DINT USINT UINT UDIN
T

REA
L

BOOL BOOL x x x x x x x

SINT x SINT INT DINT USINT UINT UDINT REAL

INT x INT INT DINT INT UINT UDINT REAL

DINT x DINT DINT DINT DINT UDINT UDINT REAL

USINT x USINT INT DINT USINT UINT UDINT REAL

UINT x UINT UINT DINT UINT UINT UDINT REAL

UDINT x UDINT UDINT UDINT UDINT UDINT UDINT REAL

REAL x REAL REAL REAL REAL REAL REAL REAL

Fig. 13 Implicit data type conversion by the compiler

SINT_Var2 is converted to INT, then added, then assigned to the result
variable (INT_Result).

Example: Data conversion

Fig. 14 Implicit data type conversion

Command Groups

 16 TM247 Automation Basic (AB)

4.2.3 Explicit data type conversion

Explicit data type conversion is also known simply as type conversion or as
Typecast. As you already know, the expression should have the same data
type on both sides, but there is something else to remember.

At first sight, everything looks OK. However, the sum (INT_Weight1 +
INT_Weight2) can be larger than the amount that can be stored in a
variable with the data type INT. In this case, an explicit data type
conversion must be carried out.

The variable DINT_TotalWeight must be the data type DINT. At least one
variable on the right side of the expression must be converted to the data
type DINT.

Example: Overflow?!

Example: Overflow taken into consideration.

 Command Groups

 Automation Basic (AB) TM247 17

Exercise: Aquarium

The temperature of an aquarium is measured at two different places.
Create a program that calculates the average temperature and displays it
at an analog output.

Don't forget that analog inputs and outputs must be data type INT.

Fig. 15 Aquarium

Command Groups

 18 TM247 Automation Basic (AB)

4.3 Comparison operators

In high level languages like Automation Basic, simple constructs can be
used to compare variables. These return either the value TRUE or FALSE.

Symbol Logical comparison
expression

Example

= Equal to IF a = b THEN

<> Not equal to IF a <> b THEN

> Greater than IF a > b THEN

>= Greater than or equal to IF a >= b THEN

< Less than IF a < b THEN

<= Less than or equal to IF a <= b THEN

4.4 Decisions

The IF statement is used to create decisions in the program. You are
already familiar with the comparison operators, and they can be used here.
There are several types of IF statements:

• Simple IF statement
• IF – ELSE statement
• IF – ELSE IF statement
• Nested IF

Decision Syntax Description

IF THEN IF a > b THEN 1. Comparison

 Result = 1 1. Statement(s)

ELSE IF THEN ELSE IF a > c THEN 2. Comparison (optional)

 Result = 2 2. Statement(s)

ELSE ELSE Above IF statements are not TRUE
(optional)

 Result = 3 3. Statement(s)

ENDIF ENDIF End of decision

Note:

The comparison operations and boolean operations are used as logical
conditions for IF, ELSE IF, EXITIF and WHEN statements.
(IF (a > b) AND (c >=d) THEN)

 Command Groups

 Automation Basic (AB) TM247 19

4.4.1 IF

This is the most simple IF statement.

Fig. 16 Simple IF statement

Fig. 17 Simple IF statement in a program

The IF statement is tested for the result TRUE. If the result is FALSE, the
program advances to the line after the ENDIF statement. The function of
the IF statement can be a single comparison, but it can also be multiple
comparisons connected by AND, OR, etc.

Example: IF statement with multiple comparisons

Fig. 18 Statement with multiple comparisons

Command Groups

 20 TM247 Automation Basic (AB)

4.4.2 ELSE

The ELSE statement is an extension of the simple IF statement. Only one
ELSE statement can be used per IF statement.

 Fig. 19 IF – ELSE statement

Fig. 20 IF – ELSE in a program

If the IF meets condition A, then the A instruction(s) are executed. If the IF
does not meet condition A, then the B instruction(s) are executed.

