

PVI Communication
TM710

 2 TM710 PVI Communication

Requirements

Training modules: TM700 – Automation Net PVI

Software: Windows NT/2000/XP
 PVI Server & Runtime / Development

Hardware: PC

 PVI Communication TM710 3

Table of contents

1. INTRODUCTION 4

1.1 Objective 5

2. PVI – CLIENT COMMUNICATION 6

2.1 The PVI Manager 7
2.2 The PVI object hierarchy 8
2.3 Synchronous / asynchronous data acquisition 17
2.4 Notifying the client of a data change 18
2.5 Communication performance 19
2.6 Data consistency 25

3. PVI – LINE COMMUNICATION 26

3.1 Establishing connection 27
3.2 Polled communication 28
3.3 Event-driven communication 29

4. PVI – PVI COMMUNICATION 30

4.1 Topologies for a remote connection 31
4.2 Setting up a remote connection 33

5. SUMMARY 39

Introduction

 4 TM710 PVI Communication

1. INTRODUCTION

To set up and program a visualization so that it meets the necessary
requirements, it is important to know the different types of communication
between the actual end product "visualization" and the data acquisition
between PVI controller.

PVI is more than a communication driver that exchanges data between a
PVI client and a controller using one specific protocol.

This training module will illustrate the possibilities and advantages of PVI
communication:

• Communication between PVI client and PVI
• Communication between controller and PVI
• Communication between multiple PVI instances

(client / server mode)

Fig. 1: PVI communication

Brief exercises and tasks will be used to illustrate the possibilities and
areas of use for the individual types of communication.

Programming knowledge is not necessary for these exercises. A few of
the programs included in the PVI Server&Runtime / Development
installation are used as well as Automation Studio.

 Introduction

 PVI Communication TM710 5

1.1 Objective

Participants will learn about the different types of PVI communication.

Participants will understand the internal processes of data acquisition, data
transmission and data management in order to properly set up and
program communication to ensure optimum data transfer speed for their
own applications.

After working through the individual exercises, participants will be able to
handle advanced programming of the PVICOM interface, PVIServices,
PVIControls.NET as well as the configuration and programming of the PVI
OPC server.

Fig. 2: Overview

With frequent references to the "PVI help", participants will also learn how
to work with this help structure and how to find detailed information
pertaining to their own questions and requirements.

PVI – Client Communication

 6 TM710 PVI Communication

2. PVI – CLIENT COMMUNICATION

Anyone who has programmed a B&R controller has already worked with a
PVI client application.

"Automation Studio"

Even Automation Studio is a PVI client in the classical sense, which
exchanges data with the B&R controller via a selected medium (serial, CAN,
TCPIP, etc).

Fig. 3: PVI client communication

This chapter describes the communication between the PVI client and the
PVI manager via the PVICOM interface.

 PVI – Client Communication

 PVI Communication TM710 7

2.1 The PVI Manager

The PVI Manager (central component of PVI)
handles the management of all types of process
data, from simple process variables to lists,
programs or data objects.

Fig. 4: PVI Manager

 The PVI Manager organizes the process data according to chronology as
well as direction. That means the PVI Manager coordinates the data
transfers from the user configuration (direction, protocol, medium, device,
etc).

Special attention is given to asynchronous management in order to be able
to fit in e.g. network delays for other tasks or coordination of event
processing between other tasks.

The PVICOM interface (client interface) establishes access to the PVI at the
lowest level.

Fig. 5: PVI client interface

As a result, this is the most optimum PVI interface in regard to performance.

The PVICOM interface is used by all Windows-based components with PVI
access.

The PVI Manager can be started either as a normal Windows process or as
a Windows service. The only difference is that the PVI Manager as service
is not automatically terminated when changing a user in Windows (Log Off).

This option can be selected while installing a PVI package. When the PVI
Manager is started, this option is indicated using a different PVI Manager
icon in the SysTray.

 PVI Manager as process…

 PVI Manager as service…

PVI – Client Communication

 8 TM710 PVI Communication

2.2 The PVI object hierarchy

The PVI Manager manages all processes in an object structure (i.e. the
object hierarchy).

