

Memory Management and Data StorageMemory Management and Data StorageMemory Management and Data StorageMemory Management and Data Storage
TM250

 2 TM250 Memory Management and Data Storage

Prerequisites

Training modules: TM213 – Automation Runtime

TM246 – Structured Text (ST)

Software: Automation Runtime 2.90

Hardware: None

 Memory Management and Data Storage TM250 3

Table of contents

1. INTRODUCTION 4

1.1 Objectives 5

2. MEMORY MANAGEMENT 6

2.1 Memory types 6

2.2 Variable types 9

2.3 Alignment 23

2.4 Strings 27

2.5 Initializing, copying and comparing 31

2.6 Dynamic Variables / Pointers 34

2.7 Memory Allocation 38

3. DATA STORAGE 44

3.1 General 44

3.2 Data objects 47

3.3 Files 55

3.4 Data consistency 62

4. SUMMARY 66

Introduction

 4 TM250 Memory Management and Data Storage

1. INTRODUCTION

Working with memory is very important and is a decisive factor when creating
professional application software. A solid knowledge of the basics is extremely
useful when working with memory in the form of variables, arrays, structures,
pointers and freely allocated memory areas, in order to have a clear overview
of the entire application.

Fig. 1 The parts in a hard drive

In this training module we will cover the basic elements of memory
management such as variables, arrays and structures, dynamic variables and
memory allocation. We will also take a look at handling data (i.e. creating data
objects and files). This training module can be used as a reference tool at any
time while you're working. A clear overview of each individual core area is
obtained using entry-level subjects and introductions respectively. Examples
and exercises will be used to illustrate the practical use of these areas, but are
not based on any special programming language.

 Introduction

 Memory Management and Data Storage TM250 5

1.1 Objectives

The course participant will be learning the relationships between variables,
arrays and structures and memory allocation.

By the end of the training module, the course participant will also understand
the functionality of dynamic variables and dynamic memory allocation.

This training will make the course participant familiar with the options for
handling data (e.g. creating data objects and files on the Automation Targets).

Fig. 2 Overview

Memory Management

 6 TM250 Memory Management and Data Storage

2. MEMORY MANAGEMENT

Memory management in the application (whether managed by the operating
system or by the user) is a quite extensive topic. The operating system is
mostly responsible for managing resources such as time and memory. In open
systems, the user is able to manage the memory on his own.
The user can request memory while the system is running, release the memory
again or use memory in the form of variables, structures and arrays. However,
when doing so, it is particularly important not to lose the overview.
Nowadays, organized and planned memory management has become a more
important issue than sparing memory.

2.1 Memory types

In this section will take a detailed look at working with RAM memory, because
only this kind of memory is used for all variables and dynamic allocated
memory.
Different types of RAM memory have different characteristics regarding data
access time and saving.

Memory such as SRAM and DRAM are used:

• SRAM is a static RAM. The data is stored as long these memory
elements are supplied with power. A bit set once remains the same until
it is reset. When the system is shut off, data is stored using buffer
batteries.

• DRAM is a dynamic RAM. Unlike SRAM, this is a high-speed memory
type. To store data, DRAM must be refreshed constantly. Data cannot be
backed up in DRAM if power is lost. SRAM is used for these
requirements.

2.1.1 Access speeds

Access times can vary due to the different characteristics of the memory. In
SG4 systems, the SRAM is located on the PCI bus. Therefore, the time needed
to transfer data via the PCI bus must also be taken into consideration.

When the system is running, all data is stored on DRAM because of its faster
access time. In this case, the SRAM serves as storage medium for remanent
data and data objects. Remanent data is the data which must be stored when
power is not being supplied or when the system is restarted.

 Memory Management

 Memory Management and Data Storage TM250 7

2.1.2 Booting

SYSROM and USRROM are located on the Compact Flash when power is not
on. The memory areas REMMEM (remanent data) and USRRAM are located on
the SRAM. During booting, the BR objects from the SYSROM and USRROM
memory areas are copied into DRAM. REMMEM memory is copied to DRAM in
exactly the same way. USRRAM memory is not copied since the amount of
time during a power failure is not sufficient to also secure this memory.

Fig. 3 Booting

Memory Management

 8 TM250 Memory Management and Data Storage

2.1.3 Power failure

During a power failure, remanent data from the DRAM is backed up on the
SRAM within a limited time frame.

Fig. 4 Power failure

When a power failure is detected, data that should be remanent is backed up in
the SRAM.

However, this NMI logic (power failure logic) is not provided on all systems.
The corresponding user documentation should state whether the selected
system is equipped with NMI logic.

 Memory Management

 Memory Management and Data Storage TM250 9

2.2 Variable types

Nowadays, programming is done using symbolic elements with names instead
of using fixed memory addresses. These elements are called variables. Simple
data types determine the size of the memory, which the variables occupy
(value range) and how the contained value is interpreted (with/without sign or
decimal point, ASCII text, date/time). An array is a collection of several
variables of the same data type, which are addressed using a fixed name and
an index. Structures are variables with user-specific data types that the user
can create.

2.2.1 Binary and hexadecimal system

To help understand this section, it is useful to have some basic knowledge
about the structure of variables in the memory.

A bit is the smallest unit of information and can only have the status 0 or 1. A
bit is a BOOL data type.
Other data types consist of multiple bits that can be divided by eight.
The next largest unit is called a byte. A byte is made up of eight bits.

The bits inside a byte are numbered from right to left, from the lowest value bit
0 to the higher value bit 7.

Bit 2, which is actually the third bit because counting starts at 0, has the bit
value 4.

Fig. 5 One byte

Memory Management

 10 TM250 Memory Management and Data Storage

A byte is divided into two parts, called nibbles or half bytes. The lower nibble is
called the low nibble and the higher is called the high nibble. Therefore, the
higher value bits are stored in the high nibble.

Fig. 6 High nibble and low nibble

Each bit within a byte can have the value 0 or 1. A byte can have the value 0 to
255, which is equal to 256 different states.

The value of the bits is as follows:

7 0 Bit number 2 Bit number
--- ------
00000001 Bit 0 – Bit value 1 2 0
00000010 Bit 1 – Bit value 2 2 1
00000100 Bit 2 – Bit value 4 2 2
00001000 Bit 3 – Bit value 8 2 3
00010000 Bit 4 – Bit value 16 2 4
00100000 Bit 5 – Bit value 32 2 5
01000000 Bit 6 – Bit value 64 2 6
10000000 Bit 7 – Bit value 128 2 7

Example: Adding two binary valures

 00000001 One
+00000001 One

=00000010 Two (this is not 10)

The following applies:
0 + 0 = 0
0 + 1 = 1
1 + 1 = 0 + carry 1 over to the next bit

 Memory Management

 Memory Management and Data Storage TM250 11

In the binary system, negative numbers work on the principle that the highest
bit is used as the sign. Therefore, 7 bits are left to represent the value.

7 0 Bit 7 is the sign
X0000000 Bit 0 to 6 for the value range
X1111111 The largest positive number is decimal 127

Negative numbers are made up using the two's complement.
The positive decimal number is used to create the bit pattern. This bit pattern is
then inverted, and 1 is added. This is how the bit pattern produces a negative
number.

