Automation Basic (AB)
TM247

Perfection in Automation
www.br-automation.com

Requirements

Training modules:

Software:

Hardware:

TM210 — The Basics of Automation Studio
TM211 — Automation Studio Online Communication
TM213 — Automation Runtime

TM223 - Automation Studio Diagnostics

None

None

Table of contents

1.

INTRODUCTION
1.1 Objectives

AUTOMATION BASIC FEATURES

2.1 General information
2.2 Properties
2.3 Possibilities

THE FUNDAMENTALS OF AUTOMATION BASIC

3.1 Expressions

3.2 Assignment

3.3 Line break

3.4 Comments

3.5 Operator Priorities

COMMAND GROUPS

4.1 Boolean operations

4.2 Arithmetic operations

4.3 Comparison operators

4.4 Decisions

4.5 Case statements

4.6 Select statement

4.7 Loops

4.8 Calling function blocks

4.9 Pointers and dynamic variables

EXERCISES
SUMMARY

APPENDIX

7.1 Keywords
7.2 Functions
7.3 Solutions

o1

oD O O O

© 00 00 N N

11

11
14
18
18
26
30
33
38
41

42

43

44
44
45
47

Automation Basic (AB) TM247 '

1. INTRODUCTION

Automation Basic is a high-level language. For those who are comfortable
programming in Basic, PASCAL or ANSI C, learning Automation Basic is
simple. Automation Basic (AB) has standard constructs that are easy to
understand, and is a fast and efficient way to program in the automation

@l//

X'E

The following chapters will introduce you to the use of commands, key
words, and syntax in Automation Basic. Simple examples will give you a
chance to use these functions and more easily understand them.

/3
5

FARNENANNY
o

JJJJ!: ’ ’l!"

Fig. 1 Book printing: then and now

Introduction

1.1 Objectives

Participants will get to know the programming language Automation Basic
(AB) for programming technical applications.

You will learn the individual command groups and how they work together.

You will get an overview of the reserved keywords in AB.

Introduction

The Power of Automation Basic

S B |
Automation Basic Basis

Automation Basic

Command Groups

Summa

Appendix

Fig. 2 Overview

Automation Basic (AB) TM247 l

Automation Basic Features

2. AUTOMATION BASIC FEATURES

2.1 General information

Automation Basic is a text-based high-level language specially developed
for programming modern automation tasks.

The language constructs mostly correspond to the ones used for
Structured Text according to IEC61131-3 since Automation Basic is based
on the standards from the late 1980's.

Automation Basic originated from the programming language PL2000 and
is therefore used as its successor.

In addition, AB has been substantially expanded to include elements of a
modern programming language.

2.2 Properties

Automation Basic is characterized by the following features:

* High-level text language

e Structured programming

« Easy to use standard constructs
» Fast and efficient programming
« Self explanatory and flexible use
* Similar to PASCAL

» Easy to use for people with experience in PC programming
languages

2.3 Possibilities

Automation Studio supports the following functions:

« Digital and analog inputs and outputs
* Logical operation

* Logical comparison expressions

e Arithmetic operations

* Decisions

» Step sequencers

e Loops

* Function blocks

» Use of dynamic variables

* Diagnostic tools

TM247 Automation Basic (AB)

The Fundamentals of Automation Basic

3. THE FUNDAMENTALS OF AUTOMATION BASIC

3.1 Expressions

An expression is a construct that returns a value after it has been
evaluated. Expressions are composed of operators and operands. An
operand can be a constant, a variable, a function call or another
expression.

Example: Expressions
h +
[- b +c) * cosih)
sinia) * cosikb)

Fig. 3 Expressions

3.2 Assignment

The assignment of a value to a variable through a result of an expression or
a value. The assignment consists of a variable on the left side, which is
designated to the result of a calculation on the right side by the assignment
operator "=". Alternatively, the assignment operator ":=" can also be used
as in Structured Text. Assignments do not have to be closed with a
semicolon ";".

Example: Assignment
Varl = Vard * 2 : Varl <--— [(Warza * 2]

Fig. 4 Assignment

When the code line has been processed, the value of variable "Var1" is
twice as big as the value of variable "Var2".

Automation Basic (AB) TM247 7

The Fundamentals of Automation Basic

3.3 Line break

It is possible to divide a line of code over several editor lines. For example,
this might be useful to make the code more organized and easier to read.

The line break is made using the "\" character because delimiters do not
have to be used in AB.

Example: Multi-line assignment

houtput = b3witchl AND 5
| bEwmergency3topl OR bEmergencyStopZ) AND 4

hLevelHigh

Fig. 5 Multi-line assignment

3.4 Comments

Comments describe the code and make it easier to understand. Comments
make it possible for you or others to read a program easily, even long after
it was written. They are not compiled and have no influence over the
execution of the program. Comments can be single or multi-line.

Example: Comment

Thi=s is one line comoent

Fig. 6 Single-line comment
[This
is more

lines
comment ¥

Fig. 7 Multi-line comment

TM247 Automation Basic (AB)

The Fundamentals of Automation Basic

3.5 Operator Priorities

The use of several operators in one line brings up the question of priority
(order of execution). The execution is determined by priority.

Expressions are executed starting with the operator of highest priority,
followed by the next highest, and so on until the expression has been
completely executed. Operators with the same priority are executed from
left to right as they appear in the expression.

Operator Symbol / Syntax:
Parentheses () Highest priority
Function call Call argument(s)
Examples LN(A), MAX(X), etc.
Exponent EXP(IN1,IN2)
Negation NOT
Multiplication *
Division /

Modulo division (whole MOD
number remainder of

division)

Addition +
Subtraction -
Boolean AND AND
Boolean exclusive OR XOR
Boolean OR OR
Equal to =
Not equal to <>

Comparisons Lowest priority

v A V A

Automation Basic (AB) TM247

The Fundamentals of Automation Basic

The order of execution at runtime:

Example: Operator priorities without parentheses

Fesulc = 6 + 7 # 5 - 3 : The multiplication first, higher pricority
Fesult = 6 + i5 - 3 ; then addition; rule from left to right
Fesult = 41 - 3 ; Subtraction at the end

Fesult = 35

Fig. 8 Order of execution

Multiplication is executed first, then addition, and finally subtraction.

