Ladder diagram (LD)
TM240

Perfection in Automation
www.br-automation.com

Requirements

Training modules:

Software:

Hardware:

TM210 — The Basics of Automation Studio
TM211 — Automation Studio Online Communication
TM213 — Automation Runtime

TM223 — Automation Studio Diagnostics

None

None

Table of contents

1.

INTRODUCTION
1.1 Objectives

LADDER DIAGRAM

2.1 The history of ladder diagrams
2.2 General information

2.3 Properties

2.4 Possibilities

THE BASIC ELEMENTS OF LADDER DIAGRAM
3.1 Networks

LADDER DIAGRAM SYMBOLS

4.1 Contacts
4.2 Coil

LOGIC

CONTROLLING THE PROGRAM FLOW
USING FUNCTION BLOCKS

POWER FLOW

QUESTIONS AND EXERCISES

9.1 Questions
9.2 Exercises

10. SUMMARY

Ladder diagram (LD) TM240 '

N NN OO o

(o¢]

10

10
15

21

25

27

29

31

31
32

34

Introduction

1. INTRODUCTION

The Ladder Diagram programming language is often referred to as relay
ladder logic. It is a graphical language that is very popular for programming
controller systems. Most manufacturers program their systems using the
Ladder Diagram programming language.

gy
Many,

4l Mode, Conveyoy Controf
bmﬁﬂmm B

Fig. 1 Introduction

In the chapters that follow, you will get an overview of the history,
advantages, and programming of ladder diagrams.

Examples will be given to give a better explanation of the individual
functions available.

TM240 Ladder diagram (LD)

Introduction

1.1 Objectives

You will get an overview of the possibilities available when programming
with Ladder Diagram.

You will learn the fundamental elements of Ladder Diagram and the
symbols for logic programming.

You will be able to develop flexible Ladder Diagram programs using the
program flow control elements.

Ladder Diagram

The Basic Elements of
Ladder Diagram

Ladder Diagram Logic

Controlling the Program Flow

Using Function Blocks

Fig. 2 Overview

Ladder diagram (LD) TM240 I

2. LADDER DIAGRAM

2.1 The history of ladder diagrams

The original concept of the PLC (Programmable Logic Controller) was
developed in the USA around 1968. The PLC concept was developed as a
microprocessor-based, programmable substitute for hard-wired systems.

The PLC was based around the ladder diagram, which is a schematic
representation of a logical control system based on relay circuitry.

At that time, the concept became a very fast way of quickly setting up and
programming a simple logical control system with relatively little training.
For simple logical control problems, ladder diagrams are ideal, easy to use,
and easy to master. They are probably the main reason for the phenomenal
success of PLCs in industry.

Many manufacturers base their programming systems on ladder diagrams.
Unfortunately, the lack of any open standards meant that each vendor's
system was slightly different. Many manufacturers often added "special
operations" in order to increase functionality.

By the beginning of the 1990s, there were literally thousands of PLC
manufacturers, each with their own programming systems and sets of
instructions. Although the programs that were written for different systems
were similar, the way that programs were structured, as well as the
instruction sets used, varied from one supplier to another.

Hardware-specific peculiarities always seemed to crop up. This situation
tended to tie users to a particular manufacturer.

In 1979, a working group was set up by the International Electrotechnical
Commission (IEC) to create a common standard for PLCs. This working
group decided to develop a new standard (to be known as IEC 61131)
consisting of five separate parts.

Part Ill, "Programming Languages for PLCs", was published in 1993 and
included the specification for PLC software. Part Ill covers the PLC
configuration, programming, and data storage.

IEC61131-3 addresses most of the criticisms that are aimed at traditional
PLC programming. It provides a framework for developing general PLC
programs that do not require manufacturer-specific training. Most PLC and
industrial control system manufacturers have now adopted this standard.

Ladder Diagram

2.2 General information

Ladder Diagram (LD) is a graphics-based programming method. It is a
symbolic representation of electronic circuits. Symbols were selected that
actually looked similar to schematic symbols used for electric devices.

For this reason, an electrician who has never seen a PLC can understand
the Ladder Diagram programming language. In LD, the schematic symbols
(contacts and coils) and the connection lines can be used to create the
necessary logic.

