

Visualization Programming GuideVisualization Programming GuideVisualization Programming GuideVisualization Programming Guide
TM630

 2 TM630 Visualization Programming Guide

Prerequisites

Training modules: TM600 – The Basics of Visualization

Software: -

Hardware: -

 Visualization Programming Guide TM630 3

Table of contents

1. INTRODUCTION 4

1.1 Objectives 5

2. ROAD MAP 6

2.1 Project phases 6

3. THE SPECIFICATION 8

4. SOFTWARE DESIGN 11

4.1 The default project 11

4.2 The structure of a visualization 12

4.3 The operating concept 22

4.4 Variables and data points 24

4.5 Visualization runtime behavior 27

4.6 The visualization programming interface 28

4.7 Screen pages for service and commissioning 30

4.8 Data and Data Management 31

5. INTEGRATING A VISUALIZATION 35

6. PROJECT MAINTENANCE AND ORGANIZATION 36

6.1 Changes to the project 36

6.2 Software distribution and storage 37

6.3 Turning the project over to the customer 37

6.4 Documentation 38

7. SUMMARY 40

Introduction

 4 TM630 Visualization Programming Guide

1. INTRODUCTION

At some point or another, we have all been faced with the same problem –
"where should I start with the new project"?

This is especially the case when there are no project guidelines or the
guidelines have not yet been specified. This training module offers some
advice, helping the user – mostly for a visualization project – to overcome
the initial obstacles and to save time and expenses in the end.

Fig. 1 Visualization programming guide

Perhaps even a few of the experts will find some useful information about
programming a new visualization project.

When creating a visualization application, you must put yourself in the
shoes of the visualization's target group (operator, service technician,
advanced programmers) and understand the task-oriented process. Only
then is it possible to find the optimal solution for whatever demand comes
your way.

 Introduction

 Visualization Programming Guide TM630 5

1.1 Objectives

The course participant will be able to design their own visualization
projects using the information from this training module.

This should help prevent the "jump right in" programming style whereby
the programmer jumps right into programming without a solid plan or
sufficient knowledge.

Fig. 2 Overview

Road Map

 6 TM630 Visualization Programming Guide

2. ROAD MAP

A road map guarantees that the project is carried out in an organized manner
and that nothing is overseen.

"Of course a visualization application must be finished yesterday
because the machine was supposed to be operational the day before

yesterday"""".

2.1 Project phases

The customer's requirements must first be clarified before starting to
execute the project.

The following image offers an overview of the road map.

This training module deals with the project execution phase.

Pre-project phase (Presales, Sales)

 Presentation
 Clarification
 Offers
 ...

Project start

 Project analysis
 Project test
 Team formation
 Transfer of responsibility

Project execution

 Concept
 Structure
 Work packages
 Communication

Project end

 Achievement of objectives
 Documentation
 Saving the results
 Completion

 Road Map

 Visualization Programming Guide TM630 7

The project execution phase can be roughly divided into four sections, with
considerable interaction between the individual sections:

• Creation of a software design specification � Assessment of total
work needed � functional specification

• Configuration of the images, data management, etc.

• Tests and integration of the various project states

• Machine implementation

• Documentation

Software design specification

Functional specification

Project configuration

Tests / Integration

Commissioning

Documentation

The Specification

 8 TM630 Visualization Programming Guide

3. THE SPECIFICATION

Regardless of the visualization being used, the basis is
determined by the customer's requirements and the resulting
specifications or software design specification.

Expenditure of time [%]

ACTUAL

Expenditure of time [%]

TARGET

Specifications 0-20 Specifications 30

Project
configuration

80-100 Project
configuration

20

Testing 20-0 Testing 50

As illustrated in this table, 1/3 of the time available for the project should
be used for creating the specification or the software design specification.
This results in a shorter project configuration time because fewer changes
must be made later.

Unfortunately, the reality is always a little different because this time is
usually not enough for "normal" project configuration. The programmer
should consider whether or not an elaborate specification really saves time
in the project configuration phase.

Note:

When creating the specification, a middle ground should be found
between the necessary information and the programmer's freedom. You
should avoid having to define every single bit.

 The Specification

 Visualization Programming Guide TM630 9

The following questions should be answered when establishing the

specifications for the visualization:

• Which type of visualization to use (price category, runtime costs)?

• Which visualization to use - Embedded, remote visualization, etc.?

• Connection to higher level systems?

• Which standards and safety functions are required?

• Data exchange, data formats and evaluation – also determined by the
hardware being used?

• Who will be operating the visualization application?

• What needs to be operated?

• Which information is important?

• Which operating concept to use (keys, touch, etc.)?

• How to structure the pages, which elements to display?

