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Requirements 

 

Training modules:  TM260 

 

Software:    Automation Runtime 2.85 

 

Hardware:   Optional B&R simulation model 4SIM.00-01 
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1. INTRODUCTION 

Closed loop control is an important part of industrial technology and is 
usually a basic requirement for productive machines and systems as well 
as for high-quality products. 

Closed loop control has a reputation as a "sophisticated area of expertise" 
because knowledge of complex mathematics is required to understand the 
fundamental methods.  

This training module will follow a two-part approach to closed loop control 
based on software controllers in order to meet the wide range of demands 
of practitioners in the industrial field who must produce highly satisfactory 
results in a short amount of time, and to correspond with system analyzers 
who operate in a more theoretical manner: 

Part I is a practical approach, which will accompany your training at B&R 
and your autodidactic practical experience. This part focuses on the quick 
implementation of controllers based on the Automation Studio library 
LOOPCONR. 

With the help of different function blocks from this library, a highly 
effective control loop can be created and adapted to a variety of 
applications in a flexible manner. 

Particular attention will be given to the use of integrated procedures for 
automatically setting controllers (autotuning).  

Part II offers a compressed – more theory-oriented and still easy-to-
understand – approach to the topic. The basic methods and terminology of 
closed loop control will be handled here. This part should not be viewed as 
a substitute to educational books. This is simply not possible for the reason 
of limited topical breadth. Part II can also be used as a compendium and 

reference work, which will hopefully provide explanations and ideas when 
a controller is not working as desired.  

Throughout the entire training module, closed loop control will generally 
be explained using temperature controllers, which exhibit relatively simple 
behavior often used in the field. 
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1.1 Training guide objectives 

Participants will be familiar with the simple basic concepts of closed loop 
control and will be able to manually configure a PID controller. 

Participants will know how to use integrated autotuning procedures. 

Participants will be able to configure the function block for pulse width 
modulation and know how to implement a closed loop control with 
opposing manipulated variables. 

Participants will understand the B&R simulation model and know how to 
implement a closed loop control for the integrated temperature controlled 
system. 

Participants will gain an overview of the most important function blocks in 
the LoopConR library. 

 

Fig. 1 Training guide overview 

 



 Introduction 

                                                                               Closed Loop Control with LOOPCONR     TM261        7 
 

1.2 Compendium objectives 

Participants will understand the fundamental concepts such as dynamic 
systems, the establishment of models and the identification of controlled 
systems, block diagrams, Bode diagrams and autotuning procedures. 

Participants will understand the influence of dead times, measurement 
errors, signal sampling and modulated actuator signals.  

Participants will understand advanced control structures such as pre-filter 
and mixed control loop as well as examples for practical application. 

 

Fig. 2 Compendium overview 
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Notes
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2. FUNCTIONALITY OF THE LOOPCONR LIBRARY 

The function blocks in the LoopConR library provide the following 
functions: 

• Controller function block  

• Autotuning procedure  

• Modulation procedure  

• Signal processing  

• Simulation of thermal controlled systems  

• Control of a continuous servo drive without position feedback. 

• Controller function blocks and tuning process especially for 
temperature systems 

 

This library can be used to cover most standard tasks in the area of closed 
loop control and signal processing. 
Unlike the LoopCont library, all calculations in this library are made using 
only floating point arithmetic (REAL). 

 

System requirements: 

The function blocks in the LoopConR library use floating point arithmetic 
for calculations and can be used optimally on SG4 controllers with regard 
to computing time. 

Since SG3 controllers do not use floating point arithmetic for calculations, 
cycle time violations may occur due to the floating point emulation used 
for the function blocks in the LoopConR library. 

In this case, either use function blocks in the LoopCont library that 
primarily rely on fix point arithmetic or increase the cycle time of the task. 
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3. SIMPLE BASIC CONCEPTS 

Closed loop control theory explores how to influence systems in such a 
way that a specific variable can posses a specified value at any time. 

Room temperature provides a basic example: heating is regulated via a 
thermostat in such a way that the value specified on the thermostat is 
maintained. 

 

Let's get started with an exercise getting to know the SlimPID() function 
block in order to ease your introduction into the theory of closed loop 
control. Solutions to the exercises can be found in the appendix of this 
training module. 

 

In practice, PID controllers are very frequently used for temperature 
controllers. For this reason, this training module will also be demonstrating 
how to use these function blocks in tasks related governing temperatures. 

We will establish a simple control loop in the following example. We will be 
operating the SlimPID() function block as true P-controller and will examine 
the effects of different manually defined control parameters. The 
LCRSimModExt() function block can be used to implement a simulation 
model of an extruder. Use the parameters specified in the example in the 
online for this.
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Task: SlimPID() P-controller 
 

Use the function blocks LCRSlimPID() and LCRSimModExt() to construct 
the following control loop: 

 

Fig. 3: Block diagram – control loop 

Using the following gains:  

• kp= 0.5 

• kp= 3 

• kp= 8 

Execute set value jumps and record the set and actual temperatures and 
the gain using Trace.  

Examine the remaining controller deviation e (difference between the 
set value and the actual value). 

Examine the stability of the control loop. Oscillations occurring during 
compensation must fade as quickly as possible. 

Which gain is best suited with regard to remaining controller deviation 
and a fast reduction in oscillations? 
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Solution approach: 

In the Ladder Diagram, create the control loop described above. Set up 
the function block LCRSimModExt() using the parameters listed in the 
example in the online help. 

The output value Y from the function block LCRSlimPID() is the 
manipulated variable that is fed to the Alpha_h input of the function 
block LCRSimModExt() as a heating control action. The resulting 
controlled variable y is fed back to the LCRSlimPID() function block at 
input X as the actual value. 

The trace should take at least 10 minutes. 

Enter the gain values for the variable Kp, located in the structure 
attached to <LCRSlimPID-instance name>.pPar. Set the request input 
of the LCRSlimPID() function block to LCRSLIMPID_REQU_READ_PARAS 
(3) and back to LCRSLIMPID_REQU_OFF (0) so that the function block 
applies the value for Kp (edge-controlled). Additional information about 
operating the LCRSlimPID() function block can be found in the online 
help. 
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3.1 What does control mean? 

A closed loop control has the task of getting the output variable of a 
controlled system, the controlled variable X, to a predefined value, the 
reference variable W, and to maintain this value despite influence from 
disturbance variables Z. In a closed loop control, the actual value of the 
controlled variable X is continuously determined and is compared with the 
set value specified by the reference variable W. Unlike open loop 
controlling, this is a closed loop, which means that the variables 
(manipulated variables) that influence the process are independently 
established with suitable control mechanisms (actuators) from measured 
process variables instead of being specified externally. 

The controller deviation e determined by comparing W and X is processed 
to the manipulated variable Y with a specific control algorithm and fed to 
the final controlling device.  

The next figure shows the block diagram for a standard control loop with 
the following elements: 

• Plant: the system to be controlled (process or system).  

• Controlled variable (actual value): the variable to be intentionally 
influenced by the controller (output variable of the controlled system 
or actual value). 

• Reference variable (set value): set value of the controlled variable 
(e.g. specified by operator). 

• Measuring element (sensor, measuring device): provides the 
controller with a measurement value of the controlled variable 
(typically via an input module). 

• Control deviation: the difference between the reference and 
controlled variable. 

• Controller: uses the control deviation to generate a corresponding 
signal in order to affect the controlled system (typically via an output 
module). 

• Actuator: the connecting element between the controller, which 
generally only provides weak signals, and the system to be 
controlled, which usually requires strong signals to have an effective 
influence. The output variable of the actuator is the manipulated 
variable.  

• Disturbance variable: describes the influence of non-measurable 
variables that affect the control loop. 
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Fig. 4: Standard control loop 

 

 Description 

X Controlled variable (actual value) 

W Reference variable (set value) 

e Control deviation e = W – X 

Y Manipulated variable 

Z Disturbance variable 

R(s) Controller transfer function 

G(s) Transfer function for the system to 
be controlled 

 
Regardless of their implementation, controllers are differentiated according 
to their typical step responses. Different types of control behavior include 
P, I, PI, PD and PID.  

A controller's step response is its typical reaction on the output 
(manipulated variable Y) to a signal jump on the input when the control 
loop is interrupted. 
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3.2 P controller behavior 

With the P controller, the output variable Y is proportional to the controller 
deviation e. The factor kp is a proportional coefficient. The proportional 
coefficient kp specifies by which amount the manipulated variable Y will 
change when the controller deviation e is changed by a specific amount. 

 

)()( tektY PP ⋅=  

 

Thus, the controller always requires a controller deviation to adjust the 
actuator. A disturbance variable or reference variable, which causes a 
controller deviation in a control loop, can never be completely cleared with 
the P controller as seen in the previous exercise. This remaining control 
deviation is a disadvantage of the P controller. Although it is small when 
the kp proportional coefficients are large, kp cannot be increased infinitely. 
This would cause instable controller operation. 

 

 

Fig. 5: Reaction of a P controller 

 

Behavior: 

• creates one of the manipulated variables proportional to the 
control deviation 

• quick reaction to control deviations, quick rise 

• never fully compensates (because a manipulated variable is not 
output when control deviation is missing), thus resulting in a 
remaining control deviation 

• very simple and inexpensive (often only mechanical) 
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3.3 I control behavior 

With the I controller, the manipulated variable Y is proportional to the time 
integral of the controller deviation.  

 

∫ ⋅= dtte
T

k
tY

N

P
I )()(  

 

The integral action time Tn is the time span, which a constant control error 
must meet for the I-element to generate the same manipulated variable as 
would be generated immediately by the P-element.  

Although an I-controller reacts slowly to a change in the controller 
difference, the advantage is that it completely compensates for the 
controller difference  that's always present for a P-controller.  

However, an I-element lowers the stability of a control loop and causes 
overshoot. The smaller the integral action time, the stronger the effect of 
the I-element. 

 

Fig. 6: Reaction of an I controller 

 

Behavior: 

• the manipulated variable changes with constant gradient at a 
constant control deviation 

• delayed reaction to control deviations 

• fully compensates for control deviations (because the 
manipulated variable continues to change until the control 
deviation is eliminated) 

• tends to overshoot and lowers the stability of the control loop  
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3.4 PI controller 

With the PI controller, the manipulated variable Y is equal to an addition of 
the output variables from a P and an I-element. The manipulated variable is 
first changed, just as with the P controller. A change to the manipulated 
variable then occurs again, which also like the I controller, is equal to the 
time integral of the controller deviation. Therefore, the PI controller 
combines the advantages of both controllers. It reacts quickly to controller 
deviations (P-element) and compensates them entirely (I-element). 

 

 

Fig. 7: Reaction of a PI controller 

 

3.5 D controller behavior 

The D-element creates a manipulated variable, which is proportional to the 
temporal derivative of the control deviation. 

 

)()( teTktY VPD &⋅⋅=  

 

The derivative action time Tv indicates the time span, which an increasing 
control deviation of 0 with a constant gradient must meet for the P-element 
to generate the same manipulated variable as the D-element.  

A D-element increases the speed and improves the stability of a control 
loop. A larger derivative action time increases the effect of the D-element. 
However, a D-element does not compensate by itself. This is why it can 
only be used together with another controller. 



 Simple Basic Concepts 

                                                                               Closed Loop Control with LOOPCONR     TM261        19 
 

3.6 Ziegler/Nichols controller settings 

If the controller isn't very well known, it is usually very difficult and time-
consuming to determine suitable parameters for a PI or PID controller 
without sufficient experience. 

Configuring the controller according to the Ziegler/Nichols method is an 
easy way to determine suitable controller parameters without having to 
know the controlled system exactly. This procedure was developed in 1942 
and is based on experience gained empirically. 

This procedure is done as follows: 

• The controller will first be operated as a true P controller. 

• The controller gain kp will be increased up to the value kcrit, at 
which point the control loop reaches its stability limits and 
causes continuous oscillations with constant amplitude and 
period. 

• The period duration Tcrit of the continuous oscillation is 
measured. 

 
 

Controller parameters can be calculated using the following table: 

 Control parameters 

Controller 

type 
kp Tn Tv 

P 0.5 kcrit   

PI 0.45 kcrit 0.85 Tcrit  

PID 0.6 kcrit 0.5 Tcrit 0.12 Tcrit 

 

 

In our next task, we will determine the parameters for a PI or PID controller 
using the Ziegler/Nichols method. 
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Task: SlimPID() controller settings according to Ziegler/Nichols 
 

Increase the gain kp in steps starting from 0 until the control loop 
reaches the stability limit. 
First start with a small interval (approx. 0.1 to 0.5). If the effects are 
minimal at first, the interval can be increased.  