B&R has adopted the 61131-3 standard for ladder diagram programming as
well.

2.3 Properties

Ladder Diagram has the following characteristics:

e Graphical programming languages

e Similar to wiring diagram

 Simple and clear programming

* Intuitive to use

» Easy to find errors

e Complies with the IEC 61131-3 standard

2.4 Possibilities

The Ladder Diagram programming language provided with Automation
Studio offers the following possibilities:

» Using digital inputs / outputs and internal Boolean variables
» Using analog inputs / outputs

* Using function blocks

* Program flow control (jumps, cancelling)

» Diagnostics tools

Ladder diagram (LD) TM240 7

The Basic Elements of Ladder Diagram

3. THE BASIC ELEMENTS OF LADDER DIAGRAM

Imagine that there is a vertical supply line called a "bus bar" on the left-
hand side that continuously provides power. Lines that branch out to the
right are known as "instruction lines".

“bus bar” - vertical line Variable name Instuction line
where instruction lines an a type
branch off l
\ StartButton
BOOL
| |
| 1 1 \
Graphic symbal
for condition

Fig. 3 Basic elements of Ladder Diagram

The ladder diagram itself consists of two basic parts. The left side holds the
condition logic, while the right side contains the instructions. The logical
combination of these conditions determines when and how an instruction
on the right side is executed. The elements on the far right side are called
coils (e.g. lamps, motors, relays, etc.).

Condition Logic Instruction
i -
StartButton cmdStart
BOOL BOOL
! 7
| %

Fig. 4 Logical conditions and instructions

TM240 Ladder diagram (LD)

The Basic Elements of Ladder Diagram

3.1 Networks

A network is a circuit that represents a specific function. It consists of
elements, branches, and blocks. The network reflects a complete function
and is the basic unit of a ladder diagram.

A complete Ladder Diagram program consists of several of these networks.

The beginning of the network is the vertical line on the left (bus bar). If
two or more circuits are connected by a vertical line, then they belong to
the same network.

Up to 50 lines and 50 columns may exist in a network. The size of a
complete ladder diagram is limited only by the amount of memory on the
PC and the controller.

Bus-bar EITBHL Parallal Block Sanial block
|| W | el {1 I 1 (r—
—— |l 1 /)
— Ll | | Branch
{71

Fig. 5 Ladder diagram network

Ladder diagram (LD) TM240

Ladder Diagram Symbols

4. LADDER DIAGRAM SYMBOLS

4.1 Contacts

A contact is one of many Ladder Diagram symbols. They can be placed in
the first column and also form part of a link with other symbols. They
cannot be placed on the right side; this area is reserved for coils. Contacts
can be linked to the digital inputs / outputs of function blocks.

Linking contacts within a network can be assigned to one or more coils.
Every contact is referenced by a variable name that has been or will be
defined in the variable declaration window. Each contact-regardless of
whether it's an input, output, or internal variable—can be used throughout
the program whenever that particular condition needs to be evaluated.

The connection between contacts depends on the desired control logic.
They can be placed in whatever series, parallel, or series/parallel
configuration that is required to control a given output (coil).

Only variables of type BOOL can be assighed to contacts.

Type of contact Symbol

Normally open]

|
Normally closed | /

contact
Positive edge

| pl

1P

Negative edge | N |
|

|

Both edges |P|'-.|

TM240 Ladder diagram (LD)

Ladder Diagram Symbols

4.1.1 What are normally open and normally closed contacts?

In industrial environments, it's not uncommon to hear the terms normally
open and normally closed. Both terms apply to words such as contacts,
inputs, outputs, etc. (all combinations have the same meaning whether
talking about inputs, outputs, contacts, etc.).

A normally closed contact will conduct electricity until it is pressed. A
normally open contact won't conduct electricity until it is pressed down.

If a normally closed contact is selected, a bell will continously sound until
someone pushes the bell switch. Pressing the switch opens up the contact
and the electricity is cut off.

This behavior is reversed if using a normally open contact.

Normally Open Normally Close
contact contact
f ..--"1"
| | | 11
| l’ |

Fig. 6 Normally open and normally closed contacts

One example where normally closed contacts are used is in the safety door
on machines. If this door is opened, the contact is interrupted and the
supply circuit is interrupted. This can be done to prevent accidents.

