

Automation Studio Libraries IAutomation Studio Libraries IAutomation Studio Libraries IAutomation Studio Libraries I
TM260

 2 TM260 Automation Studio Libraries I

Prerequisites

Training modules: TM213 – Automation Runtime

TM240 – Structured Text (ST)

Software: Automation Studio 2.5

Automation Runtime 2.90

Hardware: None

 Automation Studio Libraries I TM260 3

Table of contents

1. INTRODUCTION 4

1.1 Objectives 5

2. LIBRARIES: GENERAL INFORMATION 6

2.1 Functions and function blocks 8

2.2 Library Manager 11

2.3 Help 16

2.4 Using functions and function blocks 17

3. STANDARD LIBRARIES 25

3.1 Function blocks with enable input and status output 27

3.2 Address inputs 29

3.3 Limitations on the Init subprogram or cycle program 29

4. USER LIBRARIES 30

4.1 Creating user-specific libraries 31

4.2 IEC library 33

4.3 ANSI C libraries 42

4.4 Creating a user library help system 46

5. SUMMARY 49

6. APPENDIX 50

6.1 Overview of the B&R standard libraries 50

6.2 Solution to task 4.1.2 52

6.3 Solution to task 4.2.3 52

Introduction

 4 TM260 Automation Studio Libraries I

1. INTRODUCTION

A library is generally understood as an establishment, where knowledge
and information is organized into logical and thematic categories. This
knowledge should be accessible at any time and easily available for
interested visitors.

When creating software, program libraries are used to collect program
functions for tasks that belong together.
Libraries are not independent running programs. They are program
organization units. Libraries contain completed functions and function
blocks, which can be used by different programs. This prevents having to
re-develop routines that are complex or often used.

As you can see, libraries are an important aid for effective and structured
software development.

Fig. 1 Books

In this training module, we will explain exactly how to work with libraries,
and the functions and function blocks contained in libraries when creating
application software with Automation Studio.
To start off, we will take a closer look at the features and advantages as
well as the integration and management of libraries in Automation Studio.
Participants will also get an overview of the range of B&R standard library
functions and will be shown the possibilities for creating user-specific
libraries and functions / function blocks.

Examples and exercise tasks will complement the basic theory and shed
some light on practical usage.

 Introduction

 Automation Studio Libraries I TM260 5

1.1 Objectives

Participants will get to know the function principle and the advantages of
libraries.

Participants will get an overview of the multiple functionalities of B&R's
standard libraries.

Participants will be able to locate information in the Automation Studio
online help for using and configuring the functions and function blocks.

Participants will learn how to work with and how to effectively apply the
libraries and functions / function blocks.

By the end of this training module, participants will be able to create a
library and corresponding functions / function blocks to meet their
individual demands.

Fig. 2 Overview

Libraries: General Information

 6 TM260 Automation Studio Libraries I

2. LIBRARIES: GENERAL INFORMATION

In the IEC, the term library is not specifically defined in regard to functions
or function blocks. However, libraries have proven to be more than useful
for organizing pre-defined standard functions. Functions or function blocks
for a specific area of application are grouped respectively in a library and
can then be executed in the control program, as long as the library is
integrated in the project.

However, a library also includes data types and constants, which are used
internally by the functions and function blocks or for setting parameters.

Fig. 3 Using a function block from a library for multiple tasks

 Libraries: General Information

 Automation Studio Libraries I TM260 7

Among many other benefits, this method of organizing software functions
provides the following advantages:

• Functions and function blocks from a specific area of application are
grouped together in one location and can be managed and executed
from there.

• A library can easily be passed on as a complete unit which allows it
to be used in all other projects.

• Using functions and function blocks makes it easier to exchange the
software, because these program sections can be tested separately
or can be accepted as is (already tested for functionality).

• Because of their unique system behavior, functions and function
blocks are used to standardize program code.

• Unlike tasks, functions and function blocks have a uniquely defined
interface, which is easy to document.

• The functions and function blocks in a library are saved just one time

respectively on the controller (i.e. additional memory is not used
when the function or function block is executed multiple times).

Libraries: General Information

 8 TM260 Automation Studio Libraries I

2.1 Functions and function blocks

The program functionalities grouped in libraries are divided into two types:

• Functions

• Function blocks

These two types differ in behavior and how they are used.

2.1.1 Definition of "function"

A function is a program organizational unit which returns exactly one value.
Therefore, it has just one output, but can have any number of inputs.
Unlike function blocks, functions do not have any static memory. With
only a few exceptions (e.g. time and IO – read functions), this means that it
always returns the same output value when called repeatedly with the
same input parameters.

Fig. 4 Function

 Libraries: General Information

 Automation Studio Libraries I TM260 9

2.1.2 Definition of "function block"

A function block is a program organizational unit which can return one or
more values. Therefore, it can have one or more inputs and outputs.

Fig. 5 Function block

Libraries: General Information

 10 TM260 Automation Studio Libraries I

An instance of a function block must be created before it can be used. This
is essentially a data structure, which contains all of the parameters that the
function block uses (i.e. inputs, outputs, and internal variables).
By using a data structure, function blocks have a static memory. When
called repeatedly with the same input parameters, the output values can
also change.

