Closed Loop Control with LOOPCONR
TM261

Perfection in Automation
www.br-automation.com

Introduction

Requirements

Training modules: TM260

Software: Automation Runtime 2.85

Hardware: Optional B&R simulation model 4SIM.00-01

Introduction

Table of contents

1. INTRODUCTION

1.1 Training guide objectives

1.2 Compendium objectives 7
PART | 9
2. FUNCTIONALITY OF THE LOOPCONR LIBRARY 10
3. SIMPLE BASIC CONCEPTS 11

3.1 What does control mean? 14

3.2 P controller behavior 16

3.3 | control behavior 17

3.4 Pl controller 18

3.5 D controller behavior 18

3.6 Ziegler/Nichols controller settings 19
4. APPLICATION OF THE INTEGRATED AUTO-TUNING
PROCEDURE 22

4.1 Oscillation attempt with the SIimPID() function block 23

4.2 Step response with the SlimPID() function block 25
5. CONTROLLING TEMPERATURE SYSTEMS 28

5.1 Function block LCRTempPID() 28

5.2 Function block LCRTempTune() 30

5.3 Communication between LCRTempTune() and

LCRTempPID() 32

5.4 Synchronized tuning of controlled systems 33
6. IMPLEMENTATION OF A PULSE WIDTH MODULATION 35
7. B&R SIMULATION MODEL 4SIM.00-01 36
PART I 41
8. DYNAMIC SYSTEMS 42

8.1 Motivation and definition 42

8.2 A mechanical example 43

8.3 A thermal example: Extruder zone a4

8.4 Characteristics of dynamic systems 45

Closed Loop Control with LOOPCONR TM261 '

Introduction

8.5 Description methods 47
9. CONTROLLED SYSTEMS 52
9.1 Establishing a model 52
9.2 Identification 53
9.3 An important type of controlled system 54
10. THE CLOSED CONTROL LOOP 56
10.1The basic principle of closed loop controllers 56
10.2Block diagram 56
10.3The standard control loop 57
10.4Characteristics of closed control loops 61
11. CONTROLLER AND CONTROLLER SETTING 67
11.1PID controller 67
11.2Controller setting 70
11.3Autotuning procedure 72
12. SUPPLEMENTS 73
12.1The influence of dead time 73
12.2The influence of measurement errors 75
12.3Mixed control loop 76
12.4Prefilter 78
12.5Non-linearities 79
12.6 Pulse width modulated actuator signals 81
12.7Sampling control loops 83
13. PROCEDURE FOR SOLVING CONTROL TASKS 85
14. SUMMARY 86
15. APPENDIX 87
15.1LOOPCONR function block overview 87
15.2Solutions to the tasks 89

I TM261 Closed Loop Control with LOOPCONR

Introduction

1. INTRODUCTION

Closed loop control is an important part of industrial technology and is
usually a basic requirement for productive machines and systems as well
as for high-quality products.

Closed loop control has a reputation as a "sophisticated area of expertise"
because knowledge of complex mathematics is required to understand the
fundamental methods.

This training module will follow a two-part approach to closed loop control
based on software controllers in order to meet the wide range of demands
of practitioners in the industrial field who must produce highly satisfactory
results in a short amount of time, and to correspond with system analyzers
who operate in a more theoretical manner:

Part | is a practical approach, which will accompany your training at B&R
and your autodidactic practical experience. This part focuses on the quick
implementation of controllers based on the Automation Studio library
LOOPCONR.

With the help of different function blocks from this library, a highly
effective control loop can be created and adapted to a variety of
applications in a flexible manner.

Particular attention will be given to the use of integrated procedures for
automatically setting controllers (autotuning).

Part Il offers a compressed — more theory-oriented and still easy-to-
understand — approach to the topic. The basic methods and terminology of
closed loop control will be handled here. This part should not be viewed as
a substitute to educational books. This is simply not possible for the reason
of limited topical breadth. Part Il can also be used as a compendium and
reference work, which will hopefully provide explanations and ideas when
a controller is not working as desired.

Throughout the entire training module, closed loop control will generally
be explained using temperature controllers, which exhibit relatively simple
behavior often used in the field.

Closed Loop Control with LOOPCONR TM261

Introduction

1.1 Training guide objectives

Participants will be familiar with the simple basic concepts of closed loop
control and will be able to manually configure a PID controller.

Participants will know how to use integrated autotuning procedures.

Participants will be able to configure the function block for pulse width
modulation and know how to implement a closed loop control with
opposing manipulated variables.

Participants will understand the B&R simulation model and know how to
implement a closed loop control for the integrated temperature controlled
system.

Participants will gain an overview of the most important function blocks in
the LoopConR library.

_Simple basic concepts

Application of the integrated
auto-tuning procedure

-
Closed Loop Control

Controlling temperature systems

Implementation of a pulse width
_modulation

B&R simulation model
:4SIM.00-01

Fig. 1 Training guide overview

TM261 Closed Loop Control with LOOPCONR

Introduction

1.2 Compendium objectives

Participants will understand the fundamental concepts such as dynamic
systems, the establishment of models and the identification of controlled
systems, block diagrams, Bode diagrams and autotuning procedures.

Participants will understand the influence of dead times, measurement
errors, signal sampling and modulated actuator signals.

Participants will understand advanced control structures such as pre-filter
and mixed control loop as well as examples for practical application.

_Dynamic systems

Controlled systems

R B _The closed control loop
Closed Loop Control

Controller and controller settings

Supplements

Procedure for solving control tasks

Fig. 2 Compendium overview

Closed Loop Control with LOOPCONR TM261 7

Introduction

Notes

TM261 Closed Loop Control with LOOPCONR

PART |
Training guide

(A practical approach)

Closed Loop Control with LOOPCONR TM261 '

Functionality of the LoopConR Library

2. FUNCTIONALITY OF THE LOOPCONR LIBRARY

The function blocks in the LoopConR library provide the following
functions:

» Controller function block

* Autotuning procedure

* Modulation procedure

e Signal processing

e Simulation of thermal controlled systems

» Control of a continuous servo drive without position feedback.

» Controller function blocks and tuning process especially for
temperature systems

This library can be used to cover most standard tasks in the area of closed
loop control and signal processing.

Unlike the LoopCont library, all calculations in this library are made using
only floating point arithmetic (REAL).

System requirements:

The function blocks in the LoopConR library use floating point arithmetic
for calculations and can be used optimally on SG4 controllers with regard
to computing time.

Since SG3 controllers do not use floating point arithmetic for calculations,
cycle time violations may occur due to the floating point emulation used
for the function blocks in the LoopConR library.

In this case, either use function blocks in the LoopCont library that
primarily rely on fix point arithmetic or increase the cycle time of the task.

TM261 Closed Loop Control with LOOPCONR

Simple Basic Concepts

3. SIMPLE BASIC CONCEPTS

Closed loop control theory explores how to influence systems in such a
way that a specific variable can posses a specified value at any time.

Room temperature provides a basic example: heating is regulated via a
thermostat in such a way that the value specified on the thermostat is
maintained.

Let's get started with an exercise getting to know the SlimPID() function
block in order to ease your introduction into the theory of closed loop
control. Solutions to the exercises can be found in the appendix of this
training module.

In practice, PID controllers are very frequently used for temperature
controllers. For this reason, this training module will also be demonstrating
how to use these function blocks in tasks related governing temperatures.

We will establish a simple control loop in the following example. We will be
operating the SIimPID() function block as true P-controller and will examine
the effects of different manually defined control parameters. The
LCRSimModExt() function block can be used to implement a simulation
model of an extruder. Use the parameters specified in the example in the
online for this.

Closed Loop Control with LOOPCONR TM261

Simple Basic Concepts

Task: SIimPID() P-controller

Use the function blocks LCRSIimPID() and LCRSimModExt() to construct
the following control loop:

request

b Alpha_h ¥
LCRSIimPID LCRSimModExt

Fig. 3: Block diagram - control loop

Using the following gains:

e kp= 0.5
e kp=3
* kp=8

Execute set value jumps and record the set and actual temperatures and
the gain using Trace.

Examine the remaining controller deviation e (difference between the
set value and the actual value).

Examine the stability of the control loop. Oscillations occurring during
compensation must fade as quickly as possible.

Which gain is best suited with regard to remaining controller deviation
and a fast reduction in oscillations?

TM261 Closed Loop Control with LOOPCONR

Simple Basic Concepts

Solution approach:

In the Ladder Diagram, create the control loop described above. Set up
the function block LCRSimModExt() using the parameters listed in the
example in the online help.

The output value Y from the function block LCRSIimPID() is the
manipulated variable that is fed to the A/pha_h input of the function
block LCRSimModExt() as a heating control action. The resulting
controlled variable y is fed back to the LCRSIimPID() function block at
input X as the actual value.

The trace should take at least 10 minutes.

Enter the gain values for the variable Kp, located in the structure
attached to <LCRS/imPID-instance name>.pPar. Set the request input
of the LCRSIimPID() function block to LCRSLIMPID _REQU_READ PARAS
(3) and back to LCRSLIMPID _REQU_OFF (0) so that the function block
applies the value for Kp (edge-controlled). Additional information about
operating the LCRSIimPID() function block can be found in the online
help.

Closed Loop Control with LOOPCONR TM261 H

3.1 What does control mean?

A closed loop control has the task of getting the output variable of a
controlled system, the controlled variable X, to a predefined value, the
reference variable W, and to maintain this value despite influence from
disturbance variables Z. In a closed loop control, the actual value of the
controlled variable X is continuously determined and is compared with the
set value specified by the reference variable W. Unlike open loop
controlling, this is a closed loop, which means that the variables
(manipulated variables) that influence the process are independently
established with suitable control mechanisms (actuators) from measured
process variables instead of being specified externally.

The controller deviation e determined by comparing W and X is processed
to the manipulated variable Y with a specific control algorithm and fed to
the final controlling device.

The next figure shows the block diagram for a standard control loop with
the following elements:

e Plant: the system to be controlled (process or system).

e Controlled variable (actual value): the variable to be intentionally
influenced by the controller (output variable of the controlled system
or actual value).

 Reference variable (set value): set value of the controlled variable
(e.g. specified by operator).

 Measuring element (sensor, measuring device): provides the
controller with a measurement value of the controlled variable
(typically via an input module).

* Control deviation: the difference between the reference and
controlled variable.

» Controller: uses the control deviation to generate a corresponding
signal in order to affect the controlled system (typically via an output
module).

e Actuator: the connecting element between the controller, which
generally only provides weak signals, and the system to be
controlled, which usually requires strong signals to have an effective
influence. The output variable of the actuator is the manipulated
variable.

» Disturbance variable: describes the influence of non-measurable
variables that affect the control loop.

Simple Basic Concepts

disturbance

control deviation manipulated variable
variable
set value / \ actual value
controller » actuator plant >
measuring |
device |

Fig. 4: Standard control loop

Description
X Controlled variable (actual value)
W Reference variable (set value)
e Control deviatione = W - X
Y Manipulated variable
Z Disturbance variable
R(s) Controller transfer function

G(s) Transfer function for the system to
be controlled

Regardless of their implementation, controllers are differentiated according
to their typical step responses. Different types of control behavior include
P, I, Pl, PD and PID.

A controller's step response is its typical reaction on the output

(manipulated variable Y) to a signal jump on the input when the control
loop is interrupted.

Closed Loop Control with LOOPCONR TM261

Simple Basic Concepts

3.2 P controller behavior

With the P controller, the output variable Y is proportional to the controller
deviation e. The factor kp is a proportional coefficient. The proportional
coefficient kp specifies by which amount the manipulated variable Y will
change when the controller deviation e is changed by a specific amount.

Yo (1) = kp [&(1)

Thus, the controller always requires a controller deviation to adjust the
actuator. A disturbance variable or reference variable, which causes a
controller deviation in a control loop, can never be completely cleared with
the P controller as seen in the previous exercise. This remaining control
deviation is a disadvantage of the P controller. Although it is small when
the kp proportional coefficients are large, kp cannot be increased infinitely.
This would cause instable controller operation.

4 iy 4 Ko

-
i P Element i
Input Value Qutput Value

Fig. 5: Reaction of a P controller

Behavior:

» creates one of the manipulated variables proportional to the
control deviation

e quick reaction to control deviations, quick rise

 never fully compensates (because a manipulated variable is not
output when control deviation is missing), thus resulting in a
remaining control deviation

e very simple and inexpensive (often only mechanical)

TM261 Closed Loop Control with LOOPCONR

Simple Basic Concepts

3.3 | control behavior

With the | controller, the manipulated variable Y is proportional to the time
integral of the controller deviation.

Y, (0 =22 et ot

The integral action time 7, is the time span, which a constant control error
must meet for the lI-element to generate the same manipulated variable as
would be generated immediately by the P-element.

Although an I-controller reacts slowly to a change in the controller
difference, the advantage is that it completely compensates for the
controller difference that's always present for a P-controller.

However, an l-element lowers the stability of a control loop and causes
overshoot. The smaller the integral action time, the stronger the effect of
the l-element.

e 4 N A

%o
|: Ke[l

| Element tn
Input Value Qutput Value

Fig. 6: Reaction of an | controller

Behavior:

» the manipulated variable changes with constant gradient at a
constant control deviation

 delayed reaction to control deviations

« fully compensates for control deviations (because the
manipulated variable continues to change until the control
deviation is eliminated)

* tends to overshoot and lowers the stability of the control loop

Closed Loop Control with LOOPCONR TM261 17

Simple Basic Concepts

3.4 Pl controller

With the Pl controller, the manipulated variable Y is equal to an addition of
the output variables from a P and an I-element. The manipulated variable is
first changed, just as with the P controller. A change to the manipulated
variable then occurs again, which also like the | controller, is equal to the
time integral of the controller deviation. Therefore, the Pl controller
combines the advantages of both controllers. It reacts quickly to controller
deviations (P-element) and compensates them entirely (I-element).

| Lo

e g [FN]=)
Pl Controller I F”
M=y R t

>
t

Input Value Qutput Value

Fig. 7: Reaction of a Pl controller

3.5 D controller behavior

The D-element creates a manipulated variable, which is proportional to the
temporal derivative of the control deviation.

Yo (1) = ke OO, [&(Y)

The derivative action time 7, indicates the time span, which an increasing
control deviation of 0 with a constant gradient must meet for the P-element
to generate the same manipulated variable as the D-element.

A D-element increases the speed and improves the stability of a control
loop. A larger derivative action time increases the effect of the D-element.
However, a D-element does not compensate by itself. This is why it can
only be used together with another controller.

TM261 Closed Loop Control with LOOPCONR

Simple Basic Concepts

3.6 Ziegler/Nichols controller settings

If the controller isn't very well known, it is usually very difficult and time-
consuming to determine suitable parameters for a Pl or PID controller
without sufficient experience.

Configuring the controller according to the Ziegler/Nichols method is an
easy way to determine suitable controller parameters without having to
know the controlled system exactly. This procedure was developed in 1942
and is based on experience gained empirically.

This procedure is done as follows:

* The controller will first be operated as a true P controller.

* The controller gain kp will be increased up to the value k_,,, at
which point the control loop reaches its stability limits and
causes continuous oscillations with constant amplitude and
period.

* The period duration T, of the continuous oscillation is
measured.

Controller parameters can be calculated using the following table:

Control parameters
Controller | kp Tn Tv
type
P 0.5 kit
PI 0.45 k., | 0.85T,;
PID 0.6 ki 0.5 T, 0.12 T,

In our next task, we will determine the parameters for a Pl or PID controller
using the Ziegler/Nichols method.

Closed Loop Control with LOOPCONR TM261

Simple Basic Concepts

Task: SlimPID() controller settings according to Ziegler/Nichols

Increase the gain kp in steps starting from 0 until the control loop
reaches the stability limit.

First start with a small interval (approx. 0.1 to 0.5). If the effects are
minimal at first, the interval can be increased.

After each change in gain, also change the set value in the range
between 150 °C and 200 °C in jumps.

The goal is to find the critical gain kp = k_;, that brings the control loop
to the stability limit. The critical gain k_,, is the least amount of gain
needed to keep the control value oscillation at a constant amplitude and
period after a set value jump.

The critical gain k,;, and the period of the oscillation T,;, are measured
and used to calculate the control parameters in the table.

Calculate the Kp and Tn parameters for a Pl controller.

Calculate the Kp, Tn, and Tv parameters for a PID controller.

Solution approach:
Use the same project you used for the earlier task.

You can also begin with a gain kp = 3. You already know from the
previous task that the control loop is still stable at this gain.

TM261 Closed Loop Control with LOOPCONR

Simple Basic Concepts

You have now successfully configured a controller for the controlled
system, and you have probably noticed that determining the control
parameters empirically requires a certain amount of patience and
experience.

This procedure doesn't always have to be carried out manually, however.
The LCRSIimPID() function block gives us the option of using auto-tuning.
Auto-tuning determines all parameters automatically by executing a
number of oscillation or a step response. You will find more detailed
information on how to use it in the next training example.

In addition to the Ziegler/Nichols controller configuration that you now
already know, Part Il of this training module - Compendium and Reference
Work — will also handle the Chien, Hrones, and Reswick methods.

Closed Loop Control with LOOPCONR TM261

Application of the Integrated Auto-Tuning Procedure

4. APPLICATION OF THE INTEGRATED AUTO-TUNING PROCEDURE

An auto-tuning procedure is a sequence of intercoordinated identification
and controller setting procedures that run automatically and are controlled
by algorithms. It is the most convenient method of setting a controller for
the user.

A stimulating input signal is first actuated on the system and the system's
response is recorded. The system's transfer function is approximately
determined from the comparison of these input and output signals. A
P/P1/PID controller is then configured for this system in such a way so that
the closed control loop exhibits the desired behavior. After setting the
parameters once, these procedures will run fully automatically without
intervention from the user and can be repeated at any time.

