

ASiM Basic FunctionsASiM Basic FunctionsASiM Basic FunctionsASiM Basic Functions
TM440

Introduction

 2 TM440 ASiM Basic Functions

Requirements

Training modules: TM410 – The Basics of ASiM

Software: Automation Studio

Automation Runtime 2.80

 ACP10_MC Library 1.170

Hardware: None

 Introduction

 ASiM Basic Functions TM440 3

Table of contents

1. INTRODUCTION 4

1.1 Training guide objectives 5

2. THE PLCOPEN PROGRAMMING STANDARD 6

2.1 General 6

2.2 Advantages 7

3. THE "ACP10_MC" FUNCTION LIBRARY 8

3.1 Structure and composition 8

3.2 Function groups 9

4. DEFINITION OF A DRIVE 11

4.1 "ncaccess" function 11

5. USING THE FUNCTIONS 14

5.1 ACP10_MC library 14

5.2 Important settings when using ETHERNET POWERLINK 16

5.3 Controlling the Function Blocks 19

5.4 Drive states 27

5.5 Advanced settings 30

6. PROGRAMMING 34

6.1 Creating an automatic sequence 34

6.2 Error handling 39

7. MOTION CONTROL SAMPLE PROJECT 46

7.1 Components 46

7.2 Start-up 48

8. MANAGING ACOPOS PARAMETERS 50

8.1 Initializing and reading individual parameters 51

8.2 Transfer and initialization of parameter sets 52

9. SUMMARY 55

10. APPENDIX 56

Introduction

 4 TM440 ASiM Basic Functions

1. INTRODUCTION

The application program is the central point of development when creating
a positioning application.

This is where commands are defined, transferred to the drive and signals
from the process are evaluated. The program should ultimately implement
an automatic sequence for controlling the drives in the process, in order to
achieve the total function.

A solid overview of the available tools is the foundation for setting up a
positioning task. Therefore, the first step is to obtain a clear overview of
the entire range of function blocks used for controlling ACOPOS servo
drives.

Fig. 1: Palletizing

In this training module we will also take a look at using and integrating
positioning functions in an application program.

Working through different exercises will help us to understand the behavior
of the function blocks and will provide us with important basic knowledge
for applying these functions.

The PLCopen Motion Control Standard plays a central role in the operating
concept of B&R's drive solution. We will cover this in a separate section
right at the beginning.

Fig. 2: PLCopen Standard

 Introduction

 ASiM Basic Functions TM440 5

1.1 Training guide objectives

You will become familiar with the operation of the function blocks and will
get to know the structure of the corresponding function library
(ACP10_MC).

You will master the usage of the basic functions for controlling and
operating the ACOPOS.

You will learn how to implement specific positioning sequences in
structured form using an application program.

Fig. 3: Overview

The PLCopen Programming Standard

 6 TM440 ASiM Basic Functions

2. THE PLCOPEN PROGRAMMING STANDARD

2.1 General

The amount of software available for automation systems continuously
increases as more and more machine functions become more reliant on it.
This growing complexity results in an increasing number of functions;
software development and maintenance become that much harder. In

addition, there are a number of solutions (→ products) on the market.

To simplify things for the user, it's necessary to have uniform, defined
standards.

The PLCopen organization is busy standardizing different areas,
components, and tools in the field of industrial automation engineering. In
accordance with this, there are different areas of activity:

Fig. 4: PLCopen areas of activity

Detailed information about the PLCopen Organization and their activities
can be found on the Internet at:

www.plcopen.org

 The PLCopen Programming Standard

 ASiM Basic Functions TM440 7

Guidelines are being developed for a series of standard areas and
applications to create a uniform level of operation for the different system
solutions.

Every provider of automation solutions that is a member of this
organization provides a uniform operating variant for his system that has
been defined by PLCopen. As users, we can be sure that we can handle
and work with PLCopen-supported systems as long as we are familiar with
the PLCopen standard. B&R is an active member of the PLCopen
organization.

2.2 Advantages

Manufacturer-independent software development
Because "Where you see PLCopen, you get PLCopen", and each provider in
the PLCopen organization supports this standardized "pool of functions".

Shorter development times
Getting to know the specific system solution of a particular provider is no
longer necessary, which essentially allows you to start implementing basic
functionalities right away. Furthermore, the PLCopen standard is regarded
for its simple application.

Simple program maintainability
As we can deduce from the above points, PLCopen provides a tool that
offers a clearly-arranged structure in the application program thanks to its
simple function blocks. This greatly simplifies the process of making
corrections and updates as well as finding errors.

Full support from B&R
The PLCopen standard for positioning applications is available for the B&R
drive solution. This means that project setup and configuration can be
carried out quickly and easily thanks to the standardized function blocks. In
addition to the standardization, special B&R-specific functions are also
provided, which were prepared in accordance with the standard. This
makes it possible to fully utilize the entire functional range of the ACOPOS.
The function blocks are provided in a function library.

The "ACP10_MC" Function Library

 8 TM440 ASiM Basic Functions

3. THE "ACP10_MC" FUNCTION LIBRARY

The ACP10_MC function library encompasses the function blocks for
controlling the ACOPOS. In addition to the standardized function blocks,
this library offers B&R-specific expansions for the special ACOPOS
functions.

3.1 Structure and composition

As mentioned earlier, the PLCopen Motion Control Standard makes it much
easier to operate drive systems from various manufacturers. Basic
functions (e.g. "Positioning to an absolute target position" or "Homing
procedure", etc.) are defined, which can be used with any of these systems.

Fig. 5: PLCopen motion control logo

This provides the user with a completely uniform user interface for a
specific area of standard applications.

The actual range of ACOPOS functions goes beyond the functionalities
contained in the standard. For example, various powerful tools for
connecting drives are provided on the ACOPOS (see TM441 Motion
Control: Multi-Axis Functions). Basic positioning functions are also
available with advanced options.

The ACP10_MC library was expanded with a few ACOPOS-specific
functions to enable the user to use these functionalities with just one
comprehensive access. These advanced functions are operated exactly the
same way as the standard functions.

 The "ACP10_MC" Function Library

 ASiM Basic Functions TM440 9

3.2 Function groups

The difference between the PLCopen Motion Control Standard and the
B&R-specific function blocks is indicated in the name of the respective
function block:

The standard function blocks are always named using "MC_" at the
beginning of the name, such as MC_MoveAdditive or MC_ReadAxisError.

"MC_BR_" is used for B&R-specific function blocks (expansions) such as
MC_BR_BrakeOperation, MC_BR_AutControl, etc.

Fig. 6: ACP10_MC library

Classification of the function blocks

The ACP10_MC library has a relatively large number of function blocks.
These function blocks can be divided into different groups according to
their area of use:

Basic functions for:

• Preparing the drive

• Basic movements, such as a movement with absolute target position or

relative traverse distance, etc. ...

• Determining the drive status, for reading position values, speed values,
etc. ...

