

Structured Text (ST)Structured Text (ST)Structured Text (ST)Structured Text (ST)
TM246

 2 TM246 Structured Text (ST)

Requirements

Training modules: TM210 – The Basics of Automation Studio

 TM211 – Automation Studio Online Communication

 TM213 – Automation Runtime

 TM223 – Automation Studio Diagnostics

Software: None

Hardware: None

 Structured Text (ST) TM246 3

Table of contents

1. INTRODUCTION 4

1.1 Objectives 5

2. STRUCTURED TEXT FEATURES 6

2.1 General information 6

2.2 Properties 7

2.3 Possibilities 7

3. THE BASICS OF STRUCTURED TEXT 8

3.1 Expressions 8

3.2 Assignment 8

3.3 Comments 9

3.4 Operator priorities 10

4. COMMAND GROUPS 12

4.1 Boolean operations 12

4.2 Arithmetic operations 14

4.3 Comparison operators 18

4.4 Decisions 18

4.5 Case statements 27

4.6 Loops 30

4.7 Calling function blocks 36

4.8 Pointers and dynamic variables 39

5. SUMMARY 40

6. EXERCISES 41

7. APPENDIX 42

7.1 Keywords 42

7.2 Functions 43

7.3 Solutions 45

Introduction

 4 TM246 Structured Text (ST)

1. INTRODUCTION

Structured Text is a high level language. For those who are comfortable
programming in Basic, PASCAL or Ansi C, learning Structured Text is
simple. Structured Text (ST) has standard constructs that are easy to
understand, and is a fast and efficient way to program in the automation
industry.

Fig. 1 Book printing: then and now

The following chapters will introduce you to the use of commands, key
words, and syntax in Structured Text. Simple examples will give you a
chance to use these functions and more easily understand them.

 Introduction

 Structured Text (ST) TM246 5

1.1 Objectives

Participants will get to know the programming language Structured Text
(ST) for programming techincal applications.

You will learn the individual command groups and how they work together.

You will get an overview of the reserved keywords in ST.

Fig. 2 Overview

Structured Text Features

 6 TM246 Structured Text (ST)

2. STRUCTURED TEXT FEATURES

2.1 General information

ST is a text-based high-level language for programming automation
systems. Simple standard constructs enable fast and efficient
programming. ST uses many traditional qualities of high level languages,
including variables, operators, functions, and elements for controlling the
program flow.

So, what is Structured Text? The "Structured" refers to the qualities of a
high level language that make structured programming possible. The "Text"
refers to the ability to use text in place of symbols, as in the ladder
diagram.

No other programming language can replace ST. Every programming
language has its advantages and disadvantages. The main advantage of ST
is that complex mathematical calculations can be programmed easily.

 Structured Text Features

 Structured Text (ST) TM246 7

2.2 Properties

Structured Text is characterized by the following features:

• High-level text language

• Structured programming

• Easy to use standard constructs

• Fast and efficient programming

• Self explanatory and flexible use

• Similar to PASCAL

• Easy to use for people with experience in PC programming
languages

• Conforms to the IEC 61131-3 standard

2.3 Possibilities

Automation Studio supports the following functions:

• Digital and analog inputs and outputs

• Logical operation

• Logical comparison expressions

• Arithmetic operations

• Decisions

• Step sequencers

• Loops

• Function blocks

• Optional use of dynamic variables

• Diagnostic tools

The Basics of Structured Text

 8 TM246 Structured Text (ST)

3. THE BASICS OF STRUCTURED TEXT

3.1 Expressions

An expression is a construct that returns a value after it has been
evaluated. Expressions are composed of operators and operands. An
operand can be a constant, a variable, a function call or another
expression.

3.2 Assignment

The assignment of a value to a variable through a result of an expression or
a value. The assignment consists of a variable on the left side, which is
designated to the result of a calculation on the right side by the assignment
operator ":=". All assignments must be closed with a semicolon ";".

When the code line has been processed, the value of variable "Var1" is
twice as big as the value of variable "Var2".

