PVIServices
TM712

Perfection in Automation
www.br-automation.com

Requirements

Training modules: TM211 — Automation Studio Online Communication

TM710 — PVI Communication

Software: Visual Studio.NET 2003 / 2005
Windows 2000 / XP

Hardware: Any SG3 or SG4 controller

Table of contents

1.

INTRODUCTION

1.1

Objective

PVISERVICES BASICS

2.1

PVIServices installation files

PVISERVICES COMMUNICATION OBJECTS

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Properties, events and methods

PVIServices classes and the PVI object hierarchy
PVIServices — Variable declaration

PviServices — Service class

PviServices — CPU class

PviServices — Task class

PviServices — Variable class

PviServices — Module class

Collections

3.10Working with structures

PVISERVICES SAMPLE PROGRAM

4.1
4.2
4.3
4.4
4.5
4.6

Creating a new Visual Studio.NET application
Creating the PVIServices communication objects
Error evaluation

Evaluating data changes

Read and write access

Using a structure

5. SUMMARY

13
14
15
15
16
16
20
21
22

23
23
24
27
29
32
35

38

PVIServices TM712 '

Introduction

1. INTRODUCTION

This training module describes PVI access in the Visual Studio .NET
programming environment. All communication and diagnostics services,
from the PVICOM interface to the B&R controller can be used.

The PVI functions are grouped together for the user in easy-to-use classes
in the PVIServices Namespace.

Microsoft)

° nﬁm
L

nary
id btConnectPLC_Click{object sender, Sy

Fig. 1: PVIServices

TM712 PVIServices

Introduction

1.1 Objective

Participants will be able to create their own PVI Client application in Visual
Studio .NET using the practice examples.

The PVIServices User Documentation can be referred to for additional
information regarding application possibilities in the existing PVIServices
classes for the PVI Client application.

Basics

-1

PVIServices Communication Objects

\Sample Program

Fig. 2: Overview

PVIServices TM712 I

PVIServices Basics

2. PVISERVICES BASICS

PVIServices are used by all Visual Studio.NET based Windows applications
for communication and diagnostics services on B&R controllers.

They are based on the PVICOM interface and are represented in the
programming environment by an object-oriented structure.

PVI Services Class

Communication Objects
Service Cpu Task | | Variable | | Module
Cpus Modules | | Variables | | Members
Variables Tasks
. Variables
Service | | Cpu | [Variable |[Task | [Module
ction | | Collection | | Collection | | Collection | | Collection

Management Objects

Fig. 3: PVIServices classes

Note:

The PviServices components can be used in Windows XP/2000 as well
as Windows CE applications.

TM712 PVIServices

PVIServices Basics

2.1 PVIServices installation files

The PVIServices DLLs are installed in the following directory after installing
the PVI Server&Runtime / Development package:

PVI Server&Runtime:

BrAutomation/Pvi/PviServices/Win32 for Windows XP/2000
BrAutomation/Pvi/PviServices/WinCE for Windows CE

PVI Development (starting with PVI 2.5.2.3060):

Program Files\BrAutomation\PVI\% Version % \PVI\PviServices\Win32
Program Files\BrAutomation\PVI\%Version % \PVI\PviServices\WinCE

The component "BR.AN.PVIServices.dll" is added to the Visual Studio.NET
project as a reference.

Only one PVI Runtime installation is necessary for the project's runtime
because the PVIServices component is provided with the installation of the
application.

2.1.1 Requirements for PVIServices programming

In this training module, the AR000 will be used for communicating with a
controller. The variables used to do this and the corresponding data type
are documented in this training module.

However, any existing Automation Studio project can be used - only the
variables names have to be accordingly replaced.

A task "pvitest" with the variables "Lifesign" and "PV1" is required.

A% A% AR P o

#include <hur/ple.hs> d
finclude <bur/pletypes.hsx

_LOCAL TUINT Lifesign:
_LOCAL TINT PV1:

_CY¥YCLIC woid cvlic[vnid”
{
Lifesign++:

4] 2

Fig. 4: Automation Studio test project

PVIServices TM712

PVIServices Basics

2.1.2 Visual Studio.NET programming environment

All of the functions described in this training module are explained using
C# program code.

Any differences with the programming in VB.NET will be explicitly
indicated and described.

Numerous PVIServices examples created in the programming language C#
are also available for the user.

These examples can be found in the directory "..\Samples\PviServices"
when installing the PVIServices.

2.1.3 Adding the "BR.AN.PviServices.dlIl"

The reference to the corresponding DLL must be added to access the
PVIServices.

R T -
b <0 System Windows. Forms
e 23 Systern =ML

..... Appico

----- B Azzemblyinfo.cs

..... Faml.cs

Fig. 5: Adding the BR.AN.PviServices.dll reference

Pressing the <Browse> button in the "Add Reference" dialog box allows
you to select the reference from the
"BrAutomation\Pvi\PviServices\Win32" directory (PVI Server&Runtime
Installation) or "Program
Files\BrAutomation\PVI\ % Version % \PVI\PviServices\Win32" (PVI
Development).