• Determining and acknowledging drive errors

• Query and control functions for digital input and output signals

• Position measurement

The "ACP10_MC" Function Library

 10 TM440 ASiM Basic Functions

• Managing the PLCopen axis parameters

• Managing ACOPOS ParIDs

Multi-axis functions for:

• Creating an electronic gear

• Connecting drives using cam profiles

• Configuring and controlling the cam profile automat

(see TM441 Motion Control Multi-Axis Functions)

An ACOPOS servo drive must be defined before the function blocks in the
ACP10_MC library can be used on the drive. This can be done using a
simple routine.

Note:

A complete list of the function blocks can be found in the appendix of
the corresponding training documentation ("Basic Functions", "Multi-
Axis Functions"). The Automation Studio online help contains extensive
information about the usage and functionality of each function block.

Fig. 7: List of function blocks in the Automation Studio online help

 Definition of a Drive

 ASiM Basic Functions TM440 11

4. DEFINITION OF A DRIVE

The process for creating a drive configuration in Automation Studio was
described in the preceding training module. Specific commands could
already be transferred to a drive using the diagnostics tool, "NC-Test".

In the following, we will take a look at how to start actions from an
application task and implement commands such as movements using a
certain program sequence.

To do this, we first need an axis reference that we can use to address the
axis object. In other words, we need to use a function to let the system
know that we want to use a certain axis and need it to return an axis
reference which we can use.

4.1 "ncaccess" function

The "ncaccess" function is available for us to define the axis. This function
registers the NC object (axis) with the NC manager. After the function
executes successfully, the respective axis object is put into cyclic operation
(i.e. it is assimilated into the manager's execution sequence and commands
are passed on).

In addition, we also receive an axis reference that can be used to access
the axis object from now on.

Fig. 8: Automation Studio online help – "ncaccess" parameter

Note:

The "flexible NC configuration" in Automation Studio 2.x is required for
using the "ncaccess()" functions to request the axis reference for the
axis object (NC object) (see TM410 Motion Components for information
about managing the NC objects in the NC deployment table).

Definition of a Drive

 12 TM440 ASiM Basic Functions

In the image above (Fig. 6) we see the correct function call as well as a list
of function parameters as they are shown in the Automation Studio online
help documentation.

Which parameters does this function need?

�nc_sw_id
This parameter specifies the product family. In our case, the NC constant
"ncACP10MAN" must be used for the ACOPOS series.

� access_name !!!
The name that has been defined for the axis object in the axis mapping
under NC Object Name should be used here.

Automation Studio 2.x

Fig. 9: Deployment table in Automation Studio 2.X

Automation Studio 3

In AS 3, axes are mapped in the NC Mapping Table (similar to the
Deployment Table in AS 2). This can be opened by double-clicking on an
ACOPOS in the hardware tree.

Fig. 10: NC Mapping Table in Automation Studio 3

nc_object
The reference for the axis object (the memory address of the NC object's
NC structure and therefore the reference for the axis object). Specifying
this value allows us to apply functions to the desired axis.

 status
returns the function status and should therefore always be checked every
time this function is called. A return value of "ncOK" (this corresponds to
the constant value 0) indicates that the NC object (axis) was able to be
addressed successfully.

Information about errors that may occur when this function is called can be

 Definition of a Drive

 ASiM Basic Functions TM440 13

found by looking up the status error number in the Automation Studio help
system.

Notes:

Error number 10600 is a special case. Although the axis was able to be
registered correctly and the reference address is valid, there is still
another error on the ACOPOS servo drive.

For performance reasons, the ncaccess function should be executed in
the Init-Sp of the corresponding task. This guarantees that the function
is called cleanly once.

Task: "Using the ncaccess function"

You can use this exercise to quickly learn how to use the ncaccess
function.

Try executing "ncaccess" in your controller task's Init-subprogram and
check the status value.

Example for the function call:

(* INIT Subprogram *)

access_status:= ncaccess(ncACP10MAN, ADR(’Axis1’), ADR(Axis1Obj));

The received ID ("Axis1Obj") can then be used for the ACP10_MC
functions after the axis has been successfully addressed ("ncOK").

Using the Functions

 14 TM440 ASiM Basic Functions

5. USING THE FUNCTIONS

This section offers some basic information about using the ACP10_MC
function blocks. We will look at how to operate the positioning function
blocks and which possibilities are available for monitoring the procedure
(action). The corresponding function library must first be added to the
project.

5.1 ACP10_MC library

In order to use positioning function blocks in Automation Studio, the
ACP10_MC library must first be integrated into the project.

The library is automatically integrated in Automation Studio as soon as an
ACOPOS has been added to the hardware tree. The latest version of the
ACP10_MC library is always integrated.

This can be changed as follows in the event that an older version should be
used:

Automation Studio 2.x

To do this, you can select the desired version of the Motion Control library
(ACP10_MC) by using the NC properties pull-down menu in Automation
Studio.

Fig. 11: Implementing the ACP10_MC library

The corresponding library version is imported into the project after it's
selected. Once this is done, the motion control function blocks are
available for use in the application program.

 Using the Functions

 ASiM Basic Functions TM440 15

Automation Studio 3

Versions can be changed in Automation Studio by integrating an older
ACP10_MC library – Version.

A library can be added via the shortcut menu by selecting Append Object.

Fig. 12:Appending a new object

Fig. 13: Appending an already existing library

After selecting the ACP10_MC library, the desired version can be defined
via the pull-down menu. The original version is overwritten by the new
selected version after inserting the library.

Fig. 14: Inserting another ACP10_MC library version

Using the Functions

 16 TM440 ASiM Basic Functions

5.2 Important settings when using ETHERNET POWERLINK

When using ETHERNET POWERLINK as communication network, the
following settings must be checked in the project:

System Timer / System Tick:

The System Tick determines the shortest time frame in which the task
classes can be processed. It is the time basis for processing the task class
system.
The System Tick can be generated by all devices that have a timer device.
Such devices include Powerlink interface cards, X2X interface cards or
even the CPU itself.

The Powerlink interface card must specify the timer in order for the
application to run synchronous to the drives.

A settings dialog box appears in the shortcut menu on the CPU under the
Properties selection.
The System Timer can be set under the Timing tab. The Powerlink
interface card is selected as system timer:

Fig. 15: Selecting the System Timer

After the Powerlink interface card has been selected as System Timer, the
Powerlink cycle time is automatically displayed in the CPU Timer field.

Fig. 16: System Tick is equal to the Powerlink cycle time

 Using the Functions

 ASiM Basic Functions TM440 17

The Powerlink cycle time can be changed as follows if necessary.

Adjusting the Powerlink cycle time

The Powerlink cycle (cycle time) is set directly on the corresponding
interface in the project. 400 µs is the smallest value that can be set. All
other values must be a whole-number multiple of 400 µs.

The Powerlink folder can be used to set the Powerlink cycle time by right-
clicking on the Powerlink interface.

Fig. 17: Powerlink interface properties

Automation Studio 2.x

Fig. 18: Setting the Powerlink cycle time in Automation Studio 2.x

Using the Functions

 18 TM440 ASiM Basic Functions

Automation Studio 3

Fig. 19: Setting the Powerlink cycle in Automation Studio 3

The task class idle time must be a multiple of the CPU Timer:

Fig. 20: Task class idle time settings

The NC manager cycle time (task class for operation) is defined in the NC
configuration: This is set to Cyclic #1 by default.