Each process object in the hierarchy takes on a specific task and is defined
using a unique name (path name) and corresponding parameter.

Fig. 6: PVI object hierarchy

Note:

An understanding of the object hierarchy is necessary when
programming and setting up a PVI Client application.

 PVI – Client Communication

 PVI Communication TM710 9

2.2.1 Process object

A process object represents either a specific logical/physical part of the
communication connection or an object on the controller.

Fig. 7: Process object type - Device

A process object is defined by the following components:

• Object name
• Object type
• Connection description (CD)

Note:

The PVI object hierarchy and the definitions for all types of access are
identical whether the user employs programming techniques with
PVICOM functions via the PVICOM interface or uses a configuration file
or configurators to establish PVI server communication.

PviServices makes up the object hierarchy on the user's side in a
service, CPU, task and variable class, and is configured by defining the
properties.

Exercise:

Learning to understand process objects

The PVIDEMO is used to explain the object hierarchy, object names,
object type and the connection description.

The PVIDEMO.EXE is located in the following directory:

C:\BrAutomation\Samples\Pvi\Vc\PviDemo\Release\PviDemo.exe

PVI – Client Communication

 10 TM710 PVI Communication

Fig. 8: PviDemo.exe

The configuration window is opened after starting the demo with the
"Objects" button.

Each line in this window represents a process object.

The PVI Basis object does not have to be defined explicity. It is
automatically managed by the PVI Manager and is present throughout the
entire runtime of the PVI Manager.

The communication protocol is specified via the Line object.

Name: @/Pvi/LNINA2
Connection description: CD=LnIna2 (name of the line DLL)

The Device object defines the physical connection of the PCs to the outside
world.

 Name: @/Pvi/LNINA2/COM1
 Connection description: CD="/IF=com1 /BD=57000 /PA=2"

 PVI – Client Communication

 PVI Communication TM710 11

The Station object represents a station within a network.

Name: @/Pvi/LNINA2/COM/PVITEST
 Connection description: CD=""

One or more CPU objects define the connection to one or more controllers.

Name: @/Pvi/LNINA2/COM1/PVITEST/CPU
 Connection description: CD=""

Variables are mapped on a task object, in which the local or global control
variables are used in the user task.

Name: @/ Pvi/LNINA2/COM1/PVITEST/CPU/pvitest
Connection description: CD=“pvitest“ (task name on the controller)

The Variable object represents a control variable with any data type.

Name: @/ Pvi/LNINA2/COM1/PVITEST/CPU/pvitest/Pvar1
Connection description: CD=“PV1“ (variable in the "pvitest" task)

Caution:

Global variables can also be registered directly on the CPU object.
However, we recommend setting up all variables in one task object
because this considerably speeds up the time needed for registration
(identification of the symbolic variable names).

Exercise: Checking the object names and the
connection description in the PVI Monitor / Snapshot Viewer:

The SnapShot Viewer is used to diagnose the operating states of the
individual PVI objects. More detailed information is available in the PVI
User Documentation.

PVI – Client Communication

 12 TM710 PVI Communication

The PVI Monitor is started by double clicking on the PVI
Manager icon in the Systray or by selecting PVI Monitor
from the shortcut menu.

Steps for this exercise:

• Open the SnapShot Viewer window with the key combination
<ALT> + <F9>.

• Take a snapshot of all of the process objects registered on the PVI
Manager as well as their operating state by pressing the <F5> key.

• Select the entry "Process Objects"
• Show the object hierarchy, the object names and the connection

description by expanding the individual objects.

Fig. 9: PVI SnapShot Viewer

Exercise: Changing the connection description

The goal of this task is to change the connection description in the
"PviDemo" (i.e. the "Connection" column) so that a TCPIP connection can
be set up.

The changes can be checked in the SnapShot Viewer.

 PVI – Client Communication

 PVI Communication TM710 13

You can read about the line-specific parameters in the PVI user
documentation.