Fig. 7 Two's complement circle

Example: Negative numbers in the binary system

 00000011 Number is decimal 3

 11111100 all bits inverted
+00000001 add 1

=11111101 Number is decimal -3

Memory Management

 12 TM250 Memory Management and Data Storage

The correct representation of the numbers depends on the data type.
The bit pattern stays the same if an unsigned data type (USINT, UINT, UDINT) is
assigned to a negative value with a signed data type (SINT, INT, DINT). The
displayed value however, is different.

Example: Representation of numbers depending on the data type

USINT varUnsigned;
SINT varSigned;

varSigned := -22; (* Bit pattern 1110 1010 *)
varUnsigned := varSigned; (* Assignment of the value *)

The "varUnsigned" variable is displayed as decimal 234, which corresponds
to the bit pattern 1110 1010. The bit pattern is not changed. Another value is
displayed due to the masking of the data type (unsigned data type).

Fig. 8 Checking in the Watch window

 Memory Management

 Memory Management and Data Storage TM250 13

Unlike the decimal system, 16 values (0 to F) are available for one position in the
hexadecimal system:

0000 decimal 0 hex 0
0001 decimal 1 hex 1
0010 decimal 2 hex 2
0011 decimal 3 hex 3
0101 decimal 4 hex 4
0101 decimal 5 hex 5
0110 decimal 6 hex 6
0111 decimal 7 hex 7
1000 decimal 8 hex 8
1001 decimal 9 hex 9
1010 decimal 10 hex A
1011 decimal 11 hex B
1100 decimal 12 hex C
1101 decimal 13 hex D
1110 decimal 14 hex E
1111 decimal 15 hex F

Binary numbers are converted to the hexadecimal number system as follows:

The nibbles can simply be transferred from the binary to the hexadecimal
number system and written next to each other.

Example: Hexadizimal und binary Values

Binary Hex Data type
00000000 $00 1 Byt e USINT
00000000 00000000 $0000 2 Byt e UINT
00000000 00000000 00000000 00000000 $00000000 4 Byt e UDINT

Example: Nibble and hex

01001011 equal to 75 (64 + 8 + 2 + 1 = 75)
0100 High nibble = Hex 4
 1011 Low nibble = Hex B
01001011 Both nibbles = Hex 4B = dec. 75

Note:

The hexadecimal representation of numbers is mostly used when
displaying logger entries and when displaying addresses. Comparing bit
patterns allows for more effective error searching with signed and unsigned
variables. The Watch window offers you the option to display variable
values in the binary, decimal and hexadecimal system.

Memory Management

 14 TM250 Memory Management and Data Storage

2.2.2 Compiler messages

When compiling, the compiler uses different methods to check the program
code created by the user. In the message window, errors are displayed as red
text and warnings as green text.
The program line causing the error or warning can be displayed by double
clicking on the corresponding entry in the message window.

Fig. 9 Compiler messages

Warnings can occur e.g. when variables with different data types are compared
with each other.

Note:

Do not ignore any warnings! Under certain conditions, these warnings can
result in application errors during runtime. Warnings should be taken just as
seriously as errors.

 Memory Management

 Memory Management and Data Storage TM250 15

2.2.3 Simple data types

In programming, there are simple data types also known as basic data types.
All available basic data types in accordance with IEC 61131-3 are displayed and
categorized in the following list according to their possible areas of use.

Binary Unsigned Signed Floating
point

Time, date,
string

BOOL USINT SINT REAL TIME

 UINT INT DATE_AND_TIME

 UDINT DINT STRING

Data type Memory requirements
[bytes]

Value range

BOOL 1 TRUE (1), FALSE (0)
(e.g. digital inputs and outputs)

SINT 1 -128 ... +127

INT 2 -32 768 ... +32 767
(e.g. analog inputs and outputs)

DINT 4 -2 147 483 648 ... +2 147 483 647

USINT 1 0 ... 255

UINT 2 0 ... 65 535

UDINT 4 0 ... 4 294 967 295

REAL 4 -3.4E38 ... +3.4E38

TIME 4 T#-24d_20h_31m_23s_648ms
...T#24d_20h_31m_23s_647ms

DATE_AND_TIME 4 DT#1970-01-01-00:00:00 ... DT#2106-
02-07-06:28:15

STRING Variable, but at least 2 bytes Character string display

Memory Management

 16 TM250 Memory Management and Data Storage

2.2.4 Arrays

Unlike variables, simple data types are arrays of multiple variables of the same
data type, which are addressed using a name and an index.

The smallest index that can be used to address an array element is 0. The
largest index that can be used to address an array element is the total number
of elements – 1. This means that the counting order for index variables goes
from 0 to the number of elements – 1.

Fig. 10 Array

Access to array elements that are located outside of the valid index range is
not monitored by the compiler. This results in memory areas that are located
here being overwritten without permission or data being read from an incorrect
location.

Access to array elements can look like this:

In the software, the index variables must be checked carefully to determine
whether access to the respective index is even allowed.

Example: Accessing array elements

UINT Pressure[10];
USINT index;

index := 4;
Pressure[0] := 3; (*Access to the first array element*)
Pressure[index]:= 22; (*Access via index variable *)
Pressure[9] := 12; (*Access to the tenth array element*)
 (*9 is the highest *)
 (*allowed array index *)

 Memory Management

 Memory Management and Data Storage TM250 17

Note:

Use the "sizeof" function, to calculate the number of array elements so that
the array index can be limited. An example of this can be found later on in
this document.

Note:

An index for IEC languages can be additionally checked during runtime to
see if it has been exceeded using the checking functions described in the
Automation Studio online help under Automation Software:Automation
Studio:Programming Languages:IEC Languages:Check Functions.

Memory Management

 18 TM250 Memory Management and Data Storage

2.2.5 Structures

A structure or a user data type is a group of basic data types and/or user data
types that are addressed by a common name. Each individual element again
has its own name.

Fig. 11 Structure

Structures are mostly used for grouping data and values that have a common
reference to each other. This is similar to a baking recipe, which always uses
the same ingredients but in different amounts depending on the recipe.

The individual elements can be accessed as follows:

Example: Accessing elements of a structure

recipe_typ Bread;

Bread.flour := 120; (* Access to the flour element *)
Bread.water := 12; (* Access to the water element *)
Bread.salt := 1; (* Access to the salt element *)
Bread.yeast := 2; (* Access to the yeast element *)

 Memory Management

 Memory Management and Data Storage TM250 19

2.2.6 Arrays of structures

It is also possible to create arrays of structures. The sub-elements of the array
are addressed via an index the same way as for arrays of basic data types. The
same rules apply for the index as for arrays.

Fig. 12 Array of a structure

The sub-elements in arrays of structures are accessed as follows:

Here, you should also check whether the index is in the permissible range. This
is 0 to 2 in this case.

Example: Accessing elements in arrays of struktures

recipe_typ Breads[3];

index := 1;
Breads[0].flour := 120; (* Access to array element 0 *)
Breads[index].water := 11; (* Access via index variable *)
Breads[index].salt := 1;
Breads[2].yeast := 1; (* Maximum array index is 2 *)

Note:

Use the "sizeof" function, to calculate the number of array elements so that
the array index can be limited. An example of this can be found later on in
this document.