Example: Expressions

Fig. 3 Expressions

Example: Assignment

Fig. 4 Assignment

 The Basics of Structured Text

 Structured Text (ST) TM246 9

3.3 Comments

Comments are sometimes left out, but are nevertheless an important
component of the source code. They describe the code and make it more
easy to read. Comments make it possible for you or others to read a
program easily, even long after it was written. They are not compiled and
have no influence over the execution of the program. Comments must be
placed between a pair of parenthesis and asterix "(*comment*)".

Example: Comment

Fig. 5 One-line comment

Fig. 6 Multi-line comment

The Basics of Structured Text

 10 TM246 Structured Text (ST)

3.4 Operator priorities

The use of several operators in one line brings up the question of priority
(order of execution). The execution is determined by priority.

Expressions are executed starting with the operator of highest priority,
followed by the next highest, and so on until the expression has been
completely executed. Operators with the same priority are executed from
left to right as they appear in the expression.

Operator Symbol / Syntax:

Parentheses () Highest priority

Function call

Examples

Call argument(s)

LN(A), MAX(X), etc.

Exponent **

Negation NOT

Multiplication

Division

Modulo division (whole
number remainder of
division)

*

/

MOD

Addition

Subtraction

+

-

Comparisons <, >, <=, >=

Equal to

Not equal to

=

<>

Boolean AND AND

Boolean exclusive OR XOR

Boolean OR OR Lowest priority

 The Basics of Structured Text

 Structured Text (ST) TM246 11

The order of execution at runtime:

Example: Operator priorities without parentheses

Fig. 7 Order of execution

Multiplication is executed first, then addition, and finally subtraction.

The order of operations can be changed by putting higher priority
operations in parentheses. This is shown in the next example.

Example: Operator priorities with parentheses

As shown in the following figure, the use of parentheses influences the
execution of the expression.

Fig. 8 Order of execution

The expression is executed from left to right. The operations in
parentheses are executed first, then the multiplication, since the
parentheses have higher priority. You can see that the parentheses lead
to a different result.

Command Groups

 12 TM246 Structured Text (ST)

4. COMMAND GROUPS

ST has the following command groups:

• Boolean operations

• Arithmetic operations

• Comparison operations

• Decisions

• Case statements

4.1 Boolean operations

The operands must not necessarily be the data type BOOL.

Boolean operations:

Symbol Logical operation Examples

NOT Binary negation a := NOT b;

AND Logical AND a := b AND c;

OR Logical OR a := b OR c;

XOR Exclusive OR a := b XOR c;

Truth table:

Input AND OR XOR

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

These operators can be used to formulate logical expressions, or they can
be used to represent conditions. The result is always TRUE (logical 1) or
FALSE (logical 0).

 Command Groups

 Structured Text (ST) TM246 13

ST allows any number of parenthesis.

Example: Boolean operation

Fig. 9 AND operation

Fig. 10 Source code for AND operation

Task: Light control

The output "DoLight" should be ON when the button "BtnLigntOn" is
pressed. It should remain ON until the button "BtnLightOff" is pressed.

Create a solution for this task using boolean operations.

Fig. 12 Light control

Command Groups

 14 TM246 Structured Text (ST)

4.2 Arithmetic operations

A key factor in favor of using a high level language is the accessibility of
arithmetic operations.

4.2.1 Basic arithmetic operations

ST provides basic arithmetic operations for your operation:

Symbol Arithmetic operation Example

:= Assignment a := b;

+ Addition a := b + c;

- Subtraction a := b - c;

* Multiplication a := b * c;

/ Division a := b / c;

MOD Modulo (display division
remainder)

a := b mod c;

The data type is a very important factor. Note the following table:

Data types Syntax

Res Op 1 Op 2

Result

Res := 8 / 3; INT INT INT 2

Res := 8 / 3; REAL INT INT 2.0

Res := 8.0 / 3; REAL REAL INT 2.6667

Res := 8.0 / 3; INT REAL INT Error

* Compiler error message: Type mismatch: Cannot convert REAL to INT.