In some cases, function blocks, which require a great deal of system
resources or access hardware, might have to be called repeatedly using
multiple cycles. This makes it possible to wait for a response from the
hardware and can reduce the load that the function block puts on the
system.

Fig. 6 Function block with instance structure

 Libraries: General Information

 Automation Studio Libraries I TM260 11

2.2 Library Manager

The Library Manager is the interface used to completely manage the

libraries used in a project. This includes managing standard libraries and
libraries from third-party suppliers as well as offering support when
creating user libraries.

The Library Manager is fully integrated in Automation Studio and can be
accessed via the menu option Open:Library Manager.

The Library Manager is divided into two main sections:

The libraries integrated in the project are displayed in the left window with
the corresponding functions and function blocks.

Information and properties of the element selected in the left window are
displayed on different tabs in the right window.
This includes:

• Data types and constants used by the library.

• Additional dependencies from other libraries.

• Parameter declaration of the functions and function blocks.

• Management of the source code files for ANSI C libraries.

Fig. 7 Library Manager – Declaration of the "FileOpen" function block

Libraries: General Information

 12 TM260 Automation Studio Libraries I

2.2.1 Declaration of the functions and function blocks

When choosing a function or function block, all inputs, outputs and
internally used variables are displayed in the declaration with their data
types.

2.2.2 Data types and constants

The data types and constants used by the library are automatically added
to the project when the library is integrated and are globally available.

The name of the library is entered in the data type editor as owner for data
types that are unique to the respective library.

 Libraries: General Information

 Automation Studio Libraries I TM260 13

2.2.3 Integrating new libraries

Fig. 8 Adding new libraries

A wizard is provided for integrating new libraries into the project.
This wizard is opened using the "Insert Library" button.

Select "Add Library" if a standard library is required from the
current Automation Runtime version. The desired library can then
be selected from the list.

The "Browse" button can be used to add libraries that are not
stored in the standard directory (e.g. user libraries).

Libraries: General Information

 14 TM260 Automation Studio Libraries I

2.2.4 Storing libraries

The B&R standard libraries are stored in the Automation Studio installation
directory (e.g. "BR_AS_250_L001") in a subdirectory with the name of the

corresponding Automation Runtime version.

The integrated libraries are also stored in a separate directory within the
project directory (e.g. "TM2xx.pgp").

If a function or a function block from a standard library is used in the
project, then the entire library is copied from the Automation Studio
installation directory to the project directory.

Fig. 9 Storing libraries on the PC

 Libraries: General Information

 Automation Studio Libraries I TM260 15

2.2.5 Library dependencies

The range of functions and the way that libraries work can be tied to
specific conditions.

For example, a library can be associated with a specific Automation

Runtime version. In this case, the functionality of the library is based on
Automation Runtime. If a change is made to the Automation Runtime, then
the corresponding libraries in the project are also changed automatically.
To guarantee upwards compatibility, functions, function blocks, data types
and constants are included in all following versions. Only expansions can
be made to the range of functions.

Dependencies from other libraries are also possible. These are mostly
present when creating user libraries, if functions or function blocks from
another library are used (see "User libraries"). However, standard libraries
can also have dependencies on one another.

Note:

Libraries that are not dependent on Automation Runtime are not
automatically exchanged when changing versions.

Caution:

When adding standard libraries, make sure that they only come from

the Automation Runtime version set in the project.

Libraries: General Information

 16 TM260 Automation Studio Libraries I

2.3 Help

The Automation Studio online help contains detailed descriptions of the
topics "Libraries" and "Library Manager" which can be found under
Automation Software:Automation Studio. The online help can be

accessed by either using the Help icon in the toolbar or by pressing the
F1 key.
The Help system is context-sensitive (i.e. the description of the currently
selected element is automatically displayed when the help system is
opened with the Help icon or the F1 key).

Fig. 10 Help for the Library Manager and Libraries

Exercise: TON, CTU, AsString

Open the Automation Studio online help and search for information
about the "TON" and "CTU" function blocks.

Select the "strcmp" function from the "AsString" library and press the F1
key or the Help icon.

 Libraries: General Information

 Automation Studio Libraries I TM260 17

2.4 Using functions and function blocks

In principle, functions and function blocks are used the same way on all
B&R target systems and behave the same way.

However, there are also functions and function blocks that are used
exclusively on one of the two platforms because they are tied to a specific
system architecture.
For example, file management is not supported for SG3 controllers. As a
result, the function blocks for file management from the "FileIO" library are
not available there either.

Libraries: General Information

 18 TM260 Automation Studio Libraries I

2.4.1 Adding functions or function blocks

Fig. 11 Adding a function or a function block in IEC languages

Select the "Insert function" button to add a function a function
block in an IEC programming language or Automation Basic.

This opens a dialog box that displays the libraries integrated in the
project. The functions and function blocks contained in the
libraries can be selected from here.

If you know the name of the function or function block you're
looking for, you can enter it in the filter to locate it quickly.

All of the standard B&R libraries are displayed by selecting the
button "Show external libraries". If a function or a function block
from an external library is selected, then the library is
automatically copied to the project.