The SlimPID() function block, which was discussed earlier, provides two
different autotuning procedures:

* Auto-tuning with oscillation attempt
* Auto-tuning with step response

Furthermore, the function block allows you to adjust the method for
determining parameters to meet your demands. A table with the different
tuning options that can be specified on the function block's request input
can be found in the online help under Data types and constants: Tuning
options.

TM261 Closed Loop Control with LOOPCONR

Application of the Integrated Auto-Tuning Procedure

4.1 Oscillation attempt with the SlimPID() function block

During the oscillation attempt, a periodic square-wave signal is used as
system excitation in the closed control loop. This square-wave signal is
generated by a 2-position controller (comparator), which is used in place of
the closed-loop controller. This procedure can be used for setting P/PI/PID
controllers and features the easiest method for setting parameters.
Parameters are set using the request input. For example, if request =
LCRPID_TUNE_REQU_OSCILLATE (1) is selected, then the default settings
for the different oscillation attempt options are set automatically.

Default options for the oscillation attempt:

Selection options Selection Number
Type of tuning = Oscillation 1
attempt
Effective direction = Positive 10
Controller settings = PID 100
Controller setting procedure = Ziegler / Nichols 0000
Oscillation attempts = 2 20000
Periods per oscillation attempt = 4 400000

The request is a product of the sum of the numbers.

Detailed information about the available tuning options can be found in the
online help under Data types and Constants: Tuning options

Note:

If, for example, you would like to use tuning with 3 oscillations over 5
periods with a negative control action (increasing the manipulated
variable reduces the actual value), you must set "request" to 530121.

Closed Loop Control with LOOPCONR TM261

Application of the Integrated Auto-Tuning Procedure

Task: SIimPID() auto-tuning with oscillation attempt

Use your existing project and carry out auto-tuning using oscillation.

Set the request input to LCRPID_TUNE _REQU_OSCILLATE (1) to execute
an oscillation attempt tuning procedure.

Solution approach:
First, set the set temperature to the operating point you will be using in
the future (e.g. 150°C).

Then set the request input of the function block LCRSIimPID() to
LCRPID_TUNE_REQU_OSCILLATE (1).

Record the set temperature, the actual temperature and the manipulated
variable in Trace.

Now compare the control parameters that you defined previously with the
ones determined by auto-tuning. Set the request input of the LCRSIimPID()
function block to LCRSLIMPID REQU WRITE PARAS (4) and back to
LCRSLIMPID_REQU_OFF (0) so that the function block copies the control
parameters to the structure connected to pPar (edge-controlled).

H TM261 Closed Loop Control with LOOPCONR

4.2 Step response with the SIimPID() function block

The step response uses a manipulated variable jump as system excitation
in the open control loop and offers a multitude of possibilities for setting
the controller. You can choose between the controller types P/PI/PID or
design processes, disturbance rejection or set-point tracking design.

The step response is configured using the request input. If request =
LCRPID_TUNE_REQU_STEPRESPONSE (2), then a step response is
executed using the default settings.

Default options for the step response:

Selection options Selection Number
Type of tuning = Step response 2
Effective direction = Positive 10
Controller settings = PID 100
Controller setting procedure = Chien / Hrones / 1000
Reswick disturbance
variable design,
non-periodic

The request is a product of the sum of the numbers.

Detailed information about the available tuning options can be found in the
online help under Data types and Constants: Tuning options.

A manipulated variable jump must be specified for the step response. That
means that the manipulated variable (Y0) at which the system is close to
the operating point must be approximately known. Starting from this

manipulated variable YO, a step (A Y = Y1 - YO0) to a new manipulated

variable Y1 is then executed. Suitable controller parameters can then be
calculated based on the reaction of the system. It is important to ensure that
AY is large enough to cause a significant change to the controlled variable.
Otherwise it will not be possible to find any suitable control parameters.

Variables and function blocks that are used internally must be used to set
Y0 and Y1 with LCRSIimPID(). The procedure for writing internal variables
can be found in the online help in the section Function blocks and
functions: LCRS/imPID() under the heading Access to internal structures
and variables. Y0 and Y1 can also be set to the corresponding values in the
watch for test purposes.

Application of the Integrated Auto-Tuning Procedure

The slope of the controlled variable must be determined for the step
response. Good filtering of the signal is essential because the controlled
variable almost always has overlying noise in actual practice. In the internal
substructure <LCRS/imPID instance name>.PIDTune _inst.pOptions_step,
the filter is configured using the variable eval/NFilter.

Step response procedure:

* YO0 is output on the controller output until the transient effect of the
system is finished and the controlled variable is close to the set
value.

e Y7 is then output on the controller output until the necessary
P/PI/PID parameters have been found. This can take a different
amount time depending on the design process.

e Disturbance variable design: Tuning is complete as soon as the
maximum slope of the controlled variable has been detected.

* Reference variable design: Tuning is complete as soon as the
transient effect in the new operating point is finished.

temperature during the tuning
210 T T) |

termperature

200 ; : ; O oo]

150 ' ; ' I

| _]Bnd of tuning |

180

170

termnperature [°C]

160

180 : - R BN R

tuning for.

set- nintitrackin desigh
140 PO 4 cesgn,

130
a 150 200 240

t [sec]

Fig. 8: Tuning for reference variable design SIimPID()

TM261 Closed Loop Control with LOOPCONR

Application of the Integrated Auto-Tuning Procedure

Task: SIlimPID() auto-tuning with step response

Use your existing project and carry out auto-tuning using step response.

Set the request input to LCRPID_TUNE _REQU_OSCILLATE (2) to execute
a step response, A disturbance rejection design (non-periodic) is used to
determine the PID parameters.

Now perform a tuning procedure that determines the PID parameters
using the reference variable design (non-periodic) (request = 4112).

Note the PID parameters from both tuning procedures for comparison.

Solution approach:
First set the set temperature to an operating point, in which the required
manipulated variable Y0 is already known (e.g. 150 °C)!

Set the inputs Y0 and Y7 of the internally-used function block
LCRPIDTune() in such a way that the temperature on the system
changes significantly when a manipulated variable jump occurs.

Y0 can be determined using the trace of the previous example. Set Y0 to
the manipulated variable, which the controller had when in steady state
in the operating point. Choose Y7 to be approximately 30% larger than
Y0.

Perform both tuning procedures.
Record the set temperature, the actual temperature and the manipulated
variable in Trace.

Now compare the control parameters that were determined during the
reference variable / disturbance variable design.

Closed Loop Control with LOOPCONR TM261 27

Controlling Temperature Systems

5. CONTROLLING TEMPERATURE SYSTEMS

There are generally two opposing manipulated variables when controlling
temperature systems; one for heating and one for cooling. In most cases,
the two manipulated variables have a different gain. Therefore, the system
must be controlled using two different PID parameter sets.

5.1 Function block LCRTempPID()

This function block is specially designed for controlling temperature
systems and should only be used for this purpose. The necessary PID
parameters can be transferred to the function block using a type
lcrtemp _set _typ structure connected with the pSettings input. The
LCRTempTune() function block can be used to determine the parameters if
they are not known.

H TM261 Closed Loop Control with LOOPCONR

Controlling Temperature Systems

Task: Control a temperature system (heating and cooling) using
LCRTempPID()

Use the function block LCRTempPID() to construct the following control

loop:
Temp_set y_heat Alpha_h
LCRTempPID LCRSimModExt |~
Temp y_coal Alpha_c

Fig. 9: Block diagram — control loop with LCRTempPID()

Use the online help to get more information about the LCRTempPID()
function block, how it's used, and its operation.

Configure the controller function block using the type /crtemp_set _typ
structure connected to the pSettings input. There, the PID parameters
must be placed in the substructure P/Dpara.

You can refer to the examples in the online help to find suitable settings
for the controller.

Perform set value jumps. Record the set temperature, actual
temperature, the manipulated variable for heating (y_heat) and the
manipulated variable for cooling (y_coo/) in a trace.

Solution approach:

Parameters are automatically replaced with the default values internally
if you do not specify them in the structure /crtemp_set typ. The default
values are specially intended for extruders.
The PID parameters have to be configured.

The dynamics of the closed control loop can be influenced by the
factors dynGen, dynHeat and dynCool, in particular with LCRTempPID().
Kp_h should be reduced if excessive oscillations occur. You can
increase Tn_h if the control loop does not stabilize quickly enough.

Closed Loop Control with LOOPCONR TM261

Controlling Temperature Systems

5.2 Function block LCRTempTune()

The function block LCRTempTune() provides a procedure for automatically
determining suitable control parameters, specially optimized for
temperature systems. After the tuning procedure is complete, the function
block writes the determined PID parameters into the type /crtemp_set typ
structure connected with the pSettings input.

Principle tuning procedure:

» Settling phase before the heating procedure:
The actual temperature must be close to the ambient temperature
and the temperature changes are not allowed to be too great.

* Heating procedure:
100% heating manipulated variable is used for heating until the
temperature is close to the set temperature.

» Settling phase before the cooling procedure:
The actual temperature is regulated to the set value in this phase.
The cooling procedure is started after the transient effect is finished.

* Cooling procedure:
100% cooling manipulated variable is used for cooling until suitable
parameters have been found. Tuning is then successfully completed.

termperature during the tuning
200) T T I T
; ; ; temperature zone 1

18':' _""""""E’"""""""E"7"_';’5-' """""""""""

ituning
' of heating ! : :
140 -------- il IR IR AR bbb —

T

o

o S¥NC.

E | | before

= : : cooling

O [UN) SEEEEEEEEE RREEEEEET SEEEEEEE o R Rt R AR R e e L R EEEEEEEEE —
E ' ' '

z

EEP;;; end nfétuning

tuning of
heating cooling -

B0

20
0 20 30 40 &0 B0
t [sec]

Fig. 10: Standard tuning temperature curve LCRTempTune()

TM261 Closed Loop Control with LOOPCONR

Task: Tuning a temperature system using LCRTempTune()

Use the function block LCRTempTune() to construct the following
control loop:

y_heat Alpha_h

Temp set

LCRTempTune LCRSimModExt
y_coal Alpha_c

Temp

Fig. 11: Block diagram — control loop with LCRTempTune()

Use the online help to get more information about the LCRTempTune()
function block, how it's used, and its operation.

Configure the function block using the structure (lcrtemp_set _typ)
connected with the pSettings input. The tuning options can be entered
to the TuneSet substructure. Suitable settings can be found in the online
help.

Perform a tuning procedure in standard mode. Record the set
temperature, actual temperature, the manipulated variable for heating
(y_heat) and the manipulated variable for cooling (y_coo/) in a trace.

LCRTempTune() writes the PID parameters determined during the tuning
procedure to the structure connected with the pSettings input.

Solution approach:

Connect the rdyTo outputs to the ok7o inputs. For example, the
rdyToHeat output indicates when the system is ready for starting the
heating procedure (rdyToHeat = TRUE). However, heating is not started
until okToHeat is set to TRUE. In this case, connect the rdyToHeat output
to the okToHeat input. The rdyToCool/ and rdyToCoolEnd must also be
linked in the same manner.

Since this example deals with a simulation, a few tuning settings must
be changed because the default values for are optimized for systems
relevant to actual use (e.g. extruder).

If the LCRTempTune() function block is not disabled after the tuning
procedure is complete, then the system will be temporarily regulated
with the help of an integrated PID controller. However, the
LCRTempPID() function block should be used to achieve optimum
controller behavior (particularly with set value jumps).

Controlling Temperature Systems

5.3 Communication between LCRTempTune() and LCRTempPID()

Once the tuning procedure with the LCRTempTune() function block is
complete, the determined PID parameters are automatically written to the
structure connected with the pSettings input. This structure must also be
connected with the pSettings input of the LCRTempPID() function block in
order to enable communication between the two function blocks.

The following image illustrates which function block accesses which
parameters in the communication structure and how (read, write, or both).

Settings
(lertemp_set_typ)

A

LCRTempTune

/ enable_cooling (BOOL) K

/

\

PlDpara \
(lcrtemp_pid_ \
opt_typ)

TuneSet
(lcrtemp_tune

_set_typ)

PIDSet
(lcrtemp_pid_
set_typ)

Internal
(Icrtemp_add

_typ)

User

Fig. 12: Communication structure between LCRTempPID() and LCRTempTune()

TM261

Closed Loop Control with LOOPCONR

LCRTempPID

read only

read and write
<«

Controlling Temperature Systems

5.4 Synchronized tuning of controlled systems

In practical application, multiple controlled systems must often be tuned
simultaneously because they are placed next to one another and therefore
affect each other. Each of these controlled systems contains its own actual
value sensor and is controlled by a separate controller. The
LCRTempTune() function block offers the possibility to synchronize
multiple tuning procedures.

The rdyTo outputs of the LCRTempTune() function block are set to TRUE
when the settling phases / tuning phases are complete.

The corresponding ok7o inputs cannot be set simultaneously to TRUE on
all LCRTempTune() function blocks until the rdyTo outputs = TRUE on
every LCRTempTune() function block.

Note:

Examples about how to link the rdy7o output with the ok7o inputs can
be found in the online help by the function description of the
LCRTempTune().

The following image shows an extruder with two adjacent heating and
cooling zones that must be tuned synchronously due to their influence on
each other.

Zona 1 Zone 2
T1 T2

Fig. 13: Extruder model

Closed Loop Control with LOOPCONR TM261

Controlling Temperature Systems

Task: Synchronous tuning of two temperature systems using the
function blocks LCRTempTune() and LCRTempPID()

Use the function blocks LCRTempPID() and LCRTempTune() to construct
the following control loop twice:

Temp_set

heat /y cool

LCRTempTune s S
Temp N Alpha_h / y
Alph .
1 P | LCRSimModExt |—¢——
PlDpara

Temp_set —_—r

y_heat/y_cool

LCRTempPID

Temp ’
{

\

Fig. 14: Block diagram — control loop with LCRTempPID() and LCRTempTune()

First perform a tuning procedure in standard mode. Make sure that both
zones are tuned synchronously. Record the actual temperatures, the
manipulated variables for heating, the manipulated variables for cooling
and the status outputs of the LCRTempTune() function blocks using
trace.

Once the tuning procedure is complete (done = TRUE), switch off
LCRTempTune() and enable the LCRTempPID(). Also do not forget to
switch the manipulated variable outputs (y_heat and y_cool), which
affect the system.

Solution approach:

Create a manipulated variable for heating / cooling each zone. This
variable is written by LCRTempTune() during the tuning procedure. The
manipulated variable is written by LCRTempPID() once the tuning
procedure it complete.

Recording the status can help determine whether any warnings, which
could have affected the tuning results, were output during the tuning (e.g.
turning point not detected). If this occurs, the tuning options should be
adjusted in the TuneSet structure.

TM261 Closed Loop Control with LOOPCONR

Implementation of a Pulse Width Modulation

6. IMPLEMENTATION OF A PULSE WIDTH MODULATION

The LCRPWM() function block can be used to implement a pulse width or
pulse frequency modulator. This function block transforms an analog input
signal into a digital, pulsed output signal. The input signal x is limited by
max_value and min_value. The t_min_puls input can be used to specify the
minimum duty cycle in seconds. A value larger than t_min_puls must be
specified for the period duration t_period.

L2 t period

f 1
¥

I I on t_off

¥

Fig. 15: Pulse width modulation

A pulse with the specified duration t_min_pulse is output, and the period is
simultaneously extended if an input signal is present, which creates a pulse
duration shorter than the minimum pulse duration (¢ min_pulse). The
period is extended in such a manner that the ratio from the switch-on
duration to the switch-off duration is always equal to the input signal.

In the event that an input signal is specified which generates an idle time
shorter than t_min_pulse, then a pulse pause with the duration of
t_min_pulse is output and the period is extended to reach the correct
pulse/pause ratio.

Closed Loop Control with LOOPCONR TM261

B&R Simulation Model 4SIM.00-01

7. B&R SIMULATION MODEL 4SIM.00-01

Now let's have a look at a real temperature controlled system. To do this,
we will be using the B&R simulation model with such a system to be
controlled already integrated.

The temperature controlled system consists of a heating transistor, which
heats up a heat sink. A fan is attached to the end of the heat sink. The
temperature is measured using a PT1000 sensor.

The heating transistor is adjusted by applying voltage to the X2-14 pin,
thereby causing the heat sink to heat up. A voltage of 24VDC or 10VDC
must be selected and applied if the transistor is adjusted to full capacity
(full thermal output). An analog output on a PLC is required (0-10VDC) if the
transistor is to be adjusted in an infinitely variable manner. It is also
possible to adjust the transistor via PWM (24VDC).

The fan is driven via the X2-15 pin and works according to the same
principle.

Overtemperature protection is activated automatically if overtemperature
occurs on the transistor (approximately 60°C). It remains in place until the
temperature sinks sufficiently. If overtemperature protection is active, an
LED labeled "TEMP" lights up on the front side of the model. A 24 VDC level
is also set to LOW on the X2-18 pin. This can be evaluated using a digital
input.

Fig. 16: B&R simulation model 4SIM.00-01

H TM261 Closed Loop Control with LOOPCONR

B&R Simulation Model 4SIM.00-01

Task: Pulse width modulation,
B&R simulation model 4SIM.00-01

Use the LCRTempTune() und LCRTempPID() function blocks to regulate
the temperature of the B&R simulation model.

(As an alternative to the B&R simulation model, you can also continue to
use the LCRSimModExt() function block.)

Using this temperature control system, perform an auto-tuning.

First use an analog control with 0-10VDC, and then a digital control, so
that you become comfortable with the function block LCRPWM().

Again, record the set and actual temperatures and the manipulated
variables and analyze the resulting parameters.