You can see the that the result is dependent of the syntax as well as the
data types used.

Note:

Left data type := right data type;

 Command Groups

 Structured Text (ST) TM246 15

4.2.2 Implicit data type conversion

This type of conversion is done by the compiler. It automatically converts
the smaller data types to the larger one used in the expression. If an
expression contains one or more operators with different data types, they
are all converted to the same data type before the expression is resolved.

Data
type

BOOL SINT INT DINT USINT UINT UDINT REAL

BOOL BOOL x x x x x x x

SINT x INT DINT USINT UINT UDINT REAL

INT x INT DINT INT UINT UDINT REAL

DINT x DINT DINT DINT UDINT UDINT REAL

USINT x USINT INT DINT UINT UDINT REAL

UINT x UINT UINT DINT UINT UDINT REAL

UDINT x UDINT UDINT UDINT UDINT UDINT REAL

REAL x REAL REAL REAL REAL REAL REAL

Fig. 13 Implicit data type conversion by the compiler

SINT_Var2 is converted to INT, then added, then assigned to the result
variable (INT_Result).

Example: Data conversion

Fig. 14 Implicit data type conversion

Command Groups

 16 TM246 Structured Text (ST)

4.2.3 Explicit data type conversion

Explicit data type conversion is also known simply as type conversion or as
Typecast. As you already know, the expression should have the same data
type on both sides, but there is something else to remember.

At first sight, everything looks OK. However, the sum (INT_Weight1 +
INT_Weight2) can be larger than can be stored as data type INT. In this
case, an explicit data type conversion must be carried out.

The variable DINT_TotalWeight must be the data type DINT. At least one
variable on the right side of the expression must be converted to the data
type DINT. The conversions functions are found in the OPERATOR library.

Example: Overflow?!

Example: Overflow taken into consideration.

 Command Groups

 Structured Text (ST) TM246 17

Task: Aquarium

The temperature of an aquarium is measured at two different places. Create a
program that calculates the average temperature and displays it at an analog
output.

Don't forget that analog inputs and outputs must be data type INT.

Fig. 15 Aquarium

Command Groups

 18 TM246 Structured Text (ST)

4.3 Comparison operators

In high level languages like ST, simple constructs can be used to compare
variables. These return either the value TRUE or FALSE.

Symbol Logical comparison
expression

Example

= Equal to IF a = b THEN

<> Not equal to IF a <> b THEN

> Greater than IF a > b THEN

>= Greater than or equal to IF a >= b THEN

< Less than IF a < b THEN

<= Less than or equal to IF a <= b THEN

4.4 Decisions

The IF statement is used to create decisions in the program. You are
already familiar with the comparison operators, and they can be used here.
There are several types of IF statements:

• Simple IF statement

• IF – ELSE statement

• IF – ELSIF statement

• Nested IF

Decision Syntax Description

IF THEN IF a > b THEN 1. Comparison

 Result := 1; 1. Statement(s)

ELSIF THEN ELSIF a > c THEN 2. Comparison (optional)

 Result := 2; 2. Statement(s)

ELSE ELSE Above IF statments are not TRUE (optional)

 Result := 3; 3. Statement(s)

END_IF END_IF End of decision

Note:

The comparison operations and logical operations are mainly used as
logical conditions for IF, ELSEIF, WHILE and UNTIL statements.
(IF (a > b) AND (d >= e) THEN)

 Command Groups

 Structured Text (ST) TM246 19

4.4.1 IF

This is the most simple IF statment.

Fig. 16 Simple IF statement

Fig. 17 Simple IF statement in a program

The IF statement is tested for the result TRUE. If the result is FALSE, the
program advances to the line after the END_IF statement. The function of
the IF statement can be a single comparison, but it can also be multiple
comparisons connected by AND, OR, etc..