 Libraries: General Information

 Automation Studio Libraries I TM260 19

2.4.2 Syntax for functions in the "pow()" example

This function from the "AsMath" library is used to add exponents to a value
(e.g. xy).

Ladder Diagram

Fig. 12 Function in the Ladder Diagram

Structured Text

The function call appears as follows when inserting the function using
the dialog box. The inputs (x and y) are only indicated symbolically and
must be replaced by corresponding variables.

(* Function name(input1, input2) *)
pow(x, y);

The function can also be executed directly without the dialog, like an
operator.

(* Result := function name(Basis, Exponent) *)
Result := pow(Base, Exponent);

Libraries: General Information

 20 TM260 Automation Studio Libraries I

Automation Basic

ANSI C

The function call appears as follows when inserting the function using
the dialog box. The inputs (x and y) are only indicated symbolically and
must be replaced by corresponding variables.

; Function name(input1, input2)
pow(x, y)

The function can also be executed directly without the dialog, as an
operator.

; Result = function name(Basis, Exponent)
Result = pow(Base, Exponent)

In ANSI C, there is no dialog box for inserting functions or function
blocks. The call can be copied here from the corresponding header file
(in this case e.g., "asmath.h" or "math.h").

/* Output data type function name(data type input1, data
type input2) */
float pow(float x, float y);

The function call appears as follows when using the
variables from the example:

/* Result = function name(Basis, Exponent) */
Result = pow(Base, Exponent);

 Libraries: General Information

 Automation Studio Libraries I TM260 21

2.4.3 Syntax for function blocks in the "CTU()" example

The "CTU()" function block from the "standard" library is an upward counter.

Ladder Diagram

Unlike a function call, a name for the function block instance must be
assigned here ("Counter1").

Fig. 13 Function block in the Ladder Diagram

Libraries: General Information

 22 TM260 Automation Studio Libraries I

Structured Text

The function call appears as follows after assigning the instance name
when inserting the function block using the dialog box. The inputs (CU,
RESET and PV) are components of the instance and must be written with
the corresponding variables or values when setting the parameters.

The instance of the function block "Counter1" is a structure variable with
the data type "CTU".

(* Function block name(input1:=,
 input2:=, input3:=) *)

Counter1(CU:=, RESET:=, PV:=);

A complete function block call could appear as follows:

(* Function block parameter settings and call*)
Counter1(CU:= Trigger, RESET:= Reset,
 PV:= CompareValue);

Evaluation of the outputs *)
Comparator:= Counter1.Q;
CounterValue:= Counter1.CV;

The function block parameter setting can also be handled as follows in
order to maintain a clear and organized structure when dealing with
multiple input parameters or long variable names:

(* Parameter settings *)
Counter1.CU:= Trigger;
Counter1.RESET:= Reset;
Counter1.PV:= CompareValue;

(* Function block call *)
Counter1();

(* Evaluation of the outputs *)
Comparator:= Counter1.Q;
CounterValue:= Counter1.CV;

 Libraries: General Information

 Automation Studio Libraries I TM260 23

Automation Basic

The function call appears as follows after assigning the instance name
when inserting the function block using the dialog box. The inputs (CU,
RESET and PV) are components of the instance (structure variable) and
must be written with the corresponding variables or values when setting
the parameters.

The instance of the function block "Counter1" is a structure variable with
the data type "CTU".

Counter1.CU= ; Parameter setting
Counter1.RESET=
Counter1.PV=
Counter1 FUB CTU() ; Function block call

A complete function block call could appear as follows:

Counter1.CU = Trigger ; Parameter setting
Counter1.RESET = Reset
Counter1 FUB CTU() ; Function block call

; Evaluation of the outputs
Comparator = Counter1.Q;
CounterValue = Counter1.CV;

In Automation Basic, the function block can also be called in a line. This
method eliminates the instance, which is why all input and output
parameters must be inside the brackets.

; Parameter setting, call and evaluation
; of the outputs in a line
CTU(Trigger, Reset, CompareValue, Comparator, Count erValue)

In order to maintain the clear and organized structure, you should
generally avoid using this method because there is no clear separation
between inputs and outputs. This could make debugging more difficult
when dealing with more complex function blocks.

Libraries: General Information

 24 TM260 Automation Studio Libraries I

ANSI C

In ANSI C, there is no dialog box for inserting functions or function
blocks. The information necessary for the call can be copied here from
the corresponding header file (e.g. "standard.h").

/* Variable declaration */
BOOL Trigger, Reset, Comparator;
UINT CompareValue, CounterValue;

/* Function block instance */
CTU_typ Counter1;

/* Parameter setting */
Counter1.CU = Trigger;
Counter1.RESET = Reset;
Counter1.PV = CompareValue;

/* Function block call */
CTU(&Counter1);

/* Evaluation of the outputs */
Comparator = Counter1.Q;
CounterValue = Counter1.CV;

 Standard Libraries

 Automation Studio Libraries I TM260 25

3. STANDARD LIBRARIES

B&R provides a comprehensive package of standard libraries with
Automation Runtime.