• What is the main page, which and how many sub-levels are
necessary?

• Which colors and shapes to use?

• Navigation in the pages?

• Navigation between the pages?

• Who can operate which screen pages (password levels)?

• How the pages are grouped together (page changes, menus)?

• What fonts and font sizes are needed?

• What and how many languages are needed?

• Which text and graphics to use?

• Password management?

This information is used to create a foundation for the visualization.

Note:

A few samples must be created and presented to the customer before
starting to setup and configure the pages. The sample chosen by the
customer is then used as the template for the project.
The customer must also be made aware that any changes requested
further into the project will require every page created to that point to
also be re-edited.

The Specification

 10 TM630 Visualization Programming Guide

The specification must always be determined in cooperation with the
customer because the user or programmer is familiar with the visualization
software and the programming environment for creating the visualization.

This is the only way to satisfy and implement the customer's requirements
with the tools being used.

Customer

Programmer

Software design
specification

Knows the machine and its requirements

Operates the machine

Knows the programming tools

Knows how to implement the project

Note:

The programmer should already be thinking about the project
visualization when putting together the software design specification.

If the programmer is still learning how to use the tool while creating the
project, than he cannot yet estimate if various requirements will be able
to be met with the visualization software being used.

 Software Design

 Visualization Programming Guide TM630 11

4. SOFTWARE DESIGN

The statement "it just sort of happened" is common to projects that were
started at the programming stage instead of on paper.

Changes "thrown together" after the initial project setup are more difficult
to implement and maintain than those made at the beginning while
structuring the project.

4.1 The default project

A new project typically starts with a blank screen page. All of the necessary
components such as bitmaps and texts must be added to the project
afterwards. However, this also means that each project is structured
differently and that elements are added to different positions each time.

Using a default project or template makes it possible to always start on the
basis of the same project structure.

It does not matter whether each project is similar or altogether different – a
good basis helps save time when starting a new project.

The elements in a default project

• Keyboard and touch configuration for numeric and alphanumeric
entries

• Unit groups (scaling and formats)

• Bitmaps and bitmap groups

• Fonts and font sizes

• The default page, header, footer, templates

• Styles

Note:

Once the basis for a "New project" has been established, it should be
used each time a project is started. All of the elements for the default
project must be approved by the customer.

Software Design

 12 TM630 Visualization Programming Guide

All of the existing screen pages must be reworked if e.g. the size of the
header must be changed by a few pixels or the font size and font must be
changed.

4.2 The structure of a visualization

A visualization project is divided into different project components. The
distribution and configuration of these components is generally different
for each visualization.

Possible components of a visualization:

These components can be expanded as needed. The functions not
contained in the visualization can be implemented with additional
programming.

Screen pages

Static &
dynamic
texts
Alarm texts

Data
management
Recipes, etc.

Unit groups
Scaling &
formats

Keyboard
Configuration
Operation

Graphical
elements
(bitmaps)

Connections,
variables,
data points

 Software Design

 Visualization Programming Guide TM630 13

4.2.1 Screen page design

Screen pages make up the main part of a visualization. A few rules must be
taken into consideration when designing a page:

Element Note

Font Only a few fonts should be used. Emphasis can be placed on objects
using different font sizes (small, medium, large).

Keep in mind that the visualization must be visible from a few meters
distance.

Font The texts should also be easy to read and not just "look nice".

Font If possible, the same font should be used for all of the languages in
the visualization.

Graphics A graphic or symbol can often say more than text can. Symbols do
not need to be translated either.

Graphics If used on multiple pages, symbols should also have the same
appearance.

Graphics Use standardized colors (e.g. green for ok, blue for cold, red for an
error state, warm or dangerous).

Graphics Use commonly known symbols

Graphics Keep in mind that some operating personal might suffer from
colorblindness and therefore cannot differentiate between certain
colors.

The needs of all of the operators can be met by using a dynamic color
configuration, which can be configured while the system is running.

Operation The size of the input fields and buttons should be dimensioned so that
they can be easily operated by the operating personnel. You should
also keep in mind that the operating personal might be required to
wear gloves.

Operation Elements that do not contain any functions or for which the user does
not have permission cannot be displayed on the page. These elements
should be hidden or indicated with a "Disabled" status.

Structure Avoid cluttering your pages. Important information on the page
should be visible at first glance.

Structure Identical functions on different screen pages should also be placed at
the same position.

Software Design

 14 TM630 Visualization Programming Guide

Structure Attention must be given to the alignment of the page elements.

Structure Establish a navigation strategy via key operation (cursor control,
screen change) and apply this strategy equally to all pages

Structure If machine options are hidden, then attention must be given to the
distribution of the remaining page elements. The page should not
contain any large "holes".