Caution:

If the component is displayed in the component list, make sure that the
PviControl.NET also uses this DLL. There is no guarantee that the
versions are identical.

This is why the directory described above should always be used.

TM712 PVIServices

PviServices Communication Objects

3. PVISERVICES COMMUNICATION OBJECTS

A communication object represents an object located on the controller
such as a task object or variable object.

PVIServices recognizes the following communication objects or classes:

e Service class
e CPU class
e Task class
e Variable class
e Module class

3.1 Properties, events and methods

Each of these communication objects is made up of the following:

e Properties
e Methods
e Events

This enables consistent and complete application of the objects.

gName
Parent
'—'.. Connect e F Connected
Oi ot IsConnectad Oi cted
isconne LinkHame isconnects
Remowe Address Error

“® Methods
2! Properties
Events

Cowaw > | T

Fig. 6: PVIServices communication objects

PVIServices TM712

PviServices Communication Objects

Note:

All tasks are processed asynchronously. Responses from a task are
made via events. For example, the "Read" method from a variable
object sends response data in the "ValueRead" event.

Methods, properties and events from all communication classes are
documented in the PVIServices help files.

3.1.1 Properties:

Each object is written with its specific properties.

private wold mylService Connected(object sender, PviEventlrgs e)
i

myCpu = new Cpulhylervice, Mopuf)

wylpu. Connection. beviceType = DeviceType.Toplp:

wylpu. Connection. TepIp. estination3tation = 2;

myCpu. Connection,. TeplIp.DestinationPort = 11160;

myCpu. Connection, TepIp.PestinationIpbiddress = "127.0.0.17;

After creating a new object (in this example, a "Cpu" type) the properties
are defined according to the requirements.

wyCpu = new Cpulmydervice, "ocpu®);
myCpu. Conhection.leviceType = DEViCET?pE.L

m=f Can
Madem
E=f Seral
Shared

TM712 PVIServices

PviServices Communication Objects

3.1.2 Methods

The desired method or function of an object must be used to execute an
action on a specific object.

private woid myService Connectediobject sender, PviEventlrgs e)
i

wylpu = new Cpulmy3ervice, "opu™)

myCpu. Connection,. leviceType = DeviceType.Toplp:

myCpu. Connection, TeplIp.Pestinationdtation = 2;

myCpu. Connection. TepIp.DestinationPort = 11160;

myCpu. Connection. TepIp.DestinationIpaddress = "127.0.0.17;

myCpu. Connect ()

This is how a connection to the controller is established on the CPU object
using the "Connect" method.

The "Disconnect" method is used to terminate the connection to the
controller.

3.1.3 Events

The application is informed of the object's state by setting up events
(EventHandlers).

There are a few differences between Visual Basic.NET and C# in how this is
done.

In C#, the event handler is set up by specifying the desired event, writing
+ = and pressing the <TAB> key two times.

wmylpu. Connectedd=

myCpu. Zonnect {1 (new PyiEventHandlerimyCpu_Connected]: [Press TAE to insert]

The event handler is automatically set up and the corresponding program
code is added.

PVIServices TM712

PviServices Communication Objects

myCpu. Connected+=newv PviEventHandler (myCpu Connected);

myCpu.Connect (] ;

'

private woid myCpu Connectediobject sender, PviEwventlirgs e)
i

3

Note:

The "Connected" event should be added for each object. The objects
can only be further accessed once this has been done.

Caution:

An event handler should always be set up BEFORE calling the method.
Otherwise, events might not be received when sent in the method call.

In Visual Basic.NET, the event handler is set up by specifying WithEvents.

Friend WithEwvents myCpu A= EBR.AN.PviZerwvicez.Cpu

From this point, the event can now be selected from the specified class
"myCpu" and the program code that is needed for the event can be entered.

q [X

Form . wb [Dezign]” | Forml._¥b™
|¢I’ myCpu j I,;E? Connected j

TM712 PVIServices

PviServices Communication Objects

3.2 PVIServices classes and the PVI object hierarchy

As described in the earlier training modules TM700 and TM710, all objects
are mapped in a PVI application using the PVI object hierarchy.

In the PVIServices classes the line object, the device object, the station
object and the CPU object are mapped in the CPU class.

Service
Class
Variable | __—*
Class
CPU
Class Devices
Variable :
Class Stations
CPUs
Module

Class \ _ Global PVs
- Modules

Task N
Class _*
— Local PVs

Variable
Class

Fig. 7: PVIServices — PVI object hierarchy

Note:

PVIServices supports only the INA2000 line.

PVIServices TM712 H

PviServices Communication Objects

3.3 PVIServices — Variable declaration

Variables from the corresponding class must be created in order to create
PVIService objects.