Normally open and normally closed contacts can apply to outputs and
sensors as well.

Ladder diagram (LD) TM240

Ladder Diagram Symbols

4.1.2 Normally open contact

Inp b Outp If the contact isn't pressed, electricity is
not conducted and the logical state is
FALSE (0).
= When pressed, the physical state
oup b switches to "ON", and the instruction is
S N A TRUE (1).
Inp | ‘
e B A A

—-"-in: L-_—-«

1 Cycle

Fig. 7 Relation between an input and output

4.1.3 Normally closed contact

This symbol inverts the status of a
variable (BOOL).

D
Outp It is used when an input signal does not
R g Py need to be present for the output to be
| g set.
i p——
o b The state of the output is set to FALSE
N i P if the input is set to TRUE.

1Cycle

Fig. 8 Relation between an input and output

TM240 Ladder diagram (LD)

Ladder Diagram Symbols

4.1.4 Positive edge

This symbol is used to form a positive
edge of a digital signal.

When the value of a variable switches

from FALSE to TRUE, i.e. a positive

P . . : edge occurs, this contact returns TRUE
i — for a cycle. This can be used to set /

Inp P i Lo reset states or count the number of
ot 1 ERENES positive edges.

i
i '
] [

1 Cycle

Fig. 9 Relation between an input and output

4.1.5 Negative edge

Outp This symbol is used to form a negative

edge of a digital signal.

AR b If the value of a variable is switched

‘ ' from TRUE to FALSE, the status returns

e o TRUE for a cycle. This can be used e.g.
- o to set or reset outputs or count

np . P negative edges.

Fig. 10 Relation between an input and output

Ladder diagram (LD) TM240

Ladder Diagram Symbols

4.1.6 Positive and negative edge

|
Inp IPH| Outp

T This symbol is used to form the positive
Oup ¢ | i P and negative edge of a digital signal.

0— :

b b This behavior corresponds to a parallel

— L . switching of the positive and negative
w o L edge.

ot d '

CToyel

Fig. 11 Relation between an input and output

TM240 Ladder diagram (LD)

Ladder Diagram Symbols

4.2 Coil

The coil is one of the basic Ladder Diagram elements. It is always placed
on the right-hand side of the ladder diagram as an output. Coils can be
connected to the right of contacts or to function block outputs. At least one
coil must be present in a ladder diagram. Several parallel coils can also be
used.

Each coil can be used for digital outputs or internal variables that will later
serve as an input for an additional network in the program.

The contacts are always queried while the program is running; if logic
continuity is found, then the contact is set to TRUE.

Only Boolean variables can be assigned to coils.

Type of contact Symbol
Coil _()
Negated coil _U')
Set coil ——{(s)
Reset coil ——{(R)
Positive transition coil _(p)
Negative transition coil —(H)
Both edges —N)

Ladder diagram (LD) TM240

Ladder Diagram Symbols

4.2.1 Coil

Result

Signal —()

T e The coil is switched on if continuity is
Result | | P P found.
o
N s TR
Signal | | | 0| 1
R
AR

1 Cycle

Fig. 12 Relation between an input and output

4.2.2 Negated coil

Result
Signal U)

If continuity is found, the coil is

B P I switched off; otherwise, it is switched

Result | | P [
Pl b ot on.

0— — P

NAEEE gy
Signal | | L Dol

Pt -

el e

Fig. 13 Relation between an input and output

TM240 Ladder diagram (LD)

4.2.3 Set

Result

Signal —(s)

-~ Undefined

Result (1 or0)

Fig. 14 Relation between an input and output

4.2.4 Reset

Result

Signal —{R)

1 :
i J :.1.. . Undefined
Result i {1 or 0)

-

I Cycle

Fig. 15 Relation between an input and output

Ladder Diagram Symbols

This coil sets a variable to TRUE if
logical continuity is found.

This state remains until the variable is
reset. For this reason, this coil is also
referred to as conditionally setting.

This coil sets a variable to FALSE if
continuity is found.

Ladder diagram (LD) TM240 17

Ladder Diagram Symbols

4.2.5 Positive transition coil

Result
. —ifP
Signal) This coil sets a variable to TRUE for one
cycle if continuity is found.