Memory Management

 20 TM250 Memory Management and Data Storage

2.2.7 Working with the "sizeof" function

When developing software, much importance is placed on writing code that is
efficient and easy to work with. However, this is often only possible with data
that was determined during runtime.
The information about the size of variables, arrays, structures and arrays of
structures can be determined using the "sizeof" function.

This function returns the size of the specified element in bytes.

The "sizeof" function is very useful for the following application:

• Determining the size of variables

• Determining the end value for looping to initialize arrays

• Offset calculation

Determining the size of a variable:

Example: Using the function sizeof

UINT SizeInByte;
DINT SetPosition;

SizeInByte:= sizeof (SetPosition);

The return value from the function is the number of bytes used in the
memory for this variable.

 Memory Management

 Memory Management and Data Storage TM250 21

Initializing elements from an array using a loop:

Example: Simplified solution

Method 3: Combination of the expressions

UINT Pressure[10];
UINT lcnt;

Loop lcnt:= 0 to (sizeof (Pressure)/ sizeof (Pressure[0])) – 1 do
 Pressure[lcnt] := 0; (* Initialization of all elements*)
End_Loop

Example: Loop with calculated end value

Method 2: Calculating the end value of the loop with "sizeof"

UINT Pressure[10];
UINT lcnt;
UINT szAll;
UINT szSingle;
UINT elem;

szAll := sizeof (Pressure) (*Size of the array in bytes*)
szSingle:= sizeof (Pressure[0]) (* Size of an element *)
elem := szAll / szSingle
(* Number of elements = All bytes / bytes in an ele ment *)

(* End value of the loop is (elements – 1) !!! *)
Loop lcnt := 0 to (elem – 1) do
 Pressure[lcnt] := 0; (* Initialization of all elements*)
End_Loop

Example: Loop with static end value

Method 1: Using numeric constants

UINT Pressure[10];
UINT lcnt;

Loop lcnt := 0 to 9 do
 Pressure[lcnt] := 0; (* Initializing all elements *)
End_Loop

Memory Management

 22 TM250 Memory Management and Data Storage

Determining the size of a structure:

Example: Determining the sizeof of a strukture

UINT SizeInByte;
recipe_typ Bread;

SizeInByte := sizeof (Bread);

Adding together all of the bytes for this data type should equal 8.

In actuality, a size of 12 bytes was determined by the sizeof function.

How does this happen?
This happens because of the alignment behavior of the processor. The
following section will explain this in further detail.

Note:

The use of fixed numbers in the program does shorten the program code,
however:
If e.g. the size of the array changes, then changes must also be made in the
program code. The more complex method of writing the code does not
have this problem. The code becomes more efficient and dynamic. The
code does not have to be changed when the array sizes change. Therefore,
nothing can be overseen.

 Memory Management

 Memory Management and Data Storage TM250 23

2.3 Alignment

The size of structures in the memory is not necessarily the number of bytes
used in the structure.
The alignment is responsible for this. It makes sure that variables with 2 or 4
bytes are only placed on addresses that can be divided by this value. However,
this depends on the processor being used.

In this case 8 bytes should actually be used according to the structure of the
data type.

Fig. 13 Structure

In actuality, a size of 12 bytes was determined by the sizeof function.

Fig. 14 Structure size

What is behind the alignment?
This mostly depends on the processor architecture. The respective processor
type has addressing rules that the compiler must adhere to.

In principle, no variables can begin at an odd memory address.

In byte arrays, the array starts at an even address, but the individual bytes can
be located alternately on even and odd addresses.

Variables and elements, whose data type requires two bytes in the memory
can only ever be located at an address that is divisible by two (i.e. an even
address).
Four byte values in SG4 systems can only be located at addresses divisible by
four.

Memory Management

 24 TM250 Memory Management and Data Storage

The alignment is a little different depending on the platform being used (SG3 or
SG4). The alignment described above applies to SG4 systems. The same rules
apply to SG3 systems, except that 4 byte values can also start at addresses
divisible by two.

Example: Fillbytes in a struktue

The number of bytes used in the structure adds up to 8. The compiler
inserts a filler byte after the first byte. The element "water" then begins at an
even address again. 3 filler bytes are inserted after the element "salt" so that
the last element, whose data type is UDINT, can begin at an address
divisible by four.

Altogether, a total of 12 bytes are used when taking the alignment into
consideration.

The filler bytes can be used when changing the order of the elements
"water" and "salt".

In this case, the compiler does not have to insert any filler bytes because
each element starts at a memory address at which it can also be located.

 Memory Management

 Memory Management and Data Storage TM250 25

2.3.1 Determining addresses

Each memory location has its own address. An address is essentially no
different than a room number in a hotel. A memory location can be uniquely
identified using this address.

The compiler (not the user) assigns addresses and offsets to the variables,
constants, arrays, structures and arrays of structures. This means that
addresses are always used which were generated by the system and made
available to the user.

Addresses are determined as follows:

Example: Determining the address of a variable

UDINT adrCounter;
USINT Counter;

adrCounter:= adr (Counter);

The value returned by the function is the address of the variable in the
memory.
The address value is always a UDINT data type!

Note:

When structuring user data types, it is recommended to use the filler bytes
as shown in the example or to fill-out using reserve bytes.

A data type that is structured for alignment on SG4 systems can also be
used on SG3 systems without any problems. This means that the software
can run the same on both systems.

Memory Management

 26 TM250 Memory Management and Data Storage

Note:

When compiling, a variable list is created where each variable is given a
specific offset. When booting the controller, the operating system reserves
a specific area of the RAM for variables, (i.e. it determines a start address).
However, it is not necessary for this to always be the same address. It could
be a different address after the next software download or after a system
restart.

Therefore, fixed addresses and address values that have already been
determined once should never be used!

Always use the "adr" function to determine addresses.

 Memory Management

 Memory Management and Data Storage TM250 27

2.4 Strings

A string is a byte array, where each contained value (0-255) is interpreted as a
character. The ASCII code defines which value represents each character
(ASCII = American Standard Code for Information Interchange).
A string must always end with null-termination, which means that decimal 0
must always be in the byte after the last character (not to be confused with the
ASCII character "0", which is actually decimal 48!).
The null termination is used so that all string processing functions can
recognize the end of the character string.
As a result, the length of a string variable must always be 1 byte larger than the
maximum number of characters contained.

Caution:

When declaring string variables, there are differences between ANSI C and
the other programming languages:
In ANSI C, the null termination must be taken into consideration when
declaring (i.e. a STRING[10] can contain a maximum of 9 characters plus
the null termination).
Null termination is added automatically in the other programming
languages. If, e.g. a STRING[10] is defined, it can really contain 10
characters because the string variable is automatically enlarged to 11 bytes
(10 characters plus null termination).
This behavior is easily checked using the "sizeof" function!

Memory Management

 28 TM250 Memory Management and Data Storage

A string is structured as follows.

The string variable shown in the image occupies 10 bytes in the memory.
Therefore, it can contain a maximum of 9 characters and the null termination.

Fig. 15 String structure

The content of the bytes after the null termination is undefined as long as all
possible positions in the string have been used.

2.4.1 Copying strings

When copying strings, the address of the source string and the destination
string is always specified. The character string including the null termination of
the source string is copied.
Make sure that the destination string is at least exactly as long as the source
string. Otherwise, data located after the destination string could be mistakenly
overwritten.