Example: IF statement with multiple comparisons

Fig. 18 Statement with multiple comparisons

Command Groups

 20 TM246 Structured Text (ST)

4.4.2 ELSE

The ELSE statement is an extension of the simple IF statement. Only one
ELSE statment can be used per IF statement.

 Fig. 19 IF – ELSE statment

Fig. 20 IF – ELSE in a program

If the IF meets condition A, then the A instruction(s) are executed. If the IF
does not meet condition A, then the B instruction(s) are executed.

 Command Groups

 Structured Text (ST) TM246 21

4.4.3 ELSIF

One or more ELSE_IF statements allow you to test a number of conditions
without creating a confusing software structure with many simple IF
statements.

Fig. 21 IF-ELSIF-ELSE statement

Fig. 22 IF-ELSIF-ELSE in a program

At runtime the decisions are processed from top to bottom. If the result of
a decision is TRUE, the corresponding statements are executed. Then the
program continues from after the END_IF. Only those decisions that

Command Groups

 22 TM246 Structured Text (ST)

correspond to the first TRUE decision are executed, even if subsequent
decisions are also TRUE. If none of the IF or ELSE_IF decisions is TRUE, the
statement in the ELSE branch is executed.

Note:

In ST, text is assigned to a string variable as follows:
StringVar := ’COLD’

Task: Weather station - Part I

A temperature sensor measures the outside temperature. The
temperature is read via an analog input (1°=10), and should be
displayed inside the house in text form.

• If the temperature is under 18°C, the display should read "Cold".

• If the temperature is between 18°C and 25°C, the display should
read "Opt".

• If the temperature is over 25°C, the display should read "Hot".

Create a solution using IF, ELSEIF, and ELSE statements.

Fig. 23 Thermometer

 Command Groups

 Structured Text (ST) TM246 23

4.4.4 Nested IF statement

A nested IF statement is tested only if previous condidions have been met.
Every IF requires its own END_IF so that the order of conditions is correct.

Fig. 24 Nested IF statement

 Fig. 25 Nested IF statement in a program

It is helpful to indent every nested IF statement and the corresponding
expressions. As many IF statments can be nested as needed. It is possible,
however, that the compiler will run out of memory after the 40th level. Also,
that kind of extensive nesting is evidence of poor programming style. It
becomes nearly impossible to get a clear overview of the code.

After three nesting levels, it is better to find another way to structure the
program.

Command Groups

 24 TM246 Structured Text (ST)

Task: Weather station - Part II

Evaluate the temperature and the humidity.
The text "OPT" should only appear when the humidity is between 40 and
75% and the temperature is between 18 and 25°C. Otherwise "Temp.
OK" should be displayed.

Solve this task using a nested IF statement.

 Command Groups

 Structured Text (ST) TM246 25

Two simple IF statements produce nearly the same effect as one nested IF
statement. A marker variable, or flag, can be requested in multiple
statements. The first IF statment describes the flag, which is then utilized
by other IF statements.

Fig. 26 Two IF statements

Fig. 27 Two IF statements

In this case, both IF statements have the same priority. If both IF
statements evaluate the same variable for different values, you should use
a CASE statement.

The CASE statement should be used when:

• IF constructs require too many levels

• Too many ELSE_IF statments are used

The CASE statement is much easier to read in these cases.

Command Groups

 26 TM246 Structured Text (ST)

In comparison to the IF statment, the CASE statment also has the
advantage that comparisons are only made once, which makes the
program code more effective.

 Command Groups

 Structured Text (ST) TM246 27

4.5 Case statements

The CASE statement compares a step variable with multiple values. If one
of these comparisons is a match, the steps that compare to that step are
executed. If none of the comparisons is a match, there is an ELSE branch
similar to an IF statement that is then executed.

After the statements have been executed, the program continues from after
the END_CASE statement.

Keywords Syntax Description

CASE OF CASE step variable OF Beginning of CASE

 1,5: Display := MATERIAL For 1 and 5

 2: Display := TEMP For 2

 3,4,6..10: Display := OPERATION For 3,4,6,7,8,9,10

END_CASE END_CASE End of CASE

Fig. 28 CASE statement

Command Groups

 28 TM246 Structured Text (ST)

Only one step of the CASE statement is processed per program cycle.