— =
ResSUIcA . For all other cycles where continuity is
e e e e found, the output remains set to FALSE.
=
Signal | b
,,,,, - .
1 Cycle

Fig. 16 Relation between an input and output

4.2.6 Negative transition coil
Result

Signal —{N)

This coil sets a variable to TRUE for one

i . .
Rosult | | | | | _I N cycle if NO continuity is found.
A For all other cycles where no continuity
Lo 1§ S is found, the value of the variable
. - P remains set to FALSE.
signal | s
oo f

Fig. 17 Relation between an input and output

TM240 Ladder diagram (LD)

Ladder Diagram Symbols

4.2.7 Positive and negative transition coil

Result

Signal —N)

] TIM | ' This coil unites the function of the
esult | : ! i positive and negative edge output.

' ' '
i ' ' i
' 1 i | '
] 1 L ! |]
1 ' '

Signal | P L

i
B

1Cycle

Fig. 18 Relation between an input and
output

Ladder diagram (LD) TM240

Ladder Diagram Symbols

Task: Part 1: Conveyor belt

In this training module, we will be creating an application for controlling
a conveyor belt in four steps.

Create a program that controls the conveyor belt motor with the digital
output "gDoConvMotor" by pressing the "btnConvStart" button. Don't
connect the output directly with the input. Use the command variable
"cmdManConvMotor" as an intermediate variable as shownin the image
below.

o0
hlanual Mode, conveyer contral

crodbtanComdd
btnComestart otar

oooz
Set conveyer digital output

crdhdanC onyhi
otar gDaConviotar

Fig. 20 Task 1 part1, operators

All new parts in the program are displayed in green. .

Fig. 20 Conveyor belt

TM240 Ladder diagram (LD)

5. LOGIC

5.1.1 AND operation

If two or more contacts are connected in a
series, the result is a logical AND

Fig. 21 Series blocks

operation.
When all of the conditions have been met,
the output is set to TRUE.

Truth table:
Contact 1 | Contact 2 Output
0 0 0
0 1 0
1 0 0
1 1 1

5.1.2 OR operation

A parallel block is equivalent to an OR

—
—

A

i

o

I

Ll

-

i

o
==l
-

Fig. 22 Parallel blocks

operation.
If at least one of these parallel branches is
TRUE, then the output is set to TRUE.

Truth table:
Contact 1 | Contact 2 Output
0 0 0
0 1 1
1 0 1

Ladder diagram (LD) TM240

5.1.3 XOR operation

gDiButtonLeft gDiButtonRight The Exclusive OR operation is a
| | | /1 combination of the logical AND
and OR operations. If one of the
gDiButtonRight gLiButtonlef two inputs is TRUE, then the
| | | /1 output is also TRUE. If both inputs
Fig. 23 Exclusive OR are TRUE, then the output is
FALSE.
Truth table:
gDiButtonLeft | gDiButtonRight | Output
0 0
0 1
1 0
1 1
5.1.4 Branch
| | | |
I (I
In a network, a branch refers to a
| /1 vertical line that connects two or
Branch more rows with one another.
...... .; i.-.----..

Fig. 24 Branch

TM240

Ladder diagram (LD)

5.1.5 Merge

A merge line is defined as another vertical line that runs parallel to a

branch line and merges the branch circuits into a closed circuit (forming a

parallel block).

171 1 |

=

A,

Branch line

Fig. 25 Merge line

A single vertical line can be both a branch line and a merge line, as shown

in the image below.

Merge line

| | |/ | |

/1

Parallel block 1 Parallel block 2

/] | |

Block 1 merge line Block 2 branch line

Fig. 26 Branch line and merge line

Ladder diagram (LD)

TM240

Task: Part 2: Conveyor belt

Right now, it's possible to control the conveyor belt by pressing a
button. Now we want to add a few more functions for automatic mode.

Start the conveyor belt:

* If no material is detected by the final sensor of the
"gDiLoadConvEnd" conveyor belt.

e If material is detected by the final sensor of the conveyor belt and
the machine requests more material with the "gDiMachAskMat"

digital input.
Stop the conveyor belt:

* If material is detected by the final sensor of the conveyor belt and
the machine is not requesting any more material.