Fig. 21: Setting the NC Manager cycle time

 Using the Functions

 ASiM Basic Functions TM440 19

5.3 Controlling the Function Blocks

As discussed earlier, all of the function blocks in the ACP10_MC library (i.e.
the standard functions as well as the ACOPOS-specific expansions) are
equipped with standard defined operating and status parameters.

This standardized operation of all function blocks makes it easier to use the
program and helps to ensure a clear overview during programming.

Fig. 22: Standard function parameters

� Axis
specifies the axis object (real or virtual axis), for which the function block
should be used - as well as the axis reference, which we received from the
"ncaccess" function.

� Execute and Enable
Used to start the function block.

Note:

Difference between Execute and Enable:
Function blocks with "Execute" input read their input values and
execute their tasks at a positive edge one time on the Execute input.
This makes it possible e.g. to change the speed input of a single axis
FB. The new value is read when a new positive edge occurs on the
Execute input.
Function blocks with "Enable" input execute their task each time they
are called and the Enable input is TRUE. They accept changes to their
inputs immediately as long as the Enable input is TRUE.

Using the Functions

 20 TM440 ASiM Basic Functions

Busy
Indicates that the respective action is currently being executed (i.e. was
started successfully, but is not yet finished).

 Done
Each function block contains a status input that indicates the successful
completion of the action. This output is labeled differently depending on
the function block, but always serves the same purpose.

 CommandAborted
indicates that the command was aborted by another function block call.

 Error
indicates that an error occurred during the function block call.

 ErrorID
If an error occurs, the corresponding error number is returned here. This
provides information about the cause of error. A list of error numbers can
be found in the Automation Studio online help.

How does this control data behave while the action is being executed?

Successful command processing:

Fig. 23: Command processing successful

As illustrated above, the process is started when a positive edge arrives at
the Execute input. Active processing of a command is indicated via the
Busy output. Done (or InVelocity, InGear etc.) indicates that the action has
been completed successfully.

 Using the Functions

 ASiM Basic Functions TM440 21

Command processing with error:

Fig. 24: : Command processing failure

In this case, an error occurs after enabling the action. If the "Error" output is
active, then a corresponding error number is displayed via "ErrorID"
(PLCopen Motion Control error numbers).

Command processing interrupted:

Fig. 25: : Command processing aborted

In this case, the command that is about to be processed is interrupted by
another command. This is always the case when the executed function
block affects an already active function block Busy= 1).

For example, an absolute movement (MC_MoveAbsolute) can be
interrupted by a relative movement (MC_MoveAdditive).

Function blocks for reading status data (position, parameter, etc.) and
commands for movements do not affect each other.

Using the Functions

 22 TM440 ASiM Basic Functions

Summary:

• The status information Done, Command Aborted, Error and.
ErrorID remain set until the Execute input is reset.

• The status outputs are set for the duration of a cycle if the
Execute input is already disabled before this signal arrives (as
seen in the diagram):

Fig. 26: Signal duration is equal to one cycle

• The Execute input must be set to FALSE to acknowledge the
ErrorID output of a FB. The outputs are then reset the next time a
function is called.

• The function blocks with an Enable input are only active as long
as this input remains set. Otherwise, the action is rejected
including the current status values.

 Using the Functions

 ASiM Basic Functions TM440 23

Task: "Using the ACP10_MC basic functions"

The function blocks from the ACP10_MC library can be used quickly and
easily in an application task. This procedure can also prove quite useful
later to try out functions before integrating into a fixed sequence.

This is done as follows:

The desired ACP10_MC library version must first be integrated into the
project. (� see 5.1 ACP10_MC_Library)

A reference for the axis object must be received by using the ncaccess
function before the ACP10_MC function blocks can be used in the
application program.

The desired function blocks can now be consecutively inserted to the
cyclic part of the program.

 →

Fig. 28: Inserting new function block

Define the instances required for each function block (data structures for
the function blocks):

Fig. 28: Declaring a function block

After completing the insert dialog box, the function call is added to the
program with the input parameters, as follows:

MC_Power_0(Axis:=, Enable:=)

Using the Functions

 24 TM440 ASiM Basic Functions

To allow for a clear and organized programming environment, the input
parameters should be removed from the function block and defined
individually right before the function block is called (see below).

The Axis parameter must be provided on each function block with the
axis object's reference (example above: "Axis1Obj"). All remaining
parameters can be operated using the watch window.

This results in the following program structure:

(* Cyclic program section *)

(* Function block calls *)

(* ID assignment *)
MC_Power_0.Axis:= Axis1Obj;
(* Function call *)
MC_Power_0();

MC_Home_0.Axis:= Axis1Obj;
MC_Home_0();

MC_MoveAdditive_0.Axis:= Axis1Obj;
MC_MoveAdditive_0();
...

Download the project and operate the various function blocks from the
Watch window. If necessary, you should define input parameters for the
corresponding function block and activate the function block using
"Execute" or "Enable":

Fig. 29: Controlling the functions via the Watch

As seen in the image, the instances for the function block (= data
structure) can be placed and operated in the Watch (MC_MoveAdditive
example).

 Using the Functions

 ASiM Basic Functions TM440 25

Important:

The drive controller must first be activated (MC_Power) to prepare the
ACOPOS for movement actions. A homing procedure is then necessary
(MC_HOME):

Functions for preparing and moving the drive:

• MC_Power & MC_Home

• MC_MoveAbsolute, MC_MoveAdditive, MC_Stop

• MC_MoveVelocity, MC_SetOverride

Error handling functions:

• MC_ReadAxisError (for acknowledging errors on the ACOPOS)

• MC_ReadStatus (for outputting the current drive state, see "5.3.
Drive States")

• MC_Reset (if the drive object is in the "Errorstop" state due to a
preceding axis error).

Functions for reading axis data:

• MC_ReadActualPosition

• MC_ReadActualVelocity

Use the functions described above and pay attention to the effects on
the drive and the function block status parameters.

Using the Functions

 26 TM440 ASiM Basic Functions

Caution:

The initialization value of the function block variables (variable
declaration in the user task when inserting the function block) must be
0. Accordingly, no variables with the "permanent" or "remanent"
attribute may be used. This prevents any errors from occurring in the
internal sequence after a restart.

 Using the Functions

 ASiM Basic Functions TM440 27

5.4 Drive states

Specific defined states are determined for operating a drive. These states
provide a simpler overview of complex movement procedures and make it
easier to process error situations.

These states are:

• Disabled, the drive controller is switched off.

• Standstill, the drive is not currently executing a movement and is
ready for a positioning command.

• Homing, the drive is executing a homing procedure.

• Errorstop, the drive is in standstill after an error.

• Stopping, the drive is stopping an active movement.

• Discrete Motion, the drive is executing a movement with target
position. Therefore, the movement has a defined end.