After each change in gain, also change the set value in the range 
between 150 °C and 200 °C in jumps. 

The goal is to find the critical gain kp = kcrit that brings the control loop 
to the stability limit. The critical gain kcrit is the least amount of gain 
needed to keep the control value oscillation at a constant amplitude and 
period after a set value jump. 

The critical gain kcrit and the period of the oscillation Tcrit are measured 
and used to calculate the control parameters in the table. 

Calculate the Kp and Tn parameters for a PI controller. 

Calculate the Kp, Tn, and Tv parameters for a PID controller. 

 

Solution approach: 

Use the same project you used for the earlier task.  

You can also begin with a gain kp = 3. You already know from the 
previous task that the control loop is still stable at this gain.  
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You have now successfully configured a controller for the controlled 
system, and you have probably noticed that determining the control 
parameters empirically requires a certain amount of patience and 
experience.  

This procedure doesn't always have to be carried out manually, however. 
The LCRSlimPID() function block gives us the option of using auto-tuning. 
Auto-tuning determines all parameters automatically by executing a 
number of oscillation or a step response. You will find more detailed 
information on how to use it in the next training example. 

In addition to the Ziegler/Nichols controller configuration that you now 
already know, Part II of this training module – Compendium and Reference 
Work – will also handle the Chien, Hrones, and Reswick methods. 
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4. APPLICATION OF THE INTEGRATED AUTO-TUNING PROCEDURE 

An auto-tuning procedure is a sequence of intercoordinated identification 
and controller setting procedures that run automatically and are controlled 
by algorithms. It is the most convenient method of setting a controller for 
the user.  

A stimulating input signal is first actuated on the system and the system's 
response is recorded. The system's transfer function is approximately 
determined from the comparison of these input and output signals. A 
P/PI/PID controller is then configured for this system in such a way so that 
the closed control loop exhibits the desired behavior. After setting the 
parameters once, these procedures will run fully automatically without 
intervention from the user and can be repeated at any time. 

The SlimPID() function block, which was discussed earlier, provides two 
different autotuning procedures: 

• Auto-tuning with oscillation attempt 

• Auto-tuning with step response 

 

Furthermore, the function block allows you to adjust the method for 
determining parameters to meet your demands. A table with the different 
tuning options that can be specified on the function block's request input 
can be found in the online help under Data types and constants: Tuning 
options.  
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4.1 Oscillation attempt with the SlimPID() function block 

During the oscillation attempt, a periodic square-wave signal is used as 
system excitation in the closed control loop. This square-wave signal is 
generated by a 2-position controller (comparator), which is used in place of 
the closed-loop controller. This procedure can be used for setting P/PI/PID 
controllers and features the easiest method for setting parameters. 
Parameters are set using the request input. For example, if request = 
LCRPID_TUNE_REQU_OSCILLATE (1) is selected, then the default settings 
for the different oscillation attempt options are set automatically. 

Default options for the oscillation attempt: 

Selection options Selection Number 

Type of tuning � Oscillation 
attempt 

1 

Effective direction � Positive 10 

Controller settings � PID 100 

Controller setting procedure � Ziegler / Nichols 0000 

Oscillation attempts � 2 20000 

Periods per oscillation attempt � 4 400000 

 
The request is a product of the sum of the numbers. 

Detailed information about the available tuning options can be found in the 
online help under Data types and Constants: Tuning options 

 

 

Note: 
 
If, for example, you would like to use tuning with 3 oscillations over 5 
periods with a negative control action (increasing the manipulated 
variable reduces the actual value), you must set "request" to 530121. 
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Task: SlimPID() auto-tuning with oscillation attempt 
 

Use your existing project and carry out auto-tuning using oscillation. 

Set the request input to LCRPID_TUNE_REQU_OSCILLATE (1) to execute 
an oscillation attempt tuning procedure. 

Solution approach: 
First, set the set temperature to the operating point you will be using in 
the future (e.g. 150°C). 

Then set the request input of the function block LCRSlimPID() to 
LCRPID_TUNE_REQU_OSCILLATE (1). 

Record the set temperature, the actual temperature and the manipulated 
variable in Trace. 

Now compare the control parameters that you defined previously with the 
ones determined by auto-tuning. Set the request input of the LCRSlimPID() 
function block to LCRSLIMPID_REQU_WRITE_PARAS (4) and back to 
LCRSLIMPID_REQU_OFF (0) so that the function block copies the control 
parameters to the structure connected to pPar (edge-controlled). 
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4.2 Step response with the SlimPID() function block 

The step response uses a manipulated variable jump as system excitation 
in the open control loop and offers a multitude of possibilities for setting 
the controller. You can choose between the controller types P/PI/PID or 
design processes, disturbance rejection or set-point tracking design. 

The step response is configured using the request input. If request = 
LCRPID_TUNE_REQU_STEPRESPONSE (2), then a step response is 
executed using the default settings. 

Default options for the step response: 

Selection options Selection Number 

Type of tuning � Step response 2 

Effective direction � Positive 10 

Controller settings � PID 100 

Controller setting procedure � Chien / Hrones / 
Reswick disturbance 

variable design, 
non-periodic 

1000 

 
The request is a product of the sum of the numbers. 

Detailed information about the available tuning options can be found in the 
online help under Data types and Constants: Tuning options. 

A manipulated variable jump must be specified for the step response. That 
means that the manipulated variable (Y0) at which the system is close to 
the operating point must be approximately known. Starting from this 

manipulated variable Y0, a step (∆ Y = Y1 – Y0) to a new manipulated 
variable Y1 is then executed. Suitable controller parameters can then be 
calculated based on the reaction of the system. It is important to ensure that 
∆Y is large enough to cause a significant change to the controlled variable. 
Otherwise it will not be possible to find any suitable control parameters. 

Variables and function blocks that are used internally must be used to set 
Y0 and Y1 with LCRSlimPID(). The procedure for writing internal variables 
can be found in the online help in the section Function blocks and 
functions: LCRSlimPID() under the heading Access to internal structures 
and variables. Y0 and Y1 can also be set to the corresponding values in the 
watch for test purposes. 
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The slope of the controlled variable must be determined for the step 
response. Good filtering of the signal is essential because the controlled 
variable almost always has overlying noise in actual practice. In the internal 
substructure <LCRSlimPID instance name>.PIDTune_inst.pOptions_step, 
the filter is configured using the variable evalNFilter. 

Step response procedure: 

• Y0 is output on the controller output until the transient effect of the 
system is finished and the controlled variable is close to the set 

value. 

• Y1 is then output on the controller output until the necessary 
P/PI/PID parameters have been found. This can take a different 

amount time depending on the design process. 

• Disturbance variable design: Tuning is complete as soon as the 
maximum slope of the controlled variable has been detected. 

• Reference variable design: Tuning is complete as soon as the 
transient effect in the new operating point is finished. 
 

 

Fig. 8: Tuning for reference variable design SlimPID() 
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Task: SlimPID() auto-tuning with step response 
 

Use your existing project and carry out auto-tuning using step response. 

Set the request input to LCRPID_TUNE_REQU_OSCILLATE (2) to execute 
a step response, A disturbance rejection design (non-periodic) is used to 
determine the PID parameters. 

Now perform a tuning procedure that determines the PID parameters 
using the reference variable design (non-periodic) (request = 4112). 

Note the PID parameters from both tuning procedures for comparison. 

Solution approach: 
First set the set temperature to an operating point, in which the required 
manipulated variable Y0 is already known (e.g. 150 °C)! 

Set the inputs Y0 and Y1 of the internally-used function block 
LCRPIDTune() in such a way that the temperature on the system 
changes significantly when a manipulated variable jump occurs. 
Y0 can be determined using the trace of the previous example. Set Y0 to 
the manipulated variable, which the controller had when in steady state 
in the operating point. Choose Y1 to be approximately 30% larger than 
Y0.  

Perform both tuning procedures. 
Record the set temperature, the actual temperature and the manipulated 
variable in Trace. 

Now compare the control parameters that were determined during the 
reference variable / disturbance variable design. 
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5. CONTROLLING TEMPERATURE SYSTEMS   

There are generally two opposing manipulated variables when controlling 
temperature systems; one for heating and one for cooling. In most cases, 
the two manipulated variables have a different gain. Therefore, the system 
must be controlled using two different PID parameter sets. 

5.1 Function block LCRTempPID() 

This function block is specially designed for controlling temperature 
systems and should only be used for this purpose. The necessary PID 
parameters can be transferred to the function block using a type 
lcrtemp_set_typ structure connected with the pSettings input. The 
LCRTempTune() function block can be used to determine the parameters if 
they are not known. 
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Task: Control a temperature system (heating and cooling) using 

LCRTempPID() 

Use the function block LCRTempPID() to construct the following control 
loop: 

 

Fig. 9: Block diagram – control loop with LCRTempPID() 

Use the online help to get more information about the LCRTempPID() 
function block, how it's used, and its operation. 

Configure the controller function block using the type lcrtemp_set_typ 
structure connected to the pSettings input. There, the PID parameters 
must be placed in the substructure PIDpara. 
You can refer to the examples in the online help to find suitable settings 
for the controller. 

Perform set value jumps. Record the set temperature, actual 
temperature, the manipulated variable for heating (y_heat) and the 
manipulated variable for cooling (y_cool) in a trace. 

 

Solution approach: 

Parameters are automatically replaced with the default values internally 
if you do not specify them in the structure lcrtemp_set_typ. The default 
values are specially intended for extruders. 
The PID parameters have to be configured. 
 
The dynamics of the closed control loop can be influenced by the 
factors dynGen, dynHeat and dynCool, in particular with LCRTempPID(). 
Kp_h should be reduced if excessive oscillations occur. You can 
increase Tn_h if the control loop does not stabilize quickly enough. 
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5.2 Function block LCRTempTune() 

The function block LCRTempTune() provides a procedure for automatically 
determining suitable control parameters, specially optimized for 
temperature systems. After the tuning procedure is complete, the function 
block writes the determined PID parameters into the type lcrtemp_set_typ 
structure connected with the pSettings input. 

Principle tuning procedure: 

• Settling phase before the heating procedure:  
The actual temperature must be close to the ambient temperature 
and the temperature changes are not allowed to be too great. 

• Heating procedure:  
100% heating manipulated variable is used for heating until the 
temperature is close to the set temperature. 

• Settling phase before the cooling procedure: 
The actual temperature is regulated to the set value in this phase. 
The cooling procedure is started after the transient effect is finished. 

•  Cooling procedure: 
100% cooling manipulated variable is used for cooling until suitable 
parameters have been found. Tuning is then successfully completed. 

 

Fig. 10: Standard tuning temperature curve LCRTempTune() 



 Controlling Temperature Systems 

                                                                               Closed Loop Control with LOOPCONR     TM261        31 
 

 

 

Task: Tuning a temperature system using LCRTempTune() 

Use the function block LCRTempTune() to construct the following 
control loop: 

 

Fig. 11: Block diagram – control loop with LCRTempTune() 

Use the online help to get more information about the LCRTempTune() 
function block, how it's used, and its operation. 

Configure the function block using the structure (lcrtemp_set_typ) 
connected with the pSettings input. The tuning options can be entered 
to the TuneSet substructure. Suitable settings can be found in the online 
help. 

Perform a tuning procedure in standard mode. Record the set 
temperature, actual temperature, the manipulated variable for heating 
(y_heat) and the manipulated variable for cooling (y_cool) in a trace. 

LCRTempTune() writes the PID parameters determined during the tuning 
procedure to the structure connected with the pSettings input. 

Solution approach: 

Connect the rdyTo outputs to the okTo inputs. For example, the 
rdyToHeat output indicates when the system is ready for starting the 
heating procedure (rdyToHeat = TRUE). However, heating is not started 
until okToHeat is set to TRUE. In this case, connect the rdyToHeat output 
to the okToHeat input. The rdyToCool and rdyToCoolEnd must also be 
linked in the same manner. 
 
Since this example deals with a simulation, a few tuning settings must 
be changed because the default values for are optimized for systems 
relevant to actual use (e.g. extruder). 
 
If the LCRTempTune() function block is not disabled after the tuning 
procedure is complete, then the system will be temporarily regulated 
with the help of an integrated PID controller. However, the 
LCRTempPID() function block should be used to achieve optimum 
controller behavior (particularly with set value jumps). 
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5.3  Communication between LCRTempTune() and LCRTempPID() 

Once the tuning procedure with the LCRTempTune() function block is 
complete, the determined PID parameters are automatically written to the 
structure connected with the pSettings input. This structure must also be 
connected with the pSettings input of the LCRTempPID() function block in 
order to enable communication between the two function blocks. 