Solution approach:

Unlike the previous task, you only have to build the control loop once
and replace the LCRSimModExt() function block with the B&R simulation
model. The actual value is read using an analog input; both control
actions are output via two analog outputs.

You also have to make sure that the value ranges for the analog inputs
and outputs are different from the value ranges of the function blocks.
The following example illustrates:

Analog temperature input Controller inputs (W, X)
Data type | INT REAL
Device 1/10°C 1°C

The input value must be converted from data type INT to REAL; the
resolution must be converted from 1/10 °C to 1 °C.

Closed Loop Control with LOOPCONR TM261 37

B&R Simulation Model 4SIM.00-01

Controller outputs (Y1, Analog outputs
Y2)

Data type REAL INT

Value range |0..100% 0..32767

The function block outputs must be scaled from the value range 0 -
100% to 0 - 32767 and converted from data type REAL to INT.

You can also use the analog outputs for digital control with pulse width
modulation as well. The SEL() function can be used for converting the
digital signal into analog. The conversion takes place as follows:

Pulse width modulation Analog outputs
Data type | BOOL INT
Value 0, 1 0, 32767
range

The exact configuration of the LCRPWM() function block is explained in
the online help. The length of the period t_period of the pulse width
modulation can be 1.0 s for the heating control action and 10.0 s for the
cooling control action. About 1/10 of the period is usually used as the
minimum pulse length t_min_pulse.

Set the set temperature to 50 degrees so that an overshoot doesn't

exceed the maximum temperature and activate the overtemperature
protection.

= TM261 Closed Loop Control with LOOPCONR

B&R Simulation Model 4SIM.00-01

Notes

Closed Loop Control with LOOPCONR TM261

B&R Simulation Model 4SIM.00-01

Notes

TM261 Closed Loop Control with LOOPCONR

PART I

Compendium
and

Reference work

(A theory-oriented approach)

Closed Loop Control with LOOPCONR TM261 H

Dynamic Systems

8. DYNAMIC SYSTEMS

8.1 Motivation and definition

Closed loop control deals with influencing objects in a specific, targeted
manner. The object (also known as the controlled system, system or
process) is influenced in such a specific, targeted manner as to produce a
desired behavior.

The variables that affect the system are called input variables. Input
variables that are used to influence the system are known as manipulated
variables or control actions; input variables that are beyond our control
are known as disturbance variables. The system behavior can be
approached via the output variables of the monitoring process. Output
variables that are determined through measurement are known as
measurement variables.

—>
—> ”
2 System ¢
>
e

Fig. 17 Dynamic system

A system is considered dynamic if the output variables depend not only on
the current value of the input variables, but also on their past. If the output
variables depend only on the current value of the input variables, then the

system is considered to be static.

In accordance with this definition, controlled systems as well as controllers
(with integral element) and even control loops are generally dynamic
systems.

Influencing a dynamic system in a targeted manner demands a certain
degree of knowledge about its dynamic behavior. Dynamic systems can be
described using mathematical models (model equations).

As the name itself implies, models are only approximated model notions of
reality. It is the art of the engineer to create the simplest possible yet
sufficiently accurate model containing the relevant properties of the real
system.

The more accurate information you have about the behavior of a real
controlled system (i.e. the more precisely the mathematical model
corresponds to the real behavior of the system to be controlled), the more

TM261 Closed Loop Control with LOOPCONR

Dynamic Systems

accurately you can impress a desired behavior upon that controlled system
(can this be controlled).

Differential equations are an important part of mathematical models in
technical systems because several physical laws of nature are formulated
mathematically using differential equations (e.g. in mechanics,
thermodynamics and electrical engineering).

8.2 A mechanical example

Fs

Fig. 18 Spring and mass system

A body with the mass m [kg] is hanging from a spring with the spring
constant k [N/m], i.e. the following formula applies for the action of force
on the body:

Fe =-kx,

That means that the spring is relaxed at the position x=0. Movement of the
body is decelerated by a speed-proportional attenuator with the
attenuation constant d [Ns/m], i.e. the following formula applies for the
action of force on the body:

whereby v=x is the speed of the body. Additionally, the following
gravitational force:

Closed Loop Control with LOOPCONR TM261

Dynamic Systems

Fe =mg

acts on the body with the gravitational acceleration g [m/s?] and a
positioning force F, [N].

The movement of the body is only possible in x-direction. Other actions of
force (e.g. air friction, etc) are neglected.

The principle of linear momentum (second Newtonian axiom) sets the
relationship between the resulting acceleration and the sum of the active
forces:

mx=F. +Fy — Fg + Fq
When written as a system of first-order differential equations:

X=V

\'/:%[— kx— dv— gm+ F] Fa 1

If there is interest in the position of the body, then it is selected as system
output variable:

y=X

8.3 A thermal example: Extruder zone

Fig. 19 Extruder zone

A metal block with melted plastic flowing through it (mass m [kg], specific
thermal capacity ¢ [J kg™ K], emissivity € [1] and surface A [m?]) is
tempered by a heater with the thermal output QH [W] and a cooling unit

with the cooling capacity Q. [W].

TM261 Closed Loop Control with LOOPCONR

Dynamic Systems

The temperature at the center of the block T is measured using a
temperature sensor. The extremely simplified assumption is made that the
entire block has the homogeneous temperature T.

The heat transmission to the environment via convection and thermal
conduction is:

QK :aA(T _To)r

whereby a [W m™? K] is the heat transfer coefficient and T, [K] is the

ambient temperature. The heat transmission to the environment via
radiation is:

Qs = ‘EUA(T4 _To4) ’

thereby o [W m?2 K™*] is the Stefan-Boltzmann radiation constant and € [1]
is the emission coefficient. The heat transmission from the melted plastic

to the metal block is QD [W]. This value cannot be measured and therefore
represents a classic disturbance variable for the controller.

The first law of thermodynamics sets the relationship between the
dissipation of the body's internal energy and the sum of the acting thermal
flows

E:mCT:QH _QC_QK _QS+QD' Eq. 2
8.4 Characteristics of dynamic systems

8.4.1 Time invariance

A system is consider to have time invariance if temporal shifting of the
input variables by the time span T results only in a temporal shift of the
output variables by the same time span T.

The spring-and-mass system as well as the extruder zone are both time
invariant systems. One way to achieve linear time invariant systems is to
linearize non-linear systems along trajectories.

8.4.2 Linearity

The superposition principle applies to linear systems: The following
equation:

y, =G,

Closed Loop Control with LOOPCONR TM261

Dynamic Systems

is the system's response to the input signal u, and the following equation:
y, =G,
is the system's response to the input signal u,. If

ay, + By, =GHayu, +[,u,),
then the system is linear.

Linearity says that the system behaves the same at every operating point.
In this case, a operating point is determined by a specific value of the
controlled and manipulated variables. A system is exactly linear when it
has the same transfer function at every operating point.

The model of the extruder zone from section 8.3 would be linear if the heat
lost via radiation could be neglected relative to the heat lost via convection.

For the realistic numeric values T=200°G T, =25°C a =8W m?K?, ¢ =

0.7, and o =5.67e-8 W rif K™, the following equation results for the ratio of
heat loss:

& :M = 12’
QK a(T_To)

That means that in this case, there is a higher proportion of radiation and
linear system behavior cannot be expected.

8.4.3 Single and multi variable systems

A system with just one input variable and just one output variable is
considered a single variable system. A multivariable system has more than
one input and output variable.

Temperature control for the extruder zone from section 8.3 is a
multivariable system, even though it has just one controlled variable
(output variable of the dynamic system), because there are two control
actions (input variables). Each control action has a separate transfer
function.

8.4.4 Stability

There are different definitions of stability. BIBO stability evaluates the
system's transfer behavior: A system is BIBO stable (Bounded Input
Bounded Output), if it responds to limited input variables with output
signals that are also limited.

TM261 Closed Loop Control with LOOPCONR

The thermal example in section 8.3 is BIBO stable because the heat
transmission to the environment stabilizes the system to specific
temperature levels for limited control actions.

The mechanical example from section 8.2 is BIBO stable, if the damping
constant is d > 0. The damper converts kinetic energy to frictional energy
(heat). The system is not BIBO stable if d = 0, because the output variable
can increase beyond all variables when there is limited excitation with
resonance frequency.

Excitation with the resonance frequency can destroy the system
(resonance catastrophe) even for non-zero, but minor damping. The best
known example of a resonance catastrophe is the collapse of the
suspension bridge in Angers in the year 1850, triggered by 730 French
soldiers marching lock-step across the bridge. 226 soldiers were killed in
the incident. On the other hand, the collapse of the Tacoma Narrows
Bridge (http://www.ketchum.org/bridgecollapse.html) was caused by
aerodynamic-induced wobbling instability instead of forced resonance.

A positioning drive with the controlled variable position x (equal to the
output variable of the dynamic system) and the manipulated variable drive
torque M (equal to the input variable of the dynamic system) is not BIBO
stable because the system represents the output variable x through
doubled integration of the input variable M. This system's transfer function
is (without considering frictional torques, etc.):

X(s) _ R

M(s) I’

G(s) =

whereby R is the radius subject to the torque and | is the drive's total
moment of inertia.

Chemical chain reactions represent another example of non-BIBO-stable
systems.

8.5 Description methods

8.5.1 Description in the time domain (state space)

In addition to the knowledge of the input variables uy, ..., 4, and the output
variables y; ..., ¥, the state variables x; ... ¥ must also be known in order to
describe a dynamic system in the time domain.

Together with the input variables, the state variables uniquely describe the
curve of the output variables. The number of state variables n is referred to
as the dimension (or order) of the system and is equal to the number of
first-order differential equations required to describe the system.

Dynamic Systems

The term "time domain" indicates that the state equations are differential
equations in time and that all input, state and output variables are time
functions (time signals).

The mechanical example from section 8.2 has two state variables (the
position x and speed v of the body), one input variable (the positioning
force Fs) and one output variable (the position x of the body).

The thermal example from section 8.3 has just one state variable (the
temperature of the metal block T), two input variables (the thermal output

QH and the cooling capacity QC) and one output variable (the temperature
of the metal block T).

A higher system order allows for more complex system behavior. In
principle, a first-order system (e.g. a PT, element, e.g. single low pass) is
not capable of oscillation. A second-order system could be capable of
oscillation. A chaotic system is at least third-order and non-linear.

The description in the time domain is useful for finding stationary operating
points in systems. These are found by zeroing the derivatives of the state
variables:

The stationary operating points are taken from equation 1 for the
mechanical example from section 8.2:

O=v
O=%[— kx— dv— gm+ F]

for

x:—FS _gm

Eq. 3
k

Due to the gravitational force, the body will occupy the following position if
there is no positioning force:

Xy =—~—

k

Equation 3 can be used to calculate a feed-forward for the positioning
force:

Fis = gM+ KX,

for positioning to the position x=Xxg,.

TM261 Closed Loop Control with LOOPCONR

Dynamic Systems

Task: Calculate a feed-forward (under the premise that the radiation heat

transmission to the environment can be neglected, QS =0), to temper the

extruder zone (from section 8.3) through which no material is flowing

(QD =0) to the temperature Tset. Which deviation from this set temperature

results when this extruder zone is operated with this feed-forward without
superposed control and when a heat transmission occurs from the material

to the zone of QD during operation.

8.5.2 Description in the frequency domain (transfer behavior)

If all of the system equations (state differential equations and equations for
the output variables) of a dynamic system are linear and time invariant,
then these equations can be subjected to the Laplace transformation.
Algebraic equations in the following new complex variable result from the
differential system equations in time:

s=a+tja,

whereby « =27f can be used as angular frequency for the input or output

signals. The quotient from the output signal and the input signal of a
system:

G(s) :%

is known as the transfer function and describes, which frequency spectrum
of the output signal y(s) the system can use to respond to the frequency
spectrum of the input signal u(s).

The view of a system in the frequency domain is a view of the transfer
behavior. It sets the relationship between frequency spectrums of input
and output signals with each other.

The relationship between input and output variables is calculated from the

following equation for the mechanical example in section 8.2:

X:%[—kx—dx—gm+ FS]. Eq. 4
This equation is affine (and therefore non-linear!) in x and therefore cannot

be subjected to Laplace transformation. The following variable
transformation:

X=X + X,

Closed Loop Control with LOOPCONR TM261

Dynamic Systems

. m . . .\
with x, = _gT (the new coordinate x, now starts at the stationary position

of the mass without affecting the positioning force x,), is calculated from
equation 4, whereby X =X and X, =X:

, _ 1 :
X :E[_ kx, — ¥, + Fs]'
This equation is linear. The Laplace transformation is:

ms*x, (s) + dsx (5) + kx (s) = Fs(9) -

The transfer function from the input variable positioning force to the output
variable position x; is a PT, element of the form:

= . Eq. 5
Fo(s) ms +ds+k K

A transfer function can be represented in a Bode diagram. The magnitude
characteristic in the Bode diagram indicates (in [dB]) how the frequencies
contained in the system's input signal are amplified and weakened. The
phase characteristic of the Bode diagram indicates (in [°]) which phase shift
in the frequencies contained in the input signal pass through the system.

Fig. 15 shows the Bode diagram of the transfer function equation 5 for the
parameters m = 1 kg, d =2 Ns/m, k = 10 N/m.

H TM261 Closed Loop Control with LOOPCONR

n
£
[T}
e
N
>
n
2
=
©
c
>
(@)

Bode Diagram

(ap) spnuubep

-135----

(Bap) aseuyd

10

10

10

Frequency (rad/sec)

(s?+2s+10)"

Fig. 20 Bode diagram of the transfer function G(s)

For the detailed analysis (oscillation capability, natural frequency, resonant

rise, etc.) of a second-order delay element (PT,), please refer to the

academic literature (e.g. W. Haager: Regelungstechnik, ISBN 3-209-00928-7

—in German).

Closed Loop Control with LOOPCONR TM261

Controlled Systems

9. CONTROLLED SYSTEMS

As discussed already in section 8, a system which must be controlled can
be more accurately controlled when you know more about its behavior.
Mathematical models are used to describe a system which must be
controlled (e.g. transfer functions).

A mathematical model can be created by establishing a theoretical model
and/or carrying out experimental identification.

9.1 Establishing a model

When establishing a theoretical model, the mathematical model of the
system to be controlled is derived from the basic laws of physics (see
examples in section 8). This produces detailed information about the
system:

» Basic type of system behavior
* Influence of all system parameters on its behavior

If some of the system parameters are unknown (which is often the case),
then an inference can be made based on the basic type of system behavior,
but the coefficients in the transfer function cannot be calculated.

For the extruder zone from section 8.3, neglecting the heat transmission to
the environment (via radiation) with the temperature difference compared
to the environment, :

T,=T-T,

results in the transfer function of the heating control action (PT, element):

1
G(S) — Tl(s) - kS — a A)
Ou(9) 1+Tes ,, Mt _
a A

The system gain:

_ 1
S alA

is reduced, the greater the heat transmission coefficient and the surface of
the zone. The time constant:

mlc
T, =—— =mlek
¢~ LA s

TM261 Closed Loop Control with LOOPCONR

Controlled Systems

is larger, the greater the thermal capacity mic of the block and is linearly
proportional to the system gain.

9.2 Identification

When dealing with complex controlled systems, a theoretical model cannot
be established or cannot be determined within a reasonable amount of
time. A model of the system to be controlled can then be determined using
an experimental approach with identification. To do this, the system is
excited with specific input signals and the reaction of the system is
measured from which the system's transfer behavior is then concluded.

Fig. 21 shows the response of a real extruder zone to a jump in the heating
manipulated variable from 30.5% to 61.0% at the time pointt = 2000 s The
steps response of a PT, element is shown with identical gain and rise time
for comparison.

2400 T T T T T T

2300

2200

2100

1°C]

<~ 2000

- PT1element

—_
©
o
(@}

_-extruderzone

—_
e}
o
(@)

Temperature [0

1700

1600

1500

1400 1 | 1 1 1 |
0 2000 4000 6000 8000 10000 12000 14000

Time [s]

Fig. 21 System identification with step response

It can be seen clearly that the real system behavior deviates considerably
from the PT, behavior (determined by establishing a theoretical model).
The discrepancy is due to the extremely simplified model assumption that
the entire block has the homogeneous temperature T. The thermal

Closed Loop Control with LOOPCONR TM261

Controlled Systems

conduction in the metal block results in a dead time (thermal waves have a
finite velocity of propagation) and a higher-order delay in the real system
behavior.

9.3 An important type of controlled system

Many industrial controlled systems have non-periodic (non-oscillation-
capable) higher-order delay behavior (in some cases with additional dead
time). The transfer behavior of such systems can be approximated (Fig. 22)
using a first-order low pass with dead time:

G(s) = s &b
1+T,s

2400 T T T T T T 32768

300 T2=230°C

2200

2100F -

N
o
o
o

1900

16384

Y
(o]
o
o

Temperature [0.1°C]
Manipulated Variable [1]

1700

1600

1500

0 2000 4000 6000 8000 10000 12000 14000
Time [s]

1400

Fig. 22 Approximation of a system using a first-order low pass with dead time

The manipulated variable Y; is first connected to the system to be
controlled (in this case Y, =10000), which the system maintains at the

desired operating point T; (or close to that point). If changes to the
controlled variable can no longer be detected, then a manipulated variable

jump:

Y, =Y, +AY

TM261 Closed Loop Control with LOOPCONR

Controlled Systems

is applied to the system to be controlled (in this case AY =10000) and the
characteristic of the controller variable (process reaction curve) is recorded
until once again no changes to the controlled variable can be detected and
a new stationary operating point T, has been set.