Fig. 10: PVI line documentation

Objective:

• Changing the connection description does not require changing
the object names

• Using the PVI Line documentation
• Using the PVI SnapShot Viewer to check and to evaluate the PVI

objects

Result:

• The object name is a symbolic name and is therefore independent
from the connection description

• Device object:
Name: @/Pvi/LNINA2/COM1
Connection description: CD="/IF=TCPIP /SA=1"

• CPU object:
Name: @/Pvi/LNINA2/COM1/PVITEST/CPU
Connection description: CD="/DA=2 /DAIP=10.0.0.2"

PVI – Client Communication

 14 TM710 PVI Communication

2.2.2 Static and temporary process objects

A process object can be created as a temporary or static process object.
The method is the same for both types.

Static process objects

A static process object is only set up once and remains
throughout the entire runtime of PVI Manager.

Static process objects are advantageous in the following situations:

• A PVICOM application which is started and stopped many times and
which needs a large number of process objects

• The object structure should be managed centrally. At the start (e.g.
Windows start-up), a generator or configurator (as the PVICOM
application) sets up all required process objects. Then the
application can be ended again.

• An interface server which remains active during the entire PVI
Manager runtime and provides information about the necessary
object structure right after being started.

Temporary process objects

A temporary process object is set up together with a link
object (= active process object). When releasing the link
object or when terminating the PVICOM application, the
temporary process object is also deleted.

Temporary process objects are advantageous in the following situations:

• A PVICOM application which is not started and stopped many times
or which needs just a few process objects

• Process objects which are only used briefly in a PVICOM application
and which are seldom needed (e.g. for carrying out services)

• If the connection description of a process object is modified during
runtime, then it and all subordinate objects should be set up as
temporary process objects.

The points mentioned above are only intended as decision guidance. The
type of process object used by the PVICOM application needs to be
decided according to requirements. However, if in doubt, temporary
process objects are preferred since they are more easily handled.

 PVI – Client Communication

 PVI Communication TM710 15

Example:

A visualization with multiple screen pages is a classic example of using
static and temporary process objects.

Using static process objects:

• When starting the visualization, all objects are set up as static (i.e.
only the process object is created – no link object).

• To display a variable on a screen page, a link
object must now be created on the
corresponding variable process object.

• The variable will now be read and monitored
by the PVI Manager / PVI Line. A data change
is received in the response data of the link
object and can be evaluated accordingly =
active process object.

• When changing pictures, the link object is
cleared again, but the process object remains.
Variable reading is deactivated = inactive
process object.

• Another link object is created on the
same process object if it is necessary
for the same variable to be displayed
multiple times. This makes it possible to
display and close the screen pages
independently from one another.

• Another advantage of this method is
that each link object can have a different
scaling or data type.

Note:

The PVI OPC Server and the PVIControls only use static process
objects. The user can define this by setting a property in the
ACConfigurator of the PVIControls.NET.

PVI – Client Communication

 16 TM710 PVI Communication

Using temporary process objects

• All process objects are set up temporarily when starting (i.e. the
process object already has a link object).

• If a variable is displayed on a screen page, then
the process object is switched to "active".

• The variable will now be read and monitored
by the PVI Manager / PVI Line. A data change is
received in the response data of the link object
and can be evaluated accordingly = active
process object.

• When changing a picture, the process object is
switched to "inactive" again (i.e. variable
reading is deactivated = inactive process
object).

• If the same variable must be displayed
multiple times, then the client
application must be used to monitor
whether the variable is displayed
multiple times. The process object can
be switched to "inactive" when the
variable is no longer required.

Note:

Exercises for static and temporary process objects are performed in the
training modules TM711 (PVICOM Programming) and TM712
(PVIServices).

 PVI – Client Communication

 PVI Communication TM710 17

2.3 Synchronous / asynchronous data acquisition

All tasks are processed "asynchronously" within the PVI Manager and the
line. This means that delays do not occur and other tasks can be shifted.

However, it can sometimes be necessary to execute a task "synchronously"
in the PVI Client application (e.g. read or write request from variables).

Synchronous tasks:

• Synchronous tasks wait for the task's
confirmation (response data) in the function
call.

• No other system operations are possible
during this time.

• Synchronous function calls in a loop should
be avoided.

• Synchronous tasks cannot be "blocked" in
the PVI line (i.e. each read or write access is
sent to the controller in a separate
communication frame).