The following image illustrates which function block accesses which 
parameters in the communication structure and how (read, write, or both). 

 

Fig. 12: Communication structure between LCRTempPID() and LCRTempTune() 
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5.4 Synchronized tuning of controlled systems 

In practical application, multiple controlled systems must often be tuned 
simultaneously because they are placed next to one another and therefore 
affect each other. Each of these controlled systems contains its own actual 
value sensor and is controlled by a separate controller. The 
LCRTempTune() function block offers the possibility to synchronize 
multiple tuning procedures.  

The rdyTo outputs of the LCRTempTune() function block are set to TRUE 
when the settling phases / tuning phases are complete. 

The corresponding okTo inputs cannot be set simultaneously to TRUE on 
all LCRTempTune() function blocks until the rdyTo outputs = TRUE on 
every LCRTempTune() function block. 

 

 

The following image shows an extruder with two adjacent heating and 
cooling zones that must be tuned synchronously due to their influence on 
each other. 

 

 

Fig. 13: Extruder model 

 

Note: 

Examples about how to link the rdyTo output with the okTo inputs can 
be found in the online help by the function description of the 
LCRTempTune(). 
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Task: Synchronous tuning of two temperature systems using the 

function blocks LCRTempTune() and LCRTempPID() 

Use the function blocks LCRTempPID() and LCRTempTune() to construct 
the following control loop twice: 

 

Fig. 14: Block diagram – control loop with LCRTempPID() and LCRTempTune() 

First perform a tuning procedure in standard mode. Make sure that both 
zones are tuned synchronously. Record the actual temperatures, the 
manipulated variables for heating, the manipulated variables for cooling 
and the status outputs of the LCRTempTune() function blocks using 
trace. 

Once the tuning procedure is complete (done = TRUE), switch off 
LCRTempTune() and enable the LCRTempPID(). Also do not forget to 
switch the manipulated variable outputs (y_heat and y_cool), which 
affect the system. 

Solution approach: 

Create a manipulated variable for heating / cooling each zone. This 
variable is written by LCRTempTune() during the tuning procedure. The 
manipulated variable is written by LCRTempPID() once the tuning 
procedure it complete. 
 
Recording the status can help determine whether any warnings, which 
could have affected the tuning results, were output during the tuning (e.g. 
turning point not detected). If this occurs, the tuning options should be 
adjusted in the TuneSet structure. 
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6. IMPLEMENTATION OF A PULSE WIDTH MODULATION 

The LCRPWM() function block can be used to implement a pulse width or 
pulse frequency modulator. This function block transforms an analog input 
signal into a digital, pulsed output signal. The input signal x is limited by 
max_value and min_value. The t_min_puls input can be used to specify the 
minimum duty cycle in seconds. A value larger than t_min_puls must be 
specified for the period duration t_period.  

 

Fig. 15: Pulse width modulation 
 

A pulse with the specified duration t_min_pulse is output, and the period is 
simultaneously extended if an input signal is present, which creates a pulse 
duration shorter than the minimum pulse duration (t_min_pulse). The 
period is extended in such a manner that the ratio from the switch-on 
duration to the switch-off duration is always equal to the input signal. 

In the event that an input signal is specified which generates an idle time 
shorter than t_min_pulse, then a pulse pause with the duration of 
t_min_pulse is output and the period is extended to reach the correct 
pulse/pause ratio. 
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7. B&R SIMULATION MODEL 4SIM.00-01 

Now let's have a look at a real temperature controlled system. To do this, 
we will be using the B&R simulation model with such a system to be 
controlled already integrated.  

The temperature controlled system consists of a heating transistor, which 
heats up a heat sink. A fan is attached to the end of the heat sink. The 
temperature is measured using a PT1000 sensor.  

The heating transistor is adjusted by applying voltage to the X2-14 pin, 
thereby causing the heat sink to heat up. A voltage of 24VDC or 10VDC 
must be selected and applied if the transistor is adjusted to full capacity 
(full thermal output). An analog output on a PLC is required (0-10VDC) if the 
transistor is to be adjusted in an infinitely variable manner. It is also 
possible to adjust the transistor via PWM (24VDC). 

The fan is driven via the X2-15 pin and works according to the same 
principle.  

Overtemperature protection is activated automatically if overtemperature 
occurs on the transistor (approximately 60°C). It remains in place until the 
temperature sinks sufficiently. If overtemperature protection is active, an 
LED labeled "TEMP" lights up on the front side of the model. A 24 VDC level 
is also set to LOW on the X2-18 pin. This can be evaluated using a digital 
input. 

 

Fig. 16: B&R simulation model 4SIM.00-01 
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Task: Pulse width modulation, 

B&R simulation model 4SIM.00-01 

Use the LCRTempTune() und LCRTempPID() function blocks to regulate 
the temperature of the B&R simulation model. 
(As an alternative to the B&R simulation model, you can also continue to 
use the LCRSimModExt() function block.) 

Using this temperature control system, perform an auto-tuning.  

First use an analog control with 0-10VDC, and then a digital control, so 
that you become comfortable with the function block LCRPWM(). 

Again, record the set and actual temperatures and the manipulated 
variables and analyze the resulting parameters. 

 

Solution approach: 

Unlike the previous task, you only have to build the control loop once 
and replace the LCRSimModExt() function block with the B&R simulation 
model. The actual value is read using an analog input; both control 
actions are output via two analog outputs. 

You also have to make sure that the value ranges for the analog inputs 
and outputs are different from the value ranges of the function blocks. 
The following example illustrates: 

 Analog temperature input Controller inputs (W, X) 

Data type INT REAL 

Device 1 / 10 °C 1 °C 

The input value must be converted from data type INT to REAL; the 
resolution must be converted from 1/10 °C to 1 °C. 
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 Controller outputs (Y1, 

Y2) 
Analog outputs 

Data type REAL INT 

Value range 0 .. 100% 0 .. 32767 

The function block outputs must be scaled from the value range 0 - 
100% to 0 - 32767 and converted from data type REAL to INT. 

 

You can also use the analog outputs for digital control with pulse width 
modulation as well. The SEL() function can be used for converting the 
digital signal into analog. The conversion takes place as follows: 

 Pulse width modulation Analog outputs 

Data type BOOL INT 

Value 
range 

0, 1 0, 32767 

 

The exact configuration of the LCRPWM() function block is explained in 
the online help. The length of the period t_period of the pulse width 
modulation can be 1.0 s for the heating control action and 10.0 s for the 
cooling control action. About 1/10 of the period is usually used as the 
minimum pulse length t_min_pulse. 

Set the set temperature to 50 degrees so that an overshoot doesn't 
exceed the maximum temperature and activate the overtemperature 
protection. 
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Notes 
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8. DYNAMIC SYSTEMS 

8.1 Motivation and definition 

Closed loop control deals with influencing objects in a specific, targeted 
manner. The object (also known as the controlled system, system or 
process) is influenced in such a specific, targeted manner as to produce a 
desired behavior. 

The variables that affect the system are called input variables. Input 
variables that are used to influence the system are known as manipulated 

variables or control actions; input variables that are beyond our control 
are known as disturbance variables. The system behavior can be 
approached via the output variables of the monitoring process. Output 
variables that are determined through measurement are known as 
measurement variables. 

System
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ts

O
u
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ts

 

Fig. 17 Dynamic system 

A system is considered dynamic if the output variables depend not only on 
the current value of the input variables, but also on their past. If the output 
variables depend only on the current value of the input variables, then the 
system is considered to be static. 

In accordance with this definition, controlled systems as well as controllers 
(with integral element) and even control loops are generally dynamic 
systems. 

Influencing a dynamic system in a targeted manner demands a certain 
degree of knowledge about its dynamic behavior. Dynamic systems can be 
described using mathematical models (model equations).  

As the name itself implies, models are only approximated model notions of 
reality. It is the art of the engineer to create the simplest possible yet 
sufficiently accurate model containing the relevant properties of the real 
system. 

The more accurate information you have about the behavior of a real 
controlled system (i.e. the more precisely the mathematical model 
corresponds to the real behavior of the system to be controlled), the more 
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accurately you can impress a desired behavior upon that controlled system 
(can this be controlled).  

Differential equations are an important part of mathematical models in 
technical systems because several physical laws of nature are formulated 
mathematically using differential equations (e.g. in mechanics, 
thermodynamics and electrical engineering).  

8.2 A mechanical example 

x1

FS

k d
x

x0

m

g

 

Fig. 18 Spring and mass system  

 

A body with the mass m [kg] is hanging from a spring with the spring 
constant k [N/m], i.e. the following formula applies for the action of force 
on the body:  

kxFF −= , 

That means that the spring is relaxed at the position 0=x . Movement of the 
body is decelerated by a speed-proportional attenuator with the 
attenuation constant d [Ns/m], i.e. the following formula applies for the 
action of force on the body: 

,dvFD −=  

whereby xv &=  is the speed of the body. Additionally, the following 
gravitational force:  



Dynamic Systems 

  44        TM261    Closed Loop Control with LOOPCONR 
 

mgFG =  

acts on the body with the gravitational acceleration g [m/s2] and a 
positioning force Fs [N].  

The movement of the body is only possible in x-direction. Other actions of 
force (e.g. air friction, etc) are neglected. 

The principle of linear momentum (second Newtonian axiom) sets the 
relationship between the resulting acceleration and the sum of the active 
forces: 

SGDF FFFFxm +−+=&&  

When written as a system of first-order differential equations: 

[ ]SFgmdvkx
m

v

vx

+−−−=
=

1
&

&

                                               Eq. 1 

If there is interest in the position of the body, then it is selected as system 
output variable:  

xy =  

8.3 A thermal example: Extruder zone 
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Fig. 19 Extruder zone 

A metal block with melted plastic flowing through it (mass m [kg], specific 

thermal capacity c [J kg-1 K-1], emissivity ε  [1] and surface A [m2]) is 

tempered by a heater with the thermal output HQ&  [W] and a cooling unit 

with the cooling capacity CQ&  [W].  
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The temperature at the center of the block T is measured using a 
temperature sensor. The extremely simplified assumption is made that the 
entire block has the homogeneous temperature T.  

The heat transmission to the environment via convection and thermal 
conduction is:   

)( 0TTAQK −= α& , 

whereby α  [W m-2 K-1] is the heat transfer coefficient and 0T  [K] is the 

ambient temperature. The heat transmission to the environment via 
radiation is:   

)( 4
0

4 TTAQS −= εσ& , 

thereby σ  [W m-2 K-4] is the Stefan-Boltzmann radiation constant and ε [1] 
is the emission coefficient. The heat transmission from the melted plastic 

to the metal block is DQ&  [W]. This value cannot be measured and therefore 

represents a classic disturbance variable for the controller. 

The first law of thermodynamics sets the relationship between the 
dissipation of the body's internal energy and the sum of the acting thermal 
flows 

SKCH QQQQTmcE &&&&&& −−−== + DQ& .                           Eq. 2 

8.4 Characteristics of dynamic systems 

8.4.1 Time invariance 

A system is consider to have time invariance if temporal shifting of the 

input variables by the time span τ results only in a temporal shift of the 

output variables by the same time span τ. 

The spring-and-mass system as well as the extruder zone are both time 
invariant systems. One way to achieve linear time invariant systems is to 
linearize non-linear systems along trajectories. 

 

8.4.2 Linearity 

The superposition principle applies to linear systems: The following 
equation:   

11 uGy ⋅=  
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is the system's response to the input signal 1u  and the following equation: 

22 uGy ⋅=  

is the system's response to the input signal 2u . If    

),( 22112211 uuGyy βαβα +⋅=+  

then the system is linear.  

Linearity says that the system behaves the same at every operating point.  
In this case, a operating point is determined by a specific value of the 
controlled and manipulated variables. A system is exactly linear when it 
has the same transfer function at every operating point.  

The model of the extruder zone from section 8.3 would be linear if the heat 
lost via radiation could be neglected relative to the heat lost via convection.  

For the realistic numeric values T = 200°C,   0T  = 25°C,  α  = 8 W m-2 K -1,  ε  = 

0.7, and σ  = 5.67e-8 W m-2 K -4 , the following equation results for the ratio of 
heat loss: 
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That means that in this case, there is a higher proportion of radiation and 
linear system behavior cannot be expected.  

8.4.3 Single and multi variable systems 

A system with just one input variable and just one output variable is 
considered a single variable system. A multivariable system has more than 
one input and output variable.  

Temperature control for the extruder zone from section 8.3 is a 
multivariable system, even though it has just one controlled variable 
(output variable of the dynamic system), because there are two control 
actions (input variables). Each control action has a separate transfer 
function. 