The classes and members can be accessed directly by declaring the
Namespace "BR.AN.PviServices" in C#.

using Swvstemn:

using System.Drawing:

using 3ystem.Collections;
using Iystem. CoampohentModel;
using Ivstem. Tindows.Forms:
using 3vstem.Data;

uzing BR.AN.PviServicesz:

From this point on, PVIServices objects from the respective class can be
set up.

public Service myService;
public Cpu myCpu;

public Task myTask:
public Variable myVariable:

The declaration looks like this in Visual Basic.NET:

Public mwy3ervice As BR.AN.Pwvilervices.S3ervice
Public mwyTask Ls BR.LAN.PviSerwvices.Task

Friend WithEvents myCpu Az BR.AN.PviZervices.Cpu
Friend WithEwvents myWVariabhle Lz EBE.AN.Pvilervices.Variable

When making the declaration, you must determine whether events in this
object should be evaluated or not.

TM712 PVIServices

PviServices Communication Objects

3.4 PviServices - Service class

A connection to the PVI Manager is established via the service class object.
This object is the basis for all subsequent objects (CPU, tasks, variables) in
a client application.

private wold Forml Load(object sender, System.Eventlrgs e

i
my3ervice = new Jervice("service™):
wmylervice. Connected+=new PviEwventHandler (wyJervice Connected)
myService. Connect ()

A new service object "'myService" is set up with the logical name "service".

A local connection to the PVl Manager is created if an argument is not
transferred in the "Connect" method.

A remote connection can be established by specifying the IP address and
port number of the remote PC.

myService.Connect (MF172 .43 .36, 120", 20000)

|A 2of 3= woid Service.Connect [zting server, int letl

3.5 PviServices - CPU class

The connection to the controller is established via the CPU class object.
Furthermore, all global variables on the CPU object and all task objects are
managed with the local or global variables.

Diagnostics services (memory, transferring modules, etc) are also managed
by this class.

private wvoid myService Connected(object sSender, PviEventldrgs e)
i
mylpu = new Cpu(myService, "opu™):
mylpu. Connection.beviceType = DeviceType.TocplIp:
myCpu. Connection. Teplp.Destinationdtation = 2;
myCpu. Connection. TepIp.DestinationPort = 11160;
myCpu. Connection. TepIp.Destinationlpbiddress = "127.0.0.17;
myCpu. Connected+=new PviEventHandler (myCpu Connected) ;
myCpu. Connect (]

The reference to the higher-level service object is made by specifying the
parent name ("myService" in this example).

PVIServices TM712

PviServices Communication Objects

The type of connection (i.e. the medium) is defined via the
"Connection.DeviceType" property.

The properties should be defined in accordance to the selected
"DeviceType".

3.6 PviServices - Task class

The PVIServices task class object represents a task on the controller.
Global and local variables from the task are managed under this object.

private wvoid myCpu Connected (object sender, PviEventlrgs e)
{
myTask = new Task(myCpu, "pwvitest™)
myTask. Connected+=new PviEventHandler (myTask Connected);
myTask.Connect (7

The assignment to the respective CPU object is made by specifying the
parent name of the higher-level object.

3.7 PviServices - Variable class

The PVIServices variable class object represents a variable on the
controller.

The following variable types are available:

e Internal variables
e Global variables
e Local variables

A variable is assigned by specifying the parent name of the higher-level
object.

-

private wvoid mylService Connected(cbject sender, PviEventlrgs e)
i
myvariable = new Variable (my3ervice, "IntWVarl™):

TM712 PVIServices

PviServices Communication Objects

An internal variable is created if the service object is entered as parent
name.

private wvoid myCpu Connected(object sender, PwiEwventlrgs e)
i
myTask = new TaskimyCpu, "pwitest™)
wmyTask.Connected+=new PviEventHandler (myTask Connected):
myTask.Connect (] ;
myvVariskhle = new Variable (wyCpu, "Lifesign™);

A global variable is created in this example because the Cpu object was
specified as parent name.

3.7.1 Active / passive switching of variable objects

A variable object is switched to active /passive via the "Active" property.

private void myTask Connectedicbject sender, PviEventlrgs e)
i
myvWariable = new Variable (myTask, "Lifesign™):
myVariable. ddreszs = "Lifesign™:
myVariable. Aotive = true;
wyWVariasble.RefreshTime = 200;
myVariable.ValueChanged+=new VariableEventHandler imyWariable ValuseChanged) ;
myVariable.Error+=new PviEventHandler (myVariable Error);
myVariable.Connect (] ;

3.7.2 Evaluating data changes

The application is informed of data changes by setting up the
"ValueChanged" event handler.

private wvoid myVariabhle ValueChanged(obhject sender, VariableEwventlrgs e)

i
thiz.lblVallifezign.Text = [[(Variable)lszsender).Value.To3tringl):

The "ValueChanged" event is called until either a "Disconnect" takes place
on the variable object or the "Active" property is set to =false.