Different screen pages might have to be configured for the options. If
possible in the visualization, dynamic page elements can also be
placed.

Text If texts are displayed in multiple languages then you must make sure
that the maximum text length for a language also matches the length
of the text field.

 Software Design

 Visualization Programming Guide TM630 15

4.2.2 Page branching and grouping

Once you know the content of every screen page, they can be put into
groups. The groups can be based on the following structures:

• Process flow

• User levels

• Service and maintenance levels

A tree structure can be used to determine the menu design and page
changing on paper.

In this example, the page grouping in the project page list could look
something like this:

0000_StartPage
0100_SystemOverview
0110_System1.1
0111_System1.1.1
112_System1.1.2
120_System1.2
200_Parameter
210_Parameter1.1
220_Parameter1.2
300_Service
310_Language
320_Password

Start page

System
overview

Parameter Service

System1.1 Para1.1 Language

Para1.2 System1.1.1

Password

System1.1.2

Software Design

 16 TM630 Visualization Programming Guide

The following rules must be followed when creating the page branching:

• A page should always be called up from the same position (touch
button on the screen page or page changing key) on a screen page.

• When changing pages to a lower level, the user must be able to
return to the main level without having to navigate back through
several pages.

In this example the navigation between the page levels is displayed
(starting at level "1") using different colored arrows.

• Red arrow: Level "1" can be reached from any lower level page

• Green arrow: From the lowest level, this arrow brings you back
within the same level. From the first page of a lower level, this arrow
brings you to the next level up

• Gray arrow: In the same page level, this arrow brings you to the next
page. At the end of a level, this arrow brings you to the first page of
the next level down.

• Blue arrow: This arrow brings you back to the start page from any
level.

There are of course many different concepts for a page change. This
example describes only one possibility for an effective page changing
sequence.

Start page

System
overview1

System1.1

System1.1.1 System1.1.2

 Software Design

 Visualization Programming Guide TM630 17

Page grouping suggestion:

• Assign group numbers before the page names.

• Space should be left between the group numbers so that pages can
be added to a group afterwards.

• Display the page level on each page. This allows you to easily
identify which level is currently being displayed.

Changing a page:

Generally, a page is changed using the keyboard or a touch device. The
destination page should always be configured directly on the key or touch
action. We do not recommend changing pages by writing a control
variable, because the control program would have to be changed each time
the page numbers are changed.

Caution:

Changing a page using a variable is necessary either when certain
actions are initiated by the control program (e.g. when an alarm occurs)
or when a page navigation with password is used (page is changed
after the password has been checked).

Provisions in the visualization must also allow this page change to be
delayed (e.g. if the user executes an action on a certain screen page,
which cannot be interrupted).

Software Design

 18 TM630 Visualization Programming Guide

4.2.3 Layering

The layering method allows you to place corresponding page elements on
a layer and to use these elements as often as necessary. Once again, there
are differences in the configuration, functionality and usage of the different
visualization packets.

Advantages of the layering method:

• Image information used on multiple pages only has to be created
one time.

• Changes made afterwards only have to be performed at one position.

• Depending on the configuration, layers can be made visible or
invisible during runtime.

• The layering method can be used to implement individual dialog
boxes.

• Controlling the visibility of machine options.

1.1.1 Picturename
31.12.2005
12:00:00

Header

Operator navigation via
buttons

Note:

Layers should definitely be used as long as they are supported. To do
this, you must decide which screen information belongs in the different
layers before drawing up the screen pages.

 Software Design

 Visualization Programming Guide TM630 19

4.2.4 Visualization text

A visualization is made up of static and dynamic texts.

Static texts are a fixed part of a screen page such as a description text for a
display element.

Dynamic texts change the actual text according to a variable connected to
the text element.

Advantages:

• Texts used on different screen pages only have to be created once.

• Text changes made afterwards only have to be performed at one
position.

• Texts for different languages only have to be translated one time
respectively (cost saving).

Language-dependent texts

If possible, texts from the same language should be managed in separate
text files.

Advantages:

• Only the files for the language used during project setup and the
languages for translation have to be translated. This makes it
possible to translate the text for multiple locations just once.

• Only the languages which have been ordered can be delivered with
the visualization. Additional languages can be also be added as an
option.

Note:

If possible, static and dynamic texts should be combined in easy-to-
manage function-related text groups.

Software Design

 20 TM630 Visualization Programming Guide

4.2.5 Graphical Elements

Managing graphical elements

To improve the overview and organization of the visualization, similar
graphical elements, such as bitmaps, should be grouped together in logical
groups or in separate subdirectories.