8.4.4 Stability 

There are different definitions of stability. BIBO stability evaluates the 
system's transfer behavior: A system is BIBO stable (Bounded Input 
Bounded Output), if it responds to limited input variables with output 
signals that are also limited. 
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The thermal example in section 8.3 is BIBO stable because the heat 
transmission to the environment stabilizes the system to specific 
temperature levels for limited control actions. 

The mechanical example from section 8.2 is BIBO stable, if the damping 
constant is d > 0. The damper converts kinetic energy to frictional energy 
(heat). The system is not BIBO stable if d = 0, because the output variable 
can increase beyond all variables when there is limited excitation with 
resonance frequency.  

Excitation with the resonance frequency can destroy the system 
(resonance catastrophe) even for non-zero, but minor damping. The best 
known example of a resonance catastrophe is the collapse of the 
suspension bridge in Angers in the year 1850, triggered by 730 French 
soldiers marching lock-step across the bridge. 226 soldiers were killed in 
the incident. On the other hand, the collapse of the Tacoma Narrows 
Bridge (http://www.ketchum.org/bridgecollapse.html) was caused by 
aerodynamic-induced wobbling instability instead of forced resonance. 

A positioning drive with the controlled variable position x (equal to the 
output variable of the dynamic system) and the manipulated variable drive 
torque M (equal to the input variable of the dynamic system) is not BIBO 
stable because the system represents the output variable x through 
doubled integration of the input variable M. This system's transfer function 
is (without considering frictional torques, etc.): 

Is

R

sM

sx
sG

2)(

)(
)( == , 

whereby R is the radius subject to the torque and I is the drive's total 
moment of inertia. 

Chemical chain reactions represent another example of non-BIBO-stable 
systems.   

8.5 Description methods 

8.5.1 Description in the time domain (state space) 

In addition to the knowledge of the input variables u1, …, um and the output 
variables y1, …, yl , the state variables x1 … xn must also be known in order to 
describe a dynamic system in the time domain. 

Together with the input variables, the state variables uniquely describe the 
curve of the output variables. The number of state variables n is referred to 
as the dimension (or order) of the system and is equal to the number of 
first-order differential equations required to describe the system. 
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The term "time domain" indicates that the state equations are differential 
equations in time and that all input, state and output variables are time 
functions (time signals). 

The mechanical example from section 8.2 has two state variables (the 
position x and speed v of the body), one input variable (the positioning 
force Fs) and one output variable (the position x of the body). 

The thermal example from section 8.3 has just one state variable (the 
temperature of the metal block T), two input variables (the thermal output 

HQ&  and the cooling capacity CQ& ) and one output variable (the temperature 

of the metal block T). 

A higher system order allows for more complex system behavior. In 
principle, a first-order system (e.g. a PT1 element, e.g. single low pass) is 
not capable of oscillation. A second-order system could be capable of 
oscillation. A chaotic system is at least third-order and non-linear.   

The description in the time domain is useful for finding stationary operating 
points in systems. These are found by zeroing the derivatives of the state 
variables: 

The stationary operating points are taken from equation 1 for the 
mechanical example from section 8.2: 

[ ]SFgmdvkx
m

v

+−−−=
=

1
0

0
 

for 

k

gmF
x S −

= .                                                                     Eq. 3 

Due to the gravitational force, the body will occupy the following position if 
there is no positioning force:  

k

gm
x −=0  

Equation 3 can be used to calculate a feed-forward for the positioning 
force:  

setVS kxgmF +=  

for positioning to the position setxx = . 
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Task: Calculate a feed-forward (under the premise that the radiation heat 

transmission to the environment can be neglected, 0=SQ& ), to temper the 

extruder zone (from section 8.3) through which no material is flowing 

( 0=DQ& ) to the temperature Tset. Which deviation from this set temperature 

results when this extruder zone is operated with this feed-forward without 
superposed control and when a heat transmission occurs from the material 

to the zone of DQ&  during operation. 

8.5.2 Description in the frequency domain (transfer behavior) 

If all of the system equations (state differential equations and equations for 
the output variables) of a dynamic system are linear and time invariant, 
then these equations can be subjected to the Laplace transformation. 
Algebraic equations in the following new complex variable result from the 
differential system equations in time:  

ωα js += , 

whereby fπω 2=  can be used as angular frequency for the input or output 

signals. The quotient from the output signal and the input signal of a 
system:   

)(

)(
)(

su

sy
sG =  

is known as the transfer function and describes, which frequency spectrum 
of the output signal y(s) the system can use to respond to the frequency 
spectrum of the input signal u(s).  

The view of a system in the frequency domain is a view of the transfer 
behavior. It sets the relationship between frequency spectrums of input 
and output signals with each other.  

The relationship between input and output variables is calculated from the 
following equation for the mechanical example in section 8.2: 

[ ]SFgmxdkx
m

x +−−−= &&&
1

.                                           Eq. 4 

This equation is affine (and therefore non-linear!) in x and therefore cannot 
be subjected to Laplace transformation. The following variable 
transformation: 

01 xxx +=  
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with 
k

gm
x −=0  (the new coordinate x1 now starts at the stationary position 

of the mass without affecting the positioning force x0), is calculated from 

equation 4, whereby xx && =1  and xx &&&& =1 : 

[ ]SFxdkx
m

x +−−= 111

1
&&& . 

This equation is linear. The Laplace transformation is: 

)()()()( 111
2 sFskxsdsxsxms S=++ . 

The transfer function from the input variable positioning force to the output 
variable position x1  is a PT2 element of the form: 

kdsmssF

sx
sG

S ++
==

2
1 1

)(

)(
)( .                                               Eq. 5 

A transfer function can be represented in a Bode diagram. The magnitude 
characteristic in the Bode diagram indicates (in [dB]) how the frequencies 
contained in the system's input signal are amplified and weakened. The 
phase characteristic of the Bode diagram indicates (in [°]) which phase shift 
in the frequencies contained in the input signal pass through the system. 

Fig. 15 shows the Bode diagram of the transfer function equation 5 for the 
parameters m = 1 kg, d = 2 Ns/m, k = 10 N/m.  
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Bode Diagram
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Fig. 20 Bode diagram of the transfer function G(s) = (s2+2s+10)-1 

For the detailed analysis (oscillation capability, natural frequency, resonant 
rise, etc.) of a second-order delay element (PT2), please refer to the 
academic literature (e.g. W. Haager: Regelungstechnik, ISBN 3-209-00928-7 
– in German). 
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9. CONTROLLED SYSTEMS 

As discussed already in section 8, a system which must be controlled can 
be more accurately controlled when you know more about its behavior. 
Mathematical models are used to describe a system which must be 
controlled (e.g. transfer functions). 

A mathematical model can be created by establishing a theoretical model 
and/or carrying out experimental identification.  

9.1 Establishing a model 

When establishing a theoretical model, the mathematical model of the 
system to be controlled is derived from the basic laws of physics (see 
examples in section 8). This produces detailed information about the 
system:  

• Basic type of system behavior  

• Influence of all system parameters on its behavior   
 

If some of the system parameters are unknown (which is often the case), 
then an inference can be made based on the basic type of system behavior, 
but the coefficients in the transfer function cannot be calculated.  

For the extruder zone from section 8.3, neglecting the heat transmission to 
the environment (via radiation) with the temperature difference compared 
to the environment, : 

01 TTT −=  

results in the transfer function of the heating control action (PT1 element): 
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The system gain:  

A
kS ⋅
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α
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is reduced, the greater the heat transmission coefficient and the surface of 
the zone. The time constant: 

SG kcm
A
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⋅
⋅=

α
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is larger, the greater the thermal capacity cm⋅  of the block and is linearly 
proportional to the system gain. 

9.2 Identification 

When dealing with complex controlled systems, a theoretical model cannot 
be established or cannot be determined within a reasonable amount of 
time. A model of the system to be controlled can then be determined using 
an experimental approach with identification. To do this, the system is 
excited with specific input signals and the reaction of the system is 
measured from which the system's transfer behavior is then concluded.  

Fig. 21 shows the response of a real extruder zone to a jump in the heating 
manipulated variable from 30.5% to 61.0% at the time point t = 2000 s. The 
steps response of a PT1 element is shown with identical gain and rise time 
for comparison.  
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Fig. 21 System identification with step response 

It can be seen clearly that the real system behavior deviates considerably 
from the PT1 behavior (determined by establishing a theoretical model). 
The discrepancy is due to the extremely simplified model assumption that 
the entire block has the homogeneous temperature T. The thermal 
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conduction in the metal block results in a dead time (thermal waves have a 
finite velocity of propagation) and a higher-order delay in the real system 
behavior. 

9.3 An important type of controlled system 

Many industrial controlled systems have non-periodic (non-oscillation-
capable) higher-order delay behavior (in some cases with additional dead 
time). The transfer behavior of such systems can be approximated (Fig. 22) 
using a first-order low pass with dead time:  
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Fig. 22 Approximation of a system using a first-order low pass with dead time 

The manipulated variable Y1 is first connected to the system to be 

controlled (in this case 100001 =Y ), which the system maintains at the 

desired operating point T1 (or close to that point). If changes to the 
controlled variable can no longer be detected, then a manipulated variable 
jump:  

YYY ∆+= 12  
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is applied to the system to be controlled (in this case 10000=∆Y ) and the 
characteristic of the controller variable (process reaction curve) is recorded 
until once again no changes to the controlled variable can be detected and 
a new stationary operating point T2 has been set.  

The dead time (dwell time) TU and the rise time TG are determined from the 
intersection of the reversal tangent and the value of the controlled variable 
before the step / after the step. The system gain is calculated as follows:  

Y
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kS ∆

∆=
−
−

=
12

12 . 

In the event that the step response cannot be recorded until a final 
stationary value T2 has been reached for the controlled variable (i.e. the 
stepping attempt is prematurely aborted), then neither the rise time nor the 
system gain can be determined. If the step response is aborted after 

reaching the inflection point, then the maximum slope maxT&  of the 

controlled variable in the inflection point can be determined.  

The system to be controlled is calculated as follows for the step response 
from Fig. 17:  
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when using this method, which results in an approximation with: 
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There are simple formulas used to make the settings for controllers from 
the PID family (section 11.2) for these types of system models (PT1TT 
behavior).  
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10. THE CLOSED CONTROL LOOP 

10.1 The basic principle of closed loop controllers 

Controlling via closed loop control is automatically influencing a technical 
process (plant, system or controlled system) in a specific, targeted manner. 
Unlike open loop controlling, this is a closed loop, which means that the 
variables (manipulated variables) that influence the process are 
independently established with suitable control mechanisms (actuators) 
from measured process variables instead of being specified only externally. 
Closed loop control deals with the (mathematical) description of such 
control processes and the targeted design of closed loop controllers in 
such a manner so that these control process can be carried out as desired. 
The basic principle of every closed loop controller is the negative 
feedback (inverse feedback) from the variable that must be controlled. 
 

controller plant

 

Fig. 23 Closed loop control 

feed forward plant
 

Fig. 24 Open loop control 

10.2 Block diagram 

A block diagram is the representation of a technical system (e.g. a control 
loop) using function blocks. The function blocks are connected to each 
other via defined inputs and outputs. 

controller motor
power

converter

speed
controller

speed

set-actual 
value compare

set value

actual value

control
voltage

motor
voltage

 

Fig. 25 Block diagram 
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Fig. 26 Calculating with block diagrams 

10.3 The standard control loop 

Fig. 27 shows the block diagram for a standard control loop with the 
following elements: 

• Controlled system: the system to be controlled (process or 
system).  

• Controlled variable: the variable to be intentionally influenced by 
the controller (output variable of the controlled system or actual 
value) 

• Reference variable: set value of the controlled variable (e.g. 
specified by operator) 
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• Measuring element (sensor): provides the controller with a 
measurement value of the controlled variable (typically via an 
input module) 

• Control deviation: difference between a reference and controlled 
variable (between set and actual value) 

• Controller: uses the control deviation to establish a 
corresponding signal, to affect the controlled system (typically 
via an output module) 

• Actuator: the connecting element between the controller, which 
generally only provides weak signals, and the system to be 
controlled, which usually requires strong signals to have an 
effective influence. The output variable of the actuator is the 
manipulated variable.  