The order of operations can be changed by putting higher priority
operations in parentheses. This is shown in the next example.

Example: Operator priorities with parentheses

As shown in the following figure, the use of parentheses influences the
execution of the expression.

Fesult = (6 + 71 * [5 - 31 ; Operations inside the parentheses first
Fesult = 13 * 2 ; then the multiplication
Fesult = Za

Fig. 9 Order of execution

The expression is executed from left to right. The operations in
parentheses are executed first, then the multiplication, because the
parentheses have higher priority. You can see that the parentheses lead
to a different result.

TM247 Automation Basic (AB)

Command Groups

4. COMMAND GROUPS
Automation Basic uses the following command groups
* Boolean operations (logical operations)
e Arithmetic operations
e Comparison operations

* Decisions
« Step sequencers

4.1 Boolean operations

The operands must not necessarily be the data type BOOL.

Boolean operations:

Symbol Logical operation Examples
NOT Binary negation a = NOT b
AND Logical AND a =b AND c
OR Logical OR a=>bORC
XOR Exclusive OR a=b XOR c
Truth table:
Input AND OR XOR
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

These operators can be used to formulate logical expressions, or they can
be used to represent conditions. The result is always TRUE (logical 1) or
FALSE (logical 0).

Automation Basic (AB) TM247

Command Groups

Example: Boolean operation

DoValveSilo2 DoValveSilol

Disila1Up DoValveSilo3

Fig. 11 AND operation

DoValve3ilol = (Di3ilolTp AMD (NOT DoValve3iloZ) AND (HNOT DoValwve3ilod))

Fig. 11 AND operation source code

AB allows any number of parenthesis.

TM247 Automation Basic (AB)

Command Groups

Exercise: Light control

The output "DoLight" should be ON when the button "BtnLigntOn" is
pressed. It should remain ON until the button "BtnLightOff" is pressed.

Create a solution for this task using boolean operations in Automation
Basic.

BinLightOn / DoLight

e

7 BtnLightOff

|::| DoLight

Fig. 12 Light control

Automation Basic (AB) TM247

Command Groups

4.2 Arithmetic operations

A key factor in favor of using a high level language is the accessibility of
arithmetic operations.

4.2.1 Basic arithmetic operations

Automation Basic provides basic arithmetic operations for your

application:
Symbol Arithmetic operation Example
= Assignment a=
+ Addition a=b+c
- Subtraction a=b-c
* Multiplication a=b*c
/ Division a=b/c
mod Modulo (display division a=bmodc
remainder)

The data type is a very important factor. Note the following table:

Syntax Data types Result
Res Op 1 Op 2
Res =8/3 INT INT INT 2
Res =8/3 REAL INT INT 2.0
Res =8.0/3 REAL REAL INT 2.6667
Res =8.0/3 INT REAL INT *Error

* Compiler error message: Type mismatch: Cannot convert REAL to INT.

You can see that the result is dependent on the syntax as well as the data
types used.

Note:
Left data type = right data type;
i

TM247 Automation Basic (AB)

Command Groups

4.2.2 Implicit data type conversion

This type of conversion is done by the compiler. It automatically converts
the smaller data types to the larger one used in the expression. If an

expression contains one or more operators with different data types, they
are all converted to the same data type before the expression is resolved.

Data | BOOL | SINT INT DINT | USINT | UINT | UDIN | REA
type T L
BOOL BOOL X X X X X X X
SINT X SINT INT DINT USINT | UINT UDINT | REAL

INT X INT INT DINT INT UINT UDINT | REAL
DINT X DINT DINT DINT DINT UDINT | UDINT | REAL
USINT | x USINT | INT DINT USINT | UINT UDINT | REAL
UINT X UINT UINT DINT UINT UINT UDINT | REAL
UDINT | x UDINT | UDINT | UDINT | UDINT | UDINT | UDINT | REAL
REAL X REAL REAL REAL REAL REAL REAL REAL

Original Data Type of Variable

Data Type after Implicit Data Type Conversion

Fig. 13 Implicit data type conversion by the compiler

Example: Data conversion

INT_Result = INT_Uarl + SINT_‘i.Farz
[IMT] [IMT] [SINT]

Fig. 14 Implicit data type conversion

SINT Var2 is converted to INT, then added, then assigned to the result
variable (INT_Result).

Automation Basic (AB) TM247

Command Groups

4.2.3 Explicit data type conversion

Explicit data type conversion is also known simply as type conversion or as
Typecast. As you already know, the expression should have the same data
type on both sides, but there is something else to remember.

Example: Overflow?!

INT TotalWeight = INT Weightl + INT WeightZ
[TIT] [TMT] [INT]

At first sight, everything looks OK. However, the sum (INT_Weight1 +
INT_Weight2) can be larger than the amount that can be stored in a
variable with the data type INT. In this case, an explicit data type
conversion must be carried out.

Example: Overflow taken into consideration.

DINT TotalWeight = DINT(INT Weightl) + INT Weight2
[DINT] [INT] [INT]

The variable DINT _TotalWeight must be the data type DINT. At least one
variable on the right side of the expression must be converted to the data
type DINT.

TM247 Automation Basic (AB)

Command Groups

Exercise: Aquarium

The temperature of an aquarium is measured at two different places.
Create a program that calculates the average temperature and displays it
at an analog output.

Don't forget that analog inputs and outputs must be data type INT.
—

Fig. 15 Aquarium

Automation Basic (AB) TM247 17

Command Groups

4.3 Comparison operators

In high level languages like Automation Basic, simple constructs can be
used to compare variables. These return either the value TRUE or FALSE.