Fig. 29 CASE statement in a program

Syntax of the CASE statement:

• A CASE statement begins with CASE and is terminated with
END_CASE. Each of these key words must occupy its own line.

• The variable between CASE and OF must be a UINT variable.

• Only whole number numerical expressions can be used for the
definition of the individual steps in the CASE statement.

• The ranges and values of the step variable(s) may not overlap each
other.

Note:

Constants can be used instead of numbers for the steps in a CASE
statement. This makes the program much easier to read.

 Command Groups

 Structured Text (ST) TM246 29

Task: Brewing tank

The fill level of a brewing tank is monitored for low, ok, and high levels.
Use an output for each of the low, ok, and high levels.

The level of liquid in the tank is read as an analog value and is internally
converted to 0-100%. If the contents sink below 1%, a warning tone
should be triggered.

Create a solution using the CASE statement.

Fig. 30 Brewing tank

Command Groups

 30 TM246 Structured Text (ST)

4.6 Loops

In many applications, it is necessary for sections of code to be executed
multiple times during a cycle. This type of processing is also referred to as
a loop. The code in the loop is executed until a defined termination
condition is met.

Loops help make programs shorter and easier to follow. Program
expandability is also an issue here. Loops can be nested.

Depending on the structure of a program, it is possible for an error in the
program to cause the processing gets stuck repeating the loop until the
time monitor in the central unit responds with an error.
To prevent such endless loops from occuring, one should almost always
include in the programming a way for the loop to be aborted after a
defined number of repetitions or to run to a certain limit.

ST offers several types of loops to choose from:

• Limited

• FOR

• Unlimited

• WHILE

• REPEAT

 Command Groups

 Structured Text (ST) TM246 31

4.6.1 FOR

The FOR statement is used to run a program section for a limited number
of repetitions. For all other applications, WHILE or REPEAT loops are used.

Key words Syntax Description

FOR TO BY DO FOR i:=StartVal TO StopVal {BY Step} DO The section in {}
is optional.

 Res := value + 1; Loop body
statement(s)

END_FOR END_FOR End of FOR

Fig. 31 FOR statement

Fig. 1 FOR statement in a program

The statements in the FOR loop are
repeated. At every repetition, the loop
counter is raised by "StepVal". The
two control variables "StartVal" and
"EndVal" determine the start value and
end value of the loop counter. After
the end value is reached, the program
continues from after the END_FOR
statement. The control variables must
both be the same data type and
cannot be described by any of the
statements in the loop body.

The FOR statement raises or lowers the loop counter until it reaches the
end value. The step size is always 1, unless otherwise specified with "BY".

The termination condition, the loop counter, is evaluated with every
repetition of the loop.

Command Groups

 32 TM246 Structured Text (ST)

Task: Crane

5 separate loads are suspended from a crane. In order to determine the
total load, you have to add the individual loads together.

Fig. 32 Crane

Create a solution for this task using a FOR loop.

 Command Groups

 Structured Text (ST) TM246 33

4.6.2 WHILE

The WHILE loop can be used in the same way as the FOR loop, except that
the condition can be any boolean expression. If the condition is met, then
the loop is executed. The WHILE loop is used to repeat statements as long
as a particular condition remains TRUE.

Keywords Syntax Description

WHILE DO WHILE i<4 DO Boolean condition

 Res := value + 1; Statement

 i := i + 1; Statement

END_ WHILE END_ WHILE End of WHILE

Fig. 33 WHILE statement

 Fig. 2 WHILE statement in a program

The instructions are executed repeatedly for as long as the condition
returns TRUE. If the condition returns FALSE during the first evaluation, the
instructions are never executed.

Note:

If the condition never assumes the value FALSE, the statements are
repeated endlessly, resulting in a runtime error.