PVIServices TM712 17

PviServices Communication Objects

3.7.3 Read and write access

Targeted, asynchronous access to a variable object is achieved using the
"ReadValue" method.

private void cwdReadVar Clickicbject sender, System.Eventlrgs e
i
myvariable.ReadValue() :
wmyVariahle.ValueRead+=new PviEventHandler (myVarishle ValusRead):

private void myVariskble WalueRead (object sender, PviEventldrgs e
i
thizs. lblBReadVar.Text = [(Variable)sender) .Value.To3tringl) :

Another possibility is (with active variables) to directly access the "Value"
property.

this.lblReadVar.Text = myVariable.Value.To3tring():

Caution:

Make sure that the last value received for the PVIServices variable
object is read during read access to the value property of the variable
object — regardless whether the object is active or not (active property).

The assigned value is written to the variable by defining the "Value"
property.

private wvoid cwdWriteVWal Click(object sender, SysStem.Eventlrgs =)
i
myWariable.Value = 123;

A response is also possible if needed because write access is
asynchronous. This is done by setting up the event handler for the
"ValueWritten" event.

TM712 PVIServices

PviServices Communication Objects

Note:

Operators cannot be assigned in Visual Basic.NET (7.0). However, there
are two alternatives:

A Write walue in WE.WNET #1

myWal = new Valuse(123):

myWarisble.Value = myWal:

ff Write walue in VE.NET #:2
myvariable.Value, Assign(123) ;
wyVariahle.TriteValue () ;

PVIServices TM712

PviServices Communication Objects

3.8 PviServices - Module class

The PVIServices module class object defines a BR module located on the
controller with its properties.

The following actions are possible on the module object:

e Module upload
¢ Module download
e Delete module

private wvoid cwdDeleteModule Click(okject sender, 3Jystem.Ewventlrgs e)
i
myModule = new Module (myCpu, "pwitest™):
myModule.Connected+=new PviEventHandler (myModule Connected):
myModule. Conhect () !

private wvoid myModule Connected(ohject sender, PviEventlrgs e)

i
wmyModule.Deleted+=new PviEventHandler (myModule Deleted);
myModule.Delete (] ;

private wvoid myModule Deleted(okject sender, PviEventlrgs)
i
myModule.Deleted-=new PviEventHandler (myModule Deleted);
thiz.lhbl3tatus.Text = myModule.Name + " deleted™;

As seen in this example, an object is created from the PVIServices module
class. The CPU object is used as parent name.

The module object is set up using the "Connect" method. The application is
informed of successful setup in the "Connected" event.

The module on the controller is deleted in this event using the "Delete"
method and the application is notified of a successful delete procedure in
the "Deleted" event.

Note:

It is also necessary to evaluate the "Error" event because errors can
occur when setting up (e.g. due to an incorrect module name). As a
result, the "Connected" event is not called.

TM712 PVIServices

PviServices Communication Objects

3.9 Collections

Collections allow the user to manage multiple objects with the same type
together.

For example, if variables are grouped into a collection, then this collection
has similar properties, methods and events as the base variable class.

This means that each variable does not have to be managed individually.
Instead all of the variables in the collection are managed automatically
when calling a method (e.g. the "Connect" method) for the collection.

Management of variables for multiple screens can be seen as an example.
The variables for one screen can be managed in a collection in order to
switch these variables to active / passive at the same time.

The directory "BrAutomation\Samples\PviServices" contains a few
examples of using collections.

More detailed information can also be found in the PVIServices User
Documentation.

= lﬂl Pl Services

------ @ Class overview

- @ Commurication claszes

@ Event handling

El[m List services

E El Baziz zervices of all list types

El Adding, removing, and deleting

El Accessing list elements

El Eﬂ] Liztz for managing communication objects
Y ariableCallection class
E Connecting and disconnecting an entire
P b @ Creating user-zpecific lists

------ @ ModuleCollection class

------ @ TaskCollection class

------ @ CPUCalection class

------ @ ServiceCollection class

Fig. 8: PVIServices - Collections

PVIServices TM712

PviServices Communication Objects

3.10 Working with structures

If a variable object with the type "Structure" has been created, then the
structure member can be accessed after receiving the "Connected" event.

At "Connect", PVIServices reads all of the information from the structure
and manages it in the hash table.

This makes it possible to address a structure element directly using the
element name or the index of the array. An example with structures is
explained in the PVIServices sample program (item 4).

Detailed information is available in the PVIServices User Documentation.

A few examples of structures are provided in the directory
"BrAutomation\Samples\PviServices". A control program that contains a
structure variable is required.

TM712 PVIServices

PVIServices Sample Program

4. PVISERVICES SAMPLE PROGRAM

In this section a PVIServices application will be created instead of
performing exercises and tasks.

What will be accomplished in this example:

e Creating a Visual Studio.NET application
e Creating the PVIServices objects

e Error evaluation

e Evaluating data changes

e Read and write access

e Using a structure

4.1 Creating a new Visual Studio.NET application

We will now create a new Visual Studio.NET application. This example will
be explained using a C# application. However, it should also be possible
for the user to create the application using Visual Basic.NET with the
information from the previous section.

Task: Creating the Visual Studio.NET application and
inserting the PVIServices reference.