Asynchronous tasks:

• In asynchronous tasks, the application
program is further processed after the
function call.

• The confirmation is made "asynchronously"
to the program execution in a separate
function that is called automatically. The
data from the read tasks can be read in this
function or a confirmation from a write task
is provided.

• Asynchronous tasks can also be read in a
loop.

• Asynchronous tasks can be blocked from
the PVI line.

PVI – Client Communication

 18 TM710 PVI Communication

2.4 Notifying the client of a data change

The PVI Client application is notified when event data is present and when
data is changed in "active" process objects.

Different user messages are available depending on the programming
environment being used:

User messages Description

Windows message Signals using a Windows message. Response or event data
is read using the corresponding response function. This is
the preferred method for Visual C/C++ applications.

Callback with data Signals using a callback function. Response or event data is
transferred using the callback function. This is the preferred
method for Visual Basic 6.0 applications.

Callback without data Signals using a callback function. Response or event data is
read using the corresponding response function.

Asynchronous
callback

Signals using an asynchronous callback function. Response
or event data is read using the response function. This
method should be used for Visual C/C++ applications
without windows.

A PVICOM application can also use the
different user message variants with one
another. For example, a Visual C/C++
application can receive event data as a
Windows message and response data as
callback.

 PVI – Client Communication

 PVI Communication TM710 19

2.5 Communication performance

When setting up a PVI Client application, suitable configuration of each
individual variable can strongly influence the communication performance.

2.5.1 Active / passive switching of variables

The PVI Manager or the PVI Line only monitors the process objects /
variable objects that are switched to active.

The fewer variables that are active, the faster the active variables can be
refreshed.

Which variables should be switched to active:

• Variables that are displayed on a screen page
• Variables that must be read in the background of the application (e.g.

alarm and trend data)

Which variables should be switched to inactive:

• Variables that are only requested by the controller or written to the
controller when specific actions occur

• Variables that are not displayed

The PVI Monitor can be used to evaluate
the number of process objects registered
to the PVI Manager and the number of
active process objects.

Note:

Exercise examples about the possibilities will be provided in the
corresponding training modules for PVICOM Programming TM711 and
for PVIServices TM712.

PVI – Client Communication

 20 TM710 PVI Communication

2.5.2 Refresh time for variables

The refresh time determines how frequently a variable object is updated.

The PVI Manager / PVI Line attempts to acquire the process data within this
time period. The controller monitors the event variables (see 3.1) for data
changes within this time period.

Refresh time Description

-1 The data is not read automatically. However, the application can
control data acquisition using targeted read tasks.

0 Process data is only read once. Reading takes place after the line has
initialized the variable object. As with RF = -1, the application can
control further data acquisitioning using targeted read tasks.

> 0 The variable object is cyclically provided with updated process data
in the specified refresh time (given in ms). The refresh time should
be set to correspond with the requirements of the process data (how
current).

Caution:

The defined refresh time is not a guarantee of the actual acquisition
time because this can be affected by other factors:

• Controller response time
• Number of active variables
• Tasks, asynchronous to the normal read cycle of variables
• The protocol/medium being used

 PVI – Client Communication

 PVI Communication TM710 21

Setting refresh times

• Data that changes slowly (e.g. temperature values) should have a
corresponding refresh time in the seconds range.

• Variables that only have to be read when starting the application,
such as set values, should be registered with a refresh time of "= 0".

• Data that only has to be read after a specific application action
should be registered with a refresh time of = "-1".

• Data that is used to display movements should be registered with a
short refresh time.

Example:

Reading position data and temperature values.

PosVar Refresh time = 200ms
TempVar Refresh time = 200ms

All variables are read in the same read cycle. Data changes that are needed
at a high speed can also be read more often by setting the refresh times
accordingly.

PosVar Refresh time = 200ms
TempVar Refresh time = 5000ms

In this image, it is evident that the variable "PosVar" can be read in almost
every communication frame, unlike the variable "TempVar" which is only
contained in each nth communication frame.

Caution:

Real-time communication between the PC and controller is not possible
with PVI because the defined times cannot be guaranteed due to the
dynamic setup of the variables and communication between PVI
Client application.