• Continuous Motion, the drive is executing a movement without
target position. The movement has no defined end.

• Synchronized Motion, the drive is coupled to another drive.

Transitions between these states are now executed using specific
positioning commands (function blocks).

This can result in the following sequence for example:

Fig. 30: Progression of states

Let's assume that the axis is in the Standstill state. As soon as it has
successfully performed a homing procedure, the MC_MoveAbsolute
command can be used to start a movement.

After the target position has been reached, the drive returns to its "initial
state". If a drive error occurs during the positioning action, then the axis

Using the Functions

 28 TM440 ASiM Basic Functions

enters error state (Errorstop). This can be acknowledged using the
MC_Reset function (after the drive error has been corrected).

The following diagram shows how all of the states are interconnected:

Fig. 31: PLCopen Motion Control diagram of states

Homing

Errorstop

Stopping

Discrete Motion
Continuous

Motion

Standstill

 Note1

MC_MoveVelocity
MC_BR_MoveVelocityTriggStop

MC_Stop

MC_Move Velocity
MC_BR_MoveVelocityTriggStop

Note1
Error

Note 4

MC_Reset
MC_Stop

Done

MC_Home

Error

MC_Stop

Done

MC_MoveAbsolute
MC_MoveAdditive
MC_BR_MoveAbsoluteTriggStop
MC_BR_MoveAdditiveTriggStop

MC_MoveAbsolute
MC_MoveAdditive
MC_Halt

Error

Error

Synchronized
Motion

MC_GearIn(Slave),
MC_CamIn(Slave),
MC_BR_AutControl

MC_Halt

MC_GearIn(Slave)
MC_CamIn(Slave)
MC_GearInPos (Slave)
MC_BR_AutControl

Error

MC_Stop

Error

 MC_Move Velocity;
 MC_BR_MoveVelocityTriggStop

Disabled

Note 2

Note 3

MC_Stop

MC_GearOut
MC_CamOut

Note 5

Done
Note 5

Note 6

MC_BR_AutControl

MC_CamIn

MC_CamIn

 MC_MoveAbsolute;
 MC_MoveAdditive;
 MC_Halt;
 MC_BR_MoveAdditiveTriggStop;
 MC_BR_MoveAbsoluteTriggStop

MC_Reset

 Using the Functions

 ASiM Basic Functions TM440 29

The most important drive states are included in the diagram. They can be
used for coordinating positioning sequences. The MC_ReadStatus function
block is used to read the current status from an axis.

Note:

A virtual axis does not have a drive controller. Therefore, unlike the real
axis, the virtual axis does not have a Disabled status either. The NC
object "virtual axis" starts in the Standstill state and does not
necessarily need the MC_Power function block for activation.

Task: "Status monitoring"

The current drive state can be determined using the MC_ReadStatus
function block. Add this function to your test program and monitor the
state changes when executing different positioning actions.

Using the Functions

 30 TM440 ASiM Basic Functions

5.5 Advanced settings

Additional settings in Automation Studio allow us to make adjustments to
position values. Periodic position behavior as well as position scaling can
be achieved using these simple configurations.

What do we need to do first?

The basic settings for scaling a revolution in units are made in the encoder
interface parameters for the axis:

Fig. 32: Init parameter module, encoder interface

In this case (image above), the example shows 10,000 units divided into
two axis revolutions, which results in 5,000 units per revolution. This
allows us (of course keeping the maximum resolution of the encoder in
mind) to divide the revolutions according to our needs. The preset data
type for the position is DINT (double integer), i.e. a whole-number value.

PLCopen function blocks uniformly use the REAL data type for position
specifications. This makes the following configuration options possible and
sensible:

Values for the position period and factor can be entered for the
PLCopen_ModPos="<Period>,<Factor>" entry in the axis mapping table
to adjust the position value:

Fig. 33: NC mapping table, Advanced settings

 Using the Functions

 ASiM Basic Functions TM440 31

� Period

For continuous axis movements, a position value determined periodically
is frequently needed. If a value greater than 0 is being used for the period,
then the position value is adjusted according to this entry. It refers directly
to the scaling of the axis in the encoder parameters (see above). All
PLCopen function blocks "work" with this periodic position.

For example, if the value <Period> = 1000 is used, then the position value
always increases from 0 towards 999 during positive movement, resets
again to 0, increases up to 999, etc.

Fig. 34: Periodic axis position

Periodic position conversion can also be explicitly disabled by entering
<Period>=0 if for example, periodic behavior is not required, (but a
specific factor has to be used). This once again limits the position to the
value range of the REAL data type.

� Factor

PLCopen function blocks use the REAL data type for the axis position. This
data type allows us to use decimal places, which in turn makes simplified
scaling interesting.

What exactly is "scaling"?

"Scaling" is nothing more than "converting". The best way to look at this is
to use an example:

A certain application requires positioning to be accurate down to 1 µm.
Let's assume that the way we've configured the encoder parameters
allowed us to set up a 1 µm distance per positioning unit.

Using the Functions

 32 TM440 ASiM Basic Functions

Now it might be beneficial if we could specify the distance in millimeters
for our positioning task with PLCopen function blocks. And that's exactly
what we achieve with this factor.

The equation looks like this:

Factor

terUnitsAxisParame
tsPLCopenUni =

So if we set the factor to a value of 1000, we will get our scaling to
millimeters. If we now start a movement for a distance of value 1 with the
corresponding PLCopen function block, our axis will actually travel 1000
axis parameter units.

<Factor> PLCopen units
[REAL value]

Axis parameter units
[DINT value]

1 1 1

1000 1 1000

1000 0.001 1

Note:

The velocity and acceleration values will also refer to this scaling in the
future.

Task: "Settings for position adjustment"

This simple example should implement the settings shown above and
demonstrate the possibilities.

Default:

A pivoting carrier must move a product to different stations for
processing (specific angular positions within the 360° of a full rotation).
Positioning must be within 0.1° of accuracy. The MC_MoveAbsolute
function block is used for approaching the positions.

 Using the Functions

 ASiM Basic Functions TM440 33

To simplify this procedure a little, the position is specified in degrees,
with one decimal place, e.g:

..
MC_MoveAbsolute_0.Position:= 135.0; (* Goal: 135° *)
...

The carrier is driven by a gear (gear ratio= 5:1) using a servo motor.

Find the appropriate settings for the position value (encoder setting
and advanced settings) based on these specifications.

Solution:

The basic settings for the encoder are made in the Init parameter
module. Therefore, for the position resolution in 0.1° steps, 3600 units
are required for one revolution of the rotating carrier. These units are
distributed over 5 motor revolutions.

Fig. 35: Init parameter module, encoder interface, setting

If a movement of 3600 units is now executed, then the motor performs
exactly 5 revolutions and the carrier is rotated exactly 360°. The gear
has now been fully set.

To now get the desired scaling for the positioning function, the value 10
must be defined for the factor and the value 3600 for the period (based
directly on the encoder setting):

Programming

 34 TM440 ASiM Basic Functions

6. PROGRAMMING

The application program should establish an automatic sequence for
controlling the ACOPOS. When doing this, it is important to implement the
function blocks into the program in a clear and organized manner.