The dead time (dwell time) Ty and the rise time Tg are determined from the
intersection of the reversal tangent and the value of the controlled variable
before the step / after the step. The system gain is calculated as follows:

_L-T _£
Y,-Y, AY’

Ks

In the event that the step response cannot be recorded until a final
stationary value T, has been reached for the controlled variable (i.e. the
stepping attempt is prematurely aborted), then neither the rise time nor the
system gain can be determined. If the step response is aborted after
reaching the inflection point, then the maximum slope T, of the

controlled variable in the inflection point can be determined.

The system to be controlled is calculated as follows for the step response
from Fig. 17:

6o = 0.085 s
(1+12500%) ({1 + 5000%)

when using this method, which results in an approximation with:
ks =0.085 [0.1°C /1]
T, =2300 g
T, =305 [3]
T, =037 [01°C/s]

There are simple formulas used to make the settings for controllers from
the PID family (section 11.2) for these types of system models (PT,T;
behavior).

Closed Loop Control with LOOPCONR TM261

The Closed Control Loop

10. THE CLOSED CONTROL LOOP

10.1 The basic principle of closed loop controllers

Controlling via closed loop control is automatically influencing a technical
process (plant, system or controlled system) in a specific, targeted manner.
Unlike open loop controlling, this is a closed loop, which means that the
variables (manipulated variables) that influence the process are
independently established with suitable control mechanisms (actuators)
from measured process variables instead of being specified only externally.
Closed loop control deals with the (mathematical) description of such
control processes and the targeted design of closed loop controllers in
such a manner so that these control process can be carried out as desired.
The basic principle of every closed loop controller is the negative
feedback (inverse feedback) from the variable that must be controlled.

controller ——— plant >

Fig. 23 Closed loop control

— feed forward > plant >

Fig. 24 Open loop control

10.2 Block diagram

A block diagram is the representation of a technical system (e.g. a control
loop) using function blocks. The function blocks are connected to each
other via defined inputs and outputs.

control motor
set-actual voltage voltage
value compare
| power _ speed
controller > » motor >
set value converter
actual value speed |
controller

Fig. 25 Block diagram

TM261 Closed Loop Control with LOOPCONR

The Closed Control Loop

X X X
_ G4 72, Gy = x3 = Gax2 = G2 G1xq
X1 X2
G4 " X2 = (G £ Gy) x4
G
w
. G X x=_01
17G,G,
G2
w - G1 Gy X L —G1G2 w
' 17G,G,

Fig. 26 Calculating with block diagrams

10.3 The standard control loop

Fig. 27 shows the block diagram for a standard control loop with the
following elements:

e Controlled system: the system to be controlled (process or
system).

e Controlled variable: the variable to be intentionally influenced by
the controller (output variable of the controlled system or actual
value)

» Reference variable: set value of the controlled variable (e.g.
specified by operator)

Closed Loop Control with LOOPCONR TM261 57

The Closed Control Loop

* Measuring element (sensor): provides the controller with a
measurement value of the controlled variable (typically via an
input module)

* Control deviation: difference between a reference and controlled
variable (between set and actual value)

e Controller: uses the control deviation to establish a
corresponding signal, to affect the controlled system (typically
via an output module)

» Actuator: the connecting element between the controller, which
generally only provides weak signals, and the system to be
controlled, which usually requires strong signals to have an
effective influence. The output variable of the actuator is the
manipulated variable.

+ Disturbance variable: describes the influence of non-measurable
variables, which affect the control loop

disturbance

control deviation manipulated variable
variable
set value / \ actual value
controller » actuator plant >

measuring |

device
Fig. 27 Standard control loop
Description
X Controlled variable (actual value)
w Reference variable (set value)
e Control deviation e = w - X
y Manipulated variable
z Disturbance variable
R(s) Controller transfer function
G(s) Transfer function for the system to
be controlled

The measuring element and actuator are generally assigned to the
controlled system and drawn as a single block. As a result, the controlled
variable is not the actual physical variable that must be controlled, e.g.
pressure (in Pascal or bar) in a pressure controller, rather it is the
corresponding measurement signal from the input module (e.g. as integer
with a value range 0 - 32767). Likewise, this means that the controller

TM261 Closed Loop Control with LOOPCONR

The Closed Control Loop

output is the same as the manipulated variable (e.g. as integer with a value
range 0 - 32767). The resulting block diagram for the control loop is shown
in Fig. 28.

> > R(s) EE— G(s) —>

Fig. 28 Standard control loop I

10.3.1Transfer function of the open loop

The transfer function of the open loop (without feedback) is:

L(s)=R(s) [G(S) .

10.3.2Reference transfer function
The transfer function of the closed control loop (reference transfer
function) is:

T(s) = L(s) _ R(s)[G(s)
1+L(s) 1+R(s)[BG(s)’

A 'reference (variable) design' involves impressing a desired reference
transfer function on a control loop. Ideally, T(s) = L However, this cannot
be achieved due to the low pass character of real systems.

10.3.3Disturbance variable transfer function

The disturbance variable transfer function is calculated as follows:

1

T = RemE

Ideally, T,(s) =0. However, this cannot be achieved either. A 'disturbance
(variable) design' involves minimizing the disturbance variable transfer
function.

When comparing T(s)and T,(s), it becomes evident that a controller design
in the standard control loop is always a compromise between a set-point
tracking design and a disturbance rejection design because both transfer

functions are determined by selecting a controller R(s) In principle, a
disturbance rejection design provides a large number of more dynamic

Closed Loop Control with LOOPCONR TM261

The Closed Control Loop

controllers, which compensate for disturbances better, but also exhibit
considerable overshoot when reference variable jumps occur.

1620 T T T T T T T T T

1600

- setvalue
- disturbance variable controller Ri(s)
- reference variable controller Rz(s)

1580

1560

i

&l

I

(@]
T

—_

(&)

N

o
T

Temperature [0.1°C]

1500

1480

1460

| | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time [s]

1440

Fig. 29 Comparison of the set-point tracking behavior of a set-point controller and a disturbance rejection
controller in the standard control loop

Fig. 29 shows a comparison of the responses to a reference variable jump
in a standard control loop with the system to be controlled:

0.085 05

G(s) =
(1+12500%) ({1 + 5000%)

I

and a disturbance rejection controller:

1
s) =8861[11+
RO [é 7320%

+128I35j
and a set-point tracking controller:
1
R,(s) =5317011+ ——— +153[(% |.
23008
As a comparison, Fig. 30 shows responses from the same control loop to a

disturbance variable jump.

TM261 Closed Loop Control with LOOPCONR

The Closed Control Loop

1520 T T T T T T T T T
- set value
1500 '\ 7 -disturbance variable y
- reference variable controller Rz(s)
- disturbance variable controller Ri(s)
1480 - NG ‘ T SRRETERS :
o
S
51460 ‘ ‘ e CRRREIRRAEES :
o}
Q.
£
[&]
" v
TAAQ -t Tl -
14201 SRR | EEEEEEEEEE LR : -
1400 | | ! ! ! ! ! ! !
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time [s]

Fig. 30 Comparison of the disturbance rejection behavior of a set-point tracking controller and disturbance
rejection controller in the standard control loop

In section 12.4, the standard control loop will be expanded in such a
manner so that the reference and disturbance variable transfer functions
(within certain limits) can be influenced separately.

10.4 Characteristics of closed control loops

10.4.1Characteristics in the time domain

Simple characteristics from the step response are used to evaluate the
quality of a set-point tracking controller's timing:

Closed Loop Control with LOOPCONR TM261

The Closed Control Loop

x(t)
A
reversal tangent
/
Xmax 7 L
/
T / 0*Xe
« 9/
X L :
¢ /
/
!
W
>t
T, >

Fig. 31 Step response characteristics

* Transient overshoot o: difference between the maximum value of
the step response and the final stationary value, based on the final
stationary value (usually specified in percentage)

* Dwell time T,: calculated from the intersection of the reversal
tangent of the first rise with the time axis

» Rise time 7;: the time difference between the intersections of the
reversal tangent of the first rise with the time axis and the final
stationary value

* Remaining control deviation e.: the difference between the set value
and final stationary value of the actual value
10.4.2Characteristics in the frequency domain

The gain crossover frequency «. of the open loop is the intersection of the

phase characteristic with the 0dB line. The gain crossover frequency
divides the frequency domains that are amplified/weakened by the open
loop.

TM261 Closed Loop Control with LOOPCONR

The Closed Control Loop

Bode Diagram
40 i S S A i S S A |

30k : : ¥

20 I:-

Magnitude (dB)
o
1

20} : : _ W -

30} : : . : }

Phase (deg)

180 H H HEHEHH | H i i
10 10 10 10
Frequency (rad/sec)

Fig. 32 Gain crossover frequency and phase margin

The phase margin ® [°] of the open loop is of considerable importance to
the stability of a control loop (with prevalent stable system to be
controlled). The phase margin is the distance of the phase characteristic
from -180° at the gain crossover frequency (Fig. 32):

®=arglL(jw.)) +180C:

The closed control loop is stable if the phase margin @ of the open loop
is positive.

A thinking exercise: The linear open loop L(ja) is excited using a
sinusoidal input variable with angular frequency «. The output variable
then also begins to oscillate in a sinusoidal pattern with an identical
angular frequency «, but different amplitude and phase. The phase shift
compared to the input variable is negative in real systems (with low pass
character).

Closed Loop Control with LOOPCONR TM261

The Closed Control Loop

(/\/\f\

@ wit) 1 h\/\/\/\ M vV
L(jo) >

Fig. 33 For the thinking exercise

Now, if there is an angular frequency «, for which the phase shift is exactly
-180°, then the returned signal in item 2 has the same phase length at the
summing point as the input signal in item 1 because of the signal inversion
(due to the negative sign).

If the returned signal in item 2 also has the same amplitude as the input
signal in 1, then the system does not detect any change when the switch is
transferred, thereby causing the existing continuous oscillation to maintain
itself. As a result, the feedback control system (the closed control loop) is
located right at the stability limit.

If the gain of L(ja) is less than 1 (i.e. |L(jw)| <1) at a phase shift of -180°,

then the signal in item 2 is indeed in-phase with the input signal, but its
amplitude is smaller. That is why the amplitude of the oscillation is
decreased when the switch is transferred (closing the control loop). In this
case, the closed control loop is stable.

If the gain of L(ja) is greater than 1 (i.e. |L(ja)| >1) at a phase shift of -

180°, then the signal in item 2 is indeed in-phase with the input signal, but
its amplitude is greater. The amplitude of the oscillation is increased
because of the feedback when the switch is transferred (closing the control
loop). In this case, the closed control loop is instable.

10.4.3Relationship between characteristics in the time and frequency domain

The following applies to the relationship between the phase margin of the
open loop @ and the transient overshoot U of the closed control loop:

@[]+ i[%] = 70 Eq. 6

TM261 Closed Loop Control with LOOPCONR

The Closed Control Loop

The phase margin of the open loop is a measurement for the oscillation
tendency of the closed control loop and measures the distance to the
stability limit.

The relationship shown above (Eq. 6) applies precisely to control loops,
whose closed loop exhibits oscillation-capable PT, behavior. Experience
has shown that this formula can also be applied as a guide for other control
loops.

Fig. 32 shows gain crossover frequency and phase margin in the Bode
diagram for the open loop from:

0.085
G(s) = '
(1+125003) {1+ 50003)

and

R(s) = 88.61E€1+ 4
73208

+128E‘5}.

The phase margin is ® =45°. According to the empirical formula shown
above, this would indicate an overshoot percentage of U =25%. An actual
overshoot of U1=2%6 can be read from the step response in Fig. 34.

1600 T T T T T T T T T
1580 F — % , , o
1560 |- : /\ - : ,]
1540 F = — , , -
21520 ; , , , B
=) - set value
(0]
3 1500} L . - actual.value .- o g SR
©
o)
g
S 1480 - : ' : : o
1460 - ‘ . - ‘ ‘ S s T
1440 , : , , -
1420 F , — , , -
1400 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time [s]

Fig. 34 Step response of the closed loop

Closed Loop Control with LOOPCONR TM261

The Closed Control Loop

The following applies to the relationship between the gain crossover
frequency a. of the open control loop and the rise time of the closed

control loop T;:
w. O0g =15

The gain crossover frequency . of the open control loop is an

approximate measure for the spectrum of the open control loop and
therefore also for the speed of the closed control loop.

The formula shown above has also proven itself in practical application,
e.g. extract the gain crossover frequency @w. = 0.00305rad/sfrom Fig. 27 and

the rise time T; = 476sfrom Fig. 29. The result is @, [T; =1.451for this

control loop, which is in strong agreement with the empirical formula
shown above.

TM261 Closed Loop Control with LOOPCONR

Controller and Controller Setting

11. CONTROLLER AND CONTROLLER SETTING

11.1 PID controller

The controllers from the PID family (P/PI/PID) are the most important
controller types for automating industrial processes. Nearly 95% of all
industrial controlled systems can be sufficiently stabilized using a
controller from this class.

, 1 .1 Yi
Tn S
e
— ke > 1 Ye Y
— Tv-s Yo

Fig. 35 Block diagram of the ideal PID controller

The following is an ideal transfer function for a PID controller:

R(S) =k, + K4k, 3= kp[1+
S

L ois, |,
T, 5

N

The P-element produces a manipulated variable proportional to the control
deviation e(t):

Yp (1) = ke (D).

The I-element produces a manipulated variable, which is proportional to
the temporal integral of the control deviation:

V.0 =22 e .

Closed Loop Control with LOOPCONR TM261

The integral action time T is the time span, which a constant control error

must meet for the I-element to generate the same manipulated variable as
the P-element.

If a system, which is to be controlled, does not contain an integral
element, then a remaining control deviation can only be prevented using
an l-element in the controller. An I-element lowers the stability of a
control loop and causes overshoot. The smaller the integral action time,
the stronger the effect of the I-element.

The D-element produces a manipulated variable, which is proportional to
the temporal derivative of the control deviation:

Y, (t) =k, T, [&().

The derivative action time T, indicates the time span, which an increasing

control deviation of 0 with a constant gradient must meet for the P-element
to generate the same manipulated variable as the D-element.

A D-element increases the speed and improves the stability of a control
loop. A larger integral action time increases the effect of the D-element.

The proportional gain k. influences all three elements of a PID controller
and is decisive in determining the dynamics and oscillation-tendency of a
control loop. The rise time becomes smaller if the proportional gain is
increased (faster). The phase margin becomes smaller (destabilizing) if
the gain crossover frequency is increased (faster).

The D-element is generally implemented as filtered derivative unit because
an ideal derivative unit cannot be realized. The following is the transfer
function of a true PID controller:

T
R(S) =ko| 141+ S|
T, 05 1+s[T,

Fig. 37 shows the Bode diagram of an ideal and true PID controller.

Controller and Controller Setting

Xalt)

kp(1+ —)

T
Te

ke

e .
> e >

Tn Te

Fig. 36 Step response of a true PID controller

Bode Diagram
90 T — T T — T T T

80—

10 _ -ideal

60

Magnitude (dB)

50

40

30 i i P S |

90 F

45|

Phase (deg)
o
T

90 E R i i]
10" 10° 10 ° 10 10°

Frequency (rad/sec)

Fig. 37 Bode diagram of a true PID controller

The PID controller function blocks LCPID() and LCRPID() in the Automation
Studio control technology libraries contain numerous extensions that are
important for practical application (anti-windup, consideration of feed-

Closed Loop Control with LOOPCONR TM261

Controller and Controller Setting

forward variables, differentiator mode, etc). Detailed information can be
found in the extensive documentation in Automation Studio's online help
files.

11.2 Controller setting

11.2.1Setting guidelines according to Chien, Hrones and Reswick

The setting guidelines lines according to Chien, Hrones and Reswick are
suitable for controlled systems that are not capable of oscillation with first
or higher-order delay and an additional dead time. A first-order delay
element with dead time is used as system model:

G(s) = Ks g
1+Tgs

The three parameters system gain kg, rise time T; and dead time (dwell
time) T, are determined (as shown in section 9) from the step response of

the open loop ('process reaction curve') according to the reversal tangent
procedure.

The control parameters are determined depending on the system
parameters, the control type being used and the desired overshoot
behavior (0~0% is equal to a non-periodic behavior) with the following:

K = To _ . AY :
ks O, T, 0O,
Set-point tracking Disturbance rejection
Controller design design
0~ 0% 0~ 20% 0~ 0% 0~ 20%
P Ko 03[k 0.7k 03[k 0.7[k
Pl Ko 035[k 06(k 061(k 0.7k
T, 12[T, T 41T, 23T,
PID Ko 06k 095(k 095(k 12(k
T, T 135[T, 2400, 200,
T, 05T, 047(T, 042(T, 042[T,

In the above table it is evident that all three parameters of the PT,T; system
model are necessary for a set-point tracking design.

70 TM261 Closed Loop Control with LOOPCONR

Controller and Controller Setting

In accordance to the setting guidelines of Chien, Hrones and Reswick, the
controllers R1 (non-periodic disturbance rejection design) and R2 (non-
periodic set point tracking design) from section 10.3.3 were calculated for
the system approximation:

é(s) — 0.085 I}_3053
1+230(s
of the system to be controlled:
G(s) = 0.085 p-0s
(L+125003%) {1+ 500C%)

from section 9.3. The respective responses from the closed control loops
to jump-causing changes in the reference and disturbance variables are
shown in Fig. 29 and Fig. 30.