PVI – Client Communication

 22 TM710 PVI Communication

2.5.3 Object attribute

Object attributes control the approach when acquiring and handling
process data of external variable objects.

The communication performance between the PVI Client application and
the PVI Manager and between the PVI Manager and the controller can be
improved with targeted application of these attributes. The most important
attribute for communication performance is the attribute "e" for activating
the event-controlled communication (see also 3.1).

Attribute Description

r Allows read access to the process data of a variable object. If this
attribute is not specified, a read access attempt is rejected with an
error. PVI Manager does not carry out any cyclic read tasks.

w Allows write access to the process data of a variable object. If this
attribute is not specified, a write access attempt is rejected with an
error.

e Operation mode PLC event variable. The PLC monitors the process
data for changes. Therefore, the PVI Manager does not need to
execute any cyclic read tasks (only INA2000 and NET2000 Line).

h Fast echo after write access. The time between a write task and a
resulting data change event can be reduced with the "h" object
attribute. However, this cannot accelerate the actual write task. The
write data is compared with the process image before the transfer to
the PLC and, if there is a change, a data change event is triggered via
all existing link objects.

d Direct event trigger for the POBJ_EVENT_DATA event. The "d"
attribute is only effective in connection with the "e" attribute. A direct
event trigger means that all process data returned by the line or PLC
is sent directly to the application.

Application: e.g. life sign monitor on CANDirect Line

 PVI – Client Communication

 PVI Communication TM710 23

2.5.4 Variable hysteresis

A filter can be defined for a value change via the event hysteresis. If the
event hysteresis is defined in the variable object, a change event from the
PVI Manager to the PVI Client application is only triggered if the value
change is greater than or equal to this value.

As can be seen in this image, when the
hysteresis has the value 5 (HY=5) only a
data change greater than or equal to this
value (e.g. from 4 to 10) triggers a message
to the PVI Client application.

 Fig. 11: PVI hysteresis

Note:

If the hysteresis is used with the event-driven communication (attribute
= e), then the controller monitors the value change with the defined
hysteresis.

PVI – Client Communication

 24 TM710 PVI Communication

2.5.5 Using structures and arrays

A few things must be taken into considersation if control variables with the
data type "Structure" or "Array" are registered from the PVI Client
application:

• A certain structure alignment may be specified depending on the
programming environment (e.g. Visual Basic 6.0 Alignment = 4).

• Structures and arrays cannot be registered as event variables
(attribute = e).

• These data types should be registered with a refresh time "0" or "-1"
preventing them from being read cyclically.

• If only a few elements of a structure or an array are changed on the
controller, then these elements should be registered as individual
variables.

• "Consistent" transfer of an entire structure or array is not possible
(i.e. the image of the PVI Client application and the controller is not
necessarily identical - see 2.6).

• "Simultaneously written" access from the controller and the PVI
Client application should be avoided.

 PVI – Client Communication

 PVI Communication TM710 25

2.6 Data consistency

When transferring data between the controller and a PVI Client application,
the data transfer must be "consistent".

As you can see in this image, multiple
communication frames are required to
transfer the structure. If an element in this
structure is changed on the controller,
then the image of the structure is no
longer consistent during the transfer.

Fig. 12: Data consistency

In this case, the application must handle the data consistency by
synchronizing the data exchange. For example, a separate write or read
image could be used to do this, whereby access is made via trigger
variables.

Caution:

Unique value changes (incremental value change) should always be
evaluated when synchronizing the data exchange. Synchronization
based on a BOOL variable can be overseen due to asynchronous access
of the PVI Line to the controller.

Note:

Only one consistency to scalar data types is provided (SINT, INT, DINT,
REAL, etc) for PVI communication with the INA2000 or NET2000 Line.

PVI – Line Communication

 26 TM710 PVI Communication

3. PVI – LINE COMMUNICATION

This section describes the course of communication between the PVI
Manager, the PVI Line and the controller from registration of the process
objects to polled or event-driven data transfer.

The INA2000 Line is used as basis because this PVI Line is the most
commonly used type of communication (online protocol to SG3 and SG4
controllers).