 Command Groups

 Automation Basic (AB) TM247 21

4.4.3 ELSE IF

One or more ELSEIF statements allow you to test a number of conditions
without creating a confusing software structure with many simple IF
statements.

Fig. 21 IF – ELSE IF - ELSE statement

Fig. 22 IF – ELSE IF - ELSE in the program

The decisions are processed from top to bottom during runtime. The
corresponding statements are executed if the result of a decision is TRUE.
The program then continues from after the ENDIF. Only those decisions
that correspond to the first TRUE decision are executed, even if
subsequent decisions are also TRUE. The statement in the ELSE branch is
executed if none of the IF or ELSE IF decisions are TRUE.

Command Groups

 22 TM247 Automation Basic (AB)

Exercise: Weather station - Part I

A temperature sensor measures the outside temperature.

• The doCold output should be set when the temperature is below
18°C.

• The doOpt output (optimal) should be set when the temperature is
between 18°C and 25°C.

• The doHot output should be set when the temperature is above
25°C.

Create a solution using IF, ELSEIF, and ELSE statements.

Fig. 23 Thermometer

 Command Groups

 Automation Basic (AB) TM247 23

4.4.4 Nested IF statement

A nested IF statement is tested only if previous conditions have been met.
Every IF requires its own ENDIF so that the order of conditions is correct.

Fig. 24 Nested IF statement

 Fig. 25 Nested IF statement in a program

It is helpful to indent every nested IF statement and the corresponding
expressions. As many IF statements can be nested as needed. However, a
high degree of nesting is generally evidence of poor programming style. It
becomes nearly impossible to get a clear overview of the code.

After three nesting levels, it is better to find another way to structure the
program.

Command Groups

 24 TM247 Automation Basic (AB)

Exercise: Weather station - Part II

Evaluate the temperature and the humidity.
The doOPT output should only be set when the humidity is between
40% and 75% and the temperature is between 18 and 25°C. Otherwise
no output should be set.

Solve this task using a nested IF statement.

 Command Groups

 Automation Basic (AB) TM247 25

Two simple IF statements produce nearly the same effect as one nested IF
statement. A marker variable, or flag, can be requested in multiple
statements. The first IF statement describes the flag, which is then utilized
by other IF statements.

Fig. 26 Two IF statements

Fig. 27 Two IF statements

In this case, both IF statements have the same priority. A CASE statement
should be used if both IF statements evaluate the same variable for
different values.

The CASE statement should be used when:

• IF constructs require too many levels
• too many ELSE IF are used

The CASE statement is much easier to read in these cases.

In comparison to the IF statement, the CASE statement also has the
advantage that comparisons are only made once, which makes the
program code more effective.

Command Groups

 26 TM247 Automation Basic (AB)

4.5 Case statements

The CASE statement compares a step variable with multiple values. If one
of these comparisons is a match, the steps that compare to that step are
executed. If none of the comparisons is a match, there is an ELSE branch
similar to an IF statement that is then executed.

After the statements have been executed, the program continues from after
the ENDCASE statement.

Keywords Syntax Description

CASE OF CASE step variable OF Beginning of
CASE

 ACTION

 ENDACTION

 ACTION 1:

 ACTION 5: Display = “MATERIAL”

 ENDACTION

For 1 and 5

 ACTION

 ENDACTION

 ACTION 2: Display = ”TEMP”

 ENDACTION

For 2

ENDCASE ENDCASE End of CASE

Fig. 28 CASE statement

 Command Groups

 Automation Basic (AB) TM247 27

Fig. 29 CASE statement in a program

Note:

Constants (TRUE, RUN, ERROR) can be used instead of numbers for the
steps in a CASE statement. This makes the program much easier to
read.

Command Groups

 28 TM247 Automation Basic (AB)

Only one step of the CASE statement is processed per program cycle.

Syntax of the CASE statement:

• A CASE statement begins with CASE and ends with ENDCASE. The
ENDCASE keyword must be on a separate line.