The steps for this task should be followed with the help of the
instructions in chapter 2.

The reference to the PVIServices should be defined in the namespace.

ReSUIt: E Solution 'PviServices' [1 project]
= E?_] PriServices
. . = @ Feferences
From this point on, the classes and members <0 BRAN PYIServices
of PVIServices can be accessed. -+ System

i+ Spstem.Data
b < System Diawing
----- « System. windows. Forms
b o System ML
----- App.ico
----- Azzemblylnfo.cs
Qi 23

PVIServices TM712

PVIServices Sample Program

4.2 Creating the PVIServices communication objects

In the next step, the PVIServices variables required for the program
example must be declared in the form class.

public class Forml @ Svastem. Windows.Forms.Form
i

A <swmmar v

47 Required designer wariable.

fid

public Jervice mylervice:
public Cpu myCpu;

public Task myTaszsk:

public Variable myVariahle:
public Module myModule:

Example: Creating the service object in the
form load event.

The "Connected" event is set up so that the CPU object can be set up
after "Connect" has been successfully executed.

We will be using static objects in this example.

private wvoid Forml Load(okject sender, Zystem.Eventlrgs =)
1

mydervice = new Service ("service™):
yZervice. Connected+=new PviEventHandler (myZervice Connected);
my3ervice. Is3tatic = true;

wydervice.,.Conhect (] ;2

The "IsStatic" property is used to determine whether the subsequent
objects were set up static =true or temporary =false (default).

"Create" and "Link" are automatically performed when connecting a new
PVIServices object without arguments (i.e. the process object is created
and a link object is placed at the same time).

TM712 PVIServices

PVIServices Sample Program

The following definitions are possible for static process objects with the
"ConnectionType" argument:

myCpu. Connect (ConhectionType p H

i | Create
i CreatedndLink
Link.
MNane
ConnectionType Description
Create Sets up the process object.
CreateAndLink Sets up the process object and the link object.
Link Sets up a link object on an existing process object.

An example of the separate "Create" and "Link" is described when setting
up the variable objects. All other objects are set up without arguments.

Example: Creating the CPU object and the task object

A TCPIP connection is made to the AR00O for the CPU object.
The name of the user task "pvitest" is used as task name.

Each subsequent object is created in the "Connected" event of the
preceding object. This ensures that the object has been successfully
created.

The "Error" event is additionally evaluated for CPU and task objects in
order to evaluate communication or configuration errors.

The error messages and "Connected" events are output to a MultiLine
text box control with the name "txtStatus".

PVIServices TM712

PVIServices Sample Program

private wvoid myService Connectediobject sender, PviEventirgs e)
{
thiz.txt3tatus.Text+= "Service Connectedirin™:
myCpu = new Cpuinydervice,"cpu'™);
myCpu. Connection.DeviceType = DeviceType.Toplp:
myCpu. Connection. TepIp.Destination3tation = 2;
myCpu. Connection. TepIp.DestinationPort = 11160;
myCpu. Connection. TepIp.DestinationIphaddress = T127.0.0.17;
myCpu. Connected+=new PviEventHandler (myCpu Connected)
myCpu.Error+=new PviEventHandler (myCpu Error):
myCpu. Connect () ;

private wvoid myCpu Connected(object sender, PwiEventlrgs e)
i
thiz.txtStatus. Texdt+= "CPU Connectedirhn'™;
wyTask = new Task(mwyCpu,"pwitest™)
myTask. Connected+=new PviEventHandler (myTask Connected):
wyTask.Error+=new PviEventHandler (myTask Error):
myTask.Connect (] ;

private wvoid myTask Connected(ohject sender, PviEventldrgs e)
i
this.txt3tatus. Text+= "Task " + e.Name + " Connectedi\rin™;

The connected events for the respective objects are shown in the textbox
after starting the application.

Errar:

Service Connected
CPU Connected
Tazk pvitest Connected

Fig. 9: Set up objects

TM712 PVIServices

PVIServices Sample Program

4.3 Error evaluation

If an error occurs executing the program, the corresponding error code and
the object are shown in the "txtStatus" textbox.

private void myCpu Error (object sender, PviEventlrgs =)
{
this.txt3tatus.Text4+= e.Name + ™ Error:™ + e.ErrorCode + "\rhn:

private woid myTask Error (ohject sender, PviEventlrgs e)
1

this.txt3tatus. Text+= e.Nawme + " Error:™ + e.ErrorCode + "WrhWwn™;

Ermor:

Service Connected
CPU Connected

Tazk pvitest Connected
cpu Error: 4808

pvitest Error 4808

Fig. 10: Error event — Connection lost

The "Connected" event is called again once the connection has been
reestablished.

However, this would also mean that the objects are newly set up again
because they are created in the "Connected" event of the preceding object.

To prevent this from happening, a query must occur when creating the
objects to determine whether or not the object already exists.”