Symbol Logical comparison Example
expression
= Equal to IFa =bTHEN
<> Not equal to IFa <> b THEN
> Greater than IFa > b THEN
>= Greater than or equal to IFa >=b THEN
< Less than IFa < b THEN
<= Less than or equal to IFa <= b THEN
Note:
The comparison operations and boolean operations are used as logical
conditions for IF, ELSE IF, EXITIF and WHEN statements.
(IF (a > b) AND (¢ >=d) THEN)

4.4 Decisions

The IF statement is used to create decisions in the program. You are
already familiar with the comparison operators, and they can be used here.
There are several types of IF statements:

e Simple IF statement
+ |F - ELSE statement
» |F - ELSE IF statement

* Nested IF
Decision Syntax Description
IF THEN IFa>bTHEN 1. Comparison
Result = 1 1. Statement(s)
ELSE IF THEN ELSE IF a > ¢ THEN 2. Comparison (optional)
Result = 2 2. Statement(s)
ELSE ELSE Above IF statements are not TRUE
(optional)
Result = 3 3. Statement(s)
ENDIF ENDIF End of decision

TM247 Automation Basic (AB)

Command Groups

4.4.1 IF

This is the most simple IF statement.

IF
Condition &
THEM

;*****#****#*#**#*******#**#**#
pEFHEEEES STNGLE IF FHwawstwranw
FRAA R AL R AL AL AL AL AL Rl Ly
IF V1 » V2 THEN

Statement A Wi = 99 ; Ccomment
ENDIF

Fig. 17 Simple IF statement in a program

Fig. 16 Simple IF statement

The IF statement is tested for the result TRUE. If the result is FALSE, the
program advances to the line after the ENDIF statement. The function of
the IF statement can be a single comparison, but it can also be multiple
comparisons connected by AND, OR, etc.

Example: IF statement with multiple comparisons

if [[((Userlewvel > 10) or [(diEKeyZwitch = True)) and [(operationMode = 0]) then
LedEdit= True

endif

Fig. 18 Statement with multiple comparisons

Automation Basic (AB) TM247

Command Groups

4.4.2 ELSE

The ELSE statement is an extension of the simple IF statement. Only one
ELSE statement can be used per IF statement.

IF
Condition A
THEM

;**********************t*******

pEEEEEEL RS JF ELSZE FEEEEEEEAAR
Statement{s] Stﬁt&l’l‘l&r‘ltl{&] ;ﬂ'?f1rﬂ'ﬂ'?f**#***#*********t#***#**
A B IF V1 > W2 THEN
V3 = 99 ; Ccomment
ELSE
+ * Vi = 66 ; Ccomment

ENDIF
EMDIF Fig. 20 IF - ELSE in a program

Fig. 19 IF - ELSE statement

If the IF meets condition A, then the A instruction(s) are executed. If the IF
does not meet condition A, then the B instruction(s) are executed.

TM247 Automation Basic (AB)

Command Groups

4.4.3 ELSEIF

One or more ELSEIF statements allow you to test a number of conditions
without creating a confusing software structure with many simple IF
statements.

IF
Condition A
THEN

FALSE

ELSE IF
Condition B
THEN

FALSE

ELSE IF
Condition C
THEN

FALSE

'

Statement(s) Statement(s) Statement(s) Statement(s)
A B C D

Fig. 21 IF - ELSE IF - ELSE statement

HE e i i A e e e e i i e e e A i e
;*** IF; ELSE; ELSE IF %% +%%Fwww

: o e e

IF V1 = V2 THEN

Wi = 99 ;oComment
EL3E IF W1 > W4 THEN

V5 = B3 }oComment
EL3E IF W1 > W& THEN

o= 0T ;oComment
ELSE

W3 = 66 ;oComment
ENDIF

Fig. 22 IF — ELSE IF - ELSE in the program

The decisions are processed from top to bottom during runtime. The
corresponding statements are executed if the result of a decision is TRUE.
The program then continues from after the ENDIF. Only those decisions
that correspond to the first TRUE decision are executed, even if
subsequent decisions are also TRUE. The statement in the ELSE branch is
executed if none of the IF or ELSE IF decisions are TRUE.

Automation Basic (AB) TM247

Command Groups

Exercise: Weather station - Part |

A temperature sensor measures the outside temperature.

e The doCold output should be set when the temperature is below
18°C.

 The doOpt output (optimal) should be set when the temperature is
between 18°C and 25°C.

e The doHot output should be set when the temperature is above
25°C.

Create a solution using IF, ELSEIF, and ELSE statements.

s 40 H
ot
%0 10
80
70 20 ODt
B0
50 10
g Cold
0]
zﬂ -
10 1o
0 20

Fig. 23 Thermometer

TM247 Automation Basic (AB)

Command Groups

4.4.4 Nested IF statement

A nested IF statement is tested only if previous conditions have been met.
Every IF requires its own ENDIF so that the order of conditions is correct.

IF
Condition A
THEM

;******************************

IF
Condition B
THEM

;********** Neated IF FTHEFFIFTFFTTFY

FALSE

;******************************

IF V1 > W& THEN
IT V& » W4 THEN

W3 = 99 ; conmment
ENDIF
ENDIF
Statement B Fig. 25 Nested IF statement in a program

EMDIF

Fig. 24 Nested IF statement

It is helpful to indent every nested IF statement and the corresponding
expressions. As many IF statements can be nested as needed. However, a
high degree of nesting is generally evidence of poor programming style. It
becomes nearly impossible to get a clear overview of the code.

After three nesting levels, it is better to find another way to structure the
program.

Automation Basic (AB) TM247

Command Groups

Exercise: Weather station - Part Il

Evaluate the temperature and the humidity.

The doOPT output should only be set when the humidity is between
40% and 75% and the temperature is between 18 and 25°C. Otherwise
no output should be set.

Solve this task using a nested IF statement.

TM247 Automation Basic (AB)

Command Groups

Two simple IF statements produce nearly the same effect as one nested IF
statement. A marker variable, or flag, can be requested in multiple
statements. The first IF statement describes the flag, which is then utilized
by other IF statements.