Fig. 14 Function range of standard libraries

The function range of these standard libraries begins with simple functions
and function blocks, which are not contained in the standard code of the
respective programming language or which can be deleted with simple
loops.
Examples of this include the following:

• Timer (delays), counter, edge detection

• String processing

• Arithmetic

• Logic operations

Standard Libraries

 26 TM260 Automation Studio Libraries I

Highly complex and powerful functions and function blocks are also
contained, which considerably minimize the development effort required
for applications and save a great deal of program code.
Here a few examples of this:

• Control algorithms

• Data objects and file management

• Webserver data exchange

• Network functions

• Axis control

• Graphics functions

Using functions and function blocks from standard libraries provides the
following advantages:

• As complete program units, they are fully tested and functionality is
checked.

• They are serviced by B&R and the range of functions is continually
updated and expanded.

• Uniform documentation with examples in different programming
languages is integrated in the Automation Studio online help.

• Use of the functions and function blocks is uniform and user-friendly
thanks to compliance with both international as well as B&R-internal
standards and certifications.

Note:

Standard libraries are always binary libraries (i.e. there is no source
code for the functions and function blocks from standard libraries).

Note:

A complete overview of all of the B&R standard libraries can be found in
the appendix.

 Standard Libraries

 Automation Studio Libraries I TM260 27

3.1 Function blocks with enable input and status output

Function blocks that handle more complex tasks or that require multiple
cycles for processing, have an enable input and a status output.

The enable input can be used to switch the function block on or off (0 �
off, 1� on). This can reduce the load on the CPU as long as the function
block does not have to be processed constantly.

The status output provides information about the processing status of the
function block.

Status number Meaning

0 Function block executed without error.

65535 Function block processing not yet complete (busy). Call again
in the next cycle.

65534 Enable input not set. The function block is switched off.

Other number An error occurred while processing the function block.
Explanations of the error numbers can be found in the
Automation Studio online help for the respective library.

Standard Libraries

 28 TM260 Automation Studio Libraries I

Example

The "HwGetBatteryInfo" function block from the "AsHW" library is used
to check the charge of the backup battery.

The "BatteryInfo" instance is a "HwGetBatteryInfo" type.

USINT Battery status;
BOOL ReadBattStatus;
STRING Device[16];

(* Parameter setting *)
Device:= ´SL0.SS0.HW´ ;

BatteryInfo.enable:= ReadBattStatus;
BatteryInfo.pDevice:= ADR(Device);
BatteryInfo.ordinal:= 2;

(* Function block call *)
BatteryInfo();

(* Evaluation of the status *)
IF BatteryInfo.status = 0 THEN
 (* Evaluation of the output *)
 BatteryStatus:= BatteryInfo.state;
 ReadBattStatus:= FALSE;
ELSIF BatteryInfo.status <> 0 AND
 BatteryInfo.status <> 65535 THEN
 ReadBattStatus:= FALSE;
 (* Error correction *)
 ...;
END_IF

 Standard Libraries

 Automation Studio Libraries I TM260 29

3.2 Address inputs

Some functions and function blocks require the address of the memory,
where the input parameters are located, as input. As in the above example,
this can be the address of a variable or the address of a freely allocated
memory area.

These methods for parameter transfer are used if the length of the data
(number of bytes) is not already known, but should not be limited.

In the previous example, the device name for different CPUs was able to
have different lengths. This is irrelevant for the function block because only
the address of the string is always transferred.

3.3 Limitations on the Init subprogram or cycle program

Some functions or function blocks require a high amount of system
resources to execute highly complex tasks such as the initialization of
hardware.

Therefore, these functions and function blocks should only be called in the
Init subprogram to prevent causing cycle time violations.

There are also function blocks that are processed asynchronous to the
cyclic task class system. These are mostly function blocks that access
hardware and must wait for a response from the operating system (e.g.
access to the Compact Flash). Therefore, they must be executed over
multiple cycles, until they output a value to the status output that is
unequal to 65535 (Busy).

As a result, these types of function blocks are mostly processed in cyclic
mode.

Note:

Information about these types of limits can be found in the description
in the Automation Studio online help for the respective library, function
or the respective function block.

User Libraries

 30 TM260 Automation Studio Libraries I

4. USER LIBRARIES

User libraries can be created in Automation Studio using the Library
Manager. User libraries can contain functions and function libraries that are
specially programmed by the user according to the application
requirements.

The advantages of using libraries that were mentioned earlier also apply to
user-specific libraries.
User libraries also have the following additional advantages:

• Just like those in standard libraries, functions and function blocks
from user libraries are also used to structure and limit the amount of
necessary program code.

• This makes it possible to isolate program sections that are complex
or are used frequently from the actual program and package them
into user-specific functions and function blocks.

• This can considerably improve the overall organization and clarity
and makes it much easier to pass on or reuse the functionalities.

Note:

User libraries are also called source libraries because the source code
is usually kept in the project. Depending on the type of library, this can
also be an IEC or ANSI C library.
A binary library can also be made from a source library using basic
methods (described later in this section).

 User Libraries

 Automation Studio Libraries I TM260 31

4.1 Creating user-specific libraries

The creation of user-specific libraries involves a few steps that are always
performed based on a fixed procedure.