• Disturbance variable: describes the influence of non-measurable 
variables, which affect the control loop  

controller plantactuator

measuring 
device

set value

control deviation manipulated  
variable

disturbance 
variable

_

actual value

 

Fig. 27 Standard control loop 
 

 Description 

x Controlled variable (actual value) 

w Reference variable (set value) 

e Control deviation e = w – x 

y Manipulated variable 

z Disturbance variable 

R(s) Controller transfer function 

G(s) Transfer function for the system to 
be controlled 

 
The measuring element and actuator are generally assigned to the 
controlled system and drawn as a single block. As a result, the controlled 
variable is not the actual physical variable that must be controlled, e.g. 
pressure (in Pascal or bar) in a pressure controller, rather it is the 
corresponding measurement signal from the input module (e.g. as integer 
with a value range 0 - 32767). Likewise, this means that the controller 
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output is the same as the manipulated variable (e.g. as integer with a value 
range 0 - 32767). The resulting block diagram for the control loop is shown 
in Fig. 28. 

R(s) G(s)
w e y x

z

-

 

Fig. 28 Standard control loop II 

10.3.1 Transfer function of the open loop 

The transfer function of the open loop (without feedback) is:  

)()()( sGsRsL ⋅= . 

10.3.2 Reference transfer function 

The transfer function of the closed control loop (reference transfer 
function) is: 
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A 'reference (variable) design' involves impressing a desired reference 
transfer function on a control loop. Ideally, T(s) = 1. However, this cannot 
be achieved due to the low pass character of real systems. 

10.3.3 Disturbance variable transfer function 

The disturbance variable transfer function is calculated as follows: 

)()(1

1
)(

sGsR
sTd ⋅+

= . 

Ideally, 0)( =sTd . However, this cannot be achieved either. A 'disturbance 

(variable) design' involves minimizing the disturbance variable transfer 
function. 

When comparing T(s) and )(sTd , it becomes evident that a controller design 

in the standard control loop is always a compromise between a set-point 

tracking design and a disturbance rejection design because both transfer 
functions are determined by selecting a controller R(s). In principle, a 
disturbance rejection design provides a large number of more dynamic 
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controllers, which compensate for disturbances better, but also exhibit 
considerable overshoot when reference variable jumps occur. 
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Fig. 29 Comparison of the set-point tracking behavior of a set-point controller and a disturbance rejection 
controller in the standard control loop 

Fig. 29 shows a comparison of the responses to a reference variable jump 
in a standard control loop with the system to be controlled:   
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As a comparison, Fig. 30 shows responses from the same control loop to a 
disturbance variable jump.  
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Fig. 30 Comparison of the disturbance rejection behavior of a set-point tracking controller and disturbance 
rejection controller in the standard control loop 

In section 12.4, the standard control loop will be expanded in such a 
manner so that the reference and disturbance variable transfer functions 
(within certain limits) can be influenced separately. 

10.4 Characteristics of closed control loops 

10.4.1 Characteristics in the time domain 

Simple characteristics from the step response are used to evaluate the 
quality of a set-point tracking controller's timing: 
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reversal tangent

o*xe
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xmax
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Fig. 31 Step response characteristics 
 

• Transient overshoot o: difference between the maximum value of 
the step response and the final stationary value, based on the final 
stationary value (usually specified in percentage) 
 

• Dwell time TU: calculated from the intersection of the reversal 
tangent of the first rise with the time axis 
 

• Rise time TG: the time difference between the intersections of the 
reversal tangent of the first rise with the time axis and the final 
stationary value 
  

• Remaining control deviation e∞: the difference between the set value 
and final stationary value of the actual value 

10.4.2 Characteristics in the frequency domain 

The gain crossover frequency Cω  of the open loop is the intersection of the 

phase characteristic with the 0dB line. The gain crossover frequency 
divides the frequency domains that are amplified/weakened by the open 
loop. 
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Bode Diagram
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Fig. 32 Gain crossover frequency and phase margin 

The phase margin Φ  [°] of the open loop is of considerable importance to 
the stability of a control loop (with prevalent stable system to be 
controlled). The phase margin is the distance of the phase characteristic 
from -180° at the gain crossover frequency (Fig. 32): 

°+=Φ 180))(arg( CjL ω : 

The closed control loop is stable if the phase margin Φ  of the open loop 

is positive. 

A thinking exercise: The linear open loop )( ωjL  is excited using a 

sinusoidal input variable with angular frequency ω . The output variable 

then also begins to oscillate in a sinusoidal pattern with an identical 

angular frequency ω , but different amplitude and phase. The phase shift 
compared to the input variable is negative in real systems (with low pass 
character).  
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Fig. 33 For the thinking exercise 

Now, if there is an angular frequency ω , for which the phase shift is exactly 

-180°, then the returned signal in item 2 has the same phase length at the 
summing point as the input signal in item 1 because of the signal inversion 
(due to the negative sign). 

If the returned signal in item 2 also has the same amplitude as the input 
signal in 1, then the system does not detect any change when the switch is 
transferred, thereby causing the existing continuous oscillation to maintain 
itself. As a result, the feedback control system (the closed control loop) is 
located right at the stability limit. 

If the gain of )( ωjL  is less than 1 (i.e. 1)( 1 <ωjL ) at a phase shift of -180°, 

then the signal in item 2 is indeed in-phase with the input signal, but its 
amplitude is smaller. That is why the amplitude of the oscillation is 
decreased when the switch is transferred (closing the control loop). In this 
case, the closed control loop is stable.  

If the gain of )( ωjL  is greater than 1 (i.e. 1)( 1 >ωjL ) at a phase shift of -

180°, then the signal in item 2 is indeed in-phase with the input signal, but 
its amplitude is greater. The amplitude of the oscillation is increased 
because of the feedback when the switch is transferred (closing the control 
loop). In this case, the closed control loop is instable. 

10.4.3 Relationship between characteristics in the time and frequency domain 

The following applies to the relationship between the phase margin of the 
open loop Φ  and the transient overshoot ü of the closed control loop: 

[ ] [ ] 70% ≈+°Φ ü                                                             Eq. 6 
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The phase margin of the open loop is a measurement for the oscillation 

tendency of the closed control loop and measures the distance to the 

stability limit. 

The relationship shown above (Eq. 6) applies precisely to control loops, 
whose closed loop exhibits oscillation-capable PT2 behavior. Experience 
has shown that this formula can also be applied as a guide for other control 
loops. 

Fig. 32 shows gain crossover frequency and phase margin in the Bode 
diagram for the open loop from:  
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The phase margin is °=Φ 45 . According to the empirical formula shown 

above, this would indicate an overshoot percentage of %25≈ü . An actual 

overshoot of %29=ü  can be read from the step response in Fig. 34. 
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Fig. 34 Step response of the closed loop 
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The following applies to the relationship between the gain crossover 

frequency Cω  of the open control loop and the rise time of the closed 

control loop GT : 

5.1≈⋅ GC Tω  

The gain crossover frequency Cω  of the open control loop is an 

approximate measure for the spectrum of the open control loop and 

therefore also for the speed of the closed control loop.  

The formula shown above has also proven itself in practical application, 

e.g. extract the gain crossover frequency Cω  = 0.00305 rad/s from Fig. 27 and 

the rise time GT  = 476 s from Fig. 29. The result is 451.1=⋅ GC Tω  for this 

control loop, which is in strong agreement with the empirical formula 
shown above.  
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11. CONTROLLER AND CONTROLLER SETTING 

11.1 PID controller 

The controllers from the PID family (P/PI/PID) are the most important 
controller types for automating industrial processes. Nearly 95% of all 
industrial controlled systems can be sufficiently stabilized using a 
controller from this class.  
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Fig. 35 Block diagram of the ideal PID controller 

The following is an ideal transfer function for a PID controller:  
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The P-element produces a manipulated variable proportional to the control 
deviation e(t):  

)()( tektY PP ⋅= . 

The I-element produces a manipulated variable, which is proportional to 
the temporal integral of the control deviation:  
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P
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The integral action time NT  is the time span, which a constant control error 

must meet for the I-element to generate the same manipulated variable as 
the P-element.  

If a system, which is to be controlled, does not contain an integral 

element, then a remaining control deviation can only be prevented using 

an I-element in the controller. An I-element lowers the stability of a 

control loop and causes overshoot. The smaller the integral action time, 

the stronger the effect of the I-element.    

The D-element produces a manipulated variable, which is proportional to 
the temporal derivative of the control deviation: 

)()( teTktY VPD &⋅⋅= . 

The derivative action time VT  indicates the time span, which an increasing 

control deviation of 0 with a constant gradient must meet for the P-element 
to generate the same manipulated variable as the D-element.  

A D-element increases the speed and improves the stability of a control 

loop. A larger integral action time increases the effect of the D-element.    

The proportional gain Pk  influences all three elements of a PID controller 

and is decisive in determining the dynamics and oscillation-tendency of a 

control loop. The rise time becomes smaller if the proportional gain is 

increased (faster). The phase margin becomes smaller (destabilizing) if 

the gain crossover frequency is increased (faster). 

The D-element is generally implemented as filtered derivative unit because 
an ideal derivative unit cannot be realized. The following is the transfer 
function of a true PID controller:   
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Fig. 37 shows the Bode diagram of an ideal and true PID controller.  
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Fig. 36 Step response of a true PID controller 
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Fig. 37 Bode diagram of a true PID controller 

The PID controller function blocks LCPID() and LCRPID() in the Automation 
Studio control technology libraries contain numerous extensions that are 
important for practical application (anti-windup, consideration of feed-
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forward variables, differentiator mode, etc). Detailed information can be 
found in the extensive documentation in Automation Studio's online help 
files. 

11.2 Controller setting  

11.2.1 Setting guidelines according to Chien, Hrones and Reswick 

The setting guidelines lines according to Chien, Hrones and Reswick are 
suitable for controlled systems that are not capable of oscillation with first 
or higher-order delay and an additional dead time. A first-order delay 
element with dead time is used as system model: 
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The three parameters system gain Sk , rise time GT  and dead time (dwell 

time) UT  are determined (as shown in section 9) from the step response of 

the open loop ('process reaction curve') according to the reversal tangent 
procedure. 

The control parameters are determined depending on the system 
parameters, the control type being used and the desired overshoot 
behavior ( %0~o  is equal to a non-periodic behavior) with the following:  
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Set-point tracking 

design 

Disturbance rejection 

design 

 

Controller 

%0~o  %20~o  %0~o  %20~o  

P                          Pk  k⋅3.0  k⋅7.0  k⋅3.0  k⋅7.0  

k⋅35.0  k⋅6.0  k⋅6.0  k⋅7.0  PI                         Pk             

                           NT  GT⋅2.1  GT  UT⋅4  UT⋅3.2  

k⋅6.0  k⋅95.0  k⋅95.0  k⋅2.1  

GT  GT⋅35.1  UT⋅4.2  UT⋅2  

PID                       Pk           

                           NT  

                            VT  UT⋅5.0  UT⋅47.0  UT⋅42.0  UT⋅42.0  

 
In the above table it is evident that all three parameters of the PT1TT system 
model are necessary for a set-point tracking design.   
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In accordance to the setting guidelines of Chien, Hrones and Reswick, the 
controllers R1 (non-periodic disturbance rejection design) and R2 (non-
periodic set point tracking design) from section 10.3.3 were calculated for 
the system approximation:  
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of the system to be controlled:  
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from section 9.3. The respective responses from the closed control loops 
to jump-causing changes in the reference and disturbance variables are 
shown in Fig. 29 and Fig. 30. 

11.2.2 Setting guidelines according to Ziegler and Nichols 

Ziegler and Nichols are the pioneers of control setting procedures and 
published a method in 1942 for setting PID controllers in the closed loop 
based on empirical analyses: 

• The controller in the control loop is initially operated as true P 

controller, whereby the controller gain Pk  is increased up to the 

value critk , at which point the control loop reaches the stability limits 

and sets a stationary continuous oscillation. 

• The period duration critT  of the continuous oscillation is measured. 

• The controller settings are produced according to the controller 
type: 

 

Controller Pk  NT  VT  

P 
critk⋅5.0  - - 

PI  
critk⋅45.0  critT85.0  - 

PID 
critk⋅6.0  critT5.0  critT125.0  

 
This method has a decay rate of the transient overshoot of D = 25% to the 
target. That means that the transient overshoot of a period i  to the next 
period i+1  decays according to:  

25.01 ==+ D
o

o

i

i  
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This method is suited for designing disturbance variable controllers, which 
generally exhibit high overshoot when jumps occur in the reference 
variable. 

11.2.3 Design in the Bode diagram 

When designing the controller in the Bode diagram (frequency 
characteristic method), the relationships between characteristics in the 
time and frequency domain (section 10.4.3) are used to design a controller 
for a desired set point tracking behavior (rise time, transient overshoot).  

In comparison to the setting guidelines, this method fulfills specifications 
with a high-degree of accuracy. Extensive literature is available providing 
further details about this method. 

11.3 Autotuning procedure 

An autotuning procedure is a combination of inter-coordinated 

identification and controller setting procedures, which run automatically 

and are controlled by algorithms. They are the most convenient method 

of controller setting for the user.  