IF
Condition A
THEN

Statement A

;******************************

;FFF 1, IF-3Lateument Frrssrssss

P EEREEREE R E AR EAREARFARRARFARHE
ENDIF IF v¥1 > w2 THEN
: w3 = 939 :

; COmment
ENDIF

;******************************

;#** 2. IF—EE&EENEHE FTHEFEEIFTITAISLS
;**#*#***#*#***#*#***###***##**
IF ¥3 = 99 THEN

Burner = QN ; Conguent
ENDIF

IF
Condition B
THEN

Fig. 27 Two IF statements

Statement B

Fig. 26 Two IF statements

In this case, both IF statements have the same priority. A CASE statement
should be used if both IF statements evaluate the same variable for
different values.

The CASE statement should be used when:

e |IF constructs require too many levels
e too many ELSE IF are used

The CASE statement is much easier to read in these cases.

In comparison to the IF statement, the CASE statement also has the
advantage that comparisons are only made once, which makes the
program code more effective.

Automation Basic (AB) TM247

Command Groups

4.5 Case statements

The CASE statement compares a step variable with multiple values. If one
of these comparisons is a match, the steps that compare to that step are
executed. If none of the comparisons is a match, there is an ELSE branch
similar to an IF statement that is then executed.

After the statements have been executed, the program continues from after
the ENDCASE statement.

Keywords Syntax Description
CASE OF CASE step variable OF Beginning of
CASE
ACTION ACTION 1: For 1and 5
ACTION 5: Display = “MATERIAL"
ENDACTION ENDACTION
ACTION ACTION 2: Display = "TEMP” For 2
ENDACTION ENDACTION
ENDCASE ENDCASE End of CASE
A
expression
CF

-

ACTION ACTION ACTION ELSEACTION
ni: nil.n3; Canstant:
T | I
Statement(s) Statement(s) Statement(s) Statement(s)
B C

D

ENDCASE

TM247 Automation Basic (AB)

' ,,

Fig. 28 CASE statement

Command Groups

;1r#**********#****#****#*******
;*********** CJ‘,LSE FTHEHFEEFTTIEISTFTS
PEERE AR E AR LA AT AT A AT ERTEATERT AR
CASE stepPV OF

: Process when stepPV

ACTION 1t

pw = pv + 10
ENDACTICN

1]
i

; Process when stepPV 2 to 10
ACTICN Z..10:

v = pv - 1

output = TRUE
ENDACTICHN

; Process when stepPV 11 OR 15
ACTICHN 11:
LCTICH 15:

MachineState = RION

ENDACTICH

; Process when stepPV = ERROR (constant value)
ACTICH ERROR:

Machineltate = ERROR
ENDACTICHN

: Proceszs when stepPV = all other
ELZELCTICON:
gError = TRUE
ENDACTICN
EMNDCASE

Fig. 29 CASE statement in a program

Note:

Constants (TRUE, RUN, ERROR) can be used instead of numbers for the
steps in a CASE statement. This makes the program much easier to
read.

Automation Basic (AB) TM247 27

Command Groups

Only one step of the CASE statement is processed per program cycle.

Syntax of the CASE statement:

A CASE statement begins with CASE and ends with ENDCASE. The
ENDCASE keyword must be on a separate line.

« An ENDACTION is necessary for every ACTION and ELSEACTION.

* The value of the statement or variable can be positive and negative.
However, it must be a WHOLE NUMBER!

* Whole-number constants must be used for defining the options
(action). Variable names or expressions are not allowed.

e Multiple ACTION statements can be written underneath one another
and closed off with one common ENDACTION statement in order to
execute the same commands for several non-consecutive values:
ACTI ON 1:

ACTI ON 5:
ACTI ON 10..12:

ENDACTI ON
e Numbers cannot overlap or be used in several ranges:
ACTION 1..6:

ENDACT! ON
ACTI ON 5:

ENDACTI ON
would not be allowed because the number 5 appears in two actions.

E TM247 Automation Basic (AB)

Command Groups

Exercise: Brewing tank

The fill level of a brewing tank is monitored for low, ok, and high levels.
Use an output for each of the low, ok, and high levels.

The level of liquid in the tank is read as an analog value and is internally
converted to 0-100%. A warning tone should be triggered if the contents
sink below 1%.

Create a solution using the CASE statement.

>90% - high

A e et e b

<25% - low

Fig. 30: Brewing tank

Automation Basic (AB) TM247

Command Groups

4.6 Select statement

A step sequencer is a construction with a number of subprograms (steps).
Only one of these subprograms is executed in each program cycle. Exiting
from the step or moving to another one occurs depending on certain
conditions within the step. Using step sequencers is one of the common
programming techniques in PLC programming.

Syntax

Description

SELECT StatePV

Beginning of SELECT statement
{optional step number variable}

Flag = 1

Global statement (always processed)

WHEN StopKey = 1
cmdMotor = 0
next DELAY

Global transition condition e.g. detecting a
stop switch

STATE DELAY
cmdMotor = 0
WHEN UpKey = 1
NEXT UP

DELAY state

Motor OFF

Check if the “UP” key is being pressed,
if yes, change to “UP” state.

STATE UP
cmdMotor = 1
WHEN StopKey =1
NEXT DELAY

UP state
Switch on motor
Check if the stop switch was pressed,

if true, change to “DELAY"” state.

ENDSELECT

End of SELECT statement

PEE A E A AR AE R AR AT R AAA T A AT N
pEEEEEEEE AT SELECT FREEEEEETEES
PEEE A AT E A AR AE R AR AT R AAATERAAA N

SJELECT =tep
pvw = 1
WHEN tast3top
crodMotor
NEXT WARTE

non
o =

STATE WARTE
crdMotor = 0O
WHEN tastiuf = 1
NEXT UP

STALTE UP
crdMotor = 1
WHEN tazt3top =
NEXT WARTE
ENDRELECT

Fig. 31 SELECT statement in a program

TM247 Automation Basic (AB)

Command Groups

Syntax of the SELECT statement:

The SELECT construction begins with the keyword SELECT and ends
with the keyword ENDSELECT. ENDSELECT must be on a separate
line.