• An ENDACTION is necessary for every ACTION and ELSEACTION.
• The value of the statement or variable can be positive and negative.
However, it must be a WHOLE NUMBER!

• Whole-number constants must be used for defining the options
(action). Variable names or expressions are not allowed.

• Multiple ACTION statements can be written underneath one another
and closed off with one common ENDACTION statement in order to
execute the same commands for several non-consecutive values:
ACTION 1:
ACTION 5:
ACTION 10..12:
 ...
ENDACTION

• Numbers cannot overlap or be used in several ranges:
ACTION 1..6:
...
ENDACTION
ACTION 5:
...
ENDACTION
would not be allowed because the number 5 appears in two actions.

 Command Groups

 Automation Basic (AB) TM247 29

Exercise: Brewing tank

The fill level of a brewing tank is monitored for low, ok, and high levels.
Use an output for each of the low, ok, and high levels.

The level of liquid in the tank is read as an analog value and is internally
converted to 0-100%. A warning tone should be triggered if the contents
sink below 1%.

Create a solution using the CASE statement.

Fig. 30: Brewing tank

Command Groups

 30 TM247 Automation Basic (AB)

4.6 Select statement

A step sequencer is a construction with a number of subprograms (steps).
Only one of these subprograms is executed in each program cycle. Exiting
from the step or moving to another one occurs depending on certain
conditions within the step. Using step sequencers is one of the common
programming techniques in PLC programming.

Fig. 31 SELECT statement in a program

Syntax Description

SELECT StatePV Beginning of SELECT statement
{optional step number variable}

 Flag = 1 Global statement (always processed)

WHEN StopKey = 1

 cmdMotor = 0

next DELAY

Global transition condition e.g. detecting a
stop switch

STATE DELAY

 cmdMotor = 0

 WHEN UpKey = 1

 NEXT UP

DELAY state

Motor OFF

Check if the “UP” key is being pressed,

if yes, change to “UP“ state.

STATE UP

 cmdMotor = 1

 WHEN StopKey = 1

 NEXT DELAY

UP state

Switch on motor

Check if the stop switch was pressed,

if true, change to “DELAY“ state.

ENDSELECT End of SELECT statement

 Command Groups

 Automation Basic (AB) TM247 31

Syntax of the SELECT statement:

• The SELECT construction begins with the keyword SELECT and ends
with the keyword ENDSELECT. ENDSELECT must be on a separate
line.

• Each step starts with the keyword STATE followed by the step name.
Both of these words must be on a separate line:
STATE start
The transition condition is a block statement. The first line starts with
WHEN, followed by the expression formulating the condition. The
last line starts with NEXT, followed by a step name located
somewhere in the step sequencer:
WHEN Sensor = 1
 commands(s)
NEXT operation
The command(s) between WHEN and NEXT are only carried out if
the transition condition (in our example UpKey = 1) has been met (is
true).

• The keyword WHEN cannot be placed inside of another block
statement (e.g. an IF...THEN construction).

• The first run through the step sequencer always starts with the first
step.

• If no transition condition is fulfilled (true), the same step is executed
again during the next cycle through the SELECT construction (i.e. in
the next program cycle).

• A variable containing the step number can also be entered in the
SELECT line. This must be a UINT variable.

• The commands between SELECT and the first step (STATE) are
always executed regardless of the step number. It can also contain a
transitional condition (WHEN...NEXT).

Command Groups

 32 TM247 Automation Basic (AB)

Exercise: Chemical system

Create a program for the following chemical system.

• When the diStart key is pressed, the doWater water valve should
be switched on until the diWaterOK water level is reached.

• The doMixer mixer and the doColor valve for the color are then
switched on.

• When the diFull sensor is triggered, the color valve is closed
again and the doPumpOutflow pump as well as the
doValveOutflow valve for draining are switched on.