Command Groups

 34 TM246 Structured Text (ST)

4.6.3 REPEAT

The REPEAT loop differs from the WHILE loop in that the termination
condition is only checked once the loop has been executed. This means
that the loop runs at least once, regardless of the termination condition.

Keywords Syntax Description

REPEAT REPEAT Start loop

 Res := value + 1; Statement

 i := i + 1; Statement

UNTIL UNTIL i > 4 Termination condition

END_ REPEAT END_ REPEAT End loop

Fig. 34 REPEAT statement

 Fig. 35 REPEAT statement in a program

The statements are executed repeatedly until the UNTIL condition is TRUE.
If the UNTIL condition is true from the beginning, the statements are only
executed once.

Note:

If the UNTIL condition never assumes the value TRUE, the statements
are repeated endlessly, resulting in a runtime error.

 Command Groups

 Structured Text (ST) TM246 35

4.6.4 EXIT

The EXIT statement can be used with all types of loops before their
termination condition occurs.

Fig. 36 EXIT statement

Fig. 37 EXIT statement in a program

Fig. 38 EXIT statement in a nested FOR

statment

 Fig. 39 EXIT statement in a nested FOR statement in a
program

If the EXIT statement is used in a nested
loop, only the loop in which the EXIT
statement is located is ended. After the
loop is ended, the program continues
from after the END_ statement.

Command Groups

 36 TM246 Structured Text (ST)

4.7 Calling function blocks

In ST, a function block is called a function block instance, and the
necessary transfer parameters are placed in parentheses.

Fig. 40 Calling a function block

Fig. 41 Calling a function block in a program

Before a function block is called, one must describe the variables that are
to be used as input parameters. The code for calling a function block
occupies one line. Then the outputs of the function block can be read.

 Command Groups

 Structured Text (ST) TM246 37

First the function block name is entered, then the transfer parameters are
assigned in parentheses, separated by commas. The code for calling a
function block is closed with a semicolon.

Function block call in detail:

Fig. 42 Detail view of a function block call

Command Groups

 38 TM246 Structured Text (ST)

Note:

The Automation Studio online help comes in handy when working with
function blocks.

Task: Bottle counter

Create a program that counts the bottles on a conveyor belt. Use the CTU
(up counter) function block found in the STANDARD library.

Fig. 43 Bottle counter

 Command Groups

 Structured Text (ST) TM246 39

4.8 Pointers and dynamic variables

B&R offers the option of using pointers in ST.

A dynamic variable can be assigned a memory address during runtime.
This procedure is referred to as the referencing or initialization of a
dynamic variable.

As soon as the dynamic variable is initialized, it can be used to access the
memory content to which it now "points".

Fig. 44 Referencing a dynamic variable

As you can see, the operator ADR() is used. It returns the memory address
of the variable in parentheses. The data type of this address is UDINT. The
statement is then closed with a semicolon.

Summary

 40 TM246 Structured Text (ST)

5. SUMMARY

Structured Text is a high level language that offers a wide range of
functionality. It contains all the tools necessary for an application.

Fig. 45 Book printing: then and now

After completing this training module, you are ready to program your own
ST tasks. You can always use the module as a reference.
This programming language is especially powerful when using arithmetic
functions and formulating mathematical calculations.

 Exercises

 Structured Text (ST) TM246 41

6. EXERCISES

Task: Box lift

Two conveyor belts (doConvTop, doConvBottom) transport boxes to a
lift.

If the photocell is (diConvTop, diConvBottom) is activated, the
corresponding conveyor belt is stopped and the lift is called.

If the lift has not been called, it returns to the appropriate position
(doLiftTop, doLiftBottom).

When the lift is in the correct position (diLiftTop, diLiftBottom), the lift
conveyer belt (doConvLift) is turned on until the box is completely on
the lift (diBoxLift).

Then the lift moves to the unloading position (doLiftUnload). When it
reaches this position (diLiftUnload), the box is moved to the unloading
belt.

 As soon as the box has left the lift, the lift is free for the next request.