Each step starts with the keyword STATE followed by the step name.
Both of these words must be on a separate line:
STATE start
The transition condition is a block statement. The first line starts with
WHEN, followed by the expression formulating the condition. The
last line starts with NEXT, followed by a step name located
somewhere in the step sequencer:
WHEN Sensor =1

conmands(s)
NEXT operation
The command(s) between WHEN and NEXT are only carried out if
the transition condition (in our example UpKey = 1) has been met (is
true).

The keyword WHEN cannot be placed inside of another block
statement (e.g. an IF...THEN construction).

The first run through the step sequencer always starts with the first
step.

If no transition condition is fulfilled (true), the same step is executed
again during the next cycle through the SELECT construction (i.e. in
the next program cycle).

A variable containing the step number can also be entered in the
SELECT line. This must be a UINT variable.

The commands between SELECT and the first step (STATE) are
always executed regardless of the step number. It can also contain a
transitional condition (WHEN...NEXT).

Automation Basic (AB) TM247 H

Command Groups

Exercise: Chemical system

Create a program for the following chemical system.

« When the diStart key is pressed, the doWater water valve should
be switched on until the diWaterOK water level is reached.

* The doMixer mixer and the doColor valve for the color are then
switched on.

* When the diFull sensor is triggered, the color valve is closed
again and the doPumpOutflow pump as well as the
doValveOutflow valve for draining are switched on.

e The pump, the mixer and the valve are switched off once the level
sinks below the diLow sensor.

Create a solution using the SELECT statement.

doWater doColor
e ———mm—meg e = diFull
6 —— I T, — — - — - — — diWaterOk
diStart
————mm—em——— — diLow

doValveOutflow doPumpQOutflow

Fig. 32 Chemical system

TM247 Automation Basic (AB)

Command Groups

4.7 Loops

In many applications, it is necessary for sections of code to be executed
multiple times during a cycle. This type of processing is also referred to as
a loop. The code in the loop is executed until a defined termination
condition is met.

Loops help make programs shorter and easier to follow. Program
expandability is also an issue here.
Loops can be nested.

Depending on the structure of a program, an error in the program could
cause the loop to repeat until the time monitor in the CPU triggers an error
(system halt).

To prevent such endless loops from occurring, nearly all programs include
a way for the loop to be aborted after a defined number of repetitions or to
run to a certain limit.

AB offers several types of loops to choose from:

« LOOP.. ENDLOOP

 Counting loop - LOOP .. TO .. DO
 Counting loop - LOOP .. DOWNTO .. DO

* Counting loops with exit condition EXITIF

Automation Basic (AB) TM247

Command Groups

4.7.1 LOOP
This type of loop is executed until the termination condition has been met.
Keywords Syntax Description
LOOP LOOP Beginning of the loop
Counter = Counter + 1 Statement(s) A
EXITIF EXITIF Counter > 100 Termination condition
Result = Result + 10 Statement(s) B
ENDLOOP ENDLOOP End loop
Rl ol ol ol e
Start of the ’
;##*#*#*# LOOP TEEFEEESTS
lﬂﬂp ;*#*#*####*#*#*#*#*####
LOOP
Varl= Varl®:
Statement(s) EXITIF counter <= 0
A counter= counter—-1
ENDLOCP

Fig. 34 LOOP statement in a program
TRUE The A commands are executed first. A
check is then made to see if the exit
condition is met (true). If so, then the
FALSE program sequence is continued in the

line after ENDLOOP. If not, then the B
Statement(s) commands are executed and the

B program sequence is continued in the
line after LOOP (i.e. with command A).

You can also choose to leave out the A

End of the
or B statements.

loop

-
-

\J

Fig. 33 LOOP statement

Note:

If the EXITIF condition never assumes the value TRUE, the statements
are repeated endlessly, resulting in a runtime error.

TM247 Automation Basic (AB)

Command Groups

4.7.2 LOOP TO/LOOP DOWNTO

This loop LOOP TO and LOOP DOWNTO is used to run a program section
for a limited number of repetitions.

Keywords Syntax Description
LOOP TO DO LOOPi=0TO 4 DO Beginning of the
LOOP DOWNTO DO | LOOP i = 5 DOWNTO 1 DO loop

Res = value + 1 Loop body
statement(s)
ENDLOOP ENDLOOP End loop

= e e e e e e e e e e e e e e e e

pEE® LOOP TO [/ LOOP DOWHTD *++%

LOoOP
= e e e e e e e e e e e e e e e e

War = Start LOJP War=3tart TO End Do

Bez = wvalue + 1 : Commands
ENDLOOP

LOOP Var=END DOUNTO 2tcartc Do
Start = End 7 Fez = wvalue + 1 ; Commands
ENDLOOP

Fig. 36 LOOP statement in a program

Statement(s) The statements in the LOOP loop are

Var = Var + 1 repeated. At every repetition, the loop
counter "Var" is incremented or
decremented. The two control variables
FALSE "Start" and "End" determine the start
value and end value of the loop counter.
After the end value is reached, the
program continues from after the
ENDLOOQOP statement.

TRUE

Fig. 35 LOOP statement

The LOOP TO statement increments the loop counter in each passage up to
the end value. Conversely, the LOOP DOWNTO statement decrements the
loop counter by one each time.

The entry condition is evaluated with every repetition of the loop.

Automation Basic (AB) TM247

Command Groups

Exercise: Crane

5 separate loads are suspended from a crane. The individual loads must
be added together to determine the total load.

ovarall load

L
0T 0 0 0 O

load load load load load

Fig. 37: Crane

Create a solution for this task using a FOR loop.

Warning:

Take not that, for example, an array with 5 elements is defined from
index 0-4.

For example: The “load” variable is declared as an array with 5

elements.
LOOPi=1TO 5 DO ;During the fifth passage, you then write...
load][i] = value ;outside of the array, because the array
ENDLOOP ;ranges only from index 0 - 4

TM247 Automation Basic (AB)

Command Groups

4.7.3 EXITIF

The EXITIF statement can be set within loops to terminate the loop
independently of the loop statement.