Furthermore, error events must be taken into consideration and
accordingly handled if necessary.

6.1 Creating an automatic sequence

How can we implement function blocks of this type into a program structure
optimally and as clearly as possible?

Each function block allows for targeted execution. In other words, we can
start our commands at a certain position and at a desired time in our
program code.

Afterwards, the function block provides feedback about the status via the
corresponding output parameters:

• Was the function block able to be executed successfully?

• If not, which errors (ErrorID) occurred?

• How does the "physical" process look? Is the axis already in the target
position, running at the intended speed, able to be referenced
successfully, etc.?

We can use this information as a basis for making decisions regarding the
following steps in the program sequence. If an error would occur in a
program, we would have to respond differently depending on what that
error is.

A control structure that is especially well-suited for managing these types
of function sequences is the step sequencer.

This type of structure allows the implementation of individual steps whose
sequence can be determined by the use of a step index.

 Programming

 ASiM Basic Functions TM440 35

The following simplified diagram shows an example of what this type of
step-by-step function execution could look like.

Fig. 36: Sample sequence, structured programming

We can now activate our function blocks (Execute) in the individual
sequence steps and use the parameter values (Done, CommandAborted,
Error, ErrorID etc.) to determine what the next step would be.

At the same time, we are providing our application with a clearly arranged
structure so that any future updates or modifications can be implemented
relatively easily.

Programming

 36 TM440 ASiM Basic Functions

Task: "Structured programming"

This task should clarify how the function blocks in the ACP10_MC library
can be used in an application program to achieve an automatic
sequence.

The function blocks, which in the previous example were solely
executed using the watch window, should now be controlled using a
step sequencer.

Default:

Create the following sequence:

Fig. 37: Task, sequence diagram

• After starting up the system, the system should wait for the signal
to activate the drive controller in a waiting step (WAIT). If a
corresponding signal arrives (from the user), then the controller is
activated with the MC_Power function. The program should then
go into another waiting step (READY).

• It should be possible to start other actions, a homing procedure or
a relative or absolute movement from the waiting step. After the
action is complete, the program should return to the waiting step.

 Programming

 ASiM Basic Functions TM440 37

The routines must be controlled by the user (watch window). To do this,
the following structure should be created in the project:

Control structure

AxisBasic_typ:

Power | BOOL | Controller on / off
Home | BOOL | Start search home
MoveAbsolute | BOOL | Start absolute movement
MoveAdditive | BOOL | Start relative movement
ParaPosition | REAL | Target position absolute Mot ion
ParaDistance | REAL | Traverse distance rel. movem ent
ParaVelocity | REAL | Movement velocity
ParaAcceleration | REAL | Movement acceleration
ParaDeceleration | REAL | Movement deceleration

Create this structure in the project and a global variable ("gAxisBasic"
type AxisBasic_typ). The individual elements can be used to control the
routines.

Implementing the first routine ("Power"):

The MC_Power function block is required for this routine. The function
block call can be placed in the cyclic section of the control task
("Function Block Calls"). Fixed input parameters (e.g. axis reference) can
also be set here.

The function block controller inputs are linked in the step sequencer:

(* Cyclic program *)
...
(* AxisStep = Step index *)
CASE AxisStep OF

 (* Wait for "Controller on" command *)
 STATE_WAIT:
 MC_Power_0.Enable:= 0;

 (* "Controller on" command *)

IF (gAxis.Power = 1) THEN
 AxisStep:= STATE_POWER_ON;
 ...

 STATE_POWER_ON:
 (* Start action *)
 MC_Power_0.Enable:= 1;

 (* Controller action enabled? Action complete? *)
 IF (MC_Power_0.Status = 1) THEN
 AxisStep:= STATE_READY;
 END_IF
 ...
END_CASE

Programming

 38 TM440 ASiM Basic Functions

(* Function block calls *)
 MC_Power_0.Axis:= Axis1Obj; (* Axis reference assignment *)
 MC_Power_0(); (* Cyclic call *)

The sequencer in the step sequencer decides if and when a function
block is enabled.

The following querry can be set in the cyclic section of the program to
switch off the controller (possibly before the step sequencer):

IF (gAxis.Power = 0) THEN
 AxisStep:= STATE_WAIT;
END_IF

As a result, resetting the "gAxis.Power" structure element will cause the
step STATE_WAIT to be executed cyclically. The controller is then
deactivated (Enable= 0).

Implementing the other routines:

The following actions can now be executed the same way starting from
the STATE_READY step. You must also consider which parameter
values must be taken from the operating structure. This would appear as
follows for the action, "absolute movement":

STATE_READY:
 (* Command? *)
 IF (gAxis.MoveAbsolute = 1) THEN
 gAxis.MoveAbsolute:= 0;
 AxisStep:= STATE_MOVE_ABSOLUTE;

 END_IF
...

STATE_MOVE_ABSOLUTE:
 (* Transfer of the relevant parameters *)

MC_MoveAbsolute_0.Position:= gAxis.ParaPosition;
 MC_MoveAbsolute_0.Velocity:= gAxis.ParaVelocity:
 ...

(* Start action *)
MC_MoveAbsolute_0.Execute:= 1;

(* Target position reached *)

 IF (MC_MoveAbsolute_0.Done = 1) THEN
 MC_MoveAbsolute_0.Execute:= 0;
 AxisStep:= STATE_READY;
 END_IF

As you can see, we must not forget to transfer the corresponding
parameter values to the function block before activation.

Function calls and fix configurations can be added "below" in the
program ("Function Block Calls").

Perform the necessary programming and test the routines using the
control structure.

 Programming

 ASiM Basic Functions TM440 39

6.2 Error handling

We have already partially implemented automatic routines in the previous
example, but we have not taken potential error events into consideration.

Which errors have to be taken into consideration in the application
program?

We can differentiate between two different "error cases":

• Errors that occur when a function block is called (e.g. because of
an incorrect configuration)

• Drive errors

How can these errors be monitored?

PLCopen function blocks provide direct feedback about their status. An
error that occurs during execution is displayed on the Error status output.
In this case, a corresponding error number is output on the function block's
ErrorID output, which can be used to more precisely localize the error
(motion control, error numbers).

The MC_ReadAxisError function block is available to monitor errors on the
ACOPOS device.

Caution:

If a function block is called with an error, it's absolutely necessary to
reset it before the next application so that the error status can be left.
This is done by executing the function block with Enable=0 or
Execute=0.

Programming

 40 TM440 ASiM Basic Functions

These options allow the following approach to be used as an error handling
routine:

We recommend using the ReadAxisError function block cyclically in the
program to monitor ACOPOS errors. The function block must be constantly
active for this (Enable = 1). The necessary query (error?) can be placed in a
cyclic part of the program (possibly before the step sequencer).

If a drive error is registered, then the regular program execution should be
stopped and a step for handling the error should be
entered.

The same is true when an error occurs during the actual function block call.
There should also be an "error step" implemented to handle this situation.