Animated graphic objects

Animated objects or constantly changing elements in a
visualization should be kept to a minimum. Such objects can
divert the operator's attention from the more important
information on the screen.

4.2.6 Using standards

An extensive amount of standard output dialog boxes (MessageBox, File
Open Dialog, etc.) are available for the programmer especially when
programming in Windows. However, a few things must be taken into
consideration:

• Texts from standard dialog boxes are always displayed in the
language of the libraries installed. Generally, this language cannot be
switched while the system is running.

• The button sizes in these dialog boxes are not always dimensioned
sufficiently.

• It is not always possible to output UNICODE characters.

To avoid these problems, all of the dialog boxes required in the
visualization should be put on separate screen pages or screen levels.

Note:

If there are multiple objects on a screen that change cyclically (e.g.
blinking alarm symbol and cursor), then make sure that all of the
elements change at the same blinking frequency.

 Software Design

 Visualization Programming Guide TM630 21

4.2.7 Each element has its own name

Each element used in a project is given a default name when added to the
visualization at the project or component level. This name indicates the
characteristics of the element but if several identical elements are used
then it becomes difficult to differentiate between them.

This also makes it more difficult for a second person to work on the same
project.

Working with default names Working with descriptive names

Visualization
 Image1
 InputField_1
 OutputField_1
 Image2
 InputField_1
 InputField_2
 OutputField_1
 Button_1

Vis_MainTerminal
 000_StartPage
 txtSetPassword
 txtActPasswordLevel
 010_Parameter
 txtSetCoolingDelay
 txtSetCoolingTemp
 txtCoolWaterTemp
 cmdPage_AlarmHistory

As seen in this example, the element name can be changed to describe the
actual usage of the element.

Working with default names Working with descriptive names

Private Sub Command1_Click()

End Sub

Private Sub Command2_Click()

End Sub

Private Sub cmdStartHeating_Click()

End Sub

Private Sub cmdStopHeating_Click()

End Sub

Note:

Visualization objects must always be given meaningful names – coding
rules specified by the customer are used when programming the
controller.

Software Design

 22 TM630 Visualization Programming Guide

4.3 The operating concept

The visualization hardware being used determines how a system
will be operated.

There are a few limitations regarding operation which result from the
hardware that is being used:

Touch: In this system, it is not possible to operate several buttons at the
same time. The touch controller always returns the average position, with
the exception of systems that use a matrix touch, in which case the entire
touch surface is divided into a fixed matrix.

Size of the operating elements: The design
and size of operating elements should be
made to match the user's needs. The
customer should clarify how the system is
to be operated. If the system is going to be
mostly operated by people wearing gloves
then the programmer should not assume
that the gloves will be taken off to operate
the visualization.

In these cases, the operating elements
(buttons, numeric and alphanumeric touch
input fields, touch pads, etc.) should be
designed with the desired size.

These considerations must be planned for together with the customer right
from the start. Making such a change in the project at a later point could
only be done with a great deal of effort (each page would have to be
changed).

 Software Design

 Visualization Programming Guide TM630 23

Keyboard: You should also check whether the keyboard supports multiple
simultaneous keystrokes.

Real-time capability for the keys / touch: In process engineering, a
movement is started by pressing a key or touch field and stopped when the
key or touch field is released = jog key mode. High speed reaction times
are required to do this (< 50ms).
Not every visualization application is able to guarantee such reaction times.
A hardwired keyboard (hardware device) is recommended in this case.

Mouse: The use of a mouse is not very common for machine operation
(on-site visualization). However, mouse usage is highly common on
process control systems and visualizations at the control station or main
office.

Note:

In order to implement a different operating philosophy in a visualization
(e.g. mouse and touch), you must take into consideration that there will
also be limitations – e.g. implementation of a shortcut menu (right
mouse click).

Software Design

 24 TM630 Visualization Programming Guide

4.4 Variables and data points

One of the most important issues when setting up a visualization is the
configuration of the variables or data points.

Variable (PV)

Definition of a controller address

Data point (TAG)

A variable is considered a data point if the visualization allows the output of
additional attributes (read, write, event, scale, limit, format, convert, read
cycle, etc.).

Suitable configuration of a variable and its properties / attributes can
considerably increase a visualization's performance.

Property Behavior

Event / polled By default, all of the variables in a visualization are read cyclically
(polled) by the controller. The more active variables that must be read,
the slower the cyclic update of the display. If event operation is
possible, then some of the load is taken off the cyclic communication
because the controller handles the task of checking the event variable
value change. As a result, the remaining, polled variables can be
updated quicker and more often.

Example:

In this example, a variable with the name "PV1" (fast data changes
must be displayed) and another with the name "PV2" (slow
temperature change) is only read in every second request (read access
to the controller).