Start of the

loop

;1:1:1:1:1:1:############************

EEE—
) pRwEsEE LOOP TO & EXITIF #+#&+w
;##1:1:1:1:1:1:##########************
TRUE LOoP i=0 TO 9 DO
war = war + 1
EXITIF g3tatus = ERROR
warCOl = warCK + 1

:FALSE
< ENDLOOFP

End of the Fig. 39 EXITIF statement in a program
loop

Fig. 38 EXITIF statement

;7f7f7f7f7f7f###ﬁﬁ###ﬁﬁ###ﬁﬁ###ﬁﬁ###ﬁ

rwwsw EXITIF NEITED LOOp w##+w
;wwwww-.'rww-nrwwwwwwwwwwwwwwwwwwww
LOQP i=0 TO 9 Do
wvar = wvar + 1
LODP j=0 to 2 DO
varl = varl + 1
EXITIF gStatus = ERROR
ENDLOOP

ENDLOOP
Fig. 41 EXIT statement in a nested LOOP statement in a
program

If the EXITIF statement is used in a

nested loop, only the loop in which the
ENDLOOP_1

EXITIF statement is located is ended.
After the loop is ended, the program
continues from after the ENDLOOP
statement.

Fig. 40 EXIT statement in a nested loop

Automation Basic (AB) TM247 37

Command Groups

4.8 Calling function blocks

A function block can be called two ways in Automation Basic.

e FBK call:
The function block is called directly via the respective names. The
input and output parameters are placed in brackets.

e Alias FBK call:
The alias call mostly differs from previous procedures in how the
values are assigned. This is done on a freely definable alias name
and structure elements.

1.
Set Input Parameters

Y

;7f7f7f7f7f7f###ﬁﬁ###ﬁﬁ##ﬁtﬁﬁﬁﬁtﬁﬁﬁﬁt

sEEwEH ALTAS FUB CALL ##wwwwwww
2. ;ﬂ'7rﬁ'wﬁ'#ﬁ'W?r#?rﬁ'#ﬁ'#?rﬁ'?rtttttttttttt

Call Function Block TCH_xx.IN= Input

TON xx.PT= T#S=

TCN xx FUB TCHN (]

* Output = TON xx.0Q

3 PR TR AR AR AR AR AT A TR RAAANNATRNN
pEEEEEEEE AT FIIE CALL FHEEEEERENE

HE‘ad FB Dum'—'tl::sl:l ;wwwww-.'rww-nrwwwwwwwwwwwwwwwwwwww
TCON ([Input, THS=s, Output, Elap=eTime)

Fig. 42 Calling a function block Fig. 43 Calling a function block in a program

Before a function block is called, the variables that are to be used must be
written as input parameters. In both cases, the code for calling a function
block occupies one line. The outputs of the function block can then be
read.

TM247 Automation Basic (AB)

Command Groups

Function block call in detail:

FB name
T Assigning variables to FB inputs Assigning variables to FB outputs

f i

TC*N{ DiSensConv1 , PresetTime , Output , Elapse)

f

FParentheses shutting parameter values

Parameters should be separated by comma
Parentheses shutting parameter values

Fig. 44 Detail view of a function block call

First the function block name is entered, then the input and output
parameters are assigned in parentheses, separated by commas.

Alias function block call in detail:

(;GTQ _KJJN_=_|ngut_ L Transfer of input
:[TDN:H.F’T = time |'|—> parameters

|
I(TON xx FUB TON() H— Alias FB call using
| »
|[Elapse ~TON o ET) Output

|Output = TON 3x.q_J—™ parameters are
————————— J available

Fig. 45 Detail view of an alias function block call

The input parameters of the FBK structure are assigned first. The function
block is then executed. The output parameters are now in the FBK structure
and can be read by the application.

Automation Basic (AB) TM247

Command Groups

Exercise: Bottle counter

Create a program that counts the bottles on a conveyor belt. Use the
CTU (up counter) function block found in the STANDARD library.

Fig. 46 Bottle counter

Note:

The Automation Studio online help is a useful resource when working
with function blocks.

TM247 Automation Basic (AB)

Command Groups

4.9 Pointers and dynamic variables

B&R also offers pointers in Automation Basic.

A dynamic variable can be assigned a memory address during runtime.
This procedure is referred to as the referencing or initialization of a
dynamic variable.

As soon as the dynamic variable is initialized, it can be used to access the
memory content to which it now "points".

DynVar ACCESS ADR(StatVar)

L.ﬁdd ress of the static variable

Access instruction
Dynamic Variale name

Fig. 47 Referencing a dynamic variable

As you can see, the operator ADR() is used. It returns the memory address
of the variable in parentheses. The data type of this address is UDINT.

Automation Basic (AB) TM247

5. EXERCISES

Exercise: Box lift

Two conveyor belts (doConvTop, doConvBottom) transport boxes to a
lift.

If the photocell (diConvTop, diConvBottom) is activated, the
corresponding conveyor belt is stopped and the lift is called.

If the lift has not been called, it returns to the appropriate position
(doLiftTop, doLiftBottom).

When the lift is in the correct position (diLiftTop, diLiftBottom), the lift

conveyer belt (doConvLift) is turned on until the box is completely on
the lift (diBoxLift).

The lift then moves to the unloading position (doLiftUnload). When it
reaches this position (diLiftUnload), the box is moved to the unloading
belt.

As soon as the box has left the lift, the lift is free for the next request.

top conveyor
bottom unload position
conveyor

V8

Fig. 48 Box lift

lift

TM247 Automation Basic (AB)

6. SUMMARY

Automation Basic is a high level language that offers a wide range of
functionality. It contains all the tools necessary for an application.

N/

N
!fi“E

FARNENANNY

¥
E

Fig. 49 Book printing: then and now

After completing this training module, you are ready to program your own
Automation Basic tasks. You can always use the module as a reference.
This programming language is especially powerful when using arithmetic
functions and formulating mathematical calculations.