• The pump, the mixer and the valve are switched off once the level
sinks below the diLow sensor.

Create a solution using the SELECT statement.

Fig. 32 Chemical system

 Command Groups

 Automation Basic (AB) TM247 33

4.7 Loops

In many applications, it is necessary for sections of code to be executed
multiple times during a cycle. This type of processing is also referred to as
a loop. The code in the loop is executed until a defined termination
condition is met.

Loops help make programs shorter and easier to follow. Program
expandability is also an issue here.
Loops can be nested.

Depending on the structure of a program, an error in the program could
cause the loop to repeat until the time monitor in the CPU triggers an error
(system halt).
To prevent such endless loops from occurring, nearly all programs include
a way for the loop to be aborted after a defined number of repetitions or to
run to a certain limit.

AB offers several types of loops to choose from:

• LOOP .. ENDLOOP
• Counting loop - LOOP .. TO .. DO
• Counting loop - LOOP .. DOWNTO .. DO
• Counting loops with exit condition EXITIF

Command Groups

 34 TM247 Automation Basic (AB)

4.7.1 LOOP

This type of loop is executed until the termination condition has been met.

Keywords Syntax Description

LOOP LOOP Beginning of the loop

 Counter = Counter + 1 Statement(s) A

EXITIF EXITIF Counter > 100 Termination condition

 Result = Result + 10 Statement(s) B

ENDLOOP ENDLOOP End loop

Fig. 33 LOOP statement

Fig. 34 LOOP statement in a program

The A commands are executed first. A
check is then made to see if the exit
condition is met (true). If so, then the
program sequence is continued in the
line after ENDLOOP. If not, then the B
commands are executed and the
program sequence is continued in the
line after LOOP (i.e. with command A).

You can also choose to leave out the A
or B statements.

Note:

If the EXITIF condition never assumes the value TRUE, the statements
are repeated endlessly, resulting in a runtime error.

 Command Groups

 Automation Basic (AB) TM247 35

4.7.2 LOOP TO / LOOP DOWNTO

This loop LOOP TO and LOOP DOWNTO is used to run a program section
for a limited number of repetitions.

Keywords Syntax Description

LOOP TO DO

LOOP DOWNTO DO

LOOP i = 0 TO 4 DO

LOOP i = 5 DOWNTO 1 D0

Beginning of the
loop

 Res = value + 1 Loop body
statement(s)

ENDLOOP ENDLOOP End loop

Fig. 35 LOOP statement

Fig. 36 LOOP statement in a program

The statements in the LOOP loop are
repeated. At every repetition, the loop
counter "Var" is incremented or
decremented. The two control variables
"Start" and "End" determine the start
value and end value of the loop counter.
After the end value is reached, the
program continues from after the
ENDLOOP statement.

The LOOP TO statement increments the loop counter in each passage up to
the end value. Conversely, the LOOP DOWNTO statement decrements the
loop counter by one each time.

The entry condition is evaluated with every repetition of the loop.

Command Groups

 36 TM247 Automation Basic (AB)

Exercise: Crane

5 separate loads are suspended from a crane. The individual loads must
be added together to determine the total load.

Fig. 37: Crane

Create a solution for this task using a FOR loop.

Warning:

Take not that, for example, an array with 5 elements is defined from
index 0-4.

For example: The “load“ variable is declared as an array with 5
elements.
 LOOP i=1 TO 5 DO ;During the fifth passage, you then write...
 load[i] = value ;outside of the array, because the array
 ENDLOOP ;ranges only from index 0 – 4

 Command Groups

 Automation Basic (AB) TM247 37

4.7.3 EXITIF

The EXITIF statement can be set within loops to terminate the loop
independently of the loop statement.

Fig. 38 EXITIF statement

Fig. 39 EXITIF statement in a program

Fig. 40 EXIT statement in a nested loop

Fig. 41 EXIT statement in a nested LOOP statement in a
program

If the EXITIF statement is used in a
nested loop, only the loop in which the
EXITIF statement is located is ended.
After the loop is ended, the program
continues from after the ENDLOOP
statement.