Note:

Additionally, the MC_ReadAxisError function block also offers the
possibility to output plain text about the current ACOPOS error (a brief
description of the error) using a STRING variable (type STRING(79)[4]).

In order to use this option, the NC software object error text module
must be added to the project in the desired language via the known
method.

The name of this module must be connected to the function block.
Once this is done, the text for the current error number is then sent
from the function block to the specified STRING variable.

Detailed information about the configuration can be found in the
Automation Studio online help.

 Programming

 ASiM Basic Functions TM440 41

The following flow chart illustrates this structure once again:

Fig. 38: Sequence for error handling in a positioning task

Starting from the top, we deal with both types of error events (drive error
or function block error):

Programming

 42 TM440 ASiM Basic Functions

• If the problem is a drive error, we can begin carrying out the
step-by-step analysis (ACOPOS error numbers) and
acknowledge the pending error. The function block returns the
respective ACOPOS error number until the error that occurred
last is acknowledged.

• If a function block error message is output, an immediate check
should take place to see whether the behavior was caused by an
ACOPOS error (ErrorID = 29226 on the function block). If this is
the case, you can switch directly to the routine to analyze and
acknowledge the drive errors. If not, this type of error can also
be acknowledged and the error step can be exited after the error
event (PLCopen motion control, error numbers) is analyzed.

• After both routines have been run through, the drive status
should be checked as well. In certain cases, the ACOPOS device
can be set to an Error stop status. This status remains in effect
until a status reset (MC_Reset) is carried out (see the motion
control status diagram).

The application can then be continued once all errors have been corrected.

Note:

This program sequence should in no way be seen as a guideline for
implementing error handling. Instead, it should merely serve as a
universal approach or basis for implementing this type of routine.

Task: "Implementing the routines for error handling"

Implement error monitoring and error evaluation in your application
program based on the diagram shown above.

Additional specifications:

It should be possible to acknowledge errors using a common variable. In
the event of an error, the error number should be transferred to a
separate element of the control structure (see previous example) and
the error text should be displayed.

 Programming

 ASiM Basic Functions TM440 43

The control structure (AxisBasic_typ) for the task must be expanded to
include the following elements:

ErrorAcknowledge | BOOL | Acknowledge error
ErrorID | UINT | Error number
ErrorText | STRING (79) [4] | Error text

Tips for implementation

To start with, the function block MC_ReadAxisError is required for cyclic
monitoring of ACOPOS errors. This can be placed in the cyclic section of
the program ("Function Block Calls"), � Enable" set permanently to 1
("TRUE"). The error text string can also be connected here (see
Automation Studio online help).

The return status (drive status) must also be evaluated cyclically. E.g.:

(* Cyclic program section *)

(* Checking for drive errors *)
IF (MC_ReadAxisError_0.AxisErrorID <> 0) THEN
 (* Error handling *)
 AxisStep:= STATE_ERROR_AXIS;
END_IF

Additional queries for function errors must be implemented to evaluate
the function states within the step sequencer.

For example:

(* Cyclic program section, step sequencer *)

(* Absolute movement *)
STATE_MOVE_ABSOLUTE:
 (* Transfer of the relevant parameters *)
 MC_MoveAbsolute_0.Position:= gAxis.ParaPosition;
 ...

(* Start action *)
MC_MoveAbsolute_0.Execute:= 1;

(* Target position reached *)

 IF (MC_MoveAbsolute_0.Done = 1) THEN
 MC_MoveAbsolute_0.Execute:= 0;
 AxisStep:= STATE_READY;
 END_IF

(* Function block error *)
IF (MC_MoveAbsolute_0.ErrorID <> 0) THEN

 gAxis.ErrorID:= MC_MoveAbsolute_0.ErrorID;
 (* Error handling *)

AxisStep:= STATE_ERROR;
END_IF

Programming

 44 TM440 ASiM Basic Functions

The routines for acknowledging the error must still be created (function
errors and drive errors, see diagram above). After the acknowledge has
been completed, the task returns to its initial state (STATE_WAIT).

For example:

(* Cyclic program section, step sequencer *)

(* Function error handling *)
STATE_ERROR:

(* Checking for drive errors *)
IF (gAxis.ErrorID = 29226) THEN
 AxisStep:= STATE_ERROR_AXIS;
ELSE

(* Acknowledge by user *)
IF (gAxis.ErrorAcknowledge = 1) THEN

 gAxis.ErrorAcknowledge:= 0;
 gAxis.ErrorID:= 0;
 (* Check status *)
 IF (MC_ReadStatus_0.Errorstop = 1) THEN
 AxisStep:= STATE_ERROR_RESET;
 ELSE
 AXIS:= STATE_WAIT;
 END_IF
 END_IF
 END_IF
 ...

(* Drive error handling *)
STATE_ERROR_AXIS:

 gAxis.ErrorID:= MC_ReadAxisError_0.AxisErrorID;
 MC_ReadAxisError_0.Acknowledge:= 0;

 (* Acknowledge by user *)

IF (gAxis.ErrorAcknowledge = 1) THEN
 gAxis.ErrorAcknowledge:= 0;
 (* Execute acknowledge *)
 IF (MC_ReadAxisError_0.AxisErrorID <> 0) THEN
 MC_ReadAxisError_0.Acknowledge:= 1;
 END_IF
 END_IF

 (* No more errors on the drive *)
 IF (MC_ReadAxisError_0.AxisErrorCount = 0) THEN
 gAxis.ErrorID:= 0;
 (* Check status *)

IF (MC_ReadStatus_0.Errorstop = 1) THEN
 AxisStep:= STATE_ERROR_RESET;
 ELSE
 AXIS:= STATE_WAIT;
 END_IF
 END_IF
 ...

 Programming

 ASiM Basic Functions TM440 45

(* Reset status *)
STATE_ERROR_RESET:
 (* Start action *)
 MC_Reset_0.Execute:= 1;
 (* Exit error status *)
 IF (MC_Reset_0.Done = 1) THEN
 MC_Reset_0.Execute:= 0;
 AxisStep:= STATE_WAIT;
 END_IF
 ...

The corresponding function block calls (& fixed configurations) must be
available in the cyclic program section ("Function Block Calls"):

• MC_ReadAxisError with configurations for displaying error text

• MC_ReadStatus

• MC_Reset

You can test your routines using error configurations (e.g. movement
with a speed value set too high, etc.)

Note:

The notes for implementing the previous programming examples were
taken from the Motion Control sample project. The routines for
ACOPOS control are implemented the same way in this reference
project. To keep things simple, some confirmation messages were not
included in the examples.

Motion Control Sample Project

 46 TM440 ASiM Basic Functions

7. MOTION CONTROL SAMPLE PROJECT

A sample project for Motion Control applications, which demonstrates
selected functionalities from the ACP10_MC library, is included in the
Automation Studio installation program. This makes it possible to use this
project as a template for complete implementation of the axis functions.

The sample project is available in multiple variations, programmed in
Structured Text (ST), Ladder Diagram (LD) and in ANSI C.