PVIServices TM712 27

PVIServices Sample Program

private wvoid my3ervice Connected(object sender, PviEwventlrgs e)
i
thizs.txtStatus. Text+= "Zervice Connectedhrhn'™;

if (myCpu == null)

i
myCpu = new CpuimyIervice, "cpu™):
myCpu.Conhection.leviceType = DeviceType.Toeplp:
myCpu.Conhection. Teplp.Destination3tation = 2:;
myCpu.Conhection. Teplp.DestinationPore = 11160;
myCpu.Conhection. Teplp.DestinationlIphiddress = "127.0.0.1"7;
myCpu. Connected+=new PviEventHandler (myCpu Connected] ;
myCpu.Error+=new PviEwventHandler (myCpu Error):
myCpu. Connest ()

The "Error" event is called if the connection is lost while communicating
with the controller (E=4808).

This event is created for all active objects. That means for this variable and
for all higher-level objects (task object and CPU object) when a variable
object's "Active" property is set to "true".

The "Connected" event for these objects is called automatically once the
connection has been reestablished. At that point, the respective objects
can be accessed again.

TM712 PVIServices

PVIServices Sample Program

4.4 Evaluating data changes

The two variables "Lifesign" and "PV1" are registered in the next step.

Example: Setting up the variables "LifeSign" and "PV1"

The variable "PV1" is only set up with the
"ConnectionType.Create" for the time being.

The "ValueChanged" and "Error" event should be used.

A new variable from the PVIService class "Variable" is required for the
"PV1" variable.

public Variable myVariashlePWV1:

private wvoid myTask Connected(object sender, PviEventlrgs e)
i
thiz.txtStatus. Texdt+= "Task " + e.Name + " Connectedhrhn:

if (wmyWVariasble == null)

{
myvariable = new Variabhle (myTask, "Lifesign™) :
myvariable.,Active = LCrue;
myvariable.RefreshTime = 200;
myvariable.ValueChanged+=new VariasbhleEventHandler

myVariable ValueChanged) ;

myVarishle.Error+=new PviEventHandler (myVariskble Error):
myWariable.Conhnect ()

B

if (wmyVariablePW1l == null)

i
myvarisbhlePV1 = new Variakble (myTask, "VarCreateonly™):
myvarisblePV1., Address = "PV1™;
myvariablePV]1.Connect (ConnectionType.Create) ;

PVIServices TM712

PVIServices Sample Program

The name of the variable with error is returned in the PviEvent argument
"e.Name". The error number is returned in the PviEvent "e.ErrorCode".

private wvold myVarislble Error (object sender, PviEventlrgs e)
i

txt3tatus.TexXt += e.Name + "™ E#"™ + e.ErrorCode. To3tring()

In the "ValueChanged" event, the PviEvent argument "e.Name" also
determines which variables have changed.

private wvoid myVarishle ValueChanged (object sender, WariasbleEventirgs =)
{

if (e.Name == "Lifesign™)
{
lblvallLifesign.Text = [([(Variable)] sender) .Value.To3tringi):
K
if (e.Name == "linkWarPvir™)
{
1b1PV1.Text = [(Variakle) sender) .Value.To3tringl():
}
H
Note:

The variable "linkVarPV1" will be created in the next exercise when
creating the link object.

The value of the "Lifesign" variable is displayed on the label control after
starting the program.

There is still no value change for the variable "PV1" because it has only
been created and not yet connected.

Status
Service Connected Lifesigr: 12229
CPU Connected
T azk pvitest Connected =¥2P

TM712 PVIServices

PVIServices Sample Program

Example: Creating a connection object for the
variable "PV1"

A link object is created using the button, "emdConnectPV1". A new link
object "myLinkPV1" is created with the connection type "Link".

privatce wvoid cwdConnectPV1 Click(object sender, System.Eventlrgs e

i
Variable myLinkPV1 = new Variasble (myWVariable ,"linkVarPvl™):
myLinkPV1.LinkMame = myWariabhlePV1.Fulllame:
myLinkPVW1l.Aotive = true:
myLinkPV1.ValueChanged+=new VariableEventHandler (myVariable ValueChanged) :
myLinkPVl.Error+=newv PviEventHandler myVariable Error):
myLinkPV1l. Connect (ConnectionType.Link) ;

In order to create a link to an already existing object, the LinkName
property of the link variable object must be set to the variable object to be
referenced (FullName) as a value of the hierarchical name.

The Link connection type must also be given when calling the Connect
method so that the LinkName property is enabled.

The same event as for the "Lifesign" variable is applied to the
"ValueChanged" and "Error" event handler.
Result:

A link object is created on the "PV1" link object by pressing the button
"emdConnectPV1". The "Active" property is used to determine that each
value change in the "ValueChanged" event should be registered.

The "Disconnect" method must be called to delete the link object again.

PVIServices TM712

PVIServices Sample Program

4.5 Read and write access

Variable objects that are activated via the "Active = true" property (event
mask EV=ed) are automatically monitored by the PVI Manager for data
changes - regardless of whether these variables are polled by the PVI line
(default) or monitored as event variable by the controller via the property
"Polling = false" (attribute AT=re).