• First you must decide whether the functions and function blocks
should be implemented in IEC programming languages (including
Automation Basic) or in ANSI C.

• Functions and/or function blocks are then added and the source code
is created.

• Tests and error corrections are essential for flawless execution of
the functions and function blocks.

• A self-made online help documentation can be created for the
library.

• Further steps must taken in order to pass the library on as either a
source or binary library.

All of these points will be addressed in great detail later in this section.

User Libraries

 32 TM260 Automation Studio Libraries I

Creating a library

The same wizard that was used to integrate existing libraries is also used to
create a new library. You must first begin by pressing the "Insert Library"
button.

The library must be given a name with a maximum of 8 characters.

The type determines the programming languages that will be possible for
the implementation of the functions and function blocks. If "C-Library" is
selected, then functions and function blocks must be programmed in ANSI-
C. However, if an "IEC-Library" is created, then the programming languages
Instruction List, Structured Text and Automation Basic are available.

Fig. 15 Creating a new library

 User Libraries

 Automation Studio Libraries I TM260 33

4.2 IEC library

4.2.1 Creating a function

A function or a function block can be create using the "Insert Function /

Function Block") button or by right-clicking on the library.

Fig. 16 Inserting a function or function block

A unique name that has not yet been used in any other module must be
given for the function.

"Function Block" or "Function" can be selected as type.

The programming language for the respective function can be selected
under "Language".

User Libraries

 34 TM260 Automation Studio Libraries I

After confirming the selection with "OK", the function is created and you
can go on to declare the interface and create the source code.

At this point, the function should e.g. add the two inputs and write the
result to the output.

Additional inputs can be inserted using the "Insert Declaration" button
or by right-clicking in the declaration.

Fig. 17 A function in the Library Manager

The source code editor is opened by double-clicking on the function icon.

The source code for this function looks like this:

Fig. 18 Source code for the "MyADD" function

 User Libraries

 Automation Studio Libraries I TM260 35

Task: Build your own function block

Program a function, which limits an input value to a minimum or
maximum.

The output value is calculated as follows:

If the minimum value is greater than the maximum value, then the
output value is equal to the maximum value.

If the input value is less than the minimum value, then the output value
is equal to the minimum value.

If the input value is greater than the maximum value, then the output
value is equal to the maximum value.

If the input value is greater than the minimum value and less than the
maximum value, then the output value is equal to the input value.

Name: MinMax

Inputs:
DINT Lower, In, Upper

Output:
DINT [Function name]

User Libraries

 36 TM260 Automation Studio Libraries I

4.2.2 Interface for the functions and function blocks

The interface for a function or function block is comparable with the
variable declaration in cyclic tasks. It contains all of the necessary input,
output and internally used variables. Unlike cyclic tasks, there are
additional options when declaring variables here.

Fig. 19 Interface declaration

VAR_INPUT:
Input parameter.

VAR_OUTPUT:
Output parameter.

VAR:
Static internal variable.

VAR_DYNAMIC:
Dynamic internal variable without an external reference. This variable can
only be referenced to variables in a function or function block's declaration.

VAR_IN_OUT:
The parameters are applied to the executed function block as pointers to
their memory location (i.e. the specified variable is passed onto the
function block so that it can be read and changed there). As a result,
changes are automatically applied to the variable declared outside of the
executed function block.

VAR_INPUT_DYNAMIC:
Dynamic input/output parameter. Dynamic inputs get the appropriate
pointer by means of ADR function. The variable declared outside of the
function block is used directly to edit the function block.

 User Libraries

 Automation Studio Libraries I TM260 37

4.2.3 Creating a function block

Essentially the same process used to create a function is also used to
create a function block.
The only difference is that "Function Block" must be selected as type.

Task:

Program an upwards counter.

Function description:

When the "Reset" input is TRUE, then "CounterValue" is set to 0.

Otherwise, the "CounterValue" is incremented by 1 with each increasing
edge on the "Trigger" input.

The "Comparator" output is TRUE if the "CounterValue" output is greater
than or equal to the "ComparatorValue".

Inputs:
BOOL Trigger, Reset
DINT ComparatorValue

Outputs:
BOOL Comparator
DINT CounterValue

Internal:
BOOL EdgeMarker

Note:

The internal variable "EdgeMarker" is required as an auxiliary variable for
detecting an increasing edge on the "Trigger" input. Alternatively, the

"R_TRIG()" function block from the "standard" library can also be used. It
must first however, be declared an internal variable.

User Libraries

 38 TM260 Automation Studio Libraries I

4.2.4 Library properties

When working with standard libraries or binary user libraries, this dialog
only displays the properties. When working with IEC or ANSI-C libraries,
this dialog can be used to set the properties.

Fig. 20 Properties for an IEC user library

Description:
Brief description of the library's functionalities.

Header file:
Name of the header file (*.h file) created for the library.
The name of the library is entered automatically.

Version:
Version identification of the library in the form "Vx.yy.z".

Runtime target:
Determines which target platform(s) the library was/should be created
(compiled) for.