Appendix

7. APPENDIX

7.1 Keywords

Keywords are commands that can be used in AB. In the Automation Studio
Editor, these are displayed in blue. You are already familiar with many of
them; here is a list of more. Key words cannot be used as variable names.

Keyword Description

ACCESS Defines dynamic access.

ACTION See Case Statement.

BIT Simple data type for digital states.
A = BIT_CLR(IN, POS)

BIT_CLR A contains the value IN after the bit at position POS is deleted.
However, the IN operand remains unchanged.
A = BIT_SETI(IN, POS)

BIT_SET A contains the value IN after the bit at position POS is set. However,
the IN operand remains unchanged.

BIT TST Determi.nes the value of a bit.: A= BITTTST(IN, POS)

- A contains the value of the bit at position POS of operand IN.

CASE See Case Statement.

DO See Loop Statement.

DOWNTO See Loop Statement.

EDGE Detects positive and negative edges.

EDGENEG Detects negative edges.

EDGEPOS Detects positive edges.

ELSE See If Statement.

ELSEACTION See Case Statement.

ENDACTION See Case Statement.

ENDCASE See Case Statement.

ENDIF See If Statement.

ENDLOOP See Loop Statement.

ENDSELECT See Select Statement.

EXITIF See Loop Statement.

FLOAT Simple data type, 32-bit size, for floating point values.

FBK Alias for function block call.

GOTO See Goto Statement.

IF See If Statement.

INC Increases the value of an operand by 1.

INT16 Simple data type, 16-bit size, for positive and negative values.

TM247 Automation Basic (AB)

Appendix

INT32 Simple data type, 32-bit size, for positive and negative values.
INTS8 Simple data type, 8-bit size, for positive and negative values.
LONG Simple data type, 32-bit size, for positive values.

LOOP See Loop Statement.

NEXT See Select Statement.

OF See Case Statement.

SELECT See Case Statement.

STATE See Select Statement.

THEN See If Statement.

TO See Loop Statement.

WHEN See Select Statement.

7.2 Functions

There are some functions that can be used in AB that do not require you to
insert a library into the project. In the Automation Studio Editor, these
function calls are displayed in blue. You are already familiar with some of
them. More are listed here.

Function Example

ABS Returns the absolute value of a number. ABS(-2) returns 2.

ACOS Returns the arc cosine (inverse function of cosine) of a number.

ADR Returns a variable's address.

AND Logical AND operation by bit.

ASIN Returns the arc sine of a number (inverse function of sine).

ASR Ari_thmgtic shifti.ng of an operand to thg right: A = ASR (!N, N?

IN is shifted N bits to the right, the left is filled with the sign bit.

ATAN Returns the arc tangent of a number (inverse function of tangent).

COoS Returns the cosine of a number.

EXP Exponential function: A = EXP (IN).

EXPT One operand raised to the power of another operand: A = EXPT (IN1, IN2).
Limitation: A = LIMIT (MIN, IN, MAX)

LIMIT MIN is the lower limit, MA_\X is the upper Iimit for the result. If IN is less than
MIN, then the MIN result is returned. If IN is greater than MAX, then the MAX
result is returned. Otherwise, the IN result is returned.

LN Returns the natural logarithm of a number.

LOG Returns the base-10 logarithm of a number.

LSL See SHL.

LSR See SHR.

MAX Maximum function. Returns the larger of two values.

Automation Basic (AB) TM247

Appendix

MIN Minimum function. Returns the lesser of two values.
Modulo division of a USINT, SINT, INT, UINT, UDINT, DINT, REAL type
MOD . .
variable by another variable of one of these types.
Selection: A = MUX (CHOICE, IN1, IN2, ... INX)
MUX CHOICE specifies which of the operators IN1, IN2, etc. INX is returned as a
result.
NOT Negation of a bit operand by bit.
OR Logical OR operation by bit.
Rotates an operand's bits to the left: A = ROL(IN, N)
ROL The bits in IN are shifted N times to the left, the far left bit being pushed in
again from the right.
Rotates an operand's bits to the right: A = ROR (IN, N)
ROR IN is shifted N times to the right one bit position at a time, the far right bit
being pushed in again from the left.
Binary selection: A = SEL (CHOICE, IN1, IN2)
SEL CHOICE must be type BOOL. If CHOICE is FALSE, then IN1 is returned.
Otherwise, IN2 is returned.
SHL Shifts an operand's bits to the left: A = SHL (IN, N)
IN is shifted N bits to the left, the right side is filled with zeroes.
SHR Shifts an operand's bits to the right: A = SHR (IN, N)
IN is shifted N bits to the right, the left side is filled with zeroes.
SIN Returns the sine of a number.
SIZEOF This function returns the number of bytes required by the specified variable.
SQRT Returns the square root of a number.
TAN Returns the tangent of a number.
TRUNC Returns the integer part of a number.
XOR Logical EXCLUSIVE OR operation by bit.

TM247 Automation Basic (AB)

Appendix

7.3 Solutions

Exercise: Light control

DoLight = (BtnLightOn OR DoLight] AND NOT(BEtnLightOff)

Exercise: Aquarium

aokvgTemp= UINT((DINT (aiTewmpl) + aiTempz) & 2]

Exercise: Weather station - Part |

doCold= false
doHOT= false
dolpt= false

if [(ATtmp < 180) then
doCold= true

else if [(AIltmp > 250) then
doHOT= true

else
dolpt= true

endif

Exercise: Weather station - Part Il

doCold= false
doHOT= fals=se
dolpt= fal=se

if [(ATtmp < 1580) then
doCold= true
elze if [(AIltmp > 250) then
doHOT= true
el=e
if (AThwn > 400) and (AThwo < 750) then
dolpt= true
endif
endif