That means that these variables no longer have to be additionally read by
the application. The application is automatically informed of any data
changes in the "ValueChanged" event.

This training module will use different examples to cover three access
methods for read and write access.

4.5.1 Reading variables

A variable object is read using the "ReadValue" method. The value is
returned in the "ValueRead" event because PVIServices processes all tasks
asynchronously.

Example: Reading the value of the "Lifesign” variable

The read process for the "Lifesign" variable is initiated by pressing the
"emdReadVar" button. The value is output to a label control "IbIReadVar"
by setting up the the event handler for the "ValueRead" event.

private void cwmdReadVar Click(object sender, System.Eventlrgs g

i
wyVarishle.ValuseRead+=new PviEventHandler (myVariskhle ValusResad)
myvariable.ReadValus ()

h

private void myVarishle ValueRead(okhject sender, PviEventlrgs e)
i

this.lblReadVar.Text = [(Variahle)sender) .Value.To3tringi)
h

TM712 PVIServices

PVIServices Sample Program

Result:

Pressing the "ecmdReadVar" button causes the current value of the
"Lifesign" variable to be read and output to the label control.

Lifezign: 53036

P

Connect P4 |

4.5.2 Read the time from the controller

The date / time is read in the PVIServices CPU class.

The "ReadDateTime" method is called on the CPU object to read the time.
The application is informed about the event by setting up an event handler
‘DateTimeRead".

Example: Reading the date and time on the controller

The read procedure for the time is initiated by pressing the new button
"emdReadTime". The read time is output to the form text property.

private wvoid cmwdResdTime Click(ohject sender, System.Eventlrgs g)
1
wyCpu. DateTimeRead+=new CpuEventHandler (myCpu DateTimeResd) ;
wyCpu. FeadbateTime (] ;

private void myCpu DateTimeRead (object sender, CpuEventlrgs g)
{

DateTime dt:

dt = e.DateTime;

thiz.Text = dt.ToStringl():

PVIServices TM712

PVIServices Sample Program

4.5.3 Writing a value

To define a variable, the "Value" property must be defined with the desired
value.

Example: Resetting the "Lifesign"” variable

The "Lifesign" variable is set with the value "0" by pressing the new
"emdWriteVal" button.

The write task is confirmed via the event "ValueWritten".

private wvoid cwdllriteVal Click(object sender, Systew.Eventlrgs e)
{
myvariable.Value = 0O;
myVarishle.Valuellritten+=new PviEventHandler (myVariable ValueWritten]:

private wvoid myWVarishle ValueWritten(ohject sender, PviEventlrgs e
i

A write task is performed immediately after defining this property.

For example, automatic definition can be suppressed by setting the
property "WriteValueAutomatic = false" in order to write the member of an
array or structure.

The array or structure is only written once when the "WriteValue" method
is called.

TM712 PVIServices

PVIServices Sample Program

4.6 Using a structure

The Automation Studio project can be expanded for the exercise examples
with a structure. A structure called "Pv_Struct" is created with three
members (elements).

A% BER|E e

#include <khur/pleo.hs d
#include <bur/plotypes.h:

typedef struct mydtruct
i

UINT Mewberl:

UINT Mewber:2:

UDINT Mewbers:
TomyStruct;

_LOCAL UINT Lifesign:
_LOCAL UINT PW1:
_LOCAL my3truct Pv 3truct;

_CYCLIC woid cylicivoid)
i
Lifesign++;

] 2

Fig. 11: AS test project with a structure

Example: Defining the variable and creating the
structure variable

Create a structure variable for the PVIServices class variable. The
structure variable "myStructPV" is created in the task's "Connected"
event.

The new BR.AN.PviServices variable is defined in the form class.

public Jervice myJervice;
public Cpu myCpu;

public Task myTask:

public Variable myVariable;
public Variable myWariablePVl1:
public Variable myStructPy:

PVIServices TM712

PVIServices Sample Program

The variable is then set up. The same event handlers are used for the
"ValueChanged" and "Error" event as with other variables.

if (my3tructPV == null)

i
my3tructPV = new Varisble (wyTask, "Pv_3truct™):
MySCructPV. Active = Lrue;
myStructPV.RefreshTime = 1000;
myStructPV.ValueChanged+4=new VarishleEventHandler

imyWariable ValuseChanged) ;

myStructPV.Error+=new PviEventHandler (myVariskhle Error):
myStructPV.Connect (1 ;

Example: Evaluating the value change in the structure

Every value change in the structure is registered in the "ValueChanged"
event. The value of each member in the structure is output in the text
box "txtStatus".