Fig. 16 The source string is longer than the destination string

 Memory Management

 Memory Management and Data Storage TM250 29

2.4.2 Comparing strings

It is often necessary to compare two character strings with each other. The
"strcmp" function can be used to do this.

Example: Using the function strcpy

STRING strSource[10];
STRING strDest[10];

strcpy(adr (strDest), adr (strSource)); (* Copying process *)

The address of the destination string is specified first, then the address of
the source string.
The "strcpy" function is contained in the "AsString" library.

Example: Comparing two strings

STRING strSource[10];
STRING strDest[10];
DINT status;

status := strcmp(adr (strDest), adr (strSource));

if status = 0 then
 (* Both strings are the same *)
else
 (* The strings are different *)
end_if

Case is also taken into account in the comparison. Therefore, the binary
code for both strings must be identical for the function to return the status =
0.

Memory Management

 30 TM250 Memory Management and Data Storage

2.4.3 Attaching strings to one another

The "strcat" function can be used to attach several strings together. The
respective substring is attached to the destination string.

Example: Attaching strings with strcat

STRING strSource[4];
STRING strDest[10];

strcat(adr (strDest), adr (strSource));

If "strDest" has the content "ABC" and strSource the content "def" before the
function is called, then the substring is attached when the "strDest" function
is called.
This results in "ABCdef".

The length of the destination string must be large enough to save both
substrings!

 Memory Management

 Memory Management and Data Storage TM250 31

2.5 Initializing, copying and comparing

In some cases, memory areas must be initialized, copied to another location or
compared with each other because of the structure of programs or how the
tasks are handled in the application.

An initialization value can be specified for variables at the time of declaration.
The init subprogram in each task can be used for a one-time initialization of
variables when booting the controller.

Functions for initializing, copying and comparing memory areas from the
"AsString" library will be described in more detail in the following sections.

2.5.1 Initializing with "memset"

Applications often require the initialization of defined memory areas. The most
common case is a comprehensive initialization of all of the bytes in a memory
block with the value 0.
The "memset" function can be used to initialize the bytes in a memory area with
a value.

Example: Initializing a certain memory by using memset

USINT Data[10];

memset(adr (Data), 0, sizeof (Data));

When the function is executed, the number of defined bytes is set to the
specified value beginning at the specified address.

Memory Management

 32 TM250 Memory Management and Data Storage

2.5.2 Copying with "memcpy"

The "memcpy" function makes it possible to copy memory blocks.
The function does not check the source address, destination address, or the
length of the data. Therefore, the user must make sure that the specified
addresses and lengths really are correct in the application.

When uncertain, the data length should always be adjusted to the memory area
when copying. This ensures that nothing will be overwritten during copying
procedure, because the length of the data to be copied will be limited to this
area.

Note:

The size of the source data must not be larger than the size of the target
memory. Otherwise data located behind this memory will be overwritten
(e.g. other variables or memory areas).
The "adr" function should always be used to determine the addresses and
"sizeof" function to determine the data length.

Example: Unsing the function memcpy

USINT srcData [10];
USINT destData[8];

(* Warning! The target memory is smaller than the
 source memory *)

(*Destination address, source addr., length of the data*)
memcpy(adr (destData), adr (srcData), sizeof (destData));

When the function is executed, the memory area located at the "srcData"
address is copied to the "destData" address. The length of the data (in bytes)
was limited by the size of the target memory.

 Memory Management

 Memory Management and Data Storage TM250 33

2.5.3 Comparing with "memcmp"

The "memcmp" function can be used to compare memory blocks with each
other. The specified lengths of all of the bytes in the specified memory
locations are compared with each other.

When copying or comparing very large memory blocks, it is recommended to
optimize these procedures in regard to runtime.
The memory areas can be handled in several separate cycles or divided into
smaller units.

Example: Comparing memory with memcmp

USINT Data1[10];
USINT Data2[8];
UINT status;

(* Data area 1, data area 2, length of the data*)
status := memcmp(adr (Data1), adr (Data2), sizeof (Data2));

if status = 0 then
 (* Memories have the same content *)
else
 (* Memories have different content *)
end_if

When the function is executed, the memory area located behind "Data1"
address is compared with the memory area located behind the "Data2"
address. The length of the data was limited by the size of the smaller
memory (Data2).

Memory Management

 34 TM250 Memory Management and Data Storage

2.6 Dynamic Variables / Pointers

In order to make programming more efficient, it is often necessary to work with
references to data instead of working directly with the data itself. This is done
e.g. when transferring the address of a variable or data area to a function. In
this case, only a reference to the location of the data is transferred. If the data is
manipulated, it is available to the rest of the program in its new form.

This type of reference is called a pointer or dynamic variable, which points to
an area (address) of the application memory (DRAM).

When programming, it is often more efficient and organized to work with
dynamic variables.
Proper use of dynamic variables allows you to design software parts in a more
intelligent and flexible manner than with static variables.

2.6.1 Functionality

Depending on the programming language, an address in the program code can
be accessed differently. However, the principle is always the same.

A dynamic variable is declared. Unlike static variables, the compiler does not
assign an address to these variables and therefore does not assign a separate
memory space either. This is done in the application.
With the key word "access", the dynamic variable is assigned an address.
The dynamic variable now "points" (� to point � pointer) to the assigned
memory location. The variable is now accessed like a "normal" variable.

 Memory Management

 Memory Management and Data Storage TM250 35

Fig. 17 Functionality of dynamic access

The dynamic variable "dynVar" is assigned the address from "variable" via
"access".

The dynamic variable "dynVar" actually just consists of the address. It has
no actual value.

The contents of "dynVar" are now also changed when "variable" is changed
and vice versa.
The dynamic variable itself is not actually changed but the variable which the
dynamic variable is pointing to.

Memory Management

 36 TM250 Memory Management and Data Storage

2.6.2 Rules

The following rules apply when working with dynamic variables:

• The compiler does not assign a separate address to a dynamic variable.
An address must be assigned during runtime.

• Once an address has been assigned, it remains valid as long as the
system is running. Cyclic assignment is not necessary.

• A dynamic variable can be assigned a new address at any time.

• 0 is not a valid address. Check in the application for validity before
assigning the memory addresses.

• Never use fixed memory addresses. Only addresses which you have
obtained using "adr" and an optional offset calculation should be used.

• The dynamic variable must be referenced before being accessed for the
first time. Dynamic variables are not given an address by the compiler
resulting in unchecked memory referencing. Writing an unreferenced
dynamic variable causes the system to restart in service mode. An error
is then entered in the logbook.

• The dynamic variable must have the same data type as the data in the
source memory area so that the data in the dynamic variable can be
correctly interpreted after the dynamic access.