 User Libraries

 Automation Studio Libraries I TM260 39

4.2.5 Additional Dependencies

Fig. 21 Additional dependencies of a user library

If functions or function blocks from another library are used, then an
additional dependency to that library is automatically entered. That means
if this library is used in a project, then all other libraries containing a
dependency must also be integrated in the project.

Different options are available for setting the dependency. It can be limited
by date or specific version (or a minimum and maximum version number).

User Libraries

 40 TM260 Automation Studio Libraries I

4.2.6 Debugging and error diagnostics options

Mistakes can be made anytime and anywhere that humans are at work. As
a result, certain parts of a program sometimes may not react exactly as
they're expected to when programming.

A debugger has been integrated into Automation Studio to make it easier
to locate the cause of unforeseen program errors. This tool allows users to
easily locate errors in all software sections of an application.

An online connection to the controller where the software section that
needs to be tested is located is required to run the debugger.

Monitor mode must be started in order to use the debugger.
A new group is now displayed in the toolbar, which contains functions for

the debugger.

A breakpoint in the program can be set using the button or by clicking
on the line number. When this line is reached during processing, the
program is stopped before being executed and the current variable values
can be checked.

Fig. 22 A function in debug mode with breakpoint

Note:

Breakpoints can only be set on lines with numbers that are shown on a
dark gray background.

 User Libraries

 Automation Studio Libraries I TM260 41

The program is continued to the next breakpoint by clicking on the

"Continue" button. The "Step Into" button and "Step Over"
buttons are used to continue the program step-by-step.

4.2.7 Testing with AR000

AR000 is an Automation Runtime system based on Windows-32 which is
not real-time capable, but essentially corresponds to the functionality of all
controllers. Since the AR000 is conceived for testing purposes, no
hardware is used.

Therefore, functions and function blocks that do not directly access the
hardware or are not designed for specific hardware configurations can be
easily tested on the AR000.

The AR000 is started using the menu Tools:AR000. Once the online
connection has been set on the AR000, it can be used like a real SG4
controller and can be used to test the application.

Note:

A more detailed description of the debugger would go well beyond the
framework of this training manual. Such a description can be found in
the Automation Studio online help under Automation

Software:Automation Studio:Diagnosis:Debugger.

Note:

For the most part, functions and function blocks can be sufficiently
tested using the AR000 because their functionality is not generally
limited to specific hardware configurations.

User Libraries

 42 TM260 Automation Studio Libraries I

4.3 ANSI C libraries

There are a few differences in the way that ANSI C and IEC user libraries
are used in the Library Manager.

For example, when using ANSI C libraries, the source code files can be
managed right in the Library Manager. The "Source" tab on the right side of
the Library Manager is used to do this.

4.3.1 Creating an ANSI C library

Fig. 23 ANSI C library in the Library Manager

The corresponding header file "MyCLib.h" is automatically created when
creating an ANSI C library. All declarations for functions, function blocks,
constants and data types are entered here. This file is write-protected and
automatically updated when compiling or by manually generating via the

"Generate *.a, *.h file" button .

 User Libraries

 Automation Studio Libraries I TM260 43

4.3.2 Functions and function blocks

In ANSI C libraries, the creation of functions and function blocks and the
declaration of their interfaces is done the same way as in IEC libraries.

Fig. 24 Source code for the MySUB function

The files for the source code must be created manually using "Insert:File".
Before the implementation of the source code for the function of function
block, the header file must be included for the library.

Fig. 25 Prototype of the function in the library's header file

The prototype of the function of function block (call) can be copied from
the header file. The implementation is then inserted between curved
brackets in the source file.

Note:

When using ANSI C libraries, it is quite easy to break up the work of
developing the functionalities. The source files for the functions and
function blocks can be easily copied out of the library directory, edited
somewhere else, then copied back.

User Libraries

 44 TM260 Automation Studio Libraries I

4.3.3 Characteristics

In comparison to the IEC libraries, ANSI C libraries have a few additional
properties.

Source file properties

Fig. 26 Source file properties

The file path can be entered here. When using ANSI C libraries, the source
files can be stored in any directory. By default, the directory of the library
in the project where it was created is entered.

 User Libraries

 Automation Studio Libraries I TM260 45

Additional ANSI C library properties

Fig. 27 Library properties

If functions and function blocks from other libraries are use, the names and
paths of the archive files (*.a files) must be entered in this tab. For
example, the libraries "standard" and "AsMath" are used here.

Note:

Detailed information about creating and using ANSI C libraries can be
found in the Automation Studio online help under Automation

Software:Automation Studio:Library Manager:Creating a New

Library.

User Libraries

 46 TM260 Automation Studio Libraries I

4.4 Creating a user library help system

A separate online help system can be created for each user library, and

opened using the F1 key or the help icon .

The following guidelines must be observed:

• The help system for must be available as .chm files (compiled HTML
help files). These can be created using diverse programs available on
the market (Microsoft® HTML Help WorkShop, RoboHelp®, FAR).

• The chm. files for the user libraries must contain the prefix "Lib" (e.g.
LibMyIECLib.chm) and be stored in the library sub-directory
[LibraryName]\Help (e.g. "MyIECLib\Help").