Fig. 46 Box lift

Appendix

 42 TM246 Structured Text (ST)

7. APPENDIX

7.1 Keywords

Key words are commands that can be used in ST. In the Automation Studio
Editor, these are displayed in blue. You are already familiar with many of
them; here is a list of more. Key words may not be used as variable names.

Keyword Description

ACCESS Assignment of an address to a dynamic variable.

BIT_CLR A := BIT_CLR(IN, POS) A is the value of the variable IN that
results when the bit at position POS is deleted. IN remains
unchanged.

BIT_SET A := BIT_CLR(IN, POS) A is the value of the variable IN that
results when the bit at position POS is set. The IN operand
remains unchanged.

BIT_TST Determination of a bit within a value. A is the state of the bit of
the IN value that is at position POS.

BY See FOR statement.

CASE See CASE statement.

DO See WHILE statement.

EDGE Determines the negative and positive edges of a bit.

EDGENEG Determines the negative edge of a bit.

EDGEPOS Determines the positive edge of a bit.

ELSE See IF statement.

ELSIF See IF statement.

END_CASE See CASE statement.

END_FOR See FOR statement.

END_IF See IF statement.

END_REPEAT See REPEAT statement.

END_WHILE See WHILE statement.

EXIT See EXIT statement.

FOR See FOR statement.

IF See IF statement.

REPEAT See REPEAT statement.

RETURN Can be used to end a function.

THEN See IF statement.

TO See FOR statement.

UNTIL See REPEAT statement.

WHILE See WHILE statement.

 Appendix

 Structured Text (ST) TM246 43

7.2 Functions

There are some functions that can be used in ST that do not require you to
insert a library into the project. In the Automation Studio Editor, these
function calls are displayed in blue. You are already familiar with some of
them. More are listed here.

Function Example

ABS Returns the absolute value of a number. ABS(-2) returns 2.

ACOS Returns the cosine of a number. (inverted cosine function).

ADR Returns a variable's address.

AND Logical AND for bit operations.

ASIN Returns the arc sine of a number (inverse function of sine).

ASR Arithmetic shifting of an operand to the right: A := ASR (IN, N) IN is
shifted N bits to the right, the left is filled with the sign bit.

ATAN Returns the arc tangent of a number (inverse function of tangent).

COS Returns the cosine of a number.

EXP Exponential function: A := EXP (IN).

EXPT One operand raised to the power of another operand:
A := EXPT (IN1, IN2).

LIMIT Limitation: A = LIMIT (MIN, IN, MAX) MIN is the lower limit, MAX is
the upper limit for the result. If IN is less than MIN, then the MIN
result is returned. If IN is greater than MAX, then the MAX result is
returned. Otherwise, the IN result is returned.

LN Returns the natural logarithm of a number.

LOG Returns the base-10 logarithm of a number.

MAX Maximum function. Returns the larger of two values.

MIN Minimum function. Returns the lesser of two values.

MOD Modulo division of a USINT, SINT, INT, UINT, UDINT, DINT type
variable by another variable of one of these types.

MOVE The contents of the input variable are copied to the output variable.
The := symbol is used as the assignment operator.

"A := B;" is the same as "A := MOVE (B);"

MUX Selection: A = MUX (CHOICE, IN1, IN2, ... INX);
CHOICE specifies which of the operators IN1, IN2, ... INX is returned
as a result.

NOT Negation of a bit operand by bit.

OR Logical OR operation by bit.

ROL Rotates an operand's bits to the left: A := ROL(IN, N); The bits in IN
are shifted N times to the left, the far left bit being pushed in again
from the right.

Appendix

 44 TM246 Structured Text (ST)

ROR Rotates an operand's bits to the right: A := ROR (IN, N); The bits in
IN are shifted N times to the right, the far right bit being pushed in
again from the left.

SEL Binary selection: A := SEL (CHOICE, IN1, IN2) CHOICE must be type
BOOL. If CHOICE is FALSE, then IN1 is returned. Otherwise, IN2 is
returned.