Command Groups

 38 TM247 Automation Basic (AB)

4.8 Calling function blocks

A function block can be called two ways in Automation Basic.

• FBK call:
The function block is called directly via the respective names. The
input and output parameters are placed in brackets.

• Alias FBK call:
The alias call mostly differs from previous procedures in how the
values are assigned. This is done on a freely definable alias name
and structure elements.

Fig. 42 Calling a function block

Fig. 43 Calling a function block in a program

Before a function block is called, the variables that are to be used must be
written as input parameters. In both cases, the code for calling a function
block occupies one line. The outputs of the function block can then be
read.

 Command Groups

 Automation Basic (AB) TM247 39

First the function block name is entered, then the input and output
parameters are assigned in parentheses, separated by commas.

The input parameters of the FBK structure are assigned first. The function
block is then executed. The output parameters are now in the FBK structure
and can be read by the application.

Function block call in detail:

Fig. 44 Detail view of a function block call

Alias function block call in detail:

Fig. 45 Detail view of an alias function block call

Command Groups

 40 TM247 Automation Basic (AB)

Exercise: Bottle counter

Create a program that counts the bottles on a conveyor belt. Use the
CTU (up counter) function block found in the STANDARD library.

Fig. 46 Bottle counter

Note:

The Automation Studio online help is a useful resource when working
with function blocks.

 Command Groups

 Automation Basic (AB) TM247 41

4.9 Pointers and dynamic variables

B&R also offers pointers in Automation Basic.

A dynamic variable can be assigned a memory address during runtime.
This procedure is referred to as the referencing or initialization of a
dynamic variable.

As soon as the dynamic variable is initialized, it can be used to access the
memory content to which it now "points".

Fig. 47 Referencing a dynamic variable

As you can see, the operator ADR() is used. It returns the memory address
of the variable in parentheses. The data type of this address is UDINT.

Exercises

 42 TM247 Automation Basic (AB)

5. EXERCISES

Exercise: Box lift

Two conveyor belts (doConvTop, doConvBottom) transport boxes to a
lift.

If the photocell (diConvTop, diConvBottom) is activated, the
corresponding conveyor belt is stopped and the lift is called.

If the lift has not been called, it returns to the appropriate position
(doLiftTop, doLiftBottom).

When the lift is in the correct position (diLiftTop, diLiftBottom), the lift
conveyer belt (doConvLift) is turned on until the box is completely on
the lift (diBoxLift).

The lift then moves to the unloading position (doLiftUnload). When it
reaches this position (diLiftUnload), the box is moved to the unloading
belt.

 As soon as the box has left the lift, the lift is free for the next request.

Fig. 48 Box lift

 Summary

 Automation Basic (AB) TM247 43

6. SUMMARY

Automation Basic is a high level language that offers a wide range of
functionality. It contains all the tools necessary for an application.

Fig. 49 Book printing: then and now

After completing this training module, you are ready to program your own
Automation Basic tasks. You can always use the module as a reference.
This programming language is especially powerful when using arithmetic
functions and formulating mathematical calculations.

Appendix

 44 TM247 Automation Basic (AB)

7. APPENDIX

7.1 Keywords

Keywords are commands that can be used in AB. In the Automation Studio
Editor, these are displayed in blue. You are already familiar with many of
them; here is a list of more. Key words cannot be used as variable names.

Keyword Description

ACCESS Defines dynamic access.

ACTION See Case Statement.

BIT Simple data type for digital states.

BIT_CLR
A = BIT_CLR(IN, POS)
A contains the value IN after the bit at position POS is deleted.
However, the IN operand remains unchanged.

BIT_SET
A = BIT_SET(IN, POS)
A contains the value IN after the bit at position POS is set. However,
the IN operand remains unchanged.