 Memory Management

 Memory Management and Data Storage TM250 37

Example: Checking the address bevor accessing

Method 3: Checking the address before accessing

UDINT adrCounter;
USINT Counter;
USINT* pCounter; (* !!Dynamic variable!! *)

if adrCounter <> 0 then (* Checking for null pointer! *)
 (* Address originates e.g. from*)
 (* another task *)
 pCounter access adrCounter; (* Dynamic access *)
 if pCounter = 17 then
 (* ... *)
 end_if
end_if

Example: Dynamic access using a auxiliary varible

Method 1:Auxiliary variable for the address

UDINT adrCounter;
USINT Counter;
USINT* pCounter; (* !!Dynamic variable!! *)

adrCounter := adr (Counter); (* Determines the address *)
pCounter access adrCounter; (* Dynamic access *)

If pCounter = 17 then (* Warning!!! dyn. variable must
 be referenced *)
 (* Program code executed *)
end_if

Example: Direct dynamic access

Method 2: Direct access to the address

USINT Counter;
USINT* pCounter; (* !!Dynamic variable!! *)

pCounter access adr (Counter) (* Dynamic access *)

If pCounter = 17 then (* Warning!! dyn. variable must
 be referenced *)
 (* Program code executed *)
end_if

Memory Management

 38 TM250 Memory Management and Data Storage

2.7 Memory Allocation

When programming software, just creating arrays or arrays from structures is
often not sufficient because these can only be defined with a fixed dimension
during the time before being compiled.

It is not possible to create arrays or arrays from structures with more than 4095
array elements. Furthermore, very large arrays will cause the maximum
variable memory for each task or the global variable memory in the project,
which is limited to 32 Kbytes on SG3 and 64Kbytes on SG4 systems, to be
filled up very quickly.

In this case, it makes sense to create a memory area dimensioned according to
the conditions once the system is running.
Use dynamic access of this memory to manage it with the help of offset
calculations.

As a result, the software will be somewhat more complex, but also more
dynamic and configurable than when using static array variables.

 Memory Management

 Memory Management and Data Storage TM250 39

Example: Determining the array dimension

Let's assume that a user data type, which saves the information for a recipe,
should be able to save 2000 different recipes.
Access should occur via an index specified by the user.

recipe_typ Recipes[2000];
UINT elem;
UINT index;

elem := sizeof (Recipes) / sizeof (Recipes[0]); (*Amount*)

if (index >= elem – 1) then
 index := elem – 1; (* Index limitation *)
end_if

Recipes[index].water := 11; (* Access to the elements *)

The size of the entire array determined using the "sizeof" function produces
24 Kbytes. Furthermore, the "recipes" variable is fixed with 2000 elements
and the size cannot be adjusted while the system is running.
As an alternative, a memory area can now be allocated in the desired size.
This can be selected as "any" size. The local and global variable memory is
not changed as a result of this.

Memory Management

 40 TM250 Memory Management and Data Storage

2.7.1 Memory allocation options

There are essentially two ways to allocate memory:

• "SYS_LIB" library – "TMP_alloc" function

• "AsMem" library functions

The TMP_alloc function can be used to allocate a memory area in the
application. This function should only be executed in the init subprogram on
SG4 systems. Otherwise a cycle time violation could occur.

The functions from the AsMem library must be used if the application requires
a high speed, dynamic memory allocation while the system is running in cyclic
mode.

Caution:

Newly allocated memory areas are generally NOT initialized! It is possible
to initialize the memory area that was defined using the "memset" function.

Note:

Take note that with cyclic allocation, memory blocks that have been
allocated must later be de-allocated. Allocated memory blocks are created
in the DRAM. All allocated memory blocks are automatically de-allocated
again after a system restart.

When allocating, make sure that the necessary memory sizes are calculated
using the "sizeof" function if possible.

 Memory Management

 Memory Management and Data Storage TM250 41

2.7.2 Working with the "TMP_alloc" function

The "TMP_alloc" function is located in the "SYS_LIB" library. Memory blocks
requested with the "TMP_alloc" function, can be later de-allocated using the
"TMP_free" function.

Note:

After the system is restarted or the memory area is de-allocated the address
determined by "TMP_alloc" must NOT be accessed anymore. The address
returned here cannot be used until the "TMP_alloc" function has been
executed again.

Example: Working with TMP_alloc

Requesting a memory area that has the size of a UINT array with 1000
elements. The memory block is then de-allocated.

UINT uintVar;
UDINT memlng;
UDINT memptr;
UINT status;
UINT* pData; (* !! Dynamic variable !! *)

(* init program *)
memlng := 1000 * SIZEOF(uintVar); (* Size calculation *)

(* Size, pointer to the address vari able*)
status := TMP_alloc(memlng, ADR(memptr)); (* Allocation*)

(* Evaluation of the status variable *)
if status = 0 then
 (* Working with the address of the memory area *)
 pData access memptr; (* Dyn. access to the memory *)
else
 (* Error handling, error numbers can be found
 in the help files *)
end_if

(* De-allocating the memory *)
(* Size Address of the memory are a *)
status := TMP_free(memlng, memptr); (* De-allocate *)

(* Evaluation of the status variable *)
if ... then
 (* ... *)
end_if

Memory Management

 42 TM250 Memory Management and Data Storage

2.7.3 Working with AsMem

The following section will describe the functionality of the AsMem library in
further detail:

A global memory area with the size required for the application is allocated in
the init subprogram of a task. This memory area can also be called a memory
partition.
However, it is necessary that the user can use the application to see how much
dynamic allocatable memory is required while the system is running.

The individual memory blocks are then dynamically allocated from this
memory partition while the system is running.

This type of runtime allocation is very fast and hardly affects the application
runtime.

 Memory Management

 Memory Management and Data Storage TM250 43

Example: Working with AsMem

Requesting a 10 KByte memory area.

UDINT ident;
UINT status;
UDINT mem;
UINT* pData; (* !! Dynamic variable !! *)

(* init program *)
(* Allocation of the memory partition *)
AsMemPartCreate_0(enable:= 1, len:= 10000);
if AsMemPartCreate_0.status = 0 then
 ident:= AsMemPartCreate_0.ident; (* Partition ident *)
end_if

(* cyclic program *)
if cmd_CreateBlock = 1 then
 if AsMemPartCreate_0.status = 0 then
 (* Allocation of a 50 byte memory block
 ident of the memory partition must be sp ecified
 AsMemPartAllocClear initializes the memo ry block
 with "0" *)
 AsMemPartAllocClear_0(enable:= 1, ident:= i dent, len:= 50);
 end_if
 cmd_CreateBlock:= 0;
end_if

(* Working with the allocated memory block *)
if AsMemPartAllocClear.mem <> 0 then
 (* Address of the memory area *)
 mem:= AsMemPartAllocClear_0.mem;
 (* Dyn. access to the memory *)
 pData access mem;
end_if

if cmd_ReleaseBlock = 1 then
 (* Memory block with the start address "mem" in the partition
 De-allocate with specified ident *)
 AsMemPartFree_0(enable:= 1, ident:= ident, mem: = mem);
 cmd_ReleaseBlock:= 0;
end_if

Data Storage

 44 TM250 Memory Management and Data Storage

3. DATA STORAGE

3.1 General

As the name suggests, data storage refers to saving data in memory on the
controller (mostly ROM and mass memory, but also RAM). This can include
data such as machine configuration, recipe data, operating hours, etc.

The user must choose how and on which target memory the data should be
saved. In most cases, nonvolatile memory is used for this. The following
possibilities are available for long-term data storage on B&R controllers:

• B&R data objects

• Files

• Variables (remanent and permanent)

3.1.1 B&R data objects

Data objects consist of a header, the actual data and a checksum.