Automation Basic (AB) TM247 47

Appendix

Exercise: Brewing tank

roonvwert to percent ralue
level= USINT{(DINT{ailLewvel) *100)/32767)

doHorn= 0O
doLow= 0
dolk= 0

doHigh= 0O

CASE lewel OF

;s =1% turn the horn on

ACTION O..1:
doHorn= 1
doLow= 1

ENDACTION

P w25%

LCTION 2..24:
doLow= 1

ENDACTION

; =80%

LCTION 91..100:
doHigh= 1

ENDACTION

ELSZEACTION:

doOk= 1

ENDACTICON
ENDCAZE

Exercise: Crane

overall load:= 0;
LOOP i=0 TO 4 Do

overall load= overall load + load[i]
ENDLOOP

TM247 Automation Basic (AB)

Appendix

Exercise: Chemical system

select
doWater = 0
doMixer = 0
doColor = 0

doPumpOutflow = 0O
doValveutflow = 0

; Wait for Start button
state WAIT
when ditart = 1
next WALTER

; let in Water , wailt for Water Ok
s=tate WATER

doWater = 1

when dillaterOk = 1

next COLOR
; let color in, wait for sensor full
state COLOER

doMixer = 1

doColor = 1

when diFull = 1
next QUTFLOW
; outflow, walt for =ensor low
state OUTFLOW
doPumpOutflow = 1
doValveoutflow = 1
when diLow = 1
next WLIT
endselect

Automation Basic (AB) TM247

Appendix

Exercise: Box lift

JConveyor
doConvTop= NOT [(diConvTop) OR ConvTopOn
doConvBottom= NOT (diConvBottom) OF ConvBottomOn
lift
CAZE selectLift OF
;wait for request
ACTICH WATIT:
IF [(diconvTop = TRUE) THEN
gelectlLift= TOP_FPOSITION
EL3E IF (diConvBottom = TRUE) THEN
selectlLift= BOTTOM POIITICN
ENDIF
ENDACTION
swmove lift to top position
ACTION ToOP POSITICN:
doLiftTop= TRUE
IF (diLiftTop = TRUE) THEN
doLiftTop= FAL3E
ConvTopOn= TRUE
zelectLift= GETBOX
ENDIF
ENDACTION
smove 1lift to bottom position
ACTICH BOTTOM POSITICH:
doLiftEottom= TRUOE
IF [(diLiftEottom = TRUE) THEN
doLiftEottom= FALSE
ConwvEottowmon= TRUE
zelectLift= GETBOX
ENDIF
ENDACTION
smove box to l1ift
ACTICH GETEOX:
doConvLift= TRUE
IF [(diBoxLift = TRUE) THEN
doConvLift= FALSZE
ConvTopOn= FAL3IE
ConvEottowmOn= FALSE
gelectlift= UNLOAD POSITICH
ENDIF
ENDACTION
smowe lift to unload position
LCTICON UMNLOAD POITTICH:
doLiftUnload= TRUE
IF [(diLiftUnload = TRUE) THEN
doLiftUnload= FALSE
selectlifc= UNLOAD BOX
ENDIF
ENDACTION
sunload the hox
LCTION UNLOALD BOX:
doConvLift= TRUE
IF [(diBoxLift = FALSE) THEN
doConvLift= FALSZE
gelectLift= WATT
ENDIF
ENDACTION
ENDCALSE

TM247 Automation Basic (AB)

Appendix

Overview of training modules

TM200 — B&R Company Presentation **

TM201 — B&R Product Spectrum **

TM210 — The Basics of Automation Studio
TM211 — Automation Studio Online Communication
TM212 — Automation Target **

TM213 — Automation Runtime

TM220 — The Service Technician on the Job
TM223 — Automation Studio Diagnostics

TM230 — Structured Software Generation

TM240 — Ladder Diagram (LAD)

TM241 - Function Block Diagram (FBD)

TM246 — Structured Text (ST)

TM247 — Automation Basic (AB)

TM248 — ANSI C

TM250 — Memory Management and Data Storage
TM260 — Automation Studio Libraries |

TM261 — Closed Loop Control with LOOPCONR

TM400 — The Basics of Motion Control
TM410 — The Basics of ASiM

TM440 — ASiM Basic Functions
TM441 — ASiM Multi-Axis Functions
TM445 — ACOPOS ACP10 Software

TM450 — ACOPQOS Control Concept and Adjustment

TM460 — Starting up Motors

TM500 - The Basics of Integrated Safety Technology

TM510 - ASIST SafeDESIGNER

TM600 — The Baf Visualization
TM610 — The BasifsASiV
TM630 —14bzation Programming Guide
TNG4 ASiV Alarm System
TM650 — ASiV Internahalization
TM660 — ASiV Remote
TM670SA\AAdvanced

TM700 — Aation Net PVI
TM710 — PVI Communiioat
TM711 — PVI DIProgramming
TM712 — PVIServices
TM730 — PVI OPC

TM8BAPROL System Concept
TM810 — APR@etup, Configuration and Recovery
TM811 PROL Runtime System
TM812 — APROL Operator Management
TM813 — APRA&ML Queries and Audit Trail
TM830 — APROL Projectdiireering
TM840 — APROL Paraméfimnagement and Recipes
TM850 — APROL Cuawoller Configuration and INA
TM860 — APROL Libr&nygineering
TM865PROL Library Guide Book
TM870 — APROL Python gfamming
TMB890 — The Basics of LINUX

**) see Product Catalog

140 offices in more than 55 countries - www.br-automation.com/contact

Australia » Argentina « Austria « Belarus « Belgium « Brazil - Bulgaria « Canada - Chile « China » Colombia « Croatia « Cyprus
Czech Republic « Denmark « Egypt Emirates + Finland - France « Germany - Greece + Hungary - India + Indonesia
Ireland « Israel « Italy « Japan - Korea « Luxemburg ¢ Kyrgyzstan - Malaysia « Mexico « The Netherlands « New Zealand
Norway - Pakistan « Poland Portugal « Romania « Russia - Serbia « Singapore Slovakia < Slovenia + South Africa
Spain + Sweden - Switzerland « Taiwan - Thailand + Turkey « Ukraine United Kingdom « USA - Venezuela « Vietnam