The polled variable can now be read in each request if the variable
"PV2" is used as event variable (and others of course).

"PV1,PV2" "PV1,PV2"

"PV1" "PV1" "PV1
"

"PV2
"

Change of data detected
on the controller

 Software Design

 Visualization Programming Guide TM630 25

Read cycle
(refresh)

A variable's refresh time determines how fast [ms] the variable should
be read by the controller or how fast the controller should perform the
event monitoring. Changing the refresh time for variables that change
to a higher value slowly or just one time can reduce the load on the
cyclic communication (e.g: temperature changes – refresh value =
2000ms).

Example:

In this example, all variables are read with the same read cycle in the
upper view.

"Fast" variables with a short read cycle can also be read more
frequently by changing the read cycle for "slow" variables to a higher
value.

Which variables must be read "must be read "must be read "must be read "actively"""" in a visualization:

• All variables displayed on the page or connected with a page
element.

• Variables that must be read in the background by an alarm system or
trend system. This data is usually displayed later.

• Variables that do not have to change their value should be switched
to "inactive". The status change from "active � inactive" variables is
executed when a page is changed.

Variables with page elements (e.g. numeric output field) are linked on each
screen page and are "actively" read by the controller.

Variables on pages that are not displayed do not have to be read – this
reduces the communication load and allows the variables on the active
screen page to be updated faster.

"PV1" "PV1" "PV1
"

"PV2
"

"PV1,PV2" "PV1,PV2"

Software Design

 26 TM630 Visualization Programming Guide

Methods for accessing a variable

In addition to read and write access for variables, "synchronous" and
"asynchronous" access is also a common differentiation. Different
visualization systems might use different terms for these methods, or they
might support only one or the other.

• When using synchronous access (read / write), the program waits for
the acknowledgement of a task call. No other system operations are
possible during this time. Calling multiple synchronous functions in a
loop should definitely be avoided.

• The acknowledgement for an asynchronous access procedure is
provided at a later point. In the answer or acknowledgement, the
application is notified of whether the access was successful or if an
error occurred.

Data consistency / Synchronization of data access procedures

Data consistency is guaranteed in scalable variables linked to input or
output fields (e.g. INT, DINT, REAL, etc.).

Data consistency is no longer guaranteed if large amounts of data
(structures, arrays) should be transferred during runtime because the
variables are transferred between the visualization and the control unit
asynchronous to the controller's program sequence.

In this case, the application must handle the data consistency by
synchronizing the data exchange.

A separate consistent write or read image must be created on the
controller for the visualization to access. The data exchange is controlled
using trigger variables (start the transfer, transfer complete).

Caution:

Distinct value changes (0,1,2,3,...255,0) should always be evaluated for
the synchronization as long as the access and the variable change
comes from the visualization as well as the controller.

Performing a synchronization using a BOOL variable (0,1,0) should be
avoided because the variable could overlook a data change 0-1 due to
the read cycle.

 Software Design

 Visualization Programming Guide TM630 27

Priority for writing and reading variables

If separate communication between the controller and the visualization
hardware must be programmed for the visualization, make sure that a write
request to a variable (visualization => controller) is executed with a higher
priority than reading variables.

At the moment when a write request is made, the current read request
must be waited for. All write requests are then executed.

4.5 Visualization runtime behavior

During runtime, a few things must be taken into consideration, which
determine the character of a visualization:

• A page change must be executed within a reasonable amount of time
after pressing the page change key. You should also keep in mind
that the number of page elements on a screen page affects the time
needed to execute the page change.

• Actions that block operation should be avoided. If there is no other
way around it (e.g. loading data, etc.), then such actions must be
displayed for the user in a suitable manner (progress bar).

• "Default text" from a screen page element cannot be displayed on a
screen page until the real data has been received. At least one
"meaningful" init value must be displayed.

• If required at startup, the visualization should be initialized in a
separate startup screen. The first screen page required for operating
the system is then displayed after the initialization has completed.

"PV1,PV2" "PV1,PV2"

Reading from variables

"PV1,PV2"

"PV1,PV2"

Writing to variable PV2

"PV1,PV2" "PV1,PV2" "PV2"

Software Design

 28 TM630 Visualization Programming Guide

4.6 The visualization programming interface

A visualization consists only of drawing the pages and connecting variables
/ data points to a page element.

Functions not supported by the visualization must be implemented in the
programming language supported by the visualization (script, control task,
etc.).

4.6.1 Error evaluation

Any return value contained in a function must also be evaluated. This is the
only way to detect and react to an error during runtime.

Each return value <> 0 must be displayed on a separate screen page in the
visualization (alarm system, separate error protocol, etc.).