• when creating the .chm file the following directory structure must be
maintained as shown here in the example MyIECLib:

Fig. 28: Directory structure for creating the .chm file

• Therefore, the root directory for creating the .chm file has the same
name as the library. This directory must contain the subdirectory
"FBKs", where the files are kept for describing the functions and
function blocks. The descriptions must each be created in a separate
.html file (not .htm files!) with the name of the function or function
block.

The other subdirectories are only examples and are optional.

 User Libraries

 Automation Studio Libraries I TM260 47

4.4.1 Passing on user libraries and creating binary libraries

The library is created in the project with the name of the library in the form
of a directory (in this case e.g. "MyIECLib"). This library contains all of the
necessary files and objects that belong to the library.
Only this directory has to be copied from the project in order to pass on a
library.

Fig. Directory structure of the user library in the project directory

The user library directory is divided into five subdirectories:

Help:
Online help, if available.

i386:
Compiled files for SG4 (Intel platform) (*.a, *.h, *.br).

m68k:
Compiled files for SG3 (Motorola platform) (*.a, *.h, *.br).

SGC:
Compiled files for SGC (Compact CPUs) (*.a, *.h, *.br).

Source:
The files in this directory contain the source code for the functions and
function blocks.

Temp:
Temporary files.

User Libraries

 48 TM260 Automation Studio Libraries I

The following steps are necessary to make a binary library from an IEC or
ANSI-C library:

• Copy the library to another directory.

• Delete all files from the library directory (e.g. "\MyIECLib\...").

• Delete the entire "\Temp" directory.

• Delete all files from the "\Source\..." directory.

• Insert the library again using the Library Manager

Note:

When using binary libraries, the number of functions or function blocks
and how they are implemented cannot be changed. That's why it is
always a good idea to make backup copies of your user libraries.

 Summary

 Automation Studio Libraries I TM260 49

5. SUMMARY

Libraries are an extremely useful and powerful to when creating software.
Using functions and function blocks from standard libraries can
considerably simplify and reduce the amount of work required to develop
an application. The improved structure makes it much easier to read the
shorter program code created. Furthermore, libraries are encapsulated
program sections that are much easier to transfer to other projects and can
be reused.
User libraries allow the creation and organization of individual user-specific
functions and function blocks.

Fig. 29 Library

Participants are familiar with the use of libraries in Automation Studio and
are aware of their benefits.
By skillfully navigating the help system, participants can quickly locate and
effectively use the documentation and descriptions of the necessary
functions or function blocks.
Participants can also create their own library and functions / function
blocks according to their individual demands.

With their knowledge of how to work with libraries, functions and function
blocks, participants are also able to structure complex applications in a
clear and organized manner, thereby increasing readability and
effectiveness.

Appendix

 50 TM260 Automation Studio Libraries I

6. APPENDIX

6.1 Overview of the B&R standard libraries

Library Short description

Acp10_mc
Motion function block for ACOPOS drives, specified in PLCopen - Technical
Committee 2 –Task Force "Function blocks for motion control V1.0"

AsArCfg Reading and writing Automation Runtime configuration settings

AsArProf Operation of the AR profiler from an application

AsCont Support of hardware modules

AsHost Conversion of IP addresses to domain names and vice-versa

AsHW Reading information from the respective target system

AsIMA Activation of the INA2000 manager

AsIO Determining the states and values of a data point, force handling

AsIOAcc Reading and writing access to non-cyclic I/O data points

AsIODiag Creation and evaluation of IO module information

AsIOMMan
Activation and deactivation of IO configuration modules or mapping
modules

AsKey Functions for querying the dongle

AsL2DP Operation of the L2DP slave module 3IF661.9 and 3IF761.9

AsMath Mathematic functions not covered by the "OPERATOR" library

AsMem Managing memory blocks in large memory areas (memory partitions)

AsPlkSup Access to different configuration words for the 2003 screw-in modules

AsString Memory manipulation and string handling

AsTime Support of date and time functions on the controller

AsUPS Communication with a UPS

AsWeigh Function blocks for using strain gauge modules (e.g. AI261).

AsWStr Processing of 16-bit wide character (Unicode) strings

BRSystem Operation of the CPU

C220man Operation of the panel controllers

CAN_Lib Operation of the CAN controller

CANIO Operation of B&R2003 CAN nodes

Commserv System expansion for INAclnt library

CONVERT Conversion functions according to IEC61131-3

DataObj Handling of data objects

DM_Lib Storage of data objects in nonvolatile memory

DRV_3964 3964R protocol

DRV_mbus Modbus protocol

 Appendix

 Automation Studio Libraries I TM260 51

DRV_mn MiniNet protocol

DVFrame Frame driver library for serial interface operation

Ethernet Data exchange via UDP or TCP

EthSock Integration of socket functions

FDD_Lib Operation of the external floppy disk station MFDD70S

FileIO File and directory management

IF361 Operation of the IF361 interface module (Profibus DP Slave)

IF661 Operation of IF661 interface module (Profibus DP Slave)

INAclnt INA2000 client communication

IOConfig Execution of shovel tasks on 2003

IOCtrl Operation of 2003 IOs

IO_lib Operation of the I/O modules

Logging Operation of the profiler from an application

LoopConR
Implementation of tasks for control technology (calculation with REAL
values)

LoopCont
Implementation of tasks for control technology (calculation with Integer
values)

NET2000 NET2000 protocol

OPERATOR Operators according to IEC61131-3

PB_lib Profibus protocol (FMS)

PowerLnk Handling of the Powerlink interface board IF686.