11.2.2Setting guidelines according to Ziegler and Nichols

Ziegler and Nichols are the pioneers of control setting procedures and
published a method in 1942 for setting PID controllers in the closed loop
based on empirical analyses:

e The controller in the control loop is initially operated as true P
controller, whereby the controller gain k, is increased up to the

at which point the control loop reaches the stability limits
and sets a stationary continuous oscillation.
e The period duration T_, of the continuous oscillation is measured.

crit

value k

crit 7

e« The controller settings are produced according to the controller

type:
Controller Ko Ty T,
P 050k, - -
Pl 045(K_; 0851,
PID QGDKm 05Rm 0125nm

This method has a decay rate of the transient overshoot of D = 25%to the
target. That means that the transient overshoot of a period i to the next
period i+1 decays according to:

%1=p=025
o}

Closed Loop Control with LOOPCONR TM261 71

This method is suited for designing disturbance variable controllers, which
generally exhibit high overshoot when jumps occur in the reference
variable.

11.2.3Design in the Bode diagram

When designing the controller in the Bode diagram (frequency
characteristic method), the relationships between characteristics in the
time and frequency domain (section 10.4.3) are used to design a controller
for a desired set point tracking behavior (rise time, transient overshoot).

In comparison to the setting guidelines, this method fulfills specifications
with a high-degree of accuracy. Extensive literature is available providing
further details about this method.

11.3 Autotuning procedure

An autotuning procedure is a combination of inter-coordinated
identification and controller setting procedures, which run automatically
and are controlled by algorithms. They are the most convenient method
of controller setting for the user.

A stimulating input signal is first actuated on the system and the system's
response is recorded. The system's transfer function is determined from
the comparison of these input and output signals. A controller is then
calculated for this system in such a way so that the closed control loop
exhibits the desired behavior. After setting the parameters once, these
procedures will run online fully automatically without intervention from the
user and can be repeated at any time.

The function blocks LCPIDTune and LCRPIDTune in Automation Studio's
control-technology libraries LoopCont and LoopConR provide two different
autotuning procedures:

* Oscillation attempt: uses a periodic square-wave signal as system
excitation in the closed control loop for setting P/PI/PID controllers
and features the easiest method for setting parameters.

« Step response: uses a manipulated variable jump as system
excitation in the open control loop and offers a multitude of
possibilities for controller settings according to the desired controller
type (P/PI/PID) and behavior (disturbance rejection or set-point
tracking design, transient overshoot).

Detailed information can be found in the extensive documentation in
Automation Studio's online help files.

Supplements

12. SUPPLEMENTS

12.1 The influence of dead time

The transfer function G(s) is expanded by one dead time element with the
dead time T; to analyze the influence of dead times:

G, (s) = G(s) [&*"

Dead times in systems do not change the magnitude in the frequency
characteristic, because the following applies:

G (i) =|G(je)

however an additional phase rotation around -, :
argG, (jw) = argG(jw) = o,

Because the phase is decayed linearly with « due to the dead time, which
causes a reduction of the open loop's phase margin, every control loop
subject to dead time becomes instable at a specific amount of gain — this
becomes more frequent the larger the dead time is.

Fig. 38 shows the Bode diagram of the system transfer function:

o(s) = 0.085 s
(1+12500%) [(1+ 5000%)

for four different values of T, =0, 90, 180and 270s. Fig. 39 shows the

respective Bode diagram of the open control loop for the above systems
with the controller:

R(s) = 88611+~
7320%

+128E‘5} .

The phase margin of the open loop is ® =45, 29, 13and -3°.

The step responses of the corresponding closed control loops are shown in
Fig. 40. It is clearly evident that the controller gain for the highest value of
the system dead time T, = 270sis already beyond the stability limits.

Closed Loop Control with LOOPCONR TM261

Supplements

Bode Diagram
-20 T T " " ———

-30 : -

Magnitude (dB)
S
o
T
1

45 : : . . . -

-60 : :]

-90

2 -Ty=0s
‘g 180 - -T+=90s
£ -Tr=180s
270 b -Ty=270s
360 = L " L ! N N N T y N N : N 1 | -
10" 10 * 107

Frequency (rad/sec)

Fig. 38 Bode diagrams of a system transfer function with different dead times

Bode Diagram

40 . e . I :
30 N W : .

20 o ' : 7

Magnitude (dB)
o
T
1

30 + A . y . -

40 i

45 . e : ——e :

-TT: 0s
W Tr=90s

-T1=180s
-TT= 270s

Phase (deg)

225~

270 - - _ p
10 10 10 10
Frequency (rad/sec)

Fig. 39 Bode diagrams of an open control loop with different dead times

74 TM261 Closed Loop Control with LOOPCONR

Supplements

1800 T T T T T T T T T
1750~ -setvalue ' . ' ' AN
- TT = 0s
1700 -Tr = 90s -
- TT = 180s
1650 | - Tt =270s |
21600
S
o
31550+ .
©
Q
g
8 1500 - : // - -
1450 ‘ SRR ; g .
1400 |- : : : = -
1350 : : : - = : .
1300 Il Il Il Il Il Il Il Il Il
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time [s]

Fig. 40 Step responses of the closed control loop with different dead times

12.2 The influence of measurement errors

Fig. 41 shows a control loop with measurement error. The transfer function
of the measurement error signal is:

X9 _ “ROBO _ 1
n(s) 1+R(s)G(s)

T.(9)

and therefore corresponds exactly to the negative reference transfer
function. Thus, the controlled variable is calculated as follows:

x(s) = T(s) W(s) + T, () th(s) = T(s) [w(s) - n(s)]-

Measurement errors cannot be compensated for using a controller.
Measurement errors act like a changed reference variable and result in a
remaining control deviation.

w(s) e(s) y(s) x(s)
(- > R(s) o G(s) ? =
LG

Fig. 41 Control loop with measurement error

Closed Loop Control with LOOPCONR TM261 75

Supplements

12.3 Mixed control loop

12.3.1Disturbance variable feedforward

If disturbance variables occur in the standard control loop, then the
controller generates a corrected manipulated variable if the controlled
variable has already been changed.

If a disturbance variable can be measured and the influence on the control
loop (the transfer function D(s)) is known, then the disturbance can be
compensated for by implementing a feedforward of an additional
manipulated variable yq4. This generally will not eliminate the influence of
disturbances completely, but will often reduce it considerably.

C(s)

D(s)

Yd l
y Y X

" () - R(s) >)—>| Gls) () >

Fig. 42 Control loop with disturbance variable feedforward

A perfect disturbance variable compensation has the following form:

b(s

C(s)=- 5

12.3.2Set value feed-forward

76

If the respective manipulated variables are known for a system to be
controlled over a wide range of values of the controlled variable then this
manipulated variable (as function of the controlled variable) can
additionally be fed forward to the system in order to maintain the system in
a stationary state at these values of the controlled variable (e.g. from an
analysis like in section 8.2 and 8.3 or from empirical observation of the
system to be controlled). This set value feed-forward improves the control
loop's set-point tracking behavior.

TM261 Closed Loop Control with LOOPCONR

Supplements

> F(s)

w(s) e(s) x(s)
O > R(s) > > G(s) >

Fig. 43 Control loop with set value feed-forward

12.3.3Cascade control

Cascading the control loop makes sense if a system that must be controlled
can be divided into multiple subsystems connected in series, which have
different system dynamics (different speeds) and whose output variables
can be measured.

Wo(s) Ya(s)=wi(s) ya(s)| X;(s)=Ya(s)
—>O—> Rals) —»O—> Ruls) 1

Fig. 44 Cascade control

The reference transfer function of the inner loop is:

T(9=_ ROEB)
ST+ R(9) Gy ()

The reference transfer function of the outer loop (the entire cascade) is:

R ILACIEAC
2714 R(9) M (9) By (9)

The outer control loop specifies the set value for the inner control loop,
which has faster system dynamics. The controller design and practical
startup are both performed from the inside to the outside.

Advantages of cascading control loops:

* Improved dynamic behavior (the fast inner control loop is completely
unaffected by the slow dynamics of the outer loop)

Closed Loop Control with LOOPCONR TM261 77

Supplements

e Limits are easily implemented because the set values correspond to
the controller outputs of the higher-level controller

e Disturbances in the fast inner loop hardly influence the slower outer
loop

Air intake control

Tastroam g | ~ e Heating reg. |—> :
set room value room ! Air intake Vent Heating reg. Air intake | TAirintake dctu
> ' settings i
controller ! Tair intake setT controller Cooling reg. channel '

Tactual room value
Room >

Fig. 45 Cascaded room temperature control

Closed-loop controls for drive systems generally have a triple cascade

structure. The control concept of the ACOPOS™ servo drive is a topic of the
training module TM450.

12.4 Prefilter

78

A control loop cannot meet the highest demands in regard to set-point
tracking behavior and disturbance rejection behavior with the structure of
the standard control loop as shown in Fig. 27 and in section 10.3.

W) L ve eO—» R Gls) s

Fig. 46 shows a control loop with prefilter. The job of the prefilter V(s) is to
prevent high overshoot when reference variable jumps occur by using a

low-pass filter of the reference signal. The reference transfer function is
then calculated as follows:

\

Fig. 46 Control loop with prefilter

_V(9)IL(s) _V(9[R(9)(G(s)
1+ L(s) 1+ R(s) [G(s)

T(s)
The disturbance variable transfer function remains unchanged compared to

the standard control loop:

1

T = RemE

In this case, the controller R(s) is strongly set for disturbance variable
suppression (comparatively low phase margin of the open loop).

TM261 Closed Loop Control with LOOPCONR

Supplements

Fig. 47 shows the step responses of a control loop with a first-order low-
pass as prefilter:

1

V()= ———
(s 14T, 3

for various filter time constants T. = 0, 650und 850s.

1620 T l l l l l l T !
1600~ " reference variable .]
- without prefilter TF ='0s
1580 . ‘TF =65OS —
- - TF = 850s
1560 B
o
S 15401 .
()
5
S
L1520+ _
=
(O]
'_
1500 =
1480 =
1460 -
1440 i i i i i i i i i
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time [s]
Fig. 47 Step response of control loop with prefilter
12.5 Non-linearities

Non-linear systems have different transfer behavior at every operating
point. The non-linearity can appear in the control action or in the
autonomous system dynamics (or in both of course).

12.5.1Non-linearity in the control action

One example of non-linearity in the control action is a feed-through cooling
system, in which the valve lift (opening) is used as control action.

Closed Loop Control with LOOPCONR TM261 79

Supplements

If the non-linear characteristic of the control action is known well-enough,
then it can be compensated for by connecting the inverse characteristics in
the controller (Fig. 48).

200
| | | | | | | |
| | | | | | | |
180+ --- - Lo ___ LTk L [-
iR
160F----- e [— - — — — [
RN
140+ - - - -F - e S [
l l l l l l l : l
| | | | | | | | |
S I A e S S S A A R TR
@ l l l l l l l l l
élo@ L L ___l____l____1____d____d____4 [(PN
5 l l l l l l l l l
oop
| | | | | | | | i
60l - S S SN S S SR SR g A
l l l l l l : ‘ l
40b-- - A S U SN R, (SR T]
T
20 - - - - s 4o - — — — [
l ‘ ! l l l l l l
0 ‘ l l l l l l l l
0 10 20 30 40 50 60 70 80 90 100

Ventilhub [%]
Fig. 48 Non-linear characteristic and its inversion

A non-linearity, which occurs in every true control system and which
cannot be compensated for is the manipulated variable limitation because
real actuators only allow limited control actions.

12.5.2Linearization around a operating point

In the area of a specific operating point (provided by a specific value of the
controller and manipulated variables), every non-linear system behaves in
a linear manner for minor deviations from this working point.

12.5.3Non-linearity in the autonomous system dynamics

Heat loss via radiation in the extruder zone from section 2 is an example of
non-linearity in the autonomous system dynamics. If the non-linear
radiation level is taken into consideration, then the following calculation is
produced for the transfer function in the environment of the temperature
T, for an ambient temperature of T, =25°C:

Ks

G(s) =
(s 1+T.s

with the system gain [°C/W]:

TM261 Closed Loop Control with LOOPCONR

Supplements

_ 1
ST aA+4F W AT
and the time constant [s]:
G = mic 5 = mie k.
aA+4F A,

The effect of this non-linearity is that an increasing temperature Tg causes

the system gain to decrease and the system time constant to become
smaller. The heating control action is needed to keep the extruder zone at
the stationary temperature Tg:

QH (Ts) =aA(Ts - T,) +€UA(T; _T04)

Fig. 49 shows the characteristic curve of Q, (T) for an industrial extruder
zone.

100

90 -

80F -~

I

T0F

B0 -

5O b

40 - - - - mm oo

Heating power [%]
e

30

20F T .

i1 T R L B R |

Stationary temperature [C]

Fig. 49 Heating control action as function of the stationary temperature

12.6 Pulse width modulated actuator signals

Controlled systems with sufficient low pass character (e.g. thermal systems
with large time constants) usually connect the output variable of the
controller to the controlled system as digital signal via a pulse width
modulation (PWM) instead of an analog connection.

Closed Loop Control with LOOPCONR TM261

Supplements

This makes it possible to use fast-switching digital actuators (e.g. solid
state relay), which are much more economical than analog actuators (e.qg.
heating elements).

'CPU |
|
| . .

——C controller » PWM - : > S;/Z:Ittl:::tlgg » plant B

| y(t) y(),

L N

ADC
A)
measuring
device

Fig. 50 Control loop with pulse width modulated manipulated variable

To prevent the switching processes of the manipulated variable signal from
affecting the control variable, they must occur at such a high rate of
frequency that they are sufficiently damped by the system to be controlled,

e

S

whereby kg the stationary gain of the system to be controlled,
ws =20ryg

the switching frequency and Tg are the period duration of the PWM signal.

That means that the period duration of the PWM signal must be selected
much smaller (recommended value: factor 0.1) than the fastest system
time constant.

When dealing with actuator elements that are operated on an AC network,
make sure that inaccuracies do not occur due to the switching
characteristic of the actuator elements in relation to the cycle time of the
task for the modulated control of the actuator elements.

Semiconductor relays that are designed as zero-voltage switches are an
important example of this. On an AC voltage source, these relays switch on
only when the voltage crosses zero and off only when the current crosses
zero.

As a result of this switching characteristic, there can be considerable
differences on an AC network between manipulated variables calculated in
the software and the physical manipulated variable actually connected to
the system to be controlled, whereby the accuracy of the control loop is
reduced.

TM261 Closed Loop Control with LOOPCONR

Supplements

The inaccuracies have an even greater effect, the more exactly the period
durations of the voltage supply match the period durations of the
modulation (and therefore the cycle time of the task class in which the
modulation procedure is processed).

That is why task class cycle times starting at approx. 100 ms should be
used for the modulated control of heating relays on AC networks with a
mains frequency of 50 - 60 Hz (equal to a period duration of 16 — 20 ms).

y(t) y(t)
A
1 100%
0 0
y=0,2 - B y=0,5 y=0,8
Ts

Fig. 51 PWM signal

12.7 Sampling control loops

Up to now, all of our observations have required that all signals in the
control loop are continuous time functions, which can accept any real
numerical values.

In reality, the CPU processes the control algorithm only at specific discrete
points in time depending on the cycle time of the task class (sampling
time), in which the control program is located. The measurement signals
from the input modules and the manipulated variables are also sampled /
written to the output modules at discrete cycle points in time.

As a result, information is 'given away' (temporally located between the
sampling time points). Therefore, an event in the system sometimes cannot
be reacted to until the next sampling instant. This reduces the quality of the
dynamics and destabilizes the control loop (reduces the phase margin).

A far-reaching and highly effective theory (of discrete-time systems) exists
for sampling control loops regarding analysis and design.

If sampling controllers are designed using the methods presented in this
document for continuous dynamic systems, then the system to be
controlled must be sampled fast enough to be able to neglect the
destabilizing effects.

As a rule of thumb, it can be assumed that the cycle time T, of the control
task has to meet the demand:

Closed Loop Control with LOOPCONR TM261

Supplements

T.
T <ﬂ’
A 10

whereby Tnin is the smallest system time constant of interest.

Example: A mechanical construction has three resonant frequencies
(f,=20 Hz, f, =42 Hz and f, =87 Hz). f, and f, should be cancelled out

using a controlled active damper. The cycle time of the control task is
calculated as follows:

T<:L

A =00238s
10C,

Furthermore, every digital computer has just one finite computational
accuracy. Additionally, quantizations (truncations) are created by the D/A
and A/D conversion of the measurement and manipulated variables. The
magnitude of the quantization error is determined by the resolution of the
converter in the I/0O modules.

Fig. 52 shows a control loop with a digital computer.

- | |r _____________________)
I |

— I
: Wi Vi O module y(t) x(t) |
— > CPU —> D/A [*actuator—> plant > |
| converter |
| N |
| | :
: Xi | /module | x(t) | meas. :
| A/D [B
| converter dev. :
|L digital part | : plant

Fig. 52 Sampling control loop

TM261 Closed Loop Control with LOOPCONR

Procedure for Solving Control Tasks

13. PROCEDURE FOR SOLVING CONTROL TASKS

What is/are the controlled variable(s)?
What is/are the manipulated variable(s)?
Construct a block diagram.

How might the physical relationship between the manipulated variables and
the controlled variables look? What kind of transfer function might the system
have?

Can the system display instable behavior?
Record step-responses for the open loop.
Analyze the step-responses.

Calculate the controller settings.

Test the controller settings by recording step-responses at various operating
points in the closed loop.

Closed Loop Control with LOOPCONR TM261 H

Summary

14. SUMMARY

This training module discussed how to solve control tasks with the help of
the Automation Studio library LOOPCONR.

After a brief introduction to the subject area, the practical application-
oriented Part | worked to solve a few practical examples in the area of
temperature control using the controller and autotuning function blocks.

In Part Il, the topic of closed loop control was approached systematically to
gain a theoretical knowledge base for better understanding and
overcoming the demands that appear in practical application.