The corresponding project versions can be found in the Automation Studio
installation directory under:

"...\BR_AS_25x_Lxxx\Samples\Motion\..."

7.1 Components

Which components does this project include?

The project is based on a SG4-CPU (CP360) for controlling two ACOPOS
modules. Powerlink (interface card F787) is used as communication
network.

The drive components (ACOPOS modules) in the project are managed
using the NC deployment table. Furthermore, INIT parameter modules are
also provided in the project for the NC objects "real axis" and "virtual axis"
(see TM410 Motion Components).

The core functions of the ACP10_MC library are shown in a total of four
control tasks (in the respective programming language):

 Motion Control Sample Project

 ASiM Basic Functions TM440 47

"basic": Various basic functions for drive control are structured here in a
complete sequence. Additionally, this task also contains a routine for
handling potential error situations.

The other tasks also contain the basic functions and the error handling
from the "basic" task, but with various expansions for multi-axis
functionalities as well (see TM441 Motion Control Multi-Axis Functions):

"gear": Function blocks for linking the axis (slave axis) via an electronic
gear to a corresponding linking signal (e.g. master axis, etc).

"cam": Function blocks for connecting the axis via a cam profile to a
corresponding connection signal.

"automat": Function blocks for configuring and controlling the cam profile
automat.

The control programs mentioned above provide a complete picture of how
the functions are used with the help of the necessary routines. They can be
considered as a reference for setting up and configuring positioning tasks
using the ACP10_MC function blocks. Control of the sequences is grouped
together into a separate operating structure for each task.

Additionally, a variation is displayed in the "machine" task that combines
the task controller for a master-slave connection ("basic" for the master
axis, "automat" for the slave axis) in a central operating structure.
Corresponding commands (start, stop, etc.) are distributed on both of the
"basic tasks" and important status information is displayed in the operating
structure.

Fig. 39: Machine functionality

Motion Control Sample Project

 48 TM440 ASiM Basic Functions

7.2 Start-up

The tasks from the sample project can be used for immediate
commissioning of the corresponding function blocks.

The desired task can be exported from the sample project using the known
methods and imported into a target project. Now, the "ncaccess" function
must simply be adjusted in the Init subprogram in order to use the control
task for an ACOPOS in the project:

The NC object name from the axis mapping must be entered in the
function.

Automation Studio 2.x

Automation Studio 3

Fig. 40: NC Mapping Table in Automation Studio 3

Note:

The specific hardware being used doesn't really matter. There only has
to be a correct drive configuration ("flexible NC configuration in AS 2.x"
with NC deployment table) in a project.

 Motion Control Sample Project

 ASiM Basic Functions TM440 49

Therefore, it is possible to use the task to control the virtual or real axes on
an ACOPOS as needed.

A control structure ("gAxis...") is provided to operate the sequences in each
task. This can be done from the watch window.

The NC software object "error text module" is required in the project to
display error texts. The MC_ReadAxisError function block uses a
corresponding module ("module name").

Notes:

The reference of the slave axis as well as the master axis is required for
the tasks with multi-axis applications ("gear", "cam" or "automat"). These
three tasks are each controlled by a global structure variable
"gAxisSlave". As a result, only one of the three tasks can be active in
the project at a time.
The "basic" task for controlling a master axis can be used to test multi-
axis functions on a drive

The NC software object "cam profile" (in the sample project: "profile") is
required in the project for connecting via a cam profile (tasks "cam" and
"automat"). However, this profile can also be taken from the sample

project.

Task: "Implementing the sample task for
 basic functions"

Import the "basic" task from the sample project into your application
project. Make the necessary adjustments to control your ACOPOS with
this task.

Get familiar with the sequence (identical to the previous programming
exercises) and get the application running. Test the individual
functionalities.

Managing ACOPOS Parameters

 50 TM440 ASiM Basic Functions

8. MANAGING ACOPOS PARAMETERS

A few function blocks are provided by the ACP10_MC library for managing
the parameters on the ACOPOS (selective reading and setting).

The software structure of the ACOPOS has already been looked at closely
in previous training material.

A brief review:

The ACOPOS has a large number of parameters. These parameters are
used to set the ACOPOS to the connected hardware, and to control and
check positioning sequences. The parameters are generally managed
using the NC operating system, which is connected to the the NC manager
on the controller via the common network.

However, direct access (read and write) to different parameters is also
required for specific applications during runtime. The ACP10_MC library
supplies the corresponding tools.

The following section will provide a brief overview of the possibilities for
managing ACOPOS parameters.

The different function blocks for ACOPOS parameter management
optimally cover various demands.

Note:

This is how the ACOPOS configuration can be adjusted to meet special
circumstances by making specific changes. The "Smart Process
Technology" functions are also operated using separate ParIDs on the
ACOPOS.

Note:

These functions are only offered by the B&R drive solution. These are
solely B&R-specific function blocks. The use of these function blocks
(operation, status check, etc.) is however identical to the PLCopen
Motion Control standard.

 Managing ACOPOS Parameters

 ASiM Basic Functions TM440 51

8.1 Initializing and reading individual parameters

Individual parameters can be initialized and read one time or cyclically.

Function blocks for initializing/reading one time:

• MC_BR_WriteParID

• MC_BR_ReadParID

Individual ParIDs can be initialized and read automatically with each
"manager cycle" (cycle time of the NC manager) by setting up a cyclic
transfer:

• MC_BR_InitCyclicWrite

• MC_BR_InitCyclicRead

A further function block can be used to establish independent cyclic
communication for a ParID between individual ACOPOS units:

• MC_BR_InitMasterParIDTransfer

This function bock is used for the cam profile automat's additive axes and
for Smart Process Technology functions.

Note:

Typical applications for these two functions would include value
monitoring or a control loop. The control loop can run on the controller.
"Actual values" are obtained cyclically. The set values determined here
can then be cyclically transferred to the ACOPOS.

Note:

Reading ParIDs is a clear-cut procedure. When doing this, the value of
the resepective parameter on the ACOPOS is determined.

Initializing means making a specific value "operational" for a parameter
on the ACOPOS. Initialization is not always automatic after transfer.
Certain functions only transfer parameter values to the ACOPOS. In
these cases, the initialization can be carried out at a later point.

Managing ACOPOS Parameters

 52 TM440 ASiM Basic Functions

8.2 Transfer and initialization of parameter sets

All other function blocks for managing ACOPOS parameters support the
transfer and initialization of multiple ParIDs.

There are a few different ways to establish these groups:

• The parameters entered in an ACOPOS parameter table are individually
transferred to the ACOPOS with each NC Manager task cycle and
immediately initialized by using the MC_BR_InitParTableObj function

block.

Fig. 41: ACOPOS parameter table

• In the "parameter list", the parameter configuration and the value
assignment can be easily adjusted during runtime. There is an additional
data type for this purpose that contains an element for the parameter ID
and an element for the parameter value. You can use this data type to
create an array (� list) in the task. Entries in this "list" can then be
changed from the application program during runtime.