A stimulating input signal is first actuated on the system and the system's 
response is recorded. The system's transfer function is determined from 
the comparison of these input and output signals.  A controller is then 
calculated for this system in such a way so that the closed control loop 
exhibits the desired behavior. After setting the parameters once, these 
procedures will run online fully automatically without intervention from the 
user and can be repeated at any time. 

The function blocks LCPIDTune and LCRPIDTune in Automation Studio's 
control-technology libraries LoopCont and LoopConR provide two different 
autotuning procedures: 

• Oscillation attempt: uses a periodic square-wave signal as system 
excitation in the closed control loop for setting P/PI/PID controllers 
and features the easiest method for setting parameters. 

• Step response: uses a manipulated variable jump as system 
excitation in the open control loop and offers a multitude of 
possibilities for controller settings according to the desired controller 
type (P/PI/PID) and behavior (disturbance rejection or set-point 
tracking design, transient overshoot).  

 

Detailed information can be found in the extensive documentation in 
Automation Studio's online help files.  
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12. SUPPLEMENTS 

12.1 The influence of dead time 

The transfer function G(s) is expanded by one dead time element with the 
dead time Tt to analyze the influence of dead times: 

tTj
t esGsG ω−⋅= )()(  

Dead times in systems do not change the magnitude in the frequency 
characteristic, because the following applies: 

)()( ωω jGjGt = , 

however an additional phase rotation around tTω− :  

tt TjGjG ωωω −= ))(arg())(arg(  

Because the phase is decayed linearly with ω  due to the dead time, which 
causes a reduction of the open loop's phase margin, every control loop 
subject to dead time becomes instable at a specific amount of gain – this 
becomes more frequent the larger the dead time is. 

Fig. 38 shows the Bode diagram of the system transfer function:  
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for four different values of =UT 0, 90, 180 and 270 s. Fig. 39 shows the 

respective Bode diagram of the open control loop for the above systems 
with the controller: 
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The phase margin of the open loop is =Φ 45, 29, 13 and -3°.  

The step responses of the corresponding closed control loops are shown in 
Fig. 40. It is clearly evident that the controller gain for the highest value of 

the system dead time =UT  270 s is already beyond the stability limits.   
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Bode Diagram
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Fig. 38 Bode diagrams of a system transfer function with different dead times 
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Fig. 39 Bode diagrams of an open control loop with different dead times 
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Fig. 40 Step responses of the closed control loop with different dead times 

12.2 The influence of measurement errors 

Fig. 41 shows a control loop with measurement error. The transfer function 
of the measurement error signal is: 

)(
)()(1

)()(

)(

)(
)( sT

sGsR

sGsR

sn

sx
sTn −=

+
−==  

and therefore corresponds exactly to the negative reference transfer 
function. Thus, the controlled variable is calculated as follows: 

[ ])()()()()()()()( snswsTsnsTswsTsx n −⋅=⋅+⋅= . 

Measurement errors cannot be compensated for using a controller. 
Measurement errors act like a changed reference variable and result in a 
remaining control deviation.   

 

R(s) G(s)
w(s) e(s) y(s) x(s)

n(s)
-

 

Fig. 41 Control loop with measurement error 
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12.3 Mixed control loop 

12.3.1 Disturbance variable feedforward 

If disturbance variables occur in the standard control loop, then the 
controller generates a corrected manipulated variable if the controlled 
variable has already been changed.  

If a disturbance variable can be measured and the influence on the control 
loop (the transfer function D(s)) is known, then the disturbance can be 
compensated for by implementing a feedforward of an additional 
manipulated variable yd. This generally will not eliminate the influence of 
disturbances completely, but will often reduce it considerably.  

R(s) G(s)

D(s)

C(s)
d

y

yd

xw e

-

 

Fig. 42 Control loop with disturbance variable feedforward 

A perfect disturbance variable compensation has the following form: 

)(

)(
)(

sG

sD
sC −= . 

12.3.2 Set value feed-forward 

If the respective manipulated variables are known for a system to be 
controlled over a wide range of values of the controlled variable then this 
manipulated variable (as function of the controlled variable) can 
additionally be fed forward to the system in order to maintain the system in 
a stationary state at these values of the controlled variable (e.g. from an 
analysis like in section 8.2 and 8.3 or from empirical observation of the 
system to be controlled). This set value feed-forward improves the control 
loop's set-point tracking behavior.     
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R(s)

F(s)

G(s)
w(s) e(s) x(s)

-

 

Fig. 43 Control loop with set value feed-forward 

12.3.3 Cascade control 

Cascading the control loop makes sense if a system that must be controlled 
can be divided into multiple subsystems connected in series, which have 
different system dynamics (different speeds) and whose output variables 
can be measured. 

R2(s) R1(s) G1(s) G2(s)
w2(s)

-

y2(s)=w1(s) y1(s) x1(s)=y2(s)

plant

x2(s)

 

Fig. 44 Cascade control 

 

The reference transfer function of the inner loop is: 

)()(1

)()(
)(

11

11
1 sGsR

sGsR
sT

⋅+
⋅

= . 

The reference transfer function of the outer loop (the entire cascade) is: 

)()()(1

)()()(
)(

212

212
2 sGsTsR

sGsTsR
sT

⋅⋅+
⋅⋅=  

The outer control loop specifies the set value for the inner control loop, 
which has faster system dynamics. The controller design and practical 
startup are both performed from the inside to the outside. 

Advantages of cascading control loops: 

• Improved dynamic behavior (the fast inner control loop is completely 
unaffected by the slow dynamics of the outer loop) 
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• Limits are easily implemented because the set values correspond to 
the controller outputs of the higher-level controller 

• Disturbances in the fast inner loop hardly influence the slower outer 
loop 

room
controller

Air intake
controller

Air intake
channel

Room
Heating reg.

Cooling reg.

Air intake control

TAir intake set

TAir intake actual Tactual room value
Tset room value

Vent
settings

 

Fig. 45 Cascaded room temperature control 

Closed-loop controls for drive systems generally have a triple cascade 

structure. The control concept of the ACOPOS™ servo drive is a topic of the 
training module TM450. 

12.4 Prefilter 

A control loop cannot meet the highest demands in regard to set-point 
tracking behavior and disturbance rejection behavior with the structure of 
the standard control loop as shown in Fig. 27 and in section 10.3.  

R(s) G(s)V(s)
-

w(s) x(s)

 

Fig. 46 Control loop with prefilter 

Fig. 46 shows a control loop with prefilter. The job of the prefilter V(s) is to 
prevent high overshoot when reference variable jumps occur by using a 
low-pass filter of the reference signal. The reference transfer function is 
then calculated as follows: 

)()(1

)()()(

)(1

)()(
)(

sGsR

sGsRsV

sL

sLsV
sT

⋅+
⋅⋅=

+
⋅= . 

The disturbance variable transfer function remains unchanged compared to 
the standard control loop: 

)()(1

1
)(

sGsR
sTd ⋅+

= . 

In this case, the controller R(s) is strongly set for disturbance variable 
suppression (comparatively low phase margin of the open loop). 
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Fig. 47 shows the step responses of a control loop with a first-order low-
pass as prefilter: 

sT
sV

F ⋅+
=

1

1
)(  

for various filter time constants =FT  0, 650 und 850 s.  
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Fig. 47 Step response of control loop with prefilter 

12.5 Non-linearities 

Non-linear systems have different transfer behavior at every operating 
point. The non-linearity can appear in the control action or in the 
autonomous system dynamics (or in both of course).  

12.5.1 Non-linearity in the control action 

One example of non-linearity in the control action is a feed-through cooling 
system, in which the valve lift (opening) is used as control action.  
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If the non-linear characteristic of the control action is known well-enough, 
then it can be compensated for by connecting the inverse characteristics in 
the controller (Fig. 48). 
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Fig. 48 Non-linear characteristic and its inversion 

A non-linearity, which occurs in every true control system and which 
cannot be compensated for is the manipulated variable limitation because 
real actuators only allow limited control actions. 

12.5.2 Linearization around a operating point 

In the area of a specific operating point (provided by a specific value of the 
controller and manipulated variables), every non-linear system behaves in 
a linear manner for minor deviations from this working point.  

12.5.3 Non-linearity in the autonomous system dynamics 

Heat loss via radiation in the extruder zone from section 2 is an example of 
non-linearity in the autonomous system dynamics. If the non-linear 
radiation level is taken into consideration, then the following calculation is 
produced for the transfer function in the environment of the temperature 

ST  for an ambient temperature of CT °= 250 : 

sT

k
sG

G

S

+
=

1
)(  

with the system gain [°C/W]: 
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and the time constant [s]: 
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⋅=

34 σεα
. 

The effect of this non-linearity is that an increasing temperature ST  causes 

the system gain to decrease and the system time constant to become 
smaller. The heating control action is needed to keep the extruder zone at 

the stationary temperature ST : 

)()()( 4
0

4
0 TTATTATQ SSSH −+−= εσα&  

Fig. 49 shows the characteristic curve of )( SH TQ&  for an industrial extruder 

zone.  
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Fig. 49 Heating control action as function of the stationary temperature 

12.6 Pulse width modulated actuator signals 

Controlled systems with sufficient low pass character (e.g. thermal systems 
with large time constants) usually connect the output variable of the 
controller to the controlled system as digital signal via a pulse width 
modulation (PWM) instead of an analog connection.  
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This makes it possible to use fast-switching digital actuators (e.g. solid 
state relay), which are much more economical than analog actuators (e.g. 
heating elements). 

ADC

-
controller PWM

measuring
device

switching
actuator

plant
y(t) y(t)

_

CPU

 

Fig. 50 Control loop with pulse width modulated manipulated variable 

To prevent the switching processes of the manipulated variable signal from 
affecting the control variable, they must occur at such a high rate of 
frequency that they are sufficiently damped by the system to be controlled, 

1
)(

<<
S

S

k

jG ω
, 

whereby Sk  the stationary gain of the system to be controlled,  

SS T⋅⋅= πω 2  

the switching frequency and ST  are the period duration of the PWM signal. 

That means that the period duration of the PWM signal must be selected 
much smaller (recommended value: factor 0.1) than the fastest system 
time constant.  

When dealing with actuator elements that are operated on an AC network, 
make sure that inaccuracies do not occur due to the switching 
characteristic of the actuator elements in relation to the cycle time of the 
task for the modulated control of the actuator elements.  

Semiconductor relays that are designed as zero-voltage switches are an 
important example of this. On an AC voltage source, these relays switch on 
only when the voltage crosses zero and off only when the current crosses 
zero.  

As a result of this switching characteristic, there can be considerable 
differences on an AC network between manipulated variables calculated in 
the software and the physical manipulated variable actually connected to 
the system to be controlled, whereby the accuracy of the control loop is 
reduced. 
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The inaccuracies have an even greater effect, the more exactly the period 
durations of the voltage supply match the period durations of the 
modulation (and therefore the cycle time of the task class in which the 
modulation procedure is processed).  

That is why task class cycle times starting at approx. 100 ms should be 
used for the modulated control of heating relays on AC networks with a 
mains frequency of 50 - 60 Hz (equal to a period duration of 16 – 20 ms).    

y(t)
_

y(t)

100%

0

y=0,2 y=0,5 y=0,8 

1

0

TS  

Fig. 51 PWM signal 

12.7 Sampling control loops 

Up to now, all of our observations have required that all signals in the 
control loop are continuous time functions, which can accept any real 
numerical values.  

In reality, the CPU processes the control algorithm only at specific discrete 
points in time depending on the cycle time of the task class (sampling 
time), in which the control program is located. The measurement signals 
from the input modules and the manipulated variables are also sampled / 
written to the output modules at discrete cycle points in time. 

As a result, information is 'given away' (temporally located between the 
sampling time points). Therefore, an event in the system sometimes cannot 
be reacted to until the next sampling instant. This reduces the quality of the 
dynamics and destabilizes the control loop (reduces the phase margin).  

A far-reaching and highly effective theory (of discrete-time systems) exists 
for sampling control loops regarding analysis and design.  

If sampling controllers are designed using the methods presented in this 
document for continuous dynamic systems, then the system to be 
controlled must be sampled fast enough to be able to neglect the 
destabilizing effects.  

As a rule of thumb, it can be assumed that the cycle time AT  of the control 

task has to meet the demand:  
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10
minT

TA < , 

whereby Tmin is the smallest system time constant of interest.  