Fig. 18 Structure of a data object

 Data Storage

 Memory Management and Data Storage TM250 45

The checksum on all B&R objects (including tasks and system objects) is
monitored cyclically while the system is running to detect and react to errors
such as unauthorized access with pointers. The monitoring is carried out in the
idle time. 512 bytes per system tick are checked. Therefore, it can take up to a
few minutes (depending on the size of the application) before the checksum
monitor responds in the case of an error.

Data objects are the safest way to save data because a backup copy is
automatically made as part of the application. Therefore, if a data object is
destroyed during a write procedure (e.g. in the event of a power failure), a
backup copy of the data object is still available and is automatically recovered
when the controller is restarted (see the "Data Consistency" section).

Note:

Checksum monitoring can be switched off for data objects created in RAM
during runtime if they are to be written accurately with pointers. In this
case, a data object is no different than allocated memory.

Data Storage

 46 TM250 Memory Management and Data Storage

3.1.2 Files

On SG4 systems it is possible to store files in mass memory on the controller.
Mass memory includes hard drives (HDD), floppy disk drives (FDD), Compact
Flash cards or USB storage media. The data is organized as on a PC and saved
on logical drives (also in folders if desired).

Files can also be edited using a PC and transferred back to the controller when
needed. This is a big advantage when e.g. recipes need to be created once and
then transferred to other identical machines.

The following options are available for doing this:

• Removing the Compact Flash and connecting to a PC using a suitable
adapter.

• Copying the files from the Compact Flash card to USB storage using the
"FileIO" library.

• Access to the Compact Flash card via Ethernet FTP.

• The PLC copies dthe Data to a FTP server.

Using files makes it possible to easily manipulate and exchange data between
controllers and PCs.

3.1.3 Variables

Remanent and permanent variables offer the further possibility of protecting
data from loss. Files are stored in SRAM (battery-backed part of RAM), thereby
being protected from power failures.

The status of the backup battery should be monitored when using remanent or
permanent variables to backup data. The "HWGetBatteryInfo" function block
from the "AsHW" library can be used to do this.

Note:

RAM is only recommend for data backup under certain conditions because
it is a volatile type of memory. Therefore, the rest of this section will deal
with the possibility of using ROM to store data in data objects and files.

 Data Storage

 Memory Management and Data Storage TM250 47

3.2 Data objects

3.2.1 Creating data objects with Automation Studio

Data objects can be created in Automation Studio while setting up the project
or using the "DataObj" library while the system is running. Special attention
should be given to byte alignment when creating data objects in Automation
Studio (filler bytes, null termination of strings) so that the data ends up in the
correct elements of the structure when transferred.

Fig. 19 Data object in Automation Studio

Data Storage

 48 TM250 Memory Management and Data Storage

3.2.2 Formatting of the Data

Name Description

Strings Strings can be written between quotation marks ("White Bread")
or apostrophes ('White Bread'). The null termination for the string
is automatically inserted when using quotations. The string is
stored in the data object without null termination when using
apostrophes.

Numeric decimal
values

Numeric values are separated with a comma (001, 00200) or a
line break. Negative / positive values can we written the following
way (-001, +100).

Hexadecimal
values

Hexadecimal values can be signed with the $ - character ($FFF,
$FACE, $01FB).

Binary Values Binary values can be signed with % - character (%01010101,
%0010010010010000).

Floating point
numbers

Floating point numbers (REAL) are defined with a period as
decimal point (12.3456 or 8.0). Orders of magnitude are specified
with an "e" preceding the exponent (2.34e5 or 5.43e-21).

Comments Comments are started using a semicolon (;) and apply to the rest
of the line.

Spaces Spaces between numeric values are not taken into consideration.
Of course, spaces keep there bit value in strings.

 Data Storage

 Memory Management and Data Storage TM250 49

It should be possible to read each line in this data object individually with a
structure and an offset. Make sure that the lengths and offsets of the variables
in the structure exactly match the data in the data object. When reading the
data, the structure can be used as a mask.

Fig. 20 Structure for reading the data object

A filler byte is automatically inserted after the "Yeast" element (alignment),
which must also be taken into consideration in the data object or the structure.
Otherwise, the structure can be designed so that it does not contain any filler
bytes.

Note:

Numeric values:
The data type being used for numeric values is automatically defined by the
number of digits or the by the actual value.
1 byte: Max. 3 digits and value range for SINT or USINT.
2 bytes: Max. 5 digits and value range for INT or UINT.
4 bytes: Max. 10 digits and value range for DINT or UDINT.
(Floating decimal numbers (REAL) also occupy 4 bytes.)

To read a 1 byte value (e.g. 200) with a UINT (2 bytes) variable, it must be
entered in the data object with at least four digits (0200).

Strings:
When working with strings it is important that each entry in the data object
is exactly as long as the length of the string that is being read (null
termination in the variable and in the data object, filler bytes behind string
variables).

Data Storage

 50 TM250 Memory Management and Data Storage

3.2.3 Creating data objects during runtime

The "DataObj" library provides function blocks for creating, managing and
editing data objects while the system is running. This library can be used to
access existing data objects, to read from or write to data objects; Data objects
can be created, deleted copied and moved to another memory.

3.2.4 Target memory

When working with data objects, you must decide in which target memory to
save the data. The desired memory type can be specified in Automation Studio
or as an input parameter in the "DatObjCreate" function block. The following
table can help you to make this decision.

 Data retained
during warm

restart

Data retained
during cold

restart

DRAM

UserRAM
(SRAM)

UserROM, SystemROM
(FLASH)

Note:

Data objects created during runtime can be uploaded to the project from
the controller if necessary. However, the contents cannot be displayed by
Automation Studio because it is not possible to recompile the data.

 Data Storage

 Memory Management and Data Storage TM250 51

3.2.5 Working with data objects

Fig. 21 Using the DataObj library

Creating a data object and reading the information:
The "DatObjCreate" function block from the "DataObj" library is used to create a
data object while the system is running. The necessary information for further
editing can be obtained from an existing data object using the "DatObjInfo"
function block.

Reading and editing:
The data object can continue to be edited after receiving the ident.
"DatObjRead" is used to read data from the data object, while "DatObjWrite" is
used to write data to the data object.

Data Storage

 52 TM250 Memory Management and Data Storage

Managing data objects:
Additional function blocks are available for managing data objects (deleting,
copying, changing the date, moving to another memory).

A detailed description about how to use the function blocks can be found in the
Automation Studio online help under B&R Software World:Automation
Studio:Libraries:DataObj.

Dynamic access:
The memory area of a data object can also be accessed directly using dynamic
variables (pointers). The "DatObjCreate" and "DatObjInfo" function blocks
provide the start address for the data via the "pDatObjMem" output.

True read access with dynamic variables does not require any other special
considerations.

However, a few things must be considered regarding write access with
dynamic variables. As mentioned earlier, the checksum of data objects is
monitored cyclically. That means that data objects can only be write accessed
when checksum monitoring is switched off. This is only possible for data
objects in the DRAM or UserRAM if they are created while the system is
running.

Note:

You must check the status output of all function blocks in the DataObj
library to see if the function block is finished or has been correctly executed
(when status = 0). Otherwise, the function block must be executed again in
a later cycle or the error must be evaluated.