Fig. 42: Data array as parameter list

All parameters in the parameter list, as for the ACOPOS parameter tables
themselves, are transferred to the ACOPOS with each NC Manager task
cycle and immediately initialized using the MC_BR_InitParList function
block.

 Managing ACOPOS Parameters

 ASiM Basic Functions TM440 53

• The "parameter sequence" uses the same array as the "parameter list".

Unlike the ACOPOS parameter tables or parameter lists, the parameters
in the parameter sequence are not transferred individually, but as a data
block in the NC Manager idle time task. Once transferred to ACOPOS,
they are not immediately initialized, but rather saved as a "recipe".
The initialization takes place independent of the data transfer and only
after the command "initialize parameter sequence" is run.

For the transfer, the MC_BR_DownloadParSequ function block is
required with which a sequence is placed at a specific index on the
ACOPOS. Initialization for a specific sequence (index) is possible using
the MC_BR_InitParSequ function block.

As a result of the index assignment, it is also possible to place multiple
parameter configurations together on the drive and initialize them
selectively.

Note:

Detailed information regarding the operation of these functions during
program execution is available, as usual, in the Automation Studio
online help.

Note:

Unlike the initialization variant, it's possible to change the parameters
that are available, as well as their values, in the predefined ACOPOS
parameter tables while the application program is running.

Managing ACOPOS Parameters

 54 TM440 ASiM Basic Functions

8.2.1 Additional information

Each of these function blocks is equipped with an input parameter
"DataAddress" for connecting the parameter groups "parameter list" and
"parameter sequence". An ACP10DATBL_typ structure variable still must be
provided here as intermediary:

Fig. 43: Connecting a parameter group via an ACP10_DATBL_typ variable

In the schematic above we see a simplified example of the procedure. The
parameter group is located on the left as a parameter array. The group is
connected to the function block via the variable for transfer configuration
(ACP10DATBL_typ). The parameter download can be made once this
assignment has been made correctly ("Execute= 1").

Note:

Detailed information about operating these functions can be found in
the Automation Studio online help.

 Summary

 ASiM Basic Functions TM440 55

9. SUMMARY

Power function blocks are provided for controlling the B&R drive solution.
These are designed based on the PLCopen Motion Control standard and
feature a uniform design regarding functional usage. Once the programmer
is familiar with this standardized operation, he can then begin to combine
the corresponding function blocks for the process from the Motion Control
library's pool of functions (ACP10_MC).

The automatic sequence can be optimally implemented using a step
sequencer. Safety routines expand the sequence to a complete positioning
application.

Fig. 44: Palletizing

In addition to the standard, specific function blocks are also provided for
controlling the drives. These are used to operate special ACOPOS
functions. This enables the programmer to utilize the full functional
capability for solving positioning tasks.

Appendix

 56 TM440 ASiM Basic Functions

10. APPENDIX

Motion Control Basic Functions (ACP10_MC):

Drive preparation:

MC_Power

MC_Home

MC_BR_BrakeOperation

MC_BR_InitModPod

MC_BR_LoadAxisPar

MC_BR_SaveAxisPar

MC_BR_InitAxisPar

MC_BR_InitAxisSubjectPar

Basis movements:

MC_MoveAbsolute

MC_MoveAdditive

MC_MoveVelocity

MC_BR_MoveAbsoluteTriggStop

MC_BR_MoveAdditiveTriggStop

MC_BR_MoveVelocityTriggStop

MC_BR_EventMoveAbsolute

MC_BR_EventMoveAdditive

MC_BR_EventMoveVelocity

MC_Stop

MC_Halt

MC_SetOverride

Determining the drive status

MC_ReadStatus

MC_ReadActualPosition

MC_ReadActualVelocity

MC_ReadActualTorque

Determining and acknowledging drive errors

MC_ReadAxisError

MC_Reset

 Appendix

 ASiM Basic Functions TM440 57

Digital input/output signals

MC_ReadDigitalInput

MC_ReadDigitalOutput

MC_WriteDigitalOutput

MC_DigitalCamSwitch

Position measurement

MC_TouchProbe

MC_BR_TouchProbe

MC_AbortTrigger

Appendix

 58 TM440 ASiM Basic Functions

Notes

 Appendix

 ASiM Basic Functions TM440 59

Overview of training modules

TM200 – B&R Company Presentation ** TM600 – The Basics of Visualization
TM201 – B&R Product Spectrum ** TM610 – The Basics of ASiV
TM210 – The Basics of Automation Studio TM630 – Visualization Programming Guide
TM211 – Automation Studio Online Communication TM640 – ASiV Alarm System
TM212 – Automation Target ** TM650 – ASiV Internationalization
TM213 – Automation Runtime TM660 – ASiV Remote
TM220 – The Service Technician on the Job TM670 – ASiV Advanced
TM223 – Automation Studio Diagnostics
TM230 – Structured Software Generation TM700 – Automation Net PVI
TM240 – Ladder Diagram (LAD) TM710 – PVI Communication
TM241 – Function Block Diagram (FBD) TM711 – PVI DLL Programming
TM246 – Structured Text (ST) TM712 – PVIServices
TM247 – Automation Basic (AB) TM730 – PVI OPC
TM248 – ANSI C
TM250 – Memory Management and Data Storage TM800 – APROL System Concept
TM260 – Automation Studio Libraries I TM810 – APROL Setup, Configuration and Recovery
TM261 – Closed Loop Control with LOOPCONR TM811 – APROL Runtime System
 TM812 – APROL Operator Management
TM400 – The Basics of Motion Control TM813 – APROL XML Queries and Audit Trail
TM410 – The Basics of ASiM TM830 – APROL Project Engineering
TM440 – ASiM Basic Functions TM840 – APROL Parameter Management and Recipes
TM441 – ASiM Multi-Axis Functions TM850 – APROL Controller Configuration and INA
TM445 – ACOPOS ACP10 Software TM860 – APROL Library Engineering
TM450 – ACOPOS Control Concept and Adjustment TM865 – APROL Library Guide Book
TM460 – Starting up Motors TM870 – APROL Python Programming
 TM890 – The Basics of LINUX
TM500 – The Basics of Integrated Safety Technology
TM510 – ASiST SafeDESIGNER
 **) see Product Catalog

Appendix

 60 TM440 ASiM Basic Functions

Back cover (number of pages divisible by 4)

Contact (Headquarters)

Weblink

Internationality

Copyright – Model number

T
M

4
4

0
T

R
E

.0
0

-E
N

G

0
9

0
7

©
2

0
0
7

 b
y
 B

&
R

.
A

ll
 r

ig
h

ts
 r

e
s
e
rv

e
d

.

A
ll
 r

e
g

is
te

re
d

 t
ra

d
e

m
a
rk

s
 a

re
 t

h
e

 p
ro

p
e

rt
y
 o

f
th

e
ir

 r
e
s
p

e
c
ti

v
e
 o

w
n

e
rs

.

W
e

 r
e

se
rv

e
 t

h
e

 r
ig

h
t

to
 m

a
k
e

 t
e

c
h

n
ic

a
l
c
h

a
n

g
e

s
.