Your program may then appear like this:

o001
hanual Mode, conveyer contral
crmdhanConyhd
btnCorvstart otor
I 1 'l
| 1| \
nooz2
Autohode, conveyer contral, Start
gDiLoadConvEn crid AutCoarmhd

ataor

ooz
Autoiode, conveyer cantral, Stop

ghiLoadConvEn gDibachAiskh cmdAutCorbd
d at otor

Ooo4
cet conveyer digital output
cmdhanConvhd
otor gDaoCanvilotor
| | i
| 1| \

Fig. 27 Part 2 - Source code

TM240 Ladder diagram (LD)

Controlling the Program Flow

6. CONTROLLING THE PROGRAM FLOW

6.1.1 Conditional jump

A conditional jump refers to a jump to a network with a symbolic name
using a condition.

If the condition is TRUE, then the jump takes place. A jump label with a
unique name must be present for each jump.

It is used to skip over networks in the program. This allows the program
flow to be controlled efficiently. The program runtime is also reduced since
networks are jumped over if they are not required.

Jump conditions The name of destination label
I _________________ : Jumphdark
| | »
|
' :
|
— :
Fig. 28 Jump
0004 Jumphark - a—— Lable name, the target destination
of a jump
I (/

Fig. 29 Conditional jump

6.1.2 Return

The Return instruction is used to terminate the ladder diagram at a certain
point. Any subsequent networks are no longer executed.

ButtonStart
| { } { % RETURM

Fig. 30 Return

Ladder diagram (LD) TM240

Controlling the Program Flow

Task: Part 3: Conveyor belt

>

We will now add an input "gDiAutoMode" that we can use to switc
between manual and automatic mode.

* Networks that belong to automatic mode are executed if
"gDiAutoMode" is TRUE.

* Networks that belong to manual mode are only executed if
"gDiAutoMode" is FALSE.

* Use conditional jumps.
« Use a new variable, "emdAutConvMotor", in automatic mode.

Your program may then appear like this:

0001
Decision Manual or AutoMode ?

gDiAutaaode autohode

Autornat ode

Manual Mode, conveyer control

cmdianCond
btnConvStart otor

L} PR
I S
0003

tanual Mode, conveyer control, End of Manual
ode

Manual
Mode

SetOutputs

T ———————— —

“0004 Automathode ;
AutoMode, conveyer control, Start

gDiLoadConvEn -
d

—/1 (s)

gDiMachAskM gDiLoadConvEn
at d

— 1

0oos

AutoMode, corveyer contral, Stop
gDiLeadConvEn gDiMachAskiM
d

Automatic
Mode

e ————————————

0006 SetOutputs :

Set conveyer digital output
crdianCombd

otor

autoMode gDoConviviotor

autohlode

Fig. 31 Part 3 - Source code

TM240 Ladder diagram (LD)

Using Function Blocks

7. USING FUNCTION BLOCKS

The Ladder Diagram editor in Automation Studio makes it possible to use
function blocks.

If a function block is inserted, then input logic conditions are also
represented by contact instructions driving the logic for the function block.
A function block may have one or more coils as the outputs that store the
status or result of a function. If a function block should be active at all
times, then a connection can be made to the function block using a vertical
line.

' | |
: Input logic conditins | Function block :
|- L -t -
|
|
|
|

: CTUD
- ——r e o H—(y—
1/ ——in—Heo o0 H—(1—

—PF——— F—RESET cV p—o

|
|
|
—— P} : LOAD
|
|
|

— PV
I

Fig. 32 Function block in Ladder Diagram

. . | .
A function block can also have "analog" inputs and outputs. The B | icon or
spacebar can be used to connected a variable.

Ladder diagram (LD) TM240 27

Using Function Blocks

Task: Part 4: Conveyor belt

Count the quantity of material that the conveyor belt is transporting in
automatic mode. Use the CTU function block found in the STANDARD
library.

noo1
Decision Manual or Autobode 2

gDiAutohdode autohode
1 1 i N
10 v/
Autornathode
—»
oooz
Manual Mode, corveyer cantral
cridhdanConyhd
btnComeStart otor
1 1 i 4
1T o/