TM261 Closed Loop Control with LOOPCONR

Appendix

15. APPENDIX

15.1 LOOPCONR function block overview

Controller function blocks and tuning procedure:

Call Description

LCRDbIActPID() PID controller with two outputs to control opposing actuator
elements and perform integrated tuning

LCRPID() PID controller

LCRPIDpara() Manual configuration of the PID controller

LCRPIDTune() Automatically determines the control parameters with various
methods and setting guidelines

LCRSIimPID() PID controller with integrated tuning

Controller function blocks and tuning processes especially for
temperature systems:

Call Description

LCRTempTune() | Optimized tuning procedure especially for temperature systems

LCRTempPID() PID controller especially for temperature systems
Modulators:
Call Description

LCRPFM() Pulse frequency modulator
LCRPWM() Pulse width modulator

Closed Loop Control with LOOPCONR TM261 87

Appendix

Signal processing

Call Description
LCRDifferentiate() Derivative unit with filter
LCRIntegrate() Integrator with limits and set value
LCRLimit() Limiter with overrun indicators
LCRLimScal() Scaling and limiting of REAL signals
LCRMinMax() Smallest and largest peak value
LCRMovAVFIt() Floating average value filter

Call Description
LCRPT1el() First-order delay element
LCRPT2() Second-order delay element
LCRTt() Dead time element
LCRScal() Scaling of REAL signals

Function block for creating characteristic curves

Call Description

LCRCurveByPoints() y = f(x) function using coordinates

Other function blocks

Call Description
LCRContinServo() Control for a continuous servo drive
LCRRamp() Ramp generator
LCRSimModExt() Simulation model of an extruder with heating zones and
cooling circulation

88 TM261 Closed Loop Control with LOOPCONR

Appendix

15.2 Solutions to the tasks

15.2.1 Task: LCRSIimPID() P-controller

Ladder diagram: LCRSimModExt()

SimPlodExt
enSinModExt LCESimModExt act Tenp
—l I— enahle b
a00o0o
Tt _h status |
Eooooo
P
2.9

k h

o.0lz
kE

E.0

PTZ Tl

1z &
PTZ TZ

2.0
Tenp ambh

2.0
Tenp o

ma.n:i.p!i’ar_h
Alpha h
ma.n:i.p!i’ar_r_'

Alpha =

Fig. 53: LCRSimModExt() function block

Closed Loop Control with LOOPCONR TM261

Appendix

Ladder diagram: LCRSIimPID()

[z =gt]
oonz
SlimPID
en®linPID LCRE1imPID
_l H enahle e
set Tenp manipWar_h
o T
act Tenp
* status |
tuningRleoua
request addInfo |
S1imPIDTPara RDE
in — pPar

Fig. 54: LCRSIimPID() function block

Variable declaration:

e | Tope | atbue |
SimdodE st . LCRSimbodEst local memary
SlimPD | LERShmPID | local | memary
SlimPIDPars | lerslimpid_par_tvp | local memary
actTemp REAL | local | memary
_enSimtdodE | BOOL | local | memory
enslimPIC | BOOL | local | memary
maniphar_h | REAL | local - memary
_setTemp | REAL | local | memary
tuningFequ HOIMT lacal mhemony

Fig. b5: Variable declaration

The output value Y of the function block LCRSIimPID() is copied to the
manipVar_h variable and forms the manipulate variable that's fed to the
LCRSimModExt() function block as heating control action at the Alpha_h
input. The resulting controlled variable y is copied to the act7Temp
variable and fed to the LCRSIimPID() function block as the actual value at
input X.

A closed control loop results in this way.

TM261 Closed Loop Control with LOOPCONR

Appendix

Evaluating the traces:
First, we will try to find an approximate setting for the gain.

For our first attempt we have selected three different gains:

e kp= 0.5
e kp= 3.0
* kp= 8.0

and recorded the set and actual temperature and the gain.

kp= 0.5: The oscillation fades quickly, the controlled variable quiets
down quickly, and the remaining controller deviation is very large.

kp= 3.0: The oscillation fades in an acceptable time, and the remaining
control deviation is less than 10%.

kp= 8.0: The oscillation keeps going, and the control loop is unstable.

From this experiment, kp = 3.0 would be selected as the most suitable

gain.
TADGET DATA it
Z40.Ofx-pos. 137.470082 e
o g-pos. Z00.000@OO | o = E
e e S e P mi e ot e e e S e s e e s e e e P
c e e e L e e e e e e A e e
e e e ; ks
i 140._0 T - T =
oo 1oz 2 Z0d.4 E11.1
TLRGET DATA slimpid:finulationTenp ThrRie
230 Oly-mas. | 137 470052 el ! L ! g
o o i o e S e R E e e e s e e s S S e e L S s e TR R e o
= R T A e
E‘" 148 OF---==-=- : : PACAA S H e -----:--- ----------------------------------
Sl e e e mESEt SRS TR SO EHEE e LSS R RS e
el e e
a.o 10z.2 2044 3067 402.3 El1.1
'TARGET DATL slimpid: LCES1imPID 1.PIDTuns inst.processPar Fp it
i el e SO S e b (s A o ol
. Y*pﬁﬁ.D.uEDlell:lﬂ-":: R e !
3 fhe s i A e Prdmenn eTmenTes e e i HEEn e A e ol
:-E- T e e T = 3 i o 5 T =
=l ey e e = L IO T e =
fu | i 1 E 3 i v fhem s - ;
0.0 1oz, 2 Z04.4 306.7 4038, 9 Bl

Fig. 56: Approximate gain settings for the LCRSIimPID() function block

Closed Loop Control with LOOPCONR TM261

Appendix

If the oscillation fades faster when the set value changes, then the gain
can be reduced a bit.

Another experiment allows us to examine the behavior when the gain is
lower:

e kp=1

e kp=2

e kp=3

The trace shows the following connection:

The higher the gain kp, the smaller the remaining controller deviation.
However, the control loop becomes more and more unstable as kp
increases (the oscillations after the set value is changed fade more and
more slowly).

Depending on the requirements, a gain between 2 and 3 would be
selected from this experiment.

TARGET DATRE slimpid: SetTemp, 08703406, 14:78:4F it
zgn,a.xnﬁ@&-_,_:' 575_;«314:;3.13‘.33.. e - e e s e
2 G el L) e S S

190 OF-==fonmmmnemnaes s merres Ty ym— TR EErY PEE

Tnic

_ | _
=000 1933 als. 5 437 . & . EE7.0 E76.3
TARGET DATA slimpid: SimalationTeny, 08/03/06, ld:28-45 Tnit
£10.0x-pos. 676340033 . ; 0 '
l'g_h_._u-?—iﬁ'i‘-ﬁ.;_;-LSE;KQ&IJEE'E_____: ________ I !

Fomim i s]

R s

170 aE=--- --T:----.--- L _.____._:___.____.___'_.____.__%_.____._ A e s e

Tnit¥

LEQ O~ f T et R e T et
AR AR -"":""-'""--. .-.--.-?;--.----.-'--.----.--f-.----.-- -.----.----:----.----i---.----.-E---.----_--
_'|__'|_'|:|_|:| T e e A T

g0.0 193.3 3185 437.8 EE7. 1 G763

TANGET DATA s1limpid: LORS1imPID 1. PIDTune inst processPar Hp, 08/03/06, 14 7g:48
3"5’)??12&0,‘5'.'"'6_?_6'.'3'4&9'33" S = S o i W e

e U e s

L1151

2 e T oy o

e
et I oy P W e R iy e By

e s e

0.0 THEE FEC = 457 8 EE7. L ETEL 3

Fig. 57: Fine tuning gain for the LCRSIimPID() function block

TM261 Closed Loop Control with LOOPCONR

Appendix

15.2.2 Task: LCRSIimPID() controller settings according to Ziegler/Nichols

k.; and T ;, must first be determined before they can used in the table
for calculating the controller parameters.

The following example gains are shown here in Trace:

e kp= 3.0
* kp=4.0
e kp=5.0

You can see that, beginning at a gain k., = 5.0 sets a continuous
oscillation with constant amplitude and period length of T, = 12

seconds.
TARGET DATA ‘zlimpid: SerTenp . Uit
Z40. ”'-"2@&_:_43&82_9':""""":""""":""""":""'""'I"""' ¥ e
aé B B e GroomsnsEa e ErERTTeAmmpeTmoas Hemosas L e
= EEEs R R e
140, v - . : :
43,z 264 129.6 172.8 Z16.0|
TARGET DATRE slimpid: SimalationTeny it
Zzo_of i e e B
| 20 45n00zE
s eblmoadss o A T
f._lz_ooooay R e
e e e e e e e S e e S S s R B e AR S R
2 iso.ob--
e ol i
ETRG 1o 5} e | 1 ' : ' ! i !
0.0 4z.2 86.4. 1z3.6 17zl8 gle6.0.
TADGET DATA slimpid: LCRSlinPID 1. PIDTune inst.processPar. K Uitk
E 5.
=] Z .

Fig. 58: Trace P-element instability — Ziegler/Nichols

Now both parameters only need to be used in the Ziegler/Nichols
calculation table.

Control parameters
Controller type kp Tn Tv
P 2.5
Pl 2.25 10.2
PID 3.0 6.0 1.44

Closed Loop Control with LOOPCONR TM261

Appendix

We have now configured our PID controller according to the
Ziegler/Nichols method using the following values:

e kp= 3.0

e Tn=6.0s

e Tv=144s

As you can see in the Trace below, the temperature control has become
much faster and more stable.

TARGET DATL =linpid: setTenp itk
2100 Y 1 | S Sy [N SV . PSSP S (S SMRE NSRRI SRS SR MR SRS SR SRS
2BE_@p-======= ERRREEEEE Feossssas ERRREEEEE EEEEEEE ERREEEEEE IEREEEEEEE EEEEEECEE (EEEEEELEE EEEEEEEEE
--------- bt T
s 200, ; ; ; ; P Feomoooos fpecacanag fpeoeosood peomsosod
Y T FR R i R e P e e e s eoem e
E 178 Fmsesees pommee- Fmsesees pommee- Speeee e S ERCEEEeE R
= ' o R o R N R o o R
150. Tt Tttt Tt Tt 0T ; ; : ;
125. S S S S SO R s S
o.a 4.0 43.0 Tz.0 Q6.0 1z0.0
TARGET DATA slimpid: actTenp TitH
500 | | | | | | | j |

S N B e e st e

- B | P e - oo oo Fosssssss RRESLECES
R M S ol etetel et St il [Tt g oeTE e Tttt
E' 1 1 1 I 1
& R o | e R LT E --------- E ------------------- E ---------
150.0 " ~TThTTTTTTTTy Tt . e R R i j
! | = | = | ! ! !

Fig. 59: PID controller configured with the Ziegler/Nichols method

TM261 Closed Loop Control with LOOPCONR

Appendix

15.2.3 Task: LCRSIimPID() auto-tuning with oscillation attempt

Before tuning can be started with oscillation, a set value must be
specified that is close to the later working point. 150 °C is preset as the
set value in this example.

To start standard tuning with oscillation, the request input of the
LCRSIimPID() function block must be set to
LCRSLIMPID_REQU_OSCILLATE (1). Only when tuning has finished (after
changing to normal controlled operation) can request be set back to
LCRSLIMPID_REQU_OFF (0).

Trace of the tuning with subsequent automatic activation of the
controller:

actTemp Tnit sec
z00.0 : :
I e L S B T
W G @ /\ /\\ 7/\ ------------------------
- A R N f'\ o
o i
RV o (VARBVANAVARIV vvuv ____________
& i
B 1 |y e E ""'“““““T """""""" : """""""" : """"""""
10o.0 0 0 0 0
150 45._0 TE_0 105.0 135.0 1e5._0
manipWar h Tnit =sec
loo.o |
=10) i et """E"" """ o
b (=1 | il e o
4 ; -
' 1A] i i =1 """1" ["1 i iy B
5 - ;
Pl] i e """E"“ """ “"“:""
a.o 0
1.0 45.0

Fig. 60: Trace LCRSIimPID() tuning with step response

Closed Loop Control with LOOPCONR TM261

Appendix

Step response controller parameters:

I ame | Type | Scope | Yalue
% tuningFequ UDIMT local 4
=@ SimPIDPara lerelimpid_par_tvp lacal

F& v max REAL 100.0
F% +_min REAL 0.0
% kp REAL 2.37954
F% Tn REAL £.51889
F& T REAL 1.65472
L kibk REAL 0.0

Fig. 61: LCRSIimPID() tuning parameters oscillation attempt

A constant manipulated variable (Y) is set after the settling phase is
complete. This is used later for the step response.

M arme | Type I Scope | " alue
=@ SimPID LCRSlimPIC local

% enable BOOL TRUE
- W REAL 180.0
=L T REAL 180.0
% request UDIMT 1
% pPar UDIMT E372E0596
% = REAL 0.0
= Y REAL 320513
—% status JIMT 1]
% addnfo LIMT 1]

Fig. 62: LCRSIimPID() constant manipulated variable

TM261 Closed Loop Control with LOOPCONR

Appendix

15.2.4 Task: LCRSIimPID() auto-tuning with step response

Before tuning can be started with step response, a set value must be
specified that is close to the later working point. 150 °C is preset as the
set value in this example. Furthermore, the necessary manipulated
variable must also specified for the set value. In this case, we already
know that the controlled system requires a constant manipulated
variable of approximately 32% when in a steady state. Therefore, the
internal variable Y0 is set to 32 and Y1 to 45 (approximately 30% larger
than Y0) in the watch window.

To start standard tuning with step response, the request input of the
LCRSIimPID() function block must be set to
LCRSLIMPID_REQU_STEPRESPONSE (2). Only when tuning has finished
(after changing to normal controlled operation) can request be set back
to LCRSLIMPID_REQU_OFF (0).

Trace of the tuning with subsequent automatic activation of the

controller:
TARGET DATA =limspr.actTenp Tnit =sec
Z00.0 i | | |
165.0f -------}-------A R R S R i S S e SRt
D 130 S aLE R R T EETT T 4----- N e EEE LT,
- . ‘ : 0
El L | e qTmmmmmmsimmmmmmme peeeccmogeeReo00 YPeeeeeoeRensen0 pecesoeogEeaneRey
= . ‘ : ‘
GO_0Of------g-------- e Tttt Gt TTrTTTo PTTTTTTT Tt
25.0}, : : : :
o.no Ez.0 1040 15&.0 Z02.0 0.0
TARGET DATA slimspr. manipWar h Thnit sec
100.0 5 5 e 5
N e
B B s I
“ : : :
. 24 _ 0OF---7======-=----9--- - oo oo o oo - -
=} 1 i
= : i . ;
B e e [e
[, 1 B B
-1lo.af E D D D
oo Lz.0 lo4._0 1E&.0 zoa.0 zed_0

Fig. 63: Trace LCRSIimPID() tuning step response disturbance variable design

Closed Loop Control with LOOPCONR TM261 97

Appendix

To start a tuning procedure with step response, for which non-periodic
reference parameters must be determined, the request input of the
LCRSIimPID() function block is set to 4112 (see online help) . request is
only reset to LCRSLIMPID_REQU_OFF (0) once the tuning procedure is
complete. Just like before, the internal variable Y0 is set to 32 and Y7 to

45.
Trace of the tuning with subsequent automatic activation of the
controller:
TARGET D:ATR slimspyr . actTenp Tnit sec
z10. . L |
L EN N B / ---------------- S \ ---------
] : ! —
D136 e RREEEEEEEELS
TP DS S SO S IR S R S T S
g Z Z i
[e ': """""""" ‘I' """""""" :' """"""""
25. : : i
143.0 zl&.0 zgz.0 2E0.0
TARGET DATR slimspr.manipWar h Tnit sec
1000 0] 0 0
. Qp====msmesmac=s e emmmeseoeae
® BBe@poscocesdssessocs ARRRREREL R Tommmmmoereooooe- Tooosmmonmoo-ooo- SRRREEERLERERRRES
v : : : :
: A4 Ofe=====c0---co oo e e - - L r
2 e ; ; e
12.0pf--mmmmmmmeeee AR IR R -
e a a e
150 g22.0 145.0 z1l&.0 z83.0 FE0.0

Fig. 64: Trace LCRSIimPID() tuning step response reference variable design

TM261 Closed Loop Control with LOOPCONR

Appendix

Control parameters determined during the standard step response (non-
periodic disturbance variable design,
LCRSLIMPID_REQU_STEPRESPONSE (2)):

M arne | Type I Scope | " alue
E@ SimPIDPaa lerslimpid_par_typ ol

F& v max REAL 100.0
F& *_min REAL 0.0
F& kp REAL 1.83915
F% Tn REAL 7.31432
F& Tv REAL 1.28011
L& Kk REAL 0.0

Fig. 65: LCRSIimPID() PID parameters disturbance variable design

During auto-tuning with step response to determine non-periodic
reference parameters (request = 4112):

Mame | Type | Scope I Walue
=@ SlimPIDPara lzrzlimpid_par_tup local

F& v_max REAL 100.0
F& _min REAL 00
% kp REAL 116157
% Tn REAL 23.04
F& T REAL 1.52394
L& Kbk REAL 0.0

Fig. 66: LCRSIimPID() PID parameters reference variable design

The PID parameters determined with the disturbance design are
considerably more aggressive than those from the reference design.
The reference design should be used if controller behavior is desired
which reaches the set value with the least amount of overshoot.

The disturbance design should be used if the control loop should
quickly adjust for disturbances and overshoots are not of major
importance.

Closed Loop Control with LOOPCONR TM261

Appendix

15.2.5 Task: Control a temperature system (heating and cooling) using
LCRTempPID()

Ladder diagram: Initialization routine

The PID parameters are transferred to the structure connected to the
pSettings input, cooling is enabled, the delay time for the set value
implementation is set to 0.1s and the set value is set to 180°C.