Example: A mechanical construction has three resonant frequencies 

( 0.21 =f  Hz, 2.42 =f  Hz and 7.83 =f  Hz). 1f  and 2f  should be cancelled out 

using a controlled active damper. The cycle time of the control task is 
calculated as follows:  

0238.0
10

1

2

=
⋅

<
f

TA  s 

Furthermore, every digital computer has just one finite computational 
accuracy. Additionally, quantizations (truncations) are created by the D/A 
and A/D conversion of the measurement and manipulated variables. The 
magnitude of the quantization error is determined by the resolution of the 
converter in the I/O modules. 

Fig. 52 shows a control loop with a digital computer.  

D/A
converter

CPU actuator plant

A/D
converter

meas.
dev.

digital part plant

wk yk y(t) x(t)~O module

I module x(t)xk

 

Fig. 52 Sampling control loop 
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13. PROCEDURE FOR SOLVING CONTROL TASKS 

• What is/are the controlled variable(s)? 
 

• What is/are the manipulated variable(s)? 
 

• Construct a block diagram. 
 

• How might the physical relationship between the manipulated variables and 
the controlled variables look? What kind of transfer function might the system 
have? 
 

• Can the system display instable behavior? 
 

• Record step-responses for the open loop. 
 

• Analyze the step-responses.  
 

• Calculate the controller settings. 
 

• Test the controller settings by recording step-responses at various operating 
points in the closed loop. 
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14. SUMMARY 

This training module discussed how to solve control tasks with the help of 
the Automation Studio library LOOPCONR. 

After a brief introduction to the subject area, the practical application-
oriented Part I worked to solve a few practical examples in the area of 
temperature control using the controller and autotuning function blocks. 

In Part II, the topic of closed loop control was approached systematically to 
gain a theoretical knowledge base for better understanding and 
overcoming the demands that appear in practical application. 
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15. APPENDIX 

15.1 LOOPCONR function block overview 

 

Controller function blocks and tuning procedure: 

Call Description 

LCRDblActPID() PID controller with two outputs to control opposing actuator 
elements and perform integrated tuning 

LCRPID() PID controller 

LCRPIDpara() Manual configuration of the PID controller 

LCRPIDTune() Automatically determines the control parameters with various 
methods and setting guidelines 

LCRSlimPID() PID controller with integrated tuning 

 

Controller function blocks and tuning processes especially for 
temperature systems: 

Call Description 

LCRTempTune() Optimized tuning procedure especially for temperature systems 

LCRTempPID() PID controller especially for temperature systems  

 

Modulators: 

Call Description 

LCRPFM() Pulse frequency modulator 

LCRPWM() Pulse width modulator  
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Signal processing 

Call Description 

LCRDifferentiate() Derivative unit with filter 

LCRIntegrate() Integrator with limits and set value 

LCRLimit() Limiter with overrun indicators 

LCRLimScal() Scaling and limiting of REAL signals                      

LCRMinMax() Smallest and largest peak value 

LCRMovAvFlt() Floating average value filter 

Call Description 

LCRPT1e() First-order delay element 

LCRPT2() Second-order delay element 

LCRTt() Dead time element 

LCRScal() Scaling of REAL signals 

 

 

Function block for creating characteristic curves 

Call Description 

LCRCurveByPoints() y = f(x) function using coordinates                                 

 

Other function blocks 

Call Description 

LCRContinServo() Control for a continuous servo drive 

LCRRamp() Ramp generator 

LCRSimModExt() Simulation model of an extruder with heating zones and 
cooling circulation 
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15.2 Solutions to the tasks 

15.2.1  Task: LCRSlimPID() P-controller 

 

Ladder diagram: LCRSimModExt() 

 

Fig. 53: LCRSimModExt() function block  
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Ladder diagram: LCRSlimPID() 

 

Fig. 54: LCRSlimPID() function block 

Variable declaration: 

 

Fig. 55: Variable declaration 

The output value Y of the function block LCRSlimPID() is copied to the 
manipVar_h variable and forms the manipulate variable that's fed to the 
LCRSimModExt() function block as heating control action at the Alpha_h 
input. The resulting controlled variable y is copied to the actTemp 
variable and fed to the LCRSlimPID() function block as the actual value at 
input X. 

A closed control loop results in this way. 
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Evaluating the traces: 

First, we will try to find an approximate setting for the gain.  

For our first attempt we have selected three different gains:  

• kp= 0.5  

• kp= 3.0  

• kp= 8.0  

and recorded the set and actual temperature and the gain. 

kp= 0.5: The oscillation fades quickly, the controlled variable quiets 
down quickly, and the remaining controller deviation is very large. 

kp= 3.0: The oscillation fades in an acceptable time, and the remaining 
control deviation is less than 10%. 

kp= 8.0: The oscillation keeps going, and the control loop is unstable. 

From this experiment, kp = 3.0 would be selected as the most suitable 
gain.  

 

Fig. 56: Approximate gain settings for the LCRSlimPID() function block 
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If the oscillation fades faster when the set value changes, then the gain 
can be reduced a bit. 

Another experiment allows us to examine the behavior when the gain is 
lower: 

• kp= 1 

• kp= 2 

• kp= 3 

The trace shows the following connection: 

The higher the gain kp, the smaller the remaining controller deviation. 
However, the control loop becomes more and more unstable as kp 
increases (the oscillations after the set value is changed fade more and 
more slowly). 

Depending on the requirements, a gain between 2 and 3 would be 
selected from this experiment. 

 

Fig. 57: Fine tuning gain for the LCRSlimPID() function block 
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15.2.2  Task: LCRSlimPID() controller settings according to Ziegler/Nichols 

 

 

kcrit and Tcrit must first be determined before they can used in the table 
for calculating the controller parameters. 

The following example gains are shown here in Trace: 

• kp= 3.0 

• kp= 4.0 

• kp= 5.0 

You can see that, beginning at a gain kcrit = 5.0 sets a continuous 
oscillation with constant amplitude and period length of Tcrit = 12 
seconds.  

 

Fig. 58: Trace P-element instability – Ziegler/Nichols 

Now both parameters only need to be used in the Ziegler/Nichols 
calculation table. 

 

 Control parameters 

Controller type kp Tn Tv 

P 2.5   

PI 2.25 10.2  

PID 3.0 6.0 1.44 
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We have now configured our PID controller according to the 
Ziegler/Nichols method using the following values: 

• kp= 3.0 

• Tn = 6.0 s 

• Tv = 1.44 s 

As you can see in the Trace below, the temperature control has become 
much faster and more stable. 

 

Fig. 59: PID controller configured with the Ziegler/Nichols method 
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15.2.3  Task: LCRSlimPID() auto-tuning with oscillation attempt 

 

Before tuning can be started with oscillation, a set value must be 
specified that is close to the later working point. 150 °C is preset as the 
set value in this example. 

To start standard tuning with oscillation, the request input of the 
LCRSlimPID() function block must be set to 
LCRSLIMPID_REQU_OSCILLATE (1). Only when tuning has finished (after 
changing to normal controlled operation) can request be set back to 
LCRSLIMPID_REQU_OFF (0). 

Trace of the tuning with subsequent automatic activation of the 
controller: 

 

Fig. 60: Trace LCRSlimPID() tuning with step response 
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Step response controller parameters: 

 

Fig. 61: LCRSlimPID() tuning parameters oscillation attempt 

A constant manipulated variable (Y) is set after the settling phase is 
complete. This is used later for the step response. 

 

Fig. 62: LCRSlimPID() constant manipulated variable 
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15.2.4  Task: LCRSlimPID() auto-tuning with step response 

 

 

Before tuning can be started with step response, a set value must be 
specified that is close to the later working point. 150 °C is preset as the 
set value in this example. Furthermore, the necessary manipulated 
variable must also specified for the set value. In this case, we already 
know that the controlled system requires a constant manipulated 
variable of approximately 32% when in a steady state. Therefore, the 
internal variable Y0 is set to 32 and Y1 to 45 (approximately 30% larger 
than Y0) in the watch window. 

To start standard tuning with step response, the request input of the 
LCRSlimPID() function block must be set to 
LCRSLIMPID_REQU_STEPRESPONSE (2). Only when tuning has finished 
(after changing to normal controlled operation) can request be set back 
to LCRSLIMPID_REQU_OFF (0). 

Trace of the tuning with subsequent automatic activation of the 
controller: 

 

Fig. 63: Trace LCRSlimPID() tuning step response disturbance variable design 
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To start a tuning procedure with step response, for which non-periodic 
reference parameters must be determined, the request input of the 
LCRSlimPID() function block is set to 4112 (see online help) . request is 
only reset to LCRSLIMPID_REQU_OFF (0) once the tuning procedure is 
complete. Just like before, the internal variable Y0 is set to 32 and Y1 to 
45. 

Trace of the tuning with subsequent automatic activation of the 
controller: 

 

Fig. 64: Trace LCRSlimPID() tuning step response reference variable design 
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Control parameters determined during the standard step response (non-
periodic disturbance variable design, 
LCRSLIMPID_REQU_STEPRESPONSE (2)): 

 

Fig. 65: LCRSlimPID() PID parameters disturbance variable design 

During auto-tuning with step response to determine non-periodic 
reference parameters (request = 4112): 

 

Fig. 66: LCRSlimPID() PID parameters reference variable design 

 

The PID parameters determined with the disturbance design are 
considerably more aggressive than those from the reference design. 
The reference design should be used if controller behavior is desired 
which reaches the set value with the least amount of overshoot. 
The disturbance design should be used if the control loop should 
quickly adjust for disturbances and overshoots are not of major 
importance. 
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15.2.5  Task: Control a temperature system (heating and cooling) using 
LCRTempPID() 

 
Ladder diagram: Initialization routine 

The PID parameters are transferred to the structure connected to the 
pSettings input, cooling is enabled, the delay time for the set value 
implementation is set to 0.1s and the set value is set to 180°C. 

 

Fig. 67:LCRTempPID() initializations routine 



 Appendix 

                                                                               Closed Loop Control with LOOPCONR     TM261        101 
 

 

 

Variable declaration: 

 

Fig. 69: LCRTempPID() variable declaration 

Regulating a temperature system with opposing manipulated variables 
(heating and cooling) using the LCRTempPID() function block. 

Ladder diagram: LCRTempPID() 

 

Fig. 68: Function block LCRTempPID() 
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Ladder diagram: LCRSimModExt() 

 

Fig. 70: LCRSimModExt() Function block 
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Step responses: 

Description Temperature 

Output temperature 25°C 

1. Jump 180°C 

2. Jump 183°C 

3. Jump 200°C 

4. Jump 170°C 

Trace: 

 

Fig. 71: LCRTempPID() set value jumps 
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15.2.6  Task: Tuning a temperature system using LCRTempTune() 

 

 

 

 

 

 

 

 

 

 

Ladder diagram: Initialization routine 

All time-critical variables (delays, gradients and filter times) are chosen 
smaller than the default value because the simulation runs faster than on 
a real extruder. The tuning procedure for cooling is also enabled. 

 

Fig. 72: LCRTempTune() initialization routine 
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Ladder diagram: LCRTempTune() 

Implementing the tuning procedure using the LCRTempTune() function 
block. The "rdyTo" outputs are linked with the "okTo" inputs. 

 

Fig. 73: Function block LCRTempTune() 
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Ladder diagram: LCRSimModExt() 

 

Fig. 74: LCRSimModExt() Function block 
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Trace: 

 

Fig. 76: Trace LCRTempTune() Tuning  

Variable declaration: 

 

Fig. 75: LCRTempTune() variable declaration  
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Determined PID parameters: 

 

Fig. 77: LCRTempTune() PID parameters  
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15.2.7  Task: Synchronous tuning of two temperature systems using the function 
blocks LCRTempTune() and LCRTempPID() 

Implementation of both control loops in Structured Text. 