BIT_TST
Determines the value of a bit: A = BIT_TST(IN, POS)
A contains the value of the bit at position POS of operand IN.

CASE See Case Statement.

DO See Loop Statement.

DOWNTO See Loop Statement.

EDGE Detects positive and negative edges.

EDGENEG Detects negative edges.

EDGEPOS Detects positive edges.

ELSE See If Statement.

ELSEACTION See Case Statement.

ENDACTION See Case Statement.

ENDCASE See Case Statement.

ENDIF See If Statement.

ENDLOOP See Loop Statement.

ENDSELECT See Select Statement.

EXITIF See Loop Statement.

FLOAT Simple data type, 32-bit size, for floating point values.

FBK Alias for function block call.

GOTO See Goto Statement.

IF See If Statement.

INC Increases the value of an operand by 1.

INT16 Simple data type, 16-bit size, for positive and negative values.

 Appendix

 Automation Basic (AB) TM247 45

INT32 Simple data type, 32-bit size, for positive and negative values.

INT8 Simple data type, 8-bit size, for positive and negative values.

LONG Simple data type, 32-bit size, for positive values.

LOOP See Loop Statement.

NEXT See Select Statement.

OF See Case Statement.

SELECT See Case Statement.

STATE See Select Statement.

THEN See If Statement.

TO See Loop Statement.

WHEN See Select Statement.

7.2 Functions

There are some functions that can be used in AB that do not require you to
insert a library into the project. In the Automation Studio Editor, these
function calls are displayed in blue. You are already familiar with some of
them. More are listed here.

Function Example

ABS Returns the absolute value of a number. ABS(-2) returns 2.

ACOS Returns the arc cosine (inverse function of cosine) of a number.

ADR Returns a variable's address.

AND Logical AND operation by bit.

ASIN Returns the arc sine of a number (inverse function of sine).

ASR
Arithmetic shifting of an operand to the right: A = ASR (IN, N)
IN is shifted N bits to the right, the left is filled with the sign bit.

ATAN Returns the arc tangent of a number (inverse function of tangent).

COS Returns the cosine of a number.

EXP Exponential function: A = EXP (IN).

EXPT One operand raised to the power of another operand: A = EXPT (IN1, IN2).

LIMIT

Limitation: A = LIMIT (MIN, IN, MAX)
MIN is the lower limit, MAX is the upper limit for the result. If IN is less than
MIN, then the MIN result is returned. If IN is greater than MAX, then the MAX
result is returned. Otherwise, the IN result is returned.

LN Returns the natural logarithm of a number.

LOG Returns the base-10 logarithm of a number.

LSL See SHL.

LSR See SHR.

MAX Maximum function. Returns the larger of two values.

Appendix

 46 TM247 Automation Basic (AB)

MIN Minimum function. Returns the lesser of two values.

MOD
Modulo division of a USINT, SINT, INT, UINT, UDINT, DINT, REAL type
variable by another variable of one of these types.

MUX
Selection: A = MUX (CHOICE, IN1, IN2, ... INX)
CHOICE specifies which of the operators IN1, IN2, etc. INX is returned as a
result.

NOT Negation of a bit operand by bit.

OR Logical OR operation by bit.

ROL
Rotates an operand's bits to the left: A = ROL(IN, N)
The bits in IN are shifted N times to the left, the far left bit being pushed in
again from the right.

ROR
Rotates an operand's bits to the right: A = ROR (IN, N)
IN is shifted N times to the right one bit position at a time, the far right bit
being pushed in again from the left.

SEL
Binary selection: A = SEL (CHOICE, IN1, IN2)
CHOICE must be type BOOL. If CHOICE is FALSE, then IN1 is returned.
Otherwise, IN2 is returned.

SHL
Shifts an operand's bits to the left: A = SHL (IN, N)
IN is shifted N bits to the left, the right side is filled with zeroes.

SHR
Shifts an operand's bits to the right: A = SHR (IN, N)
IN is shifted N bits to the right, the left side is filled with zeroes.