0001
MOVE TempSettings.
5.4 FlDpara.Kp_h
IM —
aooz2
MOVE TempSettings.
34 FlDpara.Tn_h
IM —
0003
MOVE TempSettings.
07 PlDpara. Tv_h
IM —
0004
MOVE TempSettings.
4.0 FlDpara.Kp_c
0005
MOVE TempSettings.
45 PlDpara.Tn_c
IM —
0006
MOVE TempZettings.
1.0 FlDpara.Tv_c
IM —
0ooF
TempSettings.
enable_cooling
£y
LI
0a0s
MOVE TempZettings.
0.1 FIDSet. delay
IM —
0003
MOVE
180.0 Temp_set

Fig. 67:LCRTempPID() initializations routine

TM261 Closed Loop Control with LOOPCONR

Appendix

Regulating a temperature system with opposing manipulated variables
(heating and cooling) using the LCRTempPID() function block.

Ladder diagram: LCRTempPID()

Qoo
TempPID
LCRTempPID
enableTernpPID heatZonel
—I H enable y_heat b————
Temp_set coalZonel
Temp_set y_cool
actTemp
Temp status |
1 ¥_man
LCRTEMPRID
MODE_AUTO
mode
1 update
ADR
TempSettings
in H p=ettings
Fig. 68: Function block LCRTempPID()
Variable declaration:
I arne | Type I Scope Alttribute I Walue
LCRTERMPPID M DIMT global congtant 1
TempPID LCRTempFID lozal mnEmony
TempSettingz lcrtemp_set_twp local TnErnony
Temp_set REAL lozal TRErnany
actT emp REAL lozal mnemony
coolFonel REAL lozal mhemony
enableT empPID BOOL local Moy
heatZonel REAL local TnErnany
zone] LCRSirnkd odE wt lozal mnemony

Fig. 69: LCRTempPID() variable declaration

Closed Loop Control with LOOPCONR TM261

Appendix

Ladder diagram: LCRSimModExt()

actTemp

aooz2
zonel
LCRSimModExt
enableZonel
—| |— enable vy —
BO0000
Tt_h status
450000
Tt _c
3717
k_h
0.0151
k o
23.43
PT2_T1
1.51
FT2_T2
250
Ternp_amb
250
Terp_c
heatfanal
Alpha_h
coolZonel
Alpha_c

Fig. 70: LCRSimModExt() Function block

TM261 Closed Loop Control with LOOPCONR

Appendix

Step responses:

Description Temperature
Output temperature 25°C
1. Jump 180°C
2. Jump 183°C
3. Jump 200°C
4, Jump 170°C
Trace:
Tenp setired) actTemp(green) Tnit =sec
z10.0 i ‘ : i
i i o i
198 . 0Of-~----"" """ --- e il Eal el mo=o=os==o Pomccosocmoonosog
23 l86. 0O -----"f------- i it atdal st R il [Fooes502rm Tabt bt
“ : i i i
'E 174 OF-----q-%------- P (S DU L e U
5 e e e e -
I e Tttt FTTTmmmmmmmmmme R EEEREE R N b
150.0
a.o 6.0 E.0 102.0 144._0 lz0.0
coolZonel Tnit =sec
110.0] : : :
w : : : :
w BO.Ofooteooemeoos SRR Pt SRR Pt
E : 1 : 1
D 1 1
-10.0f ! f f o
a.a 360 RE.0 10z.0 144._0 1z0.0
heatZonel Tnit sec
110. :
- E
n ta. 5
E !
= '
-10. 0

o.o

[oh)
M
[}
=]
ra
o
(-
[}
o
o
~
N
e
[}

lz0.0

Fig. 71: LCRTempPID() set value jumps

Closed Loop Control with LOOPCONR TM261

Appendix

15.2.6 Task: Tuning a temperature system using LCRTempTune()

Ladder diagram: Initialization routine

All time-critical variables (delays, gradients and filter times) are chosen
smaller than the default value because the simulation runs faster than on
a real extruder. The tuning procedure for cooling is also enabled.

aam
MOVE TempSetting ...
0. ~.tent tp heat
M I
oooz
MOVE TempSetting ...
0.1 ..tent_tp_cool
M I
o003
MOVE TempSetting ...
05 .. T_sync_heat
— M —
o004
MOVE TempSetting ...
3 ... nt_wait_heat
M
O00a
MOVE TempSetting ...
05 ... T_sync_cool
IM I
O00e
MOVE TempSetting ...
0.1 ..cnt_wait_cool
IM
oooy
MOVE TempSetting ...
0.25 .. filter_base T
— M —
0003
MOVE
180 setTempTune
IM I
ooos
TempSettings.
enable_cooling
[
L

Fig. 72: LCRTempTune() initialization routine

TM261 Closed Loop Control with LOOPCONR

Ladder diagram: LCRTempTune()

Implementing the tuning procedure using the LCRTempTune() function

Appendix

block. The "rdyTo" outputs are linked with the "ok70" inputs.

0001
TempTune
LCRTempTune
enableTuning heatZanel
—I H enable y_heat
startTuning coolZoned
i H start y_cool
setTermpTune rdyToHeat
Temp_set rdyToHeat { }
actTemponel
Temp rdyToFree |
rdyToHeat
—I H okToHeat rdyToFreeEnd |
rdyToCool
q okToFree rdyToCoal —()—
rdyTaCoolEnd
1 okToFreeEnd rdyToCoolEnd —()—
rdyTaC ool
| | akToCool dane |
rdyToCoolEnd
H i okToCoolEnd busy |
ADR
TempZettings
in H pSettings status |

Fig. 73: Function block LCRTempTune()

Closed Loop Control with LOOPCONR TM261

Appendix

Ladder diagram: LCRSimModExt()

oaoz
zonel
LCRSimModExt
enableZane?
H H enable ¥
BO0000
Tt_h status |
450000
Tt_c
3717
k_h
0.01a1
k_c
2343
PT2_T1
1.51
PT2_T2
20
Temp_amb
20
Temp_c
heatZonel
— Alpha_h
coolZonel
Alpha_c

Fig. 74: LCRSimModExt() Function block

actTemp

TM261 Closed Loop Control with LOOPCONR

Variable declaration:

M ame I Type Scope Alttribute
TempSettings lcrtemp_set_tup lozal mhEmorny
TempTune LCRTempTune lacal TMEmary
actT empLone] REAL lacal TMEmary
coolZonel REAL local TMEMary
enableT uning BOOL local TMEmary
enableZonel BOOL local TMEmary
heatZone1 REAL local TMEmary
rdyT oCool BOOL local THEMary
rdyToCoolEnd BOOL local MEmory
rdyToHeat BOOL local TREMnOrY
zetTempTune REAL local TREMnOrY
ztartTuning BOOL local TREMnOrY
zohe] LCRSimtodE =t lozal mhEmorny

Fig. 75: LCRTempTune() variable declaration

Appendix

Trace:
TARGET DATA tune ld_ actTenpZonsel Unit sec
zz0.
180. : S—— ;
L 140, AT b Rhhhbbldy b Rhhhb by
ﬁ 100 E— ---------------- E— ---------------- E— ----------------
o - i i i
=i ; 0 0
1| i bt sl et e e e
20. E E E
.o &0 420 &0.0
TARZET DATA tune ld.coolZonel Tnit sec
110.0 ; : ; ;
o+ ; ; ; ;
p o B0.Of RN | S R R
i : : : :
= ' ' ' '
-10.0f ; : ; 5
o.a 1z.0 4.0 360 48_0 &0._0
TARGET DATA tune ld_heatZonel Unit =ec
11ia.0
Lo
o EO0.OF---
B
=
-10_0f ; ,
o.o 1.0 £4.0 3&.0 420 &0.0
Fig. 76: Trace LCRTempTune() Tuning
Closed Loop Control with LOOPCONR TM261 107

Appendix

Determined PID parameters:

M ame | Type Scope I Force | Walue
=@ TempSetings lertemp_set_typ lozal
L% enable_cooling EOOL TRUE
=N PIDpara lerternp_pid_opt_twp

% Kph REAL 54577
&% Trh REAL 234844
&% Tyh REAL 07072
% Kpc REAL 4 48779
% Tnc REAL 4 15687
% Tvc REAL 0872942

Fig. 77: LCRTempTune() PID parameters

TM261 Closed Loop Control with LOOPCONR

Appendix

15.2.7 Task: Synchronous tuning of two temperature systems using the function
blocks LCRTempTune() and LCRTempPID()

Implementation of both control loops in Structured Text.

(* ------ > init program *)

(* init user settings tuning zone 1 *)

LCRTempSetl.enable_cooling = TRUE; (* cool tuning
enabled *)

(* do not use default parameters for example due to smaller time

constants *)

LCRTempSetl.TuneSet.cnt_tp_heat :=0.1; (* seconds *)

LCRTempSetl.TuneSet.cnt_tp_cool :=0.1; (* seconds *)

LCRTempSetl.TuneSet.delta_dT_sync_heat := 0.5; (**°Clsec *)

LCRTempSetl.TuneSet.cnt_wait_heat =3 (* seconds *)

LCRTempSetl.TuneSet.delta_dT_sync_ cooI =0.5; (* °Clsec *)

LCRTempSetl.TuneSet.cnt_wait_cool =1; (* seconds *)

LCRTempSetl.TuneSet.filter_base T :=0.25; (* seconds *)

LCRTempTunel.pSettings = ADRLCRTempSetl);

(* end init user settings tuning zone 1 *)

(* init user settings tuning zone 2%)

LCRTempSet2.enable_cooling = TRUE; (* cool tuning
enabled *)

(* do not use default parameter for example due to smaller time

constants *)

LCRTempSet2.TuneSet.cnt_tp_heat :=0.1; (* seconds *)

LCRTempSet2.TuneSet.cnt_tp_cool :=0.1; (* seconds *)

LCRTempSet2.TuneSet.delta_dT_sync_ he at := 0.5; (* °Cl/sec *)

LCRTempSet2.TuneSet.cnt_wait_heat =43; (* seconds *)

LCRTempSet2.TuneSet.deIta_dT_sync_cooI :=0.5; (* °Clsec *)

LCRTempSet2.TuneSet.cnt_wait_cool =1, (* seconds *)

LCRTempSet2.TuneSet.filter_base T = 0.25; (* seconds *)

LCRTempTune2.pSettings = ADRLCRTempSet2);

(* end init user settings tuning zone 2 *)

(* init user settings LCRTempPID1 *)

(* wait 0.1 seconds before switching to new set tem perature *)

LCRTempSetl.PIDSet.delay = 0.1; (* seconds *)

LCRTempPID1.pSettings = ADRLCRTempSetl);

(* end init user settings LCRTempPID1 *)

(* init user settings LCRTempPID2 *)

(* wait 0.1 seconds before switching to new set tem perature *)

LCRTempSet2.PIDSet.delay :=0.1; (* seconds *)

LCRTempPID2.pSettings = ADRLCRTempSet2);

(* end init user settings LCRTempPID2 *)

(* parameters for simulated extruder zone 1 *)

zonel.enable := TRUE;

zonel.Tt_h := 600000; (* microseconds *)

zonel.Tt ¢ := 450000; (* microseconds *)

zonel.k_h = 3.717,

zonel.k _c¢ = 0.0151;

zonel.PT2_T1 :=23.43;

zonel.PT2_T2 :=1.51;

zonel.Temp_amb := 25.0; (*°C?)

zonel.Temp_c := 25.0; (*°CH

(* end parameters for simulated extruder zone 1 *)

Closed Loop Control with LOOPCONR TM261

Appendix

(* parameters for simulated extruder zone 2 *)
zone2.enable := TRUE;

zone2.Tt_h := 1200000; (* microseconds *)

zone2.Tt ¢ := 800000; (* microseconds *)

zone2.k_h =4

zone2.k_c :=0.013;

zone2.PT2_T1 :=28;

zone2.PT2_T2 :=1.8;

zone2.Temp_amb := 25.0; (*°C™*

zone2.Temp_c := 25.0; (*°CH

(* end parameters for simulated extruder zone 2 *)

(* set tuning temperatures and set temperatures aft er tuning*)
setTempTune := 180; (*°C™*

setTempPID1 := 180; (*°C™*

setTempPID2 := 180; (*°C™*

(* ------ > cyclic program *)

(* DESCRIPTION: start autotuning with enableTuning = TRUE and

startTuning = TRUE *)

(* read out current temperatures *)
actTempZonel := zonel.y;
actTempZone2 := zone2.y;

(* enable tuning function blocks *)
LCRTempTunel.enable := enableTuning;
LCRTempTune2.enable := enableTuning;

(* start autotuning *)
LCRTempTunel.start := startTuning;
LCRTempTune2.start := startTuning;

(* current set temperature for tuning function bloc k*)
LCRTempTunel.Temp_set := setTempTune;
LCRTempTune2.Temp_set := setTempTune;

(* current temperature for tuning function block *)
LCRTempTunel.Temp := actTempZonel;
LCRTempTune2.Temp := actTempZone2;

(* synchronisation of autotuning *)

LCRTempTunel.okToHeat :=(LCRTempTunel.rdyToHea t AND
LCRTempTune2.rdyToHeat);

LCRTempTune2.okToHeat :=(LCRTempTunel.rdyToHea t AND
LCRTempTune2.rdyToHeat);

LCRTempTunel.okToCool :=(LCRTempTunel.rdyToCoo | AND
LCRTempTune2.rdyToCool);

LCRTempTune2.0kToCool :=(LCRTempTunel.rdyToCoo | AND
LCRTempTune2.rdyToCool);

LCRTempTunel.okToCoolEnd := (LCRTempTunel.rdyToCoo I[End AND
LCRTempTune2.rdyToCoolEnd);

LCRTempTune2.0kToCoolEnd := (LCRTempTunel.rdyToCoo IEnd AND

LCRTempTune2.rdyToCoolEnd);
(* call tuning function blocks LCRTempTune() *)

LCRTempTunel();
LCRTempTune2();

TM261 Closed Loop Control with LOOPCONR

Appendix

(* when tuning has finished switch to LCRTempPID() controllers *)
IF ((LCRTempTunel.done ANDLCRTempTune2.done) ORTempPID_enable) THEN
(* enable controller function blocks (auto mode) *)

LCRTempPID1.enable := TRUE ;
LCRTempPID1.mode :=LCRTEMPPID_MODE_AUTO;
LCRTempPID2.enable := TRUE ;
LCRTempPID2.mode :=LCRTEMPPID_MODE_AUTO;

(* current set temperature for controller functi on blocks *)
LCRTempPID1.Temp_set := setTempPID1,;
LCRTempPID2.Temp_set := setTempPID2;

(* current temperature for controller function b locks *)
LCRTempPID1.Temp := actTempZonel;
LCRTempPID2.Temp := actTempZone2;

(* manipulated variable from controller function blocks *)
heatZonel ;= LCRTempPID1.y_heat;
coolZonel := LCRTempPID1.y_cool;
heatZone2 := LCRTempPID2.y_heat;
coolZone2 = LCRTempPID2.y_cool;

(* disable Tunings and start controllers *)
enableTuning := FALSE;
startTuning := FALSE;
TempPID_enable := TRUE;
ELSE
(*manipulated variable from tuning function bloc ks *)
heatZonel := LCRTempTunel.y_heat;
coolZonel ;= LCRTempTunel.y cool;

heatZone2 := LCRTempTune2.y_heat;
coolZone2 := LCRTempTune2.y_cool;
(*disable LCRTempPIDs so no doubleacting is poss ible*)

LCRTempPID1.enable := FALSE;
LCRTempPID2.enable := FALSE;
END_IF

(* call controller function blocks LCRTempPID() *)
LCRTempPID1();
LCRTempPID2();

(* call simulated extruder zones and handover the m anipulated
variables *)

zonel.Alpha_h := heatZonel;

zonel.Alpha_c := coolZonel,;

zonel();

zone2.Alpha_h := heatZone2;

zone2.Alpha_c := coolZone2;

zone2();

Closed Loop Control with LOOPCONR TM261

Appendix

Variable declaration:

M ame | Type I Scope Attribute I " alue
LCRTEMPFRID _MODI UDIMT global conztant 1
LCRTempPIC1 LCRTempPID local TnErnony
LCRTempPID2 LCRTempPID lozal TREMaNy
LCRTempSetl lzrtemp_set_typ lozal mhemony
LCRTempSet? lzrtemp_set_typ lozal mnEmony
LCRTempTunel LCRTempTune local TnErnony
LCRTempTune2 LCRTempTune lozal TREMaNy
TempPID_enable BOOL local TRETTIONY
actT empZone] REAL lozal mnEmony
actT empZone? REAL local TnErnony
coolFanel REAL lazal miErman
ool ones REAL lozal mhemony
enableT uning BOOL lozal mnEmony
heatZone1 REAL local TnErnony
heatsone? REAL lazal miErman
zetTempPID1 REAL lozal mhemony
zetTempPID 2 REAL lozal mnEmony
zetTempTune REAL local TnErnony
zhart T uning BOOL lazal miErman
zone] LCRSirmkd odE «t lozal mhemony
zones LCRSirmkd odE st lozal mhEmony
Fig. 78: LCRTempPID()+LCRTempTune() variable declaration
Determined PID parameters:
MHame | Type Scope Force " alue
= @ LCRTempSet? lertemp_set_typ local
I':L|-. FIDpara lertermp_pid_opt_tvp
& Kph REAL 4.09106
F% Tnh REAL 495874
F% Tvh REAL 1.04134
F% kpc REAL 3.28678
F& Tnc REAL 7.36692
L Tve REAL 1.54705
= @ LCRTempSet] lertemp_set_typ local
I':L|-. FIDpara lertermp_pid_opt_tvp
& Kph REAL 54577
F% Tnh REAL 234844
|—“ Tw_h REAL 070372
F% kpc REAL 3.94967
F& Tnc REAL 4 65961
L Tve REAL 0.978518