(* ------> init program *)  
(* init user settings tuning zone 1 *)  
LCRTempSet1.enable_cooling             := TRUE ; (* cool tuning  
                                                    enabled *)  
(* do not use default parameters for example due to  smaller time         
   constants *)  
LCRTempSet1.TuneSet.cnt_tp_heat        := 0.1;  (* seconds *)  
LCRTempSet1.TuneSet.cnt_tp_cool        := 0.1;  (* seconds *)  
LCRTempSet1.TuneSet.delta_dT_sync_heat := 0.5;  (* °C/sec *)  
LCRTempSet1.TuneSet.cnt_wait_heat      := 3;    (* seconds *)  
LCRTempSet1.TuneSet.delta_dT_sync_cool := 0.5;  (* °C/sec *)  
LCRTempSet1.TuneSet.cnt_wait_cool      := 1;    (* seconds *)  
LCRTempSet1.TuneSet.filter_base_T      := 0.25;  (* seconds *)  
LCRTempTune1.pSettings                 := ADR(LCRTempSet1);  
(* end init user settings tuning zone 1 *) 
 
(*  init user settings tuning zone 2*)  
LCRTempSet2.enable_cooling             := TRUE ; (* cool tuning  
                                                    enabled *)  
(* do not use default parameter for example due to smaller time  
   constants *)  
LCRTempSet2.TuneSet.cnt_tp_heat        := 0.1;  (* seconds *)  
LCRTempSet2.TuneSet.cnt_tp_cool        := 0.1;  (* seconds *)  
LCRTempSet2.TuneSet.delta_dT_sync_heat := 0.5;  (* °C/sec *)  
LCRTempSet2.TuneSet.cnt_wait_heat      := 3;    (* seconds *)  
LCRTempSet2.TuneSet.delta_dT_sync_cool := 0.5;  (* °C/sec *)  
LCRTempSet2.TuneSet.cnt_wait_cool      := 1;    (* seconds *)  
LCRTempSet2.TuneSet.filter_base_T      := 0.25; (* seconds *)  
LCRTempTune2.pSettings                 := ADR(LCRTempSet2);  
(* end init user settings tuning zone 2 *) 
 
(* init user settings LCRTempPID1 *)  
(* wait 0.1 seconds before switching to new set tem perature *)  
LCRTempSet1.PIDSet.delay      := 0.1;           (* seconds *)  
LCRTempPID1.pSettings         := ADR(LCRTempSet1);  
(* end init user settings LCRTempPID1 *) 
 
(* init user settings LCRTempPID2 *)  
(* wait 0.1 seconds before switching to new set tem perature *)  
LCRTempSet2.PIDSet.delay      := 0.1;           (* seconds *)  
LCRTempPID2.pSettings         := ADR(LCRTempSet2);  
(* end init user settings LCRTempPID2 *)  
 
(* parameters for simulated extruder zone 1 *)  
zone1.enable    := TRUE;  
zone1.Tt_h      := 600000;                      (* microseconds *)  
zone1.Tt_c      := 450000;                      (* microseconds *)  
zone1.k_h       := 3.717;  
zone1.k_c       := 0.0151;  
zone1.PT2_T1    := 23.43;  
zone1.PT2_T2    := 1.51;  
zone1.Temp_amb  := 25.0;                        (* °C *)  
zone1.Temp_c    := 25.0;                        (* °C *)  
(* end parameters for simulated extruder zone 1 *)  
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(* parameters for simulated extruder zone 2 *)  
zone2.enable    := TRUE;  
zone2.Tt_h      := 1200000;         (* microseconds *)  
zone2.Tt_c      := 800000;          (* microseconds *)  
zone2.k_h       := 4;  
zone2.k_c       := 0.013;  
zone2.PT2_T1    := 28;  
zone2.PT2_T2    := 1.8;  
zone2.Temp_amb  := 25.0;            (* °C *)  
zone2.Temp_c    := 25.0;            (* °C *)  
(* end parameters for simulated extruder zone 2 *) 
 
(* set tuning temperatures and set temperatures aft er tuning*) 
setTempTune := 180;                 (* °C *)  
setTempPID1 := 180;                 (* °C *)  
setTempPID2 := 180;                 (* °C *)  

(* ------> cyclic program *)  
(* DESCRIPTION: start autotuning with enableTuning = TRUE and  
   startTuning = TRUE *) 
 
(* read out current temperatures *)  
actTempZone1 := zone1.y;  
actTempZone2 := zone2.y; 
 
(* enable tuning function blocks *)  
LCRTempTune1.enable := enableTuning;  
LCRTempTune2.enable := enableTuning; 
 
(* start autotuning *)  
LCRTempTune1.start := startTuning;  
LCRTempTune2.start := startTuning; 
 
(* current set temperature for tuning function bloc k*)  
LCRTempTune1.Temp_set := setTempTune;  
LCRTempTune2.Temp_set := setTempTune; 
 
(* current temperature for tuning function block *)  
LCRTempTune1.Temp := actTempZone1;  
LCRTempTune2.Temp := actTempZone2; 
 
(* synchronisation of autotuning *)  
LCRTempTune1.okToHeat     := (LCRTempTune1.rdyToHea t AND 
LCRTempTune2.rdyToHeat);  
LCRTempTune2.okToHeat     := (LCRTempTune1.rdyToHea t AND 
LCRTempTune2.rdyToHeat);  
LCRTempTune1.okToCool     := (LCRTempTune1.rdyToCoo l AND 
LCRTempTune2.rdyToCool);  
LCRTempTune2.okToCool     := (LCRTempTune1.rdyToCoo l AND 
LCRTempTune2.rdyToCool);  
LCRTempTune1.okToCoolEnd  := (LCRTempTune1.rdyToCoo lEnd AND 
LCRTempTune2.rdyToCoolEnd);  
LCRTempTune2.okToCoolEnd  := (LCRTempTune1.rdyToCoo lEnd AND 
LCRTempTune2.rdyToCoolEnd); 
 
(* call tuning function blocks LCRTempTune() *)  
LCRTempTune1();  
LCRTempTune2(); 
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(* when tuning has finished switch to LCRTempPID() controllers *)  
IF  ((LCRTempTune1.done AND LCRTempTune2.done) OR TempPID_enable) THEN 
   (* enable controller function blocks (auto mode)  *)  
   LCRTempPID1.enable := TRUE ;  
   LCRTempPID1.mode   := LCRTEMPPID_MODE_AUTO;  
   LCRTempPID2.enable := TRUE ;  
   LCRTempPID2.mode   := LCRTEMPPID_MODE_AUTO; 
    
   (* current set temperature for controller functi on blocks *)  
   LCRTempPID1.Temp_set := setTempPID1;  
   LCRTempPID2.Temp_set := setTempPID2; 
    
   (* current temperature for controller function b locks *)  
   LCRTempPID1.Temp := actTempZone1;  
   LCRTempPID2.Temp := actTempZone2; 
    
   (* manipulated variable from controller function  blocks *)  
   heatZone1       := LCRTempPID1.y_heat;  
   coolZone1       := LCRTempPID1.y_cool;  
   heatZone2       := LCRTempPID2.y_heat;  
   coolZone2       := LCRTempPID2.y_cool; 
    
   (* disable Tunings and start controllers *)  
   enableTuning    := FALSE;  
   startTuning     := FALSE;  
   TempPID_enable  := TRUE; 
ELSE 
   (*manipulated variable from tuning function bloc ks *)  
   heatZone1 := LCRTempTune1.y_heat;  
   coolZone1 := LCRTempTune1.y_cool;  
   heatZone2 := LCRTempTune2.y_heat;  
   coolZone2 := LCRTempTune2.y_cool;  
    
   (*disable LCRTempPIDs so no doubleacting is poss ible*)  
   LCRTempPID1.enable := FALSE;  
   LCRTempPID2.enable := FALSE;  
END_IF 

(* call controller function blocks LCRTempPID() *)  
LCRTempPID1();  
LCRTempPID2(); 
 
(* call simulated extruder zones and handover the m anipulated  
   variables *)  
zone1.Alpha_h := heatZone1;  
zone1.Alpha_c := coolZone1;  
zone1();  
zone2.Alpha_h := heatZone2;  
zone2.Alpha_c := coolZone2;  
zone2(); 
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Variable declaration: 

 

Fig. 78: LCRTempPID()+LCRTempTune() variable declaration 

Determined PID parameters: 

 

Fig. 79: LCRTempPID()+LCRTempTune() PID parameters  



 Appendix 

                                                                               Closed Loop Control with LOOPCONR     TM261        113 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trace: 

 

Fig. 80: LCRTempPID()+LCRTempTune() Tuning 

 

Fig. 81: LCRTempPID()+LCRTempTune() set value jumps 
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15.2.8  Task: B&R simulation model 4SIM.00-01 

 

Ladder diagram: Initialization routine 

The default values are replaced by suitable values because they are not 
feasible for this system. 

 

Fig. 82: B&R simulation model - Initialization routine1 
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Ladder diagram: Initialization routine 

 

Fig. 83: B&R simulation model - Initialization routine2 
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Ladder diagram: 

The read-in temperature aiActTemp must be converted from data type 
INTEGER to the data type REAL. To convert the unit from 1/10 °C to 1 °C, 
the value is divided by 10. actTempZone1 is then the controlled variable 
that is connected to the Temp input of the LCRTempTune() function 
block and LCRTempPID(). Furthermore, an additional logic operation is 
present to automate switching from LCRTempTune() to the 
LCRTempPID() after the tuning. 

 

Fig. 84: B&R simulation model - Switching logic 
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Ladder diagram: LCRTempTune() 

 

Fig. 85: B&R simulation model - LCRTempTune() 
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Ladder diagram: LCRTempPID() 

 

Fig. 86: B&R simulation model - LCRTempPID() 
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Variable declaration: 

 

Fig. 88: B&R simulation model variable declaration 

The value range of the outputs heatZone1 and coolZone1 is scaled to 
the value range of the analog outputs (0 - 32767) and converted from the 
data type REAL to INT. 

 

Fig. 87: B&R simulation model - Manipulated variable scaling 
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Trace of the tuning with subsequent activation of the controller: 

 

Fig. 89: Trace B&R simulation model - Tuning 
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PID parameters determined during auto-tuning: 

 

Fig. 90: B&R simulation model - PID parameters 
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Pulse width modulation: 

Pulse width modulation converts the manipulated variables (heatZone1 
and coolZone1) from analog to digital pulsed signals, whose 
pulse/pause behavior corresponds to the analog value. 

Separate pulse width modulation must be implemented for each control 
action. The manipulated variables are each connected to the input x of 
the LCRPWM() function block. The max_value input corresponds to the 
maximum value that the manipulated variable can take on; min_value 
corresponds to the minimum value. 

If analog outputs are used to control the heating and cooling of the B&R 
simulation model, then the pulsed digital signals from the pulse width 
modulation must be converted to a corresponding analog value. The 
digital value FALSE corresponds to the analog value 0; the digital value 
TRUE corresponds to the analog value 32767. This simple instruction 
can be implemented with the SEL() function. 
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Ladder diagram: Pulse width modulation 

 

Fig. 91: B&R simulation model - Pulse width modulation 
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The following trace shows the heating procedure for the controlled 
system from 45 °C to 50 °C with a pulse width modulated control action. 

• Set and actual temperatures setTemp and actTemp. 

• Manipulated variable of the controller heatZone1. 

• Output of the pulse width modulation aoHeat. 

The pulse/pause behavior of the aoHeat output corresponds to the 
analog manipulated variable of the controller, heatZone1. 

 

Fig. 92: Trace B&R simulation model - Pulse width modulation 
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Overview of training modules 

 

TM200 – B&R Company Presentation ** TM600 – The Basics of Visualization 
TM201 – B&R Product Spectrum ** TM610 – The Basics of ASiV 
TM210 – The Basics of Automation Studio TM630 – Visualization Programming Guide 
TM211 – Automation Studio Online Communication TM640 – ASiV Alarm System 
TM212 – Automation Target ** TM650 – ASiV Internationalization 
TM213 – Automation Runtime TM660 – ASiV Remote 
TM220 – The Service Technician on the Job TM670 – ASiV Advanced 
TM223 – Automation Studio Diagnostics  
TM230 – Structured Software Generation TM700 – Automation Net PVI 
TM240 – Ladder Diagram (LAD) TM710 – PVI Communication 
TM241 – Function Block Diagram (FBD) TM711 – PVI DLL Programming 
TM246 – Structured Text (ST) TM712 – PVIServices 
TM247 – Automation Basic (AB) TM730 – PVI OPC 
TM248 – ANSI C  
TM250 – Memory Management and Data Storage TM800 – APROL System Concept 
TM260 – Automation Studio Libraries I TM810 – APROL Setup, Configuration and Recovery 
TM261 – Closed Loop Control with LOOPCONR TM811 – APROL Runtime System 
 TM812 – APROL Operator Management 
TM400 – The Basics of Motion Control TM813 – APROL XML Queries and Audit Trail 
TM410 – The Basics of ASiM TM830 – APROL Project Engineering 
TM440 – ASiM Basic Functions TM840 – APROL Parameter Management and Recipes 
TM441 – ASiM Multi-Axis Functions TM850 – APROL Controller Configuration and INA 
TM445 – ACOPOS ACP10 Software TM860 – APROL Library Engineering 
TM450 – ACOPOS Control Concept and Adjustment TM865 – APROL Library Guide Book 
TM460 – Starting up Motors TM870 – APROL Python Programming 
 TM890 – The Basics of LINUX 
TM500 – The Basics of Integrated Safety Technology  
TM510 – ASiST SafeDESIGNER  
 **) see Product Catalog 
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