Note:

We recommend only using the corresponding library functions to edit data
objects. If dynamic variables must be used to manipulate data areas created
during runtime, it makes more sense to allocate a memory using the
"TMP_alloc" function and (if necessary) to save in a data object using the
library functions after editing.

 Data Storage

 Memory Management and Data Storage TM250 53

Task: Reading the content of a Data Object during runtime

Create a data object and data type in Automation Studio as shown here.

Write a task for reading the 3 recipes individually! Use the DatObjRead
function block to do this!

Also read the data with a dynamic variable structure!

Use the DatObjWrite function block to change different recipe parameters!

Check the changes with the dynamic variable structure!

Data Storage

 54 TM250 Memory Management and Data Storage

Approach:

The "DatObjInfo" function block provides the necessary information for the
other function blocks and dynamic access.

The offset of the second and third recipe and the length of the data block
being read are easily determined using the "SIZEOF" function. Now the
recipe's index just has to be defined (starting at 0).

 Data Storage

 Memory Management and Data Storage TM250 55

3.3 Files

B&R SG4 controllers are equipped with mass memory (Compact Flash, hard
drive, USB memory). They offer the possibility to store and to organize files on
these memory media, as is common in the PC world. The "FileIO" library offers
function blocks for using the extensive file system functions on the mass
memory.

Files can generally be used for the same purpose and in a similar manner to
data objects, however, there are differences in the format and the management
by the Automation Runtime and the user.

 Files Data objects

Memory Mass Memory UserROM, SystemROM,
UserRAM, DRAM

Access Function blocks and
dynamic variables

Function blocks and
dynamic variables

Controller system SG4 SG3, SG4

Monitoring, Checksum No Yes

Library FileIO DataObj

Can be transferred to
PC

FTP, Compact Flash, USB No

Can be edited on PC Any program Automation Studio

As described earlier, files make it possible to transfer data from the control
system to a PC, where they can be saved or edited, or passed onto another
control system.

Data Storage

 56 TM250 Memory Management and Data Storage

3.3.1 File devices

Fig. 22 File device

A connection between the file system and Automation Runtime or the
application must first be established in order to use the file system functions.
Therefore, files devices must be setup in the CPU settings.

The device name is used in the "FileIO" library as a synonym for the highest
directory level. The operating system then assumes access to the files.

A device can also contain sub-directories that can be directly accessed using
the function blocks.

Note:

Detailed information about file devices can be found in the Automation
Studio online help under Automation Software:Automation
Studio:Projects Software configuration:SG4 CPU configuration:File
devices.

 Data Storage

 Memory Management and Data Storage TM250 57

3.3.2 Working with files

Fig. 23 Using the FileIO library

Creating a file:
The "FileCreate" function block from the "FileIO" library is used to create a file
while the system is running. At this point, the file is given a name and the ident
received provides the basis for further editing.

Opening an existing file:
A file can be opened from the mass memory using the "FileOpen" function
block. The file can be further edited when the ident is received. "FileOpen" is
not necessary if the file was just created using "FileCreate".

Data Storage

 58 TM250 Memory Management and Data Storage

Reading and editing:
The ident makes it possible to read data from files using "FileRead" and to write
data to files using "FileWrite".

Closing a file:
A file opened with "FileOpen" or created with "FileCreate" can be closed using
"FileClose".

Managing files:
Additional function blocks are available for managing files (deleting, copying,
renaming), organizing directories (creating, deleting renaming a directory) and
reading the contents of a directory.

A detailed description about how to use the function blocks can be found in the
Automation Studio online help under Automation Software:Automation
Studio:Libraries:FileIO.

Caution:

After editing a file, the file should be closed to make the system resources
required by "FileOpen" or "FileCreate" available again.
This helps you gain a clearer overview when using multiple files.

Note:

You must check the status output of all function blocks in the "FileIO" library
to see if the function block is finished or has been correctly executed (when
status = 0). Otherwise, the function block must be executed again in a later
cycle and/or the error must be evaluated.

 Data Storage

 Memory Management and Data Storage TM250 59

3.3.3 File formats

The format for storing data in the files must be determined if the files are to be
edited externally (e.g. on Windows, Linux or Unix platforms). It is possible to
store data directly like it is located in the variable structure on the controller
(binary), or to convert it to text first (ASCII). Text formats may be excluded
according to the editor being used (CSV, XML, etc.).

The following functions are available in the "AsString" library for converting
numeric values to text and vice versa:

• itoa: Converts an integer value (max. DINT) to an ASCII string.

• atoi: Converts an ASCII string to an integer value (DINT) .

• ftoa: Converts a floating point number (REAL) to an ASCII string.

• atof: Converts an ASCII string to a floating point number (REAL).

Example: Binary data in a file

In the following example, the contents of the structure, "FileData" will be
saved three times in the file.

Fig. 25 Data in the structure

Without being converted, the data is displayed in a text editor as follows
(the line breaks were entered afterwards):

Fig. 25 Binary data in the file

Data Storage

 60 TM250 Memory Management and Data Storage

A "CSV file" (CSV � Comma Separated Values) is created when the numeric
variable values are first converted to text (e.g. using the "itoa" function) and
a semicolon is inserted after each value for clear separation of the values.
This format is especially well-suited for editing in a table editor such as
Microsoft Excel.

Fig. 26 Data converted to ASCII in a CSV file

When reading the data however, each individual value must be read from
the file, converted back to the numeric value (e.g. using the "atoi" function)
and copied to the correct variable in the structure.

Note:

In both cases, the data is read in the opposite order as the data was written.
However, the process for text formats is somewhat more complicated. As
you can see, the data requires more memory space when it is in text
format. A numeric 2 byte value can use up to 6 places (5 digits plus sign =
6 bytes). Serparators and line breaks must also be taken into consideration.

 Data Storage

 Memory Management and Data Storage TM250 61

Task: Create, Read, Write a file with the FileIO Library

Configure a file device in the CPU settings!

Create a data type in Automation Studio according to the example shown
above!

Write a task for creating a file (FileCreate) / opening an existing file
(FileOpen) and closing an open file (FileClose)!

Use a structure from the created data type to write data to the file using the
"FileWrite" function block!

Transfer the file to the PC and edit the file using a text editor!

Approach:

The offsets and the lengths of the data blocks being read are easily
determined using the "SIZEOF" function. Now the data block's index just has
to be defined (starting at 0).

Caution:

When editing the file in an external editor, make sure when saving that:
• the offsets of the individual values match the structure being read.

• the editor being used does not automatically replace any characters
(e.g. Notepad: binary 0 (Null) replaced with spaces (hex 20, dec 32)).
This would result in missing null terminations in the string when
reading.

Data Storage

 62 TM250 Memory Management and Data Storage

3.4 Data consistency

3.4.1 General Information

A file system is used on B&R controllers for organizing all data such as
application program, operating system, configuration settings and user data.

On computer systems a file system is used for saving, managing and locating
files. It is possible to use names for organizing and accessing files on mass
memory devices such as hard drives or Compact Flash cards. File names can
also be stored in special files in directories. This makes it possible to call all
files using unique names (file name including path).