Fig. 13: PVI Line communication

 PVI – Line Communication

 PVI Communication TM710 27

3.1 Establishing connection

Each newly setup process object with line connection triggers a process of
establishing connection (station and CPU process object) or of object
identification (module, task, and variable process object).

Depending on the line being used, this process can take some time to
complete.

If the process object is enabled and then freshly set up again, then this
process has to be repeated. It is therefore an advantage if PVICOM
applications only have to set up process objects once.

A disrupted connection (unplugging the cable between the PC and
controller) also causes (after the response timeout has expired following x
number of the configured or defined repetitions) a new attempt to establish
a connection as long as the connection to the controller has been re-
established.

If an object is created temporarily, an
automatic read task (active process
object) is performed after the object has
been identified and therefore also a read
task to the controller. A data event is sent
to the PVI Client application after a data
change.

Static objects are only identified. The
object is only read and the data event
sent to the PVI Client application after a
link object has been created.

Note:

INA2000 Line: It is recommended to set up all variable objects in one
task object. This enables faster identification of variables than if they are
set up in the CPU object.

Fig. 14: PVI Verbindungsaufbau

PVI – Line Communication

 28 TM710 PVI Communication

3.2 Polled communication

If a process variable arrives with active
event mask and a refresh time > 0, then
the PVI Line starts cyclically reading this
active process variable from the controller.

As you can see in this image, the process
variable "PV1" is read cyclically from the
controller.

The PVI Manager compares the value of
the internal process image with the read
value and sends a data event to the PVI
Client application anytime a data change
occurs.

Multiple active variables are
simultaneously read from the controller in
a request frame.

Advantage of polled communication:

• Quicker update of variables with shorter refresh time

Disadvantage of polled communication:

• When there is a large number of active variables, the defined refresh
time for all variables is no longer guaranteed because all variables
cannot be read in one request from the controller.

Fig. 15: PVI – Pollende Kommunikation

 PVI – Line Communication

 PVI Communication TM710 29

3.3 Event-driven communication

INA2000 and NET2000 Line offer the
possibility of event-driven
communication (attribute "e").

This view shows the communication
between PVI and the controller when
only event variables are used.

In this case, only one life sign monitor is
active between the PVI and the
controller with the Response Timeout
(/RT=x) defined for the CPU process
object.

The controller monitors every event
variable with the defined refresh time
(RF=x) in the controller's idle time.

When a data change occurs on the controller, the PVI is notified in the
response frame of the life sign monitor or a "normal" data response that
event variables have changed. These variables are then read by the PVI
Line.

Advantages of event-driven communication

• Variables that do not change often (e.g. alarm variables) reduce the
load on the cyclic communication.

• This allows variables with a short refresh time to be read faster.
• No load on the controller because monitoring takes place in the idle

time.

Note:

The different registration of variables as "polled" or "event-driven"
makes it possible to achieve optimum communication performance for
all requirements.

Fig. 16: PVI – Event-driven communication

PVI – PVI Communication

 30 TM710 PVI Communication

4. PVI – PVI COMMUNICATION

PVI offers a PVI remote connection for remote system maintenance, for a
client / server application between two or more PC's or for programming
via network.

The only requirement is a TCPIP connection between the PC's.

This makes it possible to create a connection to multiple PVI server PC's
from one PC or to access a PVI server PC from multiple PC's.

In this case, the PVI Manager and the PVI Client application are located on
different PC's.

Fig. 17: PVI Client – Server communication

 PVI – PVI Communication

 PVI Communication TM710 31

4.1 Topologies for a remote connection

As described in the introduction to this chapter, a PVI Remote connection
can be implemented as simple client / server architecture as well as multi-
client / multi-server architecture.

The following diagram illustrates simple client / server communication,
which is used for e.g. remote maintenance or programming.

Fig. 18: PVI Remote connection - client / server

Note:

A PVI license (dongle) is not required on the PVI Client PC because the
PVI Manager only runs on the PVI Server PC.

PVI – PVI Communication

 32 TM710 PVI Communication

This example shows a multi-client / server architecture, whereby a local PVI
application is running on one PC but a PVI client application can also run.