Caution:

Each function must contain an exception handler, which intercepts all
types of runtime errors.

All Windows programming environments support the handling of
runtime errors (On Error GoTo, Try...Catch...Finally).

 Software Design

 Visualization Programming Guide TM630 29

4.6.2 Language-dependent programming

When editing texts, make sure that the text is only managed using its
reference (text number) instead of the actual text (string). Therefore, the
correct text from the current language will always be displayed when the
language is changed or when the text is re-edited.

When using UNICODE languages (16Bit character set), the corresponding
data type must be used in the controller and in the programming
environment (2-byte data types).

4.6.3 The visualization task

In the visualization, there is constant interaction between the displayed
process diagram and the process sequence on the controller.

There are different ways to manage a visualization task:

• Just one visualization task: All of the processes and functions
required for the visualization process are managed in just one task.
This has the disadvantage that it can quickly become large and
disorganized.

• Page-dependent visualization tasks: Multiple process-dependent
tasks are created for the interaction with the visualization. The task is
created in the desired task class according to the priority of the
process sequence. Processes that are not time-critical are executed
in the controller's idle time (controlling the page structure drawing,
etc).

Take into consideration (in the user task) that the interaction is also
dependent on the screen page being displayed (performance).

Software Design

 30 TM630 Visualization Programming Guide

4.7 Screen pages for service and commissioning

The visualization is usually not only intended for "normal" operation of the
system. Additional screen pages are also required for authorized personnel
to commission or service the machine.

Normal operators are not allowed to access the service and maintenance
pages which should be protected using a password.

Special tools are often needed for commissioning or for future service
tasks. These tools must be either setup in the visualization (= project setup
time) or be already available as independent software packages.

• Are there already tools or existing software packages that take care
of these services?

• Can these existing packages be integrated in the visualization? If yes
– how?

• Are software licenses required for these products?

• Is there a potential for compatibility problems when using new
hardware?

• Where can I receive support when integrating the tools in my
software?

Motion Test Center

Online cable

 Software Design

 Visualization Programming Guide TM630 31

4.8 Data and Data Management

Every visualization creates data during runtime that provides
the user with information about the process (logging,
analyzing, archiving).

There is no wrong or right way to manage data.
Either the customer specifies the method for
managing the data, or the programmer has a
preferred method.

4.8.1 Managing data

If possible, data that belongs together should also be managed in the same
directory. This makes any future access for analysis much easier.

Depending on the type of data, the name and extension (e.g.
Trend_01012005_001.trn) should also be assigned accordingly.

The names within existing alarm, trend and protocol systems are
often determined by the system.

4.8.2 Data formats

There are different data formats that may be used depending on
the hardware and software. Each of these formats has its
advantages and disadvantages.

Various data formats could also be used in a visualization (e.g.
ASCII file for initialization parameters, binary files for alarm and
trend recording, XML for protocol systems).

ASCII files: An ASCII file is any file that contains only simple text in
accordance with the ASCII standard. These files can be read out on just
about any computer and are therefore easily transferred between different
systems.

One disadvantage however, is that the structure of these ASCII files does
not follow any rules or formats. Furthermore, performing searches in large
ASCII files generally takes more time because the entire file must be
searched.

Software Design

 32 TM630 Visualization Programming Guide

An exception is the CSV file. A CSV file is a text file that structures data
into tables. The abbreviation CSV stands for "Character Separated Values"
or "Comma Separated Values", because the individual values are separated
by a special separator - usually commas. However, the semicolon, colon,
tab and other characters are also common. There is no official standard for
this file format.

CSV files often use the file extension .txt instead of .csv and can also be
created and edited in any text editor.

Registry (Windows): The registry does not contain documents, but user
defined options, which allow the program or operating system to be
dynamically adjusted for the
user. This information can
include the layout of the
program, e.g. the preferred
window position.

Registry entries are created in
keys, which branch off from main keys located further up in the hierarchy.
Users should exercise extreme caution and only make changes to the
registry when absolutely certain, because mistakes made there can affect
system functionality.

Saving dynamic parameters in the registry has the disadvantage that the
customer cannot easily make any changes.
Making a change to the registry is complicated when using Windows
Embedded operating systems with write protection on the system partition.

XML files: The Extensible Markup Language, abbreviated as XML, is a
standard for creating documents in the form of a tree structure that can be
read by humans and machines. XML defines the rules for the structure of
these documents. The details of the respective document must be
specified for a concrete application example ("XML application"). This
particularly affects how the structured elements and their organization
within the document tree are determined. To put it differently: XML
provides the rules used when defining document types.