SHL Shifts an operand's bits to the left: A := SHL (IN, N); IN is shifted N
bits to the left, the right side is filled with zeroes.

SHR Shifts an operand's bits to the right: A := SHR (IN, N); IN is shifted N
bits to the right, the left side is filled with zeroes.

SIN Returns the sine of a number.

sizeof This function returns the number of bytes required by the specified
variable.

SQRT Returns the square root of a number.

TAN Returns the tangent of a number.

TRUNC Returns the integer part of a number.

XOR Logical EXCLUSIVE OR operation by bit.

 Appendix

 Structured Text (ST) TM246 45

7.3 Solutions

Task: Light control

Task: Aquarium

Task: Weather station - Part I

Task: Weather station - Part II

Appendix

 46 TM246 Structured Text (ST)

Task: Brewing tank

Task: Crane

Task: Bottle counter

 Appendix

 Structured Text (ST) TM246 47

Task: Box lift

Appendix

 48 TM246 Structured Text (ST)

Notes

 Appendix

 Structured Text (ST) TM246 49

Overview of training modules

TM200 – B&R Company Presentation ** TM600 – The Basics of Visualization
TM201 – B&R Product Spectrum ** TM610 – The Basics of ASiV
TM210 – The Basics of Automation Studio TM630 – Visualization Programming Guide
TM211 – Automation Studio Online Communication TM640 – ASiV Alarm System
TM212 – Automation Target ** TM650 – ASiV Internationalization
TM213 – Automation Runtime TM660 – ASiV Remote
TM220 – The Service Technician on the Job TM670 – ASiV Advanced
TM223 – Automation Studio Diagnostics
TM230 – Structured Software Generation TM700 – Automation Net PVI
TM240 – Ladder Diagram (LAD) TM710 – PVI Communication
TM241 – Function Block Diagram (FBD) TM711 – PVI DLL Programming
TM246 – Structured Text (ST) TM712 – PVIServices
TM247 – Automation Basic (AB) TM730 – PVI OPC
TM248 – ANSI C
TM250 – Memory Management and Data Storage TM800 – APROL System Concept
TM260 – Automation Studio Libraries I TM810 – APROL Setup, Configuration and Recovery
TM261 – Closed Loop Control with LOOPCONR TM811 – APROL Runtime System
 TM812 – APROL Operator Management
TM400 – The Basics of Motion Control TM813 – APROL XML Queries and Audit Trail
TM410 – The Basics of ASiM TM830 – APROL Project Engineering
TM440 – ASiM Basic Functions TM840 – APROL Parameter Management and Recipes
TM441 – ASiM Multi-Axis Functions TM850 – APROL Controller Configuration and INA
TM445 – ACOPOS ACP10 Software TM860 – APROL Library Engineering
TM450 – ACOPOS Control Concept and Adjustment TM865 – APROL Library Guide Book
TM460 – Starting up Motors TM870 – APROL Python Programming
 TM890 – The Basics of LINUX
TM500 – The Basics of Integrated Safety Technology
TM510 – ASiST SafeDESIGNER
 **) see Product Catalog

Appendix

 50 TM246 Structured Text (ST)

Weblink

Internationality

Copyright – Model Number

T
M
2
4
6
T
R
E
.0
0
-E
N
G

0
9
0
7

©
2
0
0
7
 b
y
 B
&
R
.
A
ll
 r
ig
h
ts
 r
e
s
e
rv
e
d
.

A
ll
 t
ra
d
e
m
a
rk
s
 p
re
s
e
n
te
d
 a
re
 t
h
e
 p
ro
p
e
rt
y
 o
f
th
e
ir
 r
e
s
p
e
c
ti
v
e
 c
o
m
p
a
n
y
.

W
e
 r
e
se
rv
e
 t
h
e
 r
ig
h
t
to
 m
a
k
e
 t
e
c
h
n
ic
a
l
c
h
a
n
g
e
s
.