Fig. 79: LCRTempPID()+LCRTempTune() PID parameters

TM261 Closed Loop Control with LOOPCONR

X
o
C
)
Q
Q
<

Trace

Y eer) Tnit =sec

actTenpEone?

actTenpZonel (red)

Svnchronous Tunitg

T T T T T T T
' ' ' ' ' ' '
' ' ' ' ' ' '
1 1 1 1 1 1 1
' ' ' ' ' ' '
1 1 1 1 1 1 1
' ' ' ' ' ' '

i i i i i i '
sooges=iFe= B e LT
' ' ' ' ' ' '

1 1 1 1 1 1 1
' ' ' ' ' ' '

1 1 1 1 1 1 1
' ' ' ' ' ' '

i i i i i i '

' ' ' ' ' ' '

[T A
1 1 1 1 1 1 1
' ' ' ' ' ' '

1 1 1 1 1 1 1
' ' ' ' ' ' '

i i i i i i '

' ' ' ' ' ' '

' ' ' ' ' ' '

1 1 1 1 1 1 1
Soegess B I TEE LT E R
1 1 1 1 1 1 1
' ' ' ' ' ' '

i i i i i '

1 3 1 1 1 1 L}

' ' ' ' ' '

1 1 1 1 1
' ' ' ' '

P R U | N R,
| ' ' 1
i i i '

' ' ' '

' ' ' '

1 1 1 1
' ' ' '

1 1 1 1
' ' ' '
T e R L=l Foosfescgo= o
' ' ' '

' ' ' '

1 1 1 1
' ' ' '

1 1 1 1
' ' ' '

i i i '

P R | Y R,
| ' ' 1
1 1 1 1
' ' ' '

1 1 1 1
' ' ' '

i i i '

' ' ' '

' ' ' '

o T L B -
' ' ' '

1 1 1 1
' ' ' '

i i i '

' ' ' ' '

' ' ' ' '

1 1 1 1 1
-l T R,
1 1 1 1 1
' ' ' ' '

i i f i i '

' ' ' ' ' '

' ' ' [' ' '

1 1 1 1 1 1 1
' ' ' ' v ' '

1 1 1 1 1 1 1
R e e e S pregess
i i i i i i i '

' ' ' ' ' ' '

' ' ' ' ' ' ' '

1 1 1 1 1 1 1 1

' ' ' ' ' ' ' ' '

1 1 1 1 1 1 1 1 1

' ' ' ' ' ' ' ' '

L L L L L L L L 1
Lo R o o [} () = o o o R }
o R (]] o [} = (]] o R }
L B o Lo - o = o Lo = d
Lo Y | — — — — —~

Jd, =TH0

7o,

57.

44

3Z.

12.

Fig. 80: LCRTempPID()+LCRTempTune() Tuning

TUnit =sec

actTenpZonel

170.0

145.0

1z0.0

T T = T
1 1 ol] T
1 1 ' [
1 1 (=0] T
1 1] ' T
1 1 TR S 1 [
1 1 m 1 [
1 1 ' [

P 7= oq= P oE 2R
1 1 = ' T
1 1] [
1 1 ' T
1 1 ' [
1 1] T
' ' [' P
1 1 o] [

— L g -l _ L
' ' % 1 [
1 1 ' T
1 1 =il ' [
1 1 o T
1 1 o T
1 1 o [
[1 o 1
[1 [1

Forew 7= o=
[1 o
[1 o
[1 o
[1 [

o 1 o

Lo ' ["I

[1 o o
-1 L -4

Coa ' _..,_U... [

[1 o

[1 =il [

o 1 o

[1 o

[1 o

[1 o

1 1 1 0] o
--r-1 r- -

[1 o

[1 m o

[1 =] o

[1 [

o ' =

P ' o | 8 '

Lo ' ol P
Lol R Il I S R

Coa ' ['

o I _

[1 [1

o ! L !

[1 o 1

[1 o 1

[1 o 1

[1 [1
Forew 7= o= =

[[o 1

[[o 1

[[o 1

[T [1

o T o 1

Lo P ["I '

o T o o 1
Lol Lo doJoo L

Coa [= ['

[[d o 1

[T =il [1

o T o 1

[I [o 1

[1 [o 1

[[o 1

[' T [1
Forew = 0= =0 R EE =

[1 [o 1

[1 [o 1 1

[1 [o 1 1

[1 [o 1 1

[1 T [1 1

o ' T oy o ' '

1 1 1 1 1 Loy P 1 1
L R]] [o o o o o o
o o o] o o o o o o [
— o Loy o -~ o — () T o .- W
L% I — — ~ LS I Y —~ — ~ ~

J, aTun 2, aTtupn

ZZ0.0

1a5.0

5.0

Fig. 81: LCRTempPID()+LCRTempTune() set value jumps

Closed Loop Control with LOOPCONR TM261

Appendix

15.2.8 Task: B&R simulation model 4SIM.00-01

Ladder diagram: Initialization routine

The default values are replaced by suitable values because they are not
feasible for this system.

ooo1
MOVE TempSetting ...
5.0 ...t.oent_tp_heat
IM
ooz
MOVE TempSetting ...
50 ..tont_tp_cool
M
noo3
MOVE TempSetting ...
B0.0 ... nt_wait_heat
M
nooa
MOVE TempSetting ...
e0.0 e _wait_cool
M
0oos
MOVE TempSetting ...
10 ... T_sync_heat
M
0oos
MOVE TempSetting ...
3 . T_sync_cool
I
ooo?
MOVE TempSetting ...
0.03 .. T_sync_cool
I
0oos
MOVE TempSetting ...
5.0 ... filter_base_T
IM
noo=
MOVE
&0 setTempTune
M

Fig. 82: B&R simulation model - Initialization routine1

TM261 Closed Loop Control with LOOPCONR

Appendix

Ladder diagram: Initialization routine

0010
MOVE TempSetlings.
10 FIDSet. delay
M
oo11
MOVE
&0 setTempPID
— IM
0012
TempSettings.
enable_cooling
{].
\

Fig. 83: B&R simulation model - Initialization routine2

Closed Loop Control with LOOPCONR TM261

Appendix

Ladder diagram:

The read-in temperature aiActTemp must be converted from data type
INTEGER to the data type REAL. To convert the unit from 1/10 °C to 1 °C,
the value is divided by 10. actTempZone1 is then the controlled variable
that is connected to the Temp input of the LCRTempTune() function
block and LCRTempPID(). Furthermore, an additional logic operation is
present to automate switching from LCRTempTune() to the
LCRTempPID() after the tuning.

0001
INT TO REAL DIV
aldctTemp actTempZanel
1§ H M1
10
M2
oooz2
TempTune.
dane DisableTune
| 1 3y
| #
0oo3
enableTuning startTuning CallFID
| /1 | /1 %
0oo4
CallTune
>
0oos DisableTune :
enableTuning
'
{—
startTuning
'
{—
enablePID
'
b)

Fig. 84: B&R simulation model - Switching logic

TM261 Closed Loop Control with LOOPCONR

Appendix

Ladder diagram: LCRTempTune()

o0& CallTune :
TempTune
LCRTempTune
enableTuning heatZonel
—I H enable y_heat
startTuning coolfoned
—I H start y_cool
setTempTune rdyToHeat
Temp_set rdyToHeat {: }
actTemnpZonel
Temp rdyToFree |
rdyToHeat
—I H okToHeat rdyToFreeEnd |
rdyToCoal
+ okToFree rdyToC ool {: }
rdyToCoolEnd
q okToFreeEnd rdyToCoolEnd —()—
rdyTaCool
—I H okToCool daone |
rdyToCoolEnd
H i okToCoolEnd busy
ADR
TempSettings
in H p=ettings status |

Fig. 85: B&R simulation model - LCRTempTune()

Closed Loop Control with LOOPCONR TM261

117

Appendix

Ladder diagram: LCRTempPID()

o007
RangeAdaption
»
0003 CallFID .
TempPID
LCRTempPID
enablePID heatfanel
i i enable y_heat
setTempPID coolfonel
Temp_set v_cool
actTernpZone1
Temp status |
1 ¥_man
LCRTEMPPRID_
MODE_AUTO
mode
1 update
ADR
TempSettings
in H pSettings

Fig. 86: B&R simulation model - LCRTempPID()

TM261

Closed Loop Control with LOOPCONR

Appendix

The value range of the outputs heatZone1 and coolZone1 is scaled to
the value range of the analog outputs (0 - 32767) and converted from the
data type REAL to INT.

ooog RangeAdaption
MUL REAL TO INT
heatZone aoHeat
— 1M
3 EY
o010
MUL REAL TO INT
coolfonel aonCool
— M
I3V EY

Fig. 87: B&R simulation model - Manipulated variable scaling

Variable declaration:

M arne I Type Scope Attribute Y alue
LCRTEMPRID_MODE_AUTO DIMT qglobal cohztant 1
TempPID LCRTempFID lozal MEmary
TempSettings lertemp_set_twp loz:al MEmary
TempTune LCRTempTune local =

actT erpsone] REAL lazal MEmar

aitctT emp IMNT lozal MEmary

anCool IMT loz:al MEmary

aoHeat IMNT local =
coolFanel REAL lazal MEmar
enablePID BOOL lozal MEmary

enableT uning BOOL loz:al MEmary
heatZone1 REAL local =
rdyTalCoal BOOL lazal MEmar
rdyToCoolE nd BOOL lozal MEmary
rdyToHeat BOOL loz:al MEmary
zetTempPID REAL local =
zetTempT une REAL lazal MEmar

ghart T uning BOOL lozal MEmary

zone] LCR Sirmkd odE ut loz:al MEmary

Fig. 88: B&R simulation model variable declaration

Closed Loop Control with LOOPCONR TM261

X
T
o
o)
o
o
<

Trace of the tuning with subsequent activation of the controller

SE0.0

3e0.0

T T T T T T T T T T =11 B2 o u
o SR T | T T T R T R] uy 0| B
n ' ' ' ' ' ' ' ' ' W N W n
It R T | T T R T R | - | o
m 1 _.__ 1 1 1 1 1 1 .m_ m
UIII.—.III_II I a [UI—I U
SR N | T T RS T R 5
S T 5
R T | O T R T R (=] 5 (=]
becoooagredibcaececccqmacrccqo=ar==dl@ o= 1o
' ' ' ' ' ' ' ' i~ ' il
S T ® 5 ®
1 I_I
: .
: .
: .
: .
0 o i o
— ' o ' D
m : 1all=] ez
[u] = =
1 n_ n____ 1
[: gl o .
i q e | af 5
d : | al .
Z : ol wl :
i q 2l a0 5
el
(]
b q 5 R 5
" | i <l :
4 =] FF 1o =
[wf| o |
= ol =) m Al
2 .
e -
- =k =l
5 2| 2l
] =] =1 -
z | 4
= H Hl
B 5 50 b
o 5 o 50 b 5
el =] -- L= EEEE -
o] 1 o] [1
ol 5 ol 50 b 5
i I |
= 5 = R 5
= . = .
= 5 = REARRERE
.
() () () ()
o o a o
Lo} () (5]
— —
0, oTun $ aTun $ aTun

7E0.0

4300

£30.0

00,0

- Tuning

Fig. 89: Trace B&R simulation model

Closed Loop Control with LOOPCONR

TM261

Appendix

PID parameters determined during auto-tuning:

M arne | Type | Scope I W alle
E@ TempSetting: lertemp_set_typ [ozal
I':L|-. PIDpara lertemp_pid_opt_tvp
% Kph REAL 19.859
% Tr_h REAL 35,9002
% Tv_h REAL 753904
% Kpc REAL 51.5133
% Tnc REAL 39.8589
% Tvc REAL 837033

Fig. 90: B&R simulation model - PID parameters

Closed Loop Control with LOOPCONR TM261

Appendix

Pulse width modulation:

Pulse width modulation converts the manipulated variables (heatZonel
and cool/ZoneT) from analog to digital pulsed signals, whose
pulse/pause behavior corresponds to the analog value.

Separate pulse width modulation must be implemented for each control
action. The manipulated variables are each connected to the input x of
the LCRPWM() function block. The max_value input corresponds to the
maximum value that the manipulated variable can take on; min_value
corresponds to the minimum value.

If analog outputs are used to control the heating and cooling of the B&R
simulation model, then the pulsed digital signals from the pulse width
modulation must be converted to a corresponding analog value. The
digital value FALSE corresponds to the analog value 0; the digital value
TRUE corresponds to the analog value 32767. This simple instruction
can be implemented with the SEL() function.

TM261 Closed Loop Control with LOOPCONR

Ladder diagram: Pulse width modulation

ooz CallPi
Fyvii_h
LCRPWM
enableP 1D
: : enable status |
SEL
enablaTuning heatZone1
i i e pulse G
1000 1]
max_walue I_on | M0
0o 32re7
min_value t_off | 1M1
0.1
t_rnin_pulse
10
t_period
oo
Py _c
LCRPWM
enableP|D
—| : enable status |-
SEL
enablaTuning coolZone
I | % I G
11 pulse
1000 0
miax_valug t_on | (1]
0o 32re7
min_valug t_off | 1M1
1.0
t_rnin_pulse
10,0
t_period

Fig. 91: B&R simulation model - Pulse width modulation

Appendix

aoHeat

aoCool

Closed Loop Control with LOOPCONR TM261

Appendix

The following trace shows the heating procedure for the controlled
system from 45 °C to 50 °C with a pulse width modulated control action.

Set and actual temperatures set7emp and actTemp.
Manipulated variable of the controller heatZoneT.
Output of the pulse width modulation aoHeat.

The pulse/pause behavior of the aoHeat output corresponds to the
analog manipulated variable of the controller, heatZonel.

Ed.
Ed.
LE.
LE.

E0.
E0.

°C

43
43,

Tnit

1
1
44
4.

TARGET DATA actTenpZonel; secTenpPID Tnit sec

oo o O

=]

=]

loodboodlooobodooobooo|lbocdoscboodbon

1
1
'
1
1
1

4
1
1
1
1
1
1
1
1
1
1
1
1

T
1
1
1
1
1

]
1
'
1
1
1

2
U |3 X I

oo o O

174.0 183.2 19Z2.4 Z01. 6 Zl0.8 ZED.0O

Foooo.
e,

Seooo.

43,

4Z000.
36,

Z3000.
Z2d.

14000,

1E.

-0.
-0.

TARGET DATA prm ld. acHeat; heatEonel Tnit sec

T
1
1
1
1
]
1
1
1
L
]
1

0 Uy U
Foobooooboococboocoboood

T
1
L
|
T
T
1
=
1
1
T
T
T
T
f

T
e

T Y

174.0 183.2 19Z2.4 Z01. 6 Zl0.8 ZED.0O

Fig. 92: Trace B&R simulation model - Pulse width modulation

TM261

Closed Loop Control with LOOPCONR

Overview of training modules

TM200 - B&R Company Presentation **

TM201 - B&R Product Spectrum **

TM210 - The Basics of Automation Studio

TM211 - Automation Studio Online Communication
TM212 — Automation Target **

TM213 — Automation Runtime

TM220 - The Service Technician on the Job
TM223 — Automation Studio Diagnostics

TM230 - Structured Software Generation

TM240 - Ladder Diagram (LAD)

TM241 - Function Block Diagram (FBD)

TM246 - Structured Text (ST)

TM247 — Automation Basic (AB)

TM248 — ANSI C

TM250 — Memory Management and Data Storage
TM260 — Automation Studio Libraries |

TM261 - Closed Loop Control with LOOPCONR

TMA400 - The Basics of Motion Control

TM410 - The Basics of ASiM

TM440 - ASiM Basic Functions

TM441 — ASiM Multi-Axis Functions

TM445 — ACOPOS ACP10 Software

TM450 — ACOPOS Control Concept and Adjustment
TM460 — Starting up Motors

TM500 - The Basics of Integrated Safety Technology
TM510 — ASiST SafeDESIGNER

Appendix

TM600 — The Basics of Visualization
TM610 — The Basics of ASiV

TM630 - Visualization Programming Guide
TM640 — ASiV Alarm System

TM650 — ASiV Internationalization

TM660 — ASiV Remote

TM670 — ASiV Advanced

TM700 — Automation Net PVI
TM710 - PVI Communication
TM711 - PVI DLL Programming
TM712 - PVIServices

TM730 - PVI OPC

TMB800 — APROL System Concept

TM810 — APROL Setup, Configuration and Recovery
TM811 — APROL Runtime System

TM812 — APROL Operator Management

TM813 — APROL XML Queries and Audit Trail
TM830 — APROL Project Engineering

TM840 — APROL Parameter Management and Recipes
TM850 — APROL Controller Configuration and INA
TM860 — APROL Library Engineering

TM865 — APROL Library Guide Book

TM870 — APROL Python Programming

TMB890 — The Basics of LINUX

*¥) see Product Catalog

140 offices in more than 55 countries - www.br-automation.com/contact

Australia » Argentina « Austria « Belarus < Belgium ¢ Brazil « Bulgaria « Canada « Chile » China « Colombia « Croatia « Cyprus
Czech Republic « Denmark « Egypt . Emirates « Finland < France . Germany - Greece + Hungary - India - Indonesia
Ireland < Israel « Italy « Japan « Korea « Luxemburg « Kyrgyzstan . Malaysia « Mexico « The Netherlands « New Zealand
Norway - Pakistan < Poland « Portugal «+ Romania Russia - Serbia « Singapore < Slovakia < Slovenia + South Africa
Spain + Sweden - Switzerland « Taiwan < Thailand - Turkey « Ukraine United Kingdom « USA - Venezuela « Vietnam