 Software Design

 Visualization Programming Guide TM630 33

Databases: Databases are used when managing large amounts of data.
This data is logged, ordered and stored based on specific characteristics
and rules.

The user is provided with standardized functions for accessing these
databases.

When using databases, you should be aware that they are not
automatically sorted. This means that a database needs more memory for
each new entry even if data is deleted. Therefore, a database must be
compressed frequently (i.e. the database is reorganized). Keep in mind that
the database cannot be accessed during this procedure.

Binary files: Unlike a simple text file, a binary file contains non-alphabetic
characters and can use any byte value. Binary files are more commonly
used for saving data than for saving text.

4.8.3 Saving and Archiving Data

A few things must be taken into consideration regarding the
configuration when archiving data:

• How much data is being managed? Is there enough
available memory (Compact Flash, etc.)?

• How will the data be further processed (external tools)?

• Are any special software licenses required?

• How long does this data have to be archived?

• Will this data be stored externally (network, storage media)?

• Which events must be recorded (alarm, trend, protocol, etc.)?

• How will this data be recorded (cyclically, event-controlled, when
changed)?

• Will data be evaluated based on the language? In this case, a
reference (text index) must be saved instead of the actual text.

Once these conditions have been established, then their dependencies and
data format can also be determined.

Software Design

 34 TM630 Visualization Programming Guide

4.8.4 Compatibility

If the format for logging data must be changed
during the project setup or after commissioning,
make sure that "old" data is still compatible (i.e. this
data must still be able to be processed in the
visualization - upward compatible).

If this is not possible, then this data must be converted so that it can also
be analyzed in the future.

This conversion can be made using either the visualization software or
external tools.

Note:

If, at the time of project setup, the programmer already knows that the
data format will be changing (e.g. due to future expansions), a version
indicator in the file can be helpful for future assignment of various
formats.

 Integrating a Visualization

 Visualization Programming Guide TM630 35

5. INTEGRATING A VISUALIZATION

Integration of the product (i.e. the test) is an important part of the project
setup. If possible, this test should always be carried out in consultation
with the customer.

Testing procedures should be specified at the beginning when putting
together the visualization's software design specification.

Development Runtime

The initial tests on the visualization are performed in the office
environment. After these tests have been successfully completed, then
additional tests should be carried out on the system.

Which tests must be carried out:

• Testing the communication with the controller project.

• Are all variables correctly displayed and calculated?

• Are the entries and input limits also correct?

• Are all key functions correctly configured?

For the initial tests, a dummy project, which contains all of the necessary
variables, can be created on the controller.

Correct processing of the visualization must also be tested using simulation
programs in order to test a project procedure in the visualization.

These simulation programs make it possible to test worst case scenarios
(extreme loads) and time-critical program sequences.

Note:

The visualization should be integrated on a newly installed target
system as well as the development system. This is the only way to
guarantee that the testing environment also corresponds to the system
being used by the customer.

Project Maintenance and Organization

 36 TM630 Visualization Programming Guide

6. PROJECT MAINTENANCE AND ORGANIZATION

6.1 Changes to the project

""""I could have done that better this way""""

When creating a visualization, the time often comes when the initially
adopted plan leads to a dead lock or complex solutions.

In known simpler solutions should be taken into consideration and changes
should be made during a project reassessment phase. The changes should
not be implemented right before the project completion. Instead, changes
should be made once the current phase has been completed.

The project change must be documented, the previous project state must
be archived and the customer must be informed if necessary.

6.1.1 Cleaning up the project

Data that is no longer needed will start to amount over the course
of the project whenever various changes are made or while
integrating the visualization. This data can be removed from the
project.

• Simulation or test pages: These pages can be kept in the project for
future tests, however, the user should not be able to navigate to
these test pages (page change).

• Bitmaps that are no longer required.

Note:

Any changes made to the project must be logged whether the changes
are based on a customer request or are changes and error corrections
implemented by the programmer. This makes it possible in the future to
review a written record of each project step.
The format and manner in which the protocol is kept should be
arranged with the customer.

 Project Maintenance and Organization

 Visualization Programming Guide TM630 37

6.2 Software distribution and storage

While creating the visualization, the current project state must be archived
(backup copy) after each major change.

Backup copies should never be stored on the development PC. Backups
should always be stored on an external server (backup) or on a suitable
storage media.

Different databases for version checking are available for the user to use
when archiving.

6.3 Turning the project over to the customer

The current state of the project should always be turned over to the
customer as a complete setup or a pre-installed storage medium (Compact
Flash, etc.). You should avoid copying and distributing individual files.

The setup should contain all of the software packages used for integration
as well as an installation guide. This is especially necessary when the
installation sequence of the software packages contains dependencies.