PPdpr Exchange of data between CPU and PP

RIO_lib Operation of remote I/O

runtime Internal support functions and function blocks

Spooler Allows the spooling of data on IPs

SRAM200x Functions for handling the SRAM200x

Default IEC61131-3 standard functions and function blocks

SYS_lib Various system functions

TCPIPMGR Data exchange via UDP or TCP

VCScrsht Saving a current image of the target system as a bitmap (*.bmp)

visapi
Programming interface for controlling the visualization while the system is
running

VNCServ
Visualizations that run on SG4 targets and support VGA, can be viewed on
the PC

Appendix

 52 TM260 Automation Studio Libraries I

6.2 Solution to task 4.1.2

Program a function, which limits an input value to a minimum or maximum.

6.3 Solution to task 4.2.3

Program an upwards counter.

Solution in Structured Text:

IF Lower > Upper THEN
 MyLIMIT:= Upper;
ELSIF In < Lower THEN
 MyLIMIT:= Lower;
ELSIF In > Upper THEN
 MyLIMIT:= Upper;
ELSE
 MyLIMIT:= In;
END_IF

Solution in Structured Text:

IF Reset = TRUE THEN
 CounterValue:= 0;
ELSIF Trigger = TRUE AND EdgeMarker = FALSE THEN
 CounterValue:= CounterValue + 1;
 EdgeMarker:= TRUE;
ELSIF Trigger = FALSE THEN
 EdgeMarker:= FALSE;
END_IF

IF CounterValue >= ComparatorValue THEN
 Comparator:= TRUE;
ELSE
 Comparator:= FALSE;
END_IF

 Appendix

 Automation Studio Libraries I TM260 53

Overview of training modules

TM200 – B&R Company Presentation ** TM600 – The Basics of Visualization
TM201 – B&R Product Spectrum ** TM610 – The Basics of ASiV
TM210 – The Basics of Automation Studio TM630 – Visualization Programming Guide
TM211 – Automation Studio Online Communication TM640 – ASiV Alarm System
TM212 – Automation Target ** TM650 – ASiV Internationalization
TM213 – Automation Runtime TM660 – ASiV Remote
TM220 – The Service Technician on the Job TM670 – ASiV Advanced
TM223 – Automation Studio Diagnostics
TM230 – Structured Software Generation TM700 – Automation Net PVI
TM240 – Ladder Diagram (LAD) TM710 – PVI Communication
TM241 – Function Block Diagram (FBD) TM711 – PVI DLL Programming
TM246 – Structured Text (ST) TM712 – PVIServices
TM247 – Automation Basic (AB) TM730 – PVI OPC
TM248 – ANSI C
TM250 – Memory Management and Data Storage TM800 – APROL System Concept
TM260 – Automation Studio Libraries I TM810 – APROL Setup, Configuration and Recovery
TM261 – Closed Loop Control with LOOPCONR TM811 – APROL Runtime System
 TM812 – APROL Operator Management
TM400 – The Basics of Motion Control TM813 – APROL XML Queries and Audit Trail
TM410 – The Basics of ASiM TM830 – APROL Project Engineering
TM440 – ASiM Basic Functions TM840 – APROL Parameter Management and Recipes
TM441 – ASiM Multi-Axis Functions TM850 – APROL Controller Configuration and INA
TM445 – ACOPOS ACP10 Software TM860 – APROL Library Engineering
TM450 – ACOPOS Control Concept and Adjustment TM865 – APROL Library Guide Book
TM460 – Starting up Motors TM870 – APROL Python Programming
 TM890 – The Basics of LINUX
TM500 – The Basics of Integrated Safety Technology
TM510 – ASiST SafeDESIGNER
 **) see Product Catalog

Appendix

 54 TM260 Automation Studio Libraries I

Hinteres Deckblatt (auf durch 4 Teilbarer Seitenzahl)

Kontakt (Headquarter)

Weblink

Internationalität

Copyright – Bestellnummer

T
M
2
6
0
T
R
E
.2
5
-E
N
G

0
9
0
7

©
2
0
0
7
 b
y
 B
&
R
.
A
ll
 r
ig
h
ts
 r
e
s
e
rv
e
d
.

A
ll
 r
e
g
is
te
re
d
 t
ra
d
e
m
a
rk
s
 p
re
se
n
te
d
 a
re
 t
h
e
 p
ro
p
e
rt
y
 o
f
th
e
ir
 r
e
s
p
e
c
ti
v
e

c
o
m
p
a
n
y
.
W
e
 r
e
s
e
rv
e
 t
h
e
 r
ig
h
t
to
 m

a
ke
 t
e
c
h
n
ic
a
l
c
h
a
n
g
e
s.