Fig. 19: PVI Remote connection – multi-client / multi-server

 PVI – PVI Communication

 PVI Communication TM710 33

4.2 Setting up a remote connection

The only requirement for setting up a remote connection is existing TCP/IP
communication between the involved PC's.

It is irrelevant whether this is a direct connection via a network cable or a
dial-up connection via a modem.

Fig. 20: Windows command prompt: Execute PING command

Exercise: Connecting 2 PC's and testing the TCP/IP
connection

Connect 2 PC's via a crossed network cable. Define a separate IP
address on each PC.

PC #1:

IP Address: 10.0.0.1
SubNet Mask: 255.255.255.0

PC #2:

IP Address: 10.0.0.2
SubNet Mask: 255.255.255.0

Use the PING command to test the connection (caution: check firewall
settings).

<Start> / <Run> : cmd

PVI – PVI Communication

 34 TM710 PVI Communication

4.2.1 Configuring a remote connection on a server PC

A remote connection on a server PC is set up in the PVI monitor.

The PVI Monitor is started via <Start> / <Programs> / <BrAutomation> /
PviMonitor or by double-clicking on the PVI Manager icon in the SysTray.

The properties dialog box for the PVI Manager
is opened via the menu <Options> /
<Manager Properties> or via the key
combination <ALT> + <F7>.

The port number for the remote connection
must be defined in this dialog box.

Caution:

Port numbers < 1024 are used by Windows. A port number > 10000 is
recommended.

Exercise:

Setting a port number in the Manager properties

Set a port number (default: 20000) in the PVI Monitor for a remote
connection.

The PVI Manager must then be terminated and restarted. Any changes
to the PVI Manager properties will only take effect after restarting the
PVI Manager.

 PVI – PVI Communication

 PVI Communication TM710 35

A configured remote connection is displayed after starting the PVI Manager
on the server PC.

Fig. 21: PVI Monitor – TCPIP connection

From this point on, a PVI Client application can access the controller via a
TCP/IP remote connection

Caution:

On a local connection, the PVI Manager is automatically started via the
"PviInitialize()" function when accessing the PVICOM interface.
On a remote connection, the PVI Manager must be started manually
(e.g. Windows Startup menu or start PVI as a service).

PVI – PVI Communication

 36 TM710 PVI Communication

4.2.2 Setting up a remote connection on the client PC

A remote connection is defined in the PVI Client application by also
specifying the IP address / computer name and port number of the PVI
server PC in the "PviInitialize()" function.

After starting the PviDemo, the <Connect> button is used to open a dialog
box in which a local or remote connection can be set up.

The IP address and the port number of the PVI server PC's are defined.

Fig. 22: PviDemo.exe – Remote connection

Exercise: Testing a remote connection

In the previous exercise, a PC was set up as PVI Server.

The familiar "PviDemo" can now be used to test a remote connection.

C:\BrAutomation\Samples\Pvi\Vc\PviDemo\Release\PviDemo.exe

Note:

The definitions are made in the PVI process object's dialog boxes if an
installed PVI component (e.g. PVIControls, PVI OPC configurator, etc) is
used. Additional programming is not necessary.

 PVI – PVI Communication

 PVI Communication TM710 37

Fig. 23: PVI Server PC – Showing the process objects

Note:

If only one PC is available for this exercise, then a remote connection
with only one PC can be tested by entering the IP address "127.0.0.1".

Result:

• Error 12095 (Communication interrupted. TCP/IP error) is output
after the timeout has expired if the PviDemo is started without a
network connection.

• When a valid connection is present, the process objects that were
set up via the remote connection are displayed on the PVI Server
PC in the PVI Monitor.

• The PVI Manager was not started on the PC where the PviDemo
was started.

PVI – PVI Communication

 38 TM710 PVI Communication

4.2.3 Global events

The global events are used to inform a PVI Client application of the
connection status to the PVI Manager and should be used in each PVI
Client application which is intended to run as a remote application.

Event Description

CONNECT The communication instance (client) established the connection to
the PVI Manager (server).

DISCONNECT The connection between the communication instance (client) to the
PVI Manager was interrupted (server). The corresponding error
code is reported with the event data. The communication timeout
plays the main role in recognizing the disruption in the client/server
connection (PviInitialize).