Note:

To avoid compatibility problems, all dependent software packages that
are used and tested with the visualization should be archived together
with the current project state (communication drivers, control software,
external service tools, etc.)

Project Maintenance and Organization

 38 TM630 Visualization Programming Guide

6.4 Documentation

There a few different types of documentation:

• Project documentation

• User documentation

• Online help in the visualization

"A good software design specification is the foundation for good

documentation"

6.4.1 The project documentation

Each stage of development should be documented when creating the
project. The project documentation is used to record all expansions and
changes.

6.4.2 The user documentation

The user documentation provides the user with support for operating the
machine.

The user documentation must differentiate between the various operating
personnel, the service technicians and other persons who will be operating
the visualization. The normal operator does not need any information about
commissioning, service and similar issues.

Furthermore, the user documentation should provide screenshots of each
page necessary for operation.

Note:

It is important that the programmer and customer also use the same
expressions and names of machine elements in the documentation
from the time of project analysis until project completion.

 Project Maintenance and Organization

 Visualization Programming Guide TM630 39

6.4.3 Online help

The online help can be looked at as its own project. The help files are used
to supplement the user documentation. Creation of the online help files
must be taken into consideration when planning the amount of work.

When using Windows, there are different ways to create and call up the
online help.

Make sure that the visualization program supports context-sensitive help if
desired.

Summary

 40 TM630 Visualization Programming Guide

7. SUMMARY

Unfortunately, the visualization is not yet finished after completing this
training module.

Several books could certainly be written about creating visualization
system projects.

This training module has provided participants with a guide for executing
their visualization applications.

 Summary

 Visualization Programming Guide TM630 41

Overview of training modules

TM200 – B&R Company Presentation ** TM600 – The Basics of Visualization
TM201 – B&R Product Spectrum ** TM610 – The Basics of ASiV
TM210 – The Basics of Automation Studio TM630 – Visualization Programming Guide
TM211 – Automation Studio Online Communication TM640 – ASiV Alarm System
TM212 – Automation Target ** TM650 – ASiV Internationalization
TM213 – Automation Runtime TM660 – ASiV Remote
TM220 – The Service Technician on the Job TM670 – ASiV Advanced
TM223 – Automation Studio Diagnostics
TM230 – Structured Software Generation TM700 – Automation Net PVI
TM240 – Ladder Diagram (LAD) TM710 – PVI Communication
TM241 – Function Block Diagram (FBD) TM711 – PVI DLL Programming
TM246 – Structured Text (ST) TM712 – PVIServices
TM247 – Automation Basic (AB) TM730 – PVI OPC
TM248 – ANSI C
TM250 – Memory Management and Data Storage TM800 – APROL System Concept
TM260 – Automation Studio Libraries I TM810 – APROL Setup, Configuration and Recovery
TM261 – Closed Loop Control with LOOPCONR TM811 – APROL Runtime System
 TM812 – APROL Operator Management
TM400 – The Basics of Motion Control TM813 – APROL XML Queries and Audit Trail
TM410 – The Basics of ASiM TM830 – APROL Project Engineering
TM440 – ASiM Basic Functions TM840 – APROL Parameter Management and Recipes
TM441 – ASiM Multi-Axis Functions TM850 – APROL Controller Configuration and INA
TM445 – ACOPOS ACP10 Software TM860 – APROL Library Engineering
TM450 – ACOPOS Control Concept and Adjustment TM865 – APROL Library Guide Book
TM460 – Starting up Motors TM870 – APROL Python Programming
 TM890 – The Basics of LINUX
TM500 – The Basics of Integrated Safety Technology
TM510 – ASiST SafeDESIGNER
 **) see Product Catalog

Summary

 42 TM630 Visualization Programming Guide

Hinteres Deckblatt (auf durch 4 Teilbarer Seitenzahl)

Kontakt (Headquarter)

Weblink

Internationalität

Copyright – Bestellnummer

T
M

6
3
0
T
R
E
.0

0
-E

N
G

0
9
0
7

©
2
0
0
7
 b

y
 B

&
R
.
A

ll
 r
ig

h
ts

 r
e
s
e
rv

e
d
.

A
ll
 r
e
g
is

te
re

d
 t
ra

d
e
m

a
rk

s
 p

re
se

n
te

d
 a

re
 t
h
e
 p

ro
p
e
rt

y
 o

f
th

e
ir
 r
e
s
p
e
c
ti
v
e

c
o
m

p
a
n
y
.
W

e
 r
e
s
e
rv

e
 t
h
e
 r
ig

h
t
to

 m
a
ke

 t
e
c
h
n
ic

a
l
c
h
a
n
g
e
s
.