SIN Returns the sine of a number.

SIZEOF This function returns the number of bytes required by the specified variable.

SQRT Returns the square root of a number.

TAN Returns the tangent of a number.

TRUNC Returns the integer part of a number.

XOR Logical EXCLUSIVE OR operation by bit.

 Appendix

 Automation Basic (AB) TM247 47

7.3 Solutions

Exercise: Light control

Exercise: Aquarium

Exercise: Weather station - Part I

Exercise: Weather station - Part II

Appendix

 48 TM247 Automation Basic (AB)

Exercise: Brewing tank

Exercise: Crane

 Appendix

 Automation Basic (AB) TM247 49

Exercise: Chemical system

Appendix

 50 TM247 Automation Basic (AB)

Exercise: Box lift

 Appendix

 Automation Basic (AB) TM247 51

Overview of training modules

TM200 – B&R Company Presentation ** TM600 – The Basics of Visualization
TM201 – B&R Product Spectrum ** TM610 – The Basics of ASiV
TM210 – The Basics of Automation Studio TM630 – Visualization Programming Guide
TM211 – Automation Studio Online Communication TM640 – ASiV Alarm System
TM212 – Automation Target ** TM650 – ASiV Internationalization
TM213 – Automation Runtime TM660 – ASiV Remote
TM220 – The Service Technician on the Job TM670 – ASiV Advanced
TM223 – Automation Studio Diagnostics
TM230 – Structured Software Generation TM700 – Automation Net PVI
TM240 – Ladder Diagram (LAD) TM710 – PVI Communication
TM241 – Function Block Diagram (FBD) TM711 – PVI DLL Programming
TM246 – Structured Text (ST) TM712 – PVIServices
TM247 – Automation Basic (AB) TM730 – PVI OPC
TM248 – ANSI C
TM250 – Memory Management and Data Storage TM800 – APROL System Concept
TM260 – Automation Studio Libraries I TM810 – APROL Setup, Configuration and Recovery
TM261 – Closed Loop Control with LOOPCONR TM811 – APROL Runtime System
 TM812 – APROL Operator Management
TM400 – The Basics of Motion Control TM813 – APROL XML Queries and Audit Trail
TM410 – The Basics of ASiM TM830 – APROL Project Engineering
TM440 – ASiM Basic Functions TM840 – APROL Parameter Management and Recipes
TM441 – ASiM Multi-Axis Functions TM850 – APROL Controller Configuration and INA
TM445 – ACOPOS ACP10 Software TM860 – APROL Library Engineering
TM450 – ACOPOS Control Concept and Adjustment TM865 – APROL Library Guide Book
TM460 – Starting up Motors TM870 – APROL Python Programming
 TM890 – The Basics of LINUX
TM500 - The Basics of Integrated Safety Technology
TM510 - ASiST SafeDESIGNER
 **) see Product Catalog

Appendix

 52 TM247 Automation Basic (AB)

Übersicht Trainingsmodule

Hinteres Deckblatt (auf durch 4 Teilbarer Seitenzahl)

Kontakt (Headquarter)

Weblink

Internationalität

Copyright – Bestellnummer

T
M
2
4
7
T
R
E
.0
0
-E
N
G

0
9
0
7

©
2
0
0
7
 b
y
 B
&
R
.
A
ll
 r
ig
h
ts
 r
e
s
e
rv
e
d
.

A
ll
 t
ra
d
e
m
a
rk
s
 p
re
s
e
n
te
d
 a
re
 t
h
e
 p
ro
p
e
rt
y
 o
f
th
e
ir
 r
e
s
p
e
c
ti
v
e
 c
o
m
p
a
n
y
.

W
e
 r
e
se
rv
e
 t
h
e
 r
ig
h
t
to
 m
a
k
e
 t
e
c
h
n
ic
a
l
c
h
a
n
g
e
s
.