0003
Manual Mode, conveyer cantral, End of Manual Mode

SetOutputs
»
0004 Automathode
Autohodae, conveyer control, Start
gDiLoadComEn cmdAutConvio
d tar
1171 sy
/1 {3}
gDitachAskh gDiloadConvEn
at d
] 1 | |
11 ||
noos
Autobdode, conveyer control, Stop
gDiLoadComEn gDikachaskil criddutConyio
d at tar
— /| (R)

CTU Co

unterQf

MNbPieces

0o0E SetQutputs ;
Set conveyer digital output
crdianCandd
autoMode ataor gDaConviiatar
1/} 1| £ %
171 11 S
cmdAutCondo
autoMode tor
] 1 | |

Fig. 33 Part 4 - Source doe

TM240 Ladder diagram (LD)

Power Flow

8. POWER FLOW

If logic continuity is present in a network, then its output is TRUE. Power
flows from left to right in a network. Networks are executed one after the
other except when the course is changed by returns or jumps.

Condition Instructions Qutput Instruction
— | 171 | { F—
|
I 1
____;_I_ ______ -————— e ————— — — ———— — —— — - —— — -

A continuous path is required for Logic Continuity

Fig. 34 Logic continuity

There are several different possibilities for logic continuity in this network.

Condition Instructions Output Instruction
>
| | Ij.' | | | f N
| | 1 /1 | | L)
1 | | |
| | | |
| |
— A — o N

A continuous path is required for Logic Continuity

Fig. 35 Logical passage to the first command line

Ladder diagram (LD) TM240

Power Flow

Condition Instructions Output Instruction
1 1 IJI | | f N
|| 1/ . \
-
1 1 | |
|| ||
1 1
— e — e N

A continuous path is required for Logic Continuity

Fig. 36 The second continuous path

Condition Instructions Output Instruction
1 1 F Y
| | |/ || {)
—
1 1 1 1
|| ||
1 1
— e — e N

A continuous path is required for Logic Continuity

Fig. 37 The third continuous path

Unlike hard-wired relay logic, reversed power flow as shown in the image
below is not possible in PLC logic.

If the logic calls for the implementation of reverse flow, the user must
program it in with forward power flow to all contact elements.

Condition Instructions Output Instruction
>
1 1 IJI | | 5
|| 1/ || L)
1 1 @ | |
|| ||
1 1
— e — e N

A continuous path is required for Logic Continuity

Fig. 38 A reverse continuity path is not possible

TM240 Ladder diagram (LD)

Questions and Exercises

9. QUESTIONS AND EXERCISES

9.1 Questions

Why is the ladder diagram system so widely accepted? Why was it
developed?

It was developed as programmable logic that would serve as a
subsitute for hard-wired relay logic.

When should Ladder Diagram be used?

It is ideal for logical control tasks and operations.

What is a network?

A network consists of at least one contact and one coil (input and
output). If there is no connection between two rows, then they

belong to two different networks. Networks are executed in the order
they were programmed.

What is a contact in LD?

The main purpose of a contact is to form a logical condition to
control the output (coil).

What is a coil in LD?

The coil receives the value that results from the logical conditions
that arise.

Ladder diagram (LD) TM240

Questions and Exercises

9.2 Exercises

Task: Concrete filling system

In a cement mixing facility, cement is loaded onto a vehicle using a
conveyor belt.

Filling begins by activating the On button (btnOn). The hydraulics
activated using a magnet valve (doValve) can only be opened if the
conveyor belt has been operating for 5 seconds and there is a vehicle
under the belt (diTruck).

The magnet valve is switched off as soon as the permitted total weight
of the vehicle has been reached (diPressure). However, the conveyor
belt should continue to run for another 5 seconds.

The entire system is switched off immediately when the Off button is
pressed (btnOff). If the conveyor belt is disrupted
(diConveyorMotorProtection), the magnet value and the conveyor belt
(doConveyor) should be switched off immediately. If the magnet value is
disrupted (diValveProtection), it should be closed immediately, but the
belt should run empty for another 5 seconds.

conveyor

pressure
Y switch

TM240 Ladder diagram (LD)

Questions and Exercises

The ladder diagram could look like this:

0oon
Start conveyor

htnOn daCanveyor
BOOL BOOL
- Pl 5y
+—P| {5)
oooz

Stop conveyor

btnOff doConveyor
BOOL BOOL
l {

diCorveyorhiat
orPratection

BOOL
| l
I
0oo3
switch-on delay for valve

TOMN_WVALVE
TOMN
TON
daCanvayar BOOL BO0OL delayvalve
BOOL BOOL
] 1 [
| I Q@ .
T#hs TIME TIME
PT ET |
0oa4
wvalve
div'alveProtecti
delayWalve diTruck diPressure on dovalve
BOOL BOOL BOOL BOOL BOOL
| l 1 1 11 111 .-')
I 1 1 11 In"ll 4
delayCony
BOOL
{5)
0005
realease delay conveyor
TOMN_Conweyar
TN
divalvePratecti TON
delayCany on BO0L BOOL delayCony
BOOL BOOL BOOL
] 1] 1 e
[| [| IN @ R)
diPressure Ti#hs TIME TIME daCanveyor
BOOL BOOL
] 11 pY
|] I FT ET} {R}

Ladder diagram (LD) TM240

Summary

10. SUMMARY

Programming with ladder diagram is still very popular. It was developed to
program logical switches so that hard-wired relay logic could be replaced.

Fig. 39 Summary

Using analog signals and function blocks makes it possible to create high-
powered applications using Ladder Diagram. Additional program flow
control elements extend the function range.

The Automation Studio, program sequences can be traced using Power
Flow. Colors are used to display the status of lines where are currently
conducting electricity.

TM240 Ladder diagram (LD)

Summary

Overview of training modules

TM200 — B&R Company Presentation **

TM201 — B&R Product Spectrum **

TM210 — The Basics of Automation Studio
TM211 — Automation Studio Online Communication
TM212 — Automation Target **

TM213 — Automation Runtime

TM220 — The Service Technician on the Job
TM223 — Automation Studio Diagnostics

TM230 — Structured Software Generation

TM240 — Ladder Diagram (LAD)

TM241 — Function Block Diagram (FBD)

TM246 — Structured Text (ST)

TM247 — Automation Basic (AB)

TM248 — ANSI C

TM250 — Memory Management and Data Storage
TM260 — Automation Studio Libraries |

TM261 — Closed Loop Control with LOOPCONR

TMA400 — The Basics of Motion Control
TMA410 — The Basics of ASIM

TM440 — ASiM Basic Functions
TM441 — ASiM Multi-Axis Functions
TM445 — ACOPOS ACP10 Software

TM450 — ACOPOS Control Concept and Adjustment

TM460 — Starting up Motors

TM500 — The Basics of Integrated Safety Technology

TM510 — ASIiST SafeDESIGNER

TM600 — The Baf Visualization
TM610 — The BasidsASiV
TM630 —\4bzation Programming Guide
TNG4 ASiV Alarm System
TM650 — ASiV Internafialization
TM660 — ASiV Remote
TM670SA\AAdvanced

TM700 — Audition Net PVI
TM710 — PVI Communicat
TM711 - PVI DIProgramming
TM712 — PVIServices
TM730 — PVI OPC

TM8BPROL System Concept
TM810 — APR@etup, Configuration and Recovery
TM811 PROL Runtime System
TM812 — APROL Operator Management
TM813 — APRGML Queries and Audit Trail
TM830 — APROL Projectdimeering
TM840 — APROL Paraméfimnagement and Recipes
TM850 — APROL Cuawoller Configuration and INA
TM860 — APROL Libré&nygineering
TM865PROL Library Guide Book
TM870 — APROL Python gramming
TMB890 — The Basics of LINUX

**) see Product Catalog

140 offices in more than 55 countries - www.br-automation.com/contact

Australia » Argentina « Austria « Belarus < Belgium ¢ Brazil « Bulgaria « Canada « Chile » China « Colombia « Croatia « Cyprus
Czech Republic « Denmark « Egypt . Emirates « Finland < France . Germany - Greece + Hungary - India - Indonesia
Ireland < Israel « Italy « Japan « Korea « Luxemburg « Kyrgyzstan . Malaysia « Mexico « The Netherlands « New Zealand
Norway - Pakistan < Poland « Portugal «+ Romania Russia - Serbia « Singapore < Slovakia < Slovenia + South Africa
Spain + Sweden - Switzerland « Taiwan < Thailand - Turkey « Ukraine United Kingdom « USA - Venezuela « Vietnam