In the "ValueChanged" event, the variable is checked to see if it is a
"Structure" data type and the value of each member is read.

private wvold myVarislble ValueChanged (object sender, VariableEwventlrgs e)
i

Variable tmpVWar = [(Variable)]sender:
if [e.Name == "Pv Jtruct’]
i
if ([twpVWar.Value.DataType == DataType.3tructure)

i
foreach (Variable member in tmpVar. HMembers.Values)
i
txt3tatus. TexXt += menber.Value.ToString(] + ™.\rhWn™;

TM712 PVIServices

PVIServices Sample Program

"e.ChangedMember" is used to notify the application of the member name
on which a value change occurred if data changes only in the affected
members should be output.

foreach (3tring mwerbername in e.ChangedMembersz)

i
if [(mwembernamwe '= null)

i
txtStatus. Text += tmpWar.Value[menmbername] . ToString() + ™wrin™;

Example: Defining a structure element

The structure variable "Pv_Struct.Member3" is defined with the value of
the "Lifesign" variable using a new button, "emdSetStruct".

private wvoild ewd3etdcruct Click(okject sender, 3Jystem.Eventlrgs e)

i
myStructPV.Value["HMemwbheri™] = myVariabhle.Value;

The entire structure is written by defining the "Value" property — not only
the individual member as might be assumed here.

To write multiple members in the structure at the same time, set the
"WriteValueAutomatic" property to the value "false" and after making the
setting, all members are written with the "WriteValue" method.

private wvoid cwdisetitruct Click(ohject sender, 3ystem.Eventlrgs =)
i
mystructPV. MriteValuelutomatic = false;
myStructPV. Value ["Hemberl1™] 10;
myStructPV. Value ["Hember:s '] 20;
myItructPV. Value["Hember3i™] = myvVariable.Value;
myStructPV.riteValue () ;

A value can also be assigned before calling the method "WriteValue" using
for example, "myStructPV.Value["Member2"].Assign(20)".

PVIServices TM712 37

Summary

5. SUMMARY

PVIServices can be used to create a Windows Client application from the
visualization up to the creation of the service tools within the programming
environment VisualStudio.NET.

This training module covers a small scope of the PVIServices classes. Refer
to the PVIServices User Documentation and the PVIServices samples
included in the PVI Server&Runtime / Development installation to expand
basic knowledge of this topic.

Microsoft)

sender, PYiEventArgs o)

Fig. 12: PVIServices

TM712 PVIServices

Summary

Notes

PVIServices TM712

Summary

Notes

TM712 PVIServices

Overview of training modules

TM200 - B&R Company Presentation **

TM201 - B&R Product Spectrum **

TM210 - The Basics of Automation Studio

TM211 — Automation Studio Online Communication
TM212 — Automation Target **

TM213 — Automation Runtime

TM220 - The Service Technician on the Job *

TM221 — Automation Components and Sources of Errors *

TM223 — Automation Studio Diagnostics

TM230 - Structured Software Generation

TM240 - Ladder Diagram (LAD)

TM243 - Sequential Function Chart (SFC) *
TM245 — Instruction List (IL) *

TM246 — Structured Text (ST)

TM247 — Automation Basic (AB) *

TM248 — ANSI C

TM250 — Memory Management and Data Storage
TM260 — Automation Studio Libraries |

TMA400 - The Basics of Motion Control

TM402 - Dimensioning Motion Control Systems *
TM410 — The Basics of ASiM

TM440 — ASiM Basic Functions

TM441 — ASiM Multi-Axis Functions

TM445 — ACOPOS ACP10 Software

TM450 — ACOPOS Control Concept and Adjustment
TM460 - Starting up Motors *

Summary

TM600 — The Basics of Visualization
TM610 - The Basics of ASiV

TM630 - Visualization Programming Guide
TM640 — ASiV Alarm System

TM650 — ASiV Internationalization

TM660 — ASiV Remote

TM670 — ASiV Advanced

TM700 - Automation Net PVI
TM710 - PVI Communication
TM711 - PVI DLL Programming
TM712 - PVIServices

TM730 - PVI OPC

TMB800 — APROL System Concept

TM801 — APROL Engineering Basics

TM810 — APROL Setup, Configuration and Recovery
TM811 — APROL Runtime System

TM812 — APROL Operator Management

TM813 — APROL XML Queries and Audit Trail
TM830 — APROL Project Engineering

TM840 — APROL Parameter Management and Recipes
TM850 — APROL Controller Configuration and INA
TM860 — APROL Library Engineering

TM865 — APROL Library Guide Book

TM870 — APROL Python Programming *

TM880 — APROL Report *

*) upon request
*¥) see Product Catalog

120 offices in more than 50 countries - www.br-automation.com/contact

Australia - Austria - Belarus - Belgium - Brazil - Bulgaria - Canada - Chile - China - Croatia - Cyprus - Czech Republic
Denmark - Egypt - Emirates - Finland - France - Germany - Greece - Hungary - India - Indonesia - Ireland - Israel - Italy - Korea
Kyrgyzstan - Malaysia - Mexico - The Netherlands - Norway - Pakistan - Poland - Portugal - Romania - Russia - Singapore
Slovakia - Slovenia - South Africa - Spain - Sweden - Switzerland - Taiwan - Thailand - Turkey - Ukraine - United Kingdom - USA