Each task, each data object, etc. is saved as a file in non-volatile memory.

Considerations must be made regarding protection against failure and
limitation of damage in the event or an error because parts of the application
can be edited and saved while the system is running (e.g. data objects).

It is always possible that a power failure could occur while writing a data object
during a write access to the effect file. If this occurs, the file is destroyed and
the data is lost.

This problem does not exist for the application data because the controller
always contains a current backup copy. This means that the last saved version
is automatically restored when an error is detected.

This is not the case for user data (files). In the case of user data, the data is lost
when a power failure occurs during a write procedure.

Note:

To guarantee supply voltage, B&R offers uninterruptible power supplies
(UPS), which detect a power failure and notify the controller. This makes it
possible for the application program to be secured before the voltage is
lost.

 Data Storage

 Memory Management and Data Storage TM250 63

3.4.2 Accessing mass memory

Access to peripheral devices such as mass memory is handled by the
operating system with very low priority.

These devices are controlled using function blocks that can return the value
"busy" (= 65535) to the status output. That means that the function block must
be called again in the next cycle until the value 0 or an error number is returned
to the status output.

If the status 0 is returned, it means that the operating system has accepted the
task. However, the action does not have to be actually executed at that exact
moment. The action will be executed as soon as sufficient system resources
are available.

As a result, on CPUs with a high load the function block could return the status
0, but the edited file is not updated if the supply voltage is interrupted in the
meantime.

Fig. 27 Compact Flash

Caution:

The fact that Flash memory can only be written a limited number of times
must be taken into consideration when using Flash (e.g. Compact Flash) as
mass memory. Therefore, cyclic write access from the application must be
kept to the necessary minimum.
The actual number of write accesses can be found in the Flash card's
documentation.

Data Storage

 64 TM250 Memory Management and Data Storage

3.4.3 Directory structure on the Compact Flash

On SG4 systems, all of the data that must be stored long-term is saved on
Compact Flash (or another mass memory) in a fixed directory structure.

One partition system:
If a Compact Flash contains one or two partition(s), then the entire control
software is stored on the first partition (C:\). The second partition (D:\) can be
used as a user partition to store e.g. files created in the application.

The following directory structure is created when downloading the operating
system to the first partition (for the CPU C:\) on the Compact Flash (view in
Windows Explorer):

Fig. 28 Directory structure on the Compact Flash

• Brm:
Configuration files for the operating system.

• RPSHD:
The application is saved in this directory and loaded completely to the
DRAM from here during startup.

• RPSHDS:
The backup copy of the application is saved here. The application is
restored from this directory if an error is detected in RPSHD during
startup (e.g. incorrect checksum).

• System:
Firmware and drive files for built-in interfaces and optional interface
cards are stored here.

 Data Storage

 Memory Management and Data Storage TM250 65

Three partition system:
If the Compact Flash is divided into three or more partitions and if the third
partition (E:\) is the same size or larger than the second (D:\), then the entire
control software is placed on the first three partitions. The remaining partitions
can be used as user partitions. The operating system (files in the root directory,
Brm\ and System\) is stored on the first partition (C:\), the application (RPSHD\)
on the second (D:\) and the backup copy of the application (RPSHDS\) on the
third (E:\).

The user data can be organized on a fourth partition (F:\) separate from the
control software.

Fig. 29 Three partition system with user partition

The three partition system offers the highest level of security by clearly
separating the operating system, application, backup copy of the application
and user data on four different partitions. As a result, any potential sources of
error in the file system (FAT) are limited to one partition. In the event of an
error, the control software can always be restored from another partition.

Note:

The compact flash can be created with the help of the PVI Transfer Tool. It
provides the choice of the partition sytem, selection of the individual
partition sizes as well as the content of the user partition. Further
information you can find in the Automation Studio Online help and the PVI
Transfer help.

Summary

 66 TM250 Memory Management and Data Storage

4. SUMMARY

Solid knowledge of memory management, data storage and their respective
features can help to prevent programming errors right from the start. This
eases the amount of work and provides more certainty when planning data
storage on the controller.

Fig. 30 The parts in a hard drive

Participants now have an overview of the structures, arrays and dynamic
variables. Sources of error in an application program can be limited by working
carefully with the memory. A suitable method of data storage in the form of
data objects or files offers further advantages for your application.

 Summary

 Memory Management and Data Storage TM250 67

Overview of training modules

TM200 – B&R Company Presentation ** TM600 – The Basics of Visualization
TM201 – B&R Product Spectrum ** TM610 – The Basics of ASiV
TM210 – The Basics of Automation Studio TM630 – Visualization Programming Guide
TM211 – Automation Studio Online Communication TM640 – ASiV Alarm System
TM212 – Automation Target ** TM650 – ASiV Internationalization
TM213 – Automation Runtime TM660 – ASiV Remote
TM220 – The Service Technician on the Job TM670 – ASiV Advanced
TM223 – Automation Studio Diagnostics
TM230 – Structured Software Generation TM700 – Automation Net PVI
TM240 – Ladder Diagram (LAD) TM710 – PVI Communication
TM241 – Function Block Diagram (FBD) TM711 – PVI DLL Programming
TM246 – Structured Text (ST) TM712 – PVIServices
TM247 – Automation Basic (AB) TM730 – PVI OPC
TM248 – ANSI C
TM250 – Memory Management and Data Storage TM800 – APROL System Concept
TM260 – Automation Studio Libraries I TM810 – APROL Setup, Configuration and Recovery
TM261 – Closed Loop Control with LOOPCONR TM811 – APROL Runtime System
 TM812 – APROL Operator Management
TM400 – The Basics of Motion Control TM813 – APROL XML Queries and Audit Trail
TM410 – The Basics of ASiM TM830 – APROL Project Engineering
TM440 – ASiM Basic Functions TM840 – APROL Parameter Management and Recipes
TM441 – ASiM Multi-Axis Functions TM850 – APROL Controller Configuration and INA
TM445 – ACOPOS ACP10 Software TM860 – APROL Library Engineering
TM450 – ACOPOS Control Concept and Adjustment TM865 – APROL Library Guide Book
TM460 – Starting up Motors TM870 – APROL Python Programming
 TM890 – The Basics of LINUX
TM500 – The Basics of Integrated Safety Technology
TM510 – ASiST SafeDESIGNER
 **) see Product Catalog

Summary

 68 TM250 Memory Management and Data Storage

Hinteres Deckblatt (auf durch 4 Teilbarer Seitenzahl)

Kontakt (Headquarter)

Weblink

Internationalität

Copyright – Bestellnummer

T
M
2
5
0
T
R
E
.0
0
-E
N
G

0
9
0
7

©
2
0
0
7
 b
y
 B
&
R
.
A
ll
ri
g
h
ts
 r
e
se
rv
e
d
.

A
ll
re
g
is
te
re
d
 t
ra
d
e
m
a
rk
s
p
re
se
n
te
d
 a
re
 t
h
e
 p
ro
p
e
rt
y
 o
f
th
e
ir
 r
e
sp

e
c
ti
v
e

c
o
m
p
a
n
y
.
W
e
 r
e
se
rv
e
 t
h
e
 r
ig
h
t
to
 m

a
ke
 t
e
c
h
n
ic
a
l
c
h
a
n
g
e
s.