ARRANGE This event signals that the communication instance has been newly
registered with the PVI Manager. This event is triggered if there is a
valid client/server connection.

The global events CONNECT and DISCONNECT signal the state of the
client/server connection.

The ARRANGE event signals the application when connection objects and
temporary process objects have to be set up again.

If there is a longer interruption in the client/server connection (doubled
communication timeout), then the PVI Manager automatically de-registers
the communication instance and releases all assigned connection objects.
If the connection is established later, then the PVICOM application has to
set up all objects again. The ARRANGE event can be used to automatically
control this procedure.

Note:

More information about the can be found in the PVI User
Documentation.

 Summary

 PVI Communication TM710 39

5. SUMMARY

After working through this training module, participants understand the
communication between their PVI Client application and the controller.

Either an existing application can be optimized by making specific changes
to the individual objects or can be set up optimally from the start when
programming a new application.

This training module is also the basis for continued programming of the
PVICOM interface (TM711, TM712) and for the use of the PVI OPC server /
configurator (TM730).

Fig. 24: PVI communication

Summary

 40 TM710 PVI Communication

Notes

 Summary

 PVI Communication TM710 41

Overview of training modules

TM200 – B&R Company Presentation ** TM600 – The Basics of Visualization
TM201 – B&R Product Spectrum ** TM610 – The Basics of ASiV
TM210 – The Basics of Automation Studio TM630 – Visualization Programming Guide
TM211 – Automation Studio Online Communication TM640 – ASiV Alarm System
TM212 – Automation Target ** TM650 – ASiV Internationalization
TM213 – Automation Runtime TM660 – ASiV Remote
TM220 – The Service Technician on the Job * TM670 – ASiV Advanced
TM221 – Automation Components and Sources of Errors *
TM223 – Automation Studio Diagnostics TM700 - Automation Net PVI
TM230 – Structured Software Generation TM710 - PVI Communication
TM240 – Ladder Diagram (LAD) TM711 - PVI DLL Programming
TM243 – Sequential Function Chart (SFC) * TM712 - PVIServices
TM245 – Instruction List (IL) * TM730 - PVI OPC
TM246 – Structured Text (ST)
TM247 – Automation Basic (AB) * TM800 – APROL System Concept
TM248 – ANSI C TM801 – APROL Engineering Basics
TM250 – Memory Management and Data Storage TM810 – APROL Setup, Configuration and Recovery
TM260 – Automation Studio Libraries I TM811 – APROL Runtime System
 TM812 – APROL Operator Management
TM400 – The Basics of Motion Control TM813 – APROL XML Queries and Audit Trail
TM402 – Dimensioning Motion Control Systems * TM830 – APROL Project Engineering
TM410 – The Basics of ASiM TM840 – APROL Parameter Management and Recipes
TM440 – ASiM Basic Functions TM850 – APROL Controller Configuration and INA
TM441 – ASiM Multi-Axis Functions TM860 – APROL Library Engineering
TM445 – ACOPOS ACP10 Software TM865 – APROL Library Guide Book
TM450 – ACOPOS Control Concept and Adjustment TM870 – APROL Python Programming *
TM460 – Starting up Motors * TM880 – APROL Report *

 *) upon request
 **) see Product Catalog

Summary

 42 TM710 PVI Communication

Hinteres Deckblatt (auf durch 4 Teilbarer Seitenzahl)

Kontakt (Headquarter)

Weblink

Internationalität

Copyright – Bestellnummer

T
M

71
0T

R
E

.0
0-

E
N

G

 0
70

6
©

20
06

 b
y

B
&

R
. A

ll
ri

gh
ts

 r
es

er
ve

d
.

A
ll

tr
ad

em
ar

ks
 p

re
se

n
te

d
 a

re
 th

e
p

ro
p

er
ty

 o
f t

he
ir

 r
es

p
ec

tiv
e

co
m

p
an

y.

W
e

re
se

rv
e

th
e

ri
gh

t t
o

 m
ak

e
te

ch
ni

ca
l c

ha
ng

es
.

