

PVI DLL Programming
TM711

 2 TM711 PVI DLL Programming

Requirements

Training modules: TM211 - Automation Studio Online Communication

TM710 - PVI Communication

Software: Visual Basic 6.0
 Windows NT/2000/XP

Hardware: any SG3 or SG4 controller

 PVI DLL Programming TM711 3

Table of contents

1. INTRODUCTION 4

1.1 Objective 5

2. PVICOM.DLL PROGRAMMING 6

2.1 PVI installation files 7
2.2 Requirements for PVI programming 8

3. PVI CLIENT APPLICATION 10

3.1 PVICOM functions 10
3.2 Establish a connection with the PVI Manager 13
3.3 Setting up the process objects 14
3.4 Evaluating the response data 34
3.5 Read and write access 39

4. SUMMARY 45

Introduction

 4 TM711 PVI DLL Programming

1. INTRODUCTION

This training module describes how to program the PVICOM.DLL using the
PVI functions to create a Windows visualization or Service Tool.

Visual Basic 6.0 is used to describe the PVICOM.DLL functions and
processes because the majority of applications are created in this
programming language.

The training module "TM712 PVIServices" is recommended for applications
created in Visual Studio.NET development environments.

Fig. 1: PVI DLL programming

 Introduction

 PVI DLL Programming TM711 5

1.1 Objective

Exercise examples will help participants to create PVI Client applications.

Participants will understand the application and possibilities of PVI
functions.

The PVI user documentation will provide more in-depth knowledge of the
PVI Client application possibilities.

Fig. 2: Overview

PVICOM.DLL Programming

 6 TM711 PVI DLL Programming

2. PVICOM.DLL PROGRAMMING

The PVICOM interface is used by all Windows-based applications with PVI
access.

This is the most optimum PVI interface in regard to performance.

Fig. 3: PVI Client programming

Communication via the PVICOM interface is handled with the functions in
the PVI communication library, "PviCom.dll".

The PVI communication library is a DLL (Dynamic Link Library) based on
the Windows standard. If applications use functions of a DLL, then the DLL
has to be loaded explicitly with functions being declared, or the static
library "PviCom.lib" has to be bundled to the program (loaded implicitly).

The procedure can be found in the respective programming language
manuals.

The following development environments are supported:

• Visual C++ (Version 6.0 and up)
• Visual Basic (Version 6.0 and up)
• Borland C++ Builder (Version 3 and up)
• Borland Delphi (Version 4 and up)

 PVICOM.DLL Programming

 PVI DLL Programming TM711 7

2.1 PVI installation files

The PVICOM definition files for the respective programming language are
installed in the following directory after installing the PVI Server & Runtime
/ Development Package:

PVI Server&Runtime Setup:

BrAutomation\Pvi\Inc
BrAutomation\Pvi\Lib

PVI Development Setup:

Program Files\BrAutomation\Pvi\%Version%\Pvi\Inc
Program Files\BrAutomation\Pvi\%Version%\Pvi\Lib

The PVICOM definition file contains definitions and/or declaration for all
PVICOM interface functions, types, structures used, and PVI constants.

File Description

PviCom.lib Static library for Visual C

PviCom.h Definition file (include file) for Visual C

PviCom.bas Definition file (module) for Visual Basic

PviCom.pas Definition file (include file) for DELPHI

The communication library "PviCom.dll" is installed in the following
directory when installing a PVI package:

Windows\System32

PVICOM.DLL Programming

 8 TM711 PVI DLL Programming

2.2 Requirements for PVI programming

AR000 is used for communication with a controller. The variables and the
corresponding data type used to do this are documented in this training
module.

2.2.1 The Automation Studio project

Automation Studio must be used to a user task in which a few variables are
used. These variables are read and written in the PVI Client application that
is created with this training module.

An existing Automation Studio project can also be used, but the variable
names in this training module must be replaced accordingly.

The first step requires a task "pvitest" with the variables "Lifesign" and
"PV1".

Fig. 4: Automation Studio test project

 PVICOM.DLL Programming

 PVI DLL Programming TM711 9

2.2.2 Visual Studio programming environment

All of the functions described in this
training module are explained using
Visual Basic 6.0 program code.

All PVI functions are described in the PVI
user documentation using Visual C++
program code.

Additionally, a tutorial for Visual Basic, Visual C++, Borland Delphi and
Borland C programmers is also placed in the "...\Pvi\Tutorial" directory
during the PVI Server&Runtime / Development installation. The steps in the
tutorial are described in the PVI user documentation.

PVI Client Application

 10 TM711 PVI DLL Programming

3. PVI CLIENT APPLICATION

A small PVI Client application will be created step-by-step in this chapter.
Exercises and tasks will be used to describe most of the PVI functions and
their application.

What will be covered in this practice example:

• PVICOM functions
• Establish connection with the PVI Manager
• Setup the process objects with synchronous / asynchronous

functions
• Evaluate the response data
• Read and write functions

3.1 PVICOM functions

For the first step, the definition file "PVICOM.BAS" will be added to the
newly created project. Now it is possible to use PVI functions.

Fig. 5: Adding the PVICOM.BAS module

Exercise: Inserting the file PVICOM.BAS to the newly
created VB project.

Select the module from the directory "...\Pvi\Inc\PviCom.bas".

 PVI Client Application

 PVI DLL Programming TM711 11

Select an existing module from the "Add Module" dialog box.

Fig. 6: Add Module – Add existing module.

The PVICOM.BAS module is now displayed in the project explorer.

Fig. 7: Project explorer – PviCom.bas

All PVICOM constants, structures and function descriptions are contained
in this module.

Descriptions of the functions can be found in the PVI user documentation.

Caution:

Only a reference to the file is created after inserting the module. The
reference will not work anymore if the project directory is changed (e.g.
passing the project on to someone else). In this case, it is
recommended to copy the module to the VB project directory.

Caution:

The user is not allowed to make any changes to this module.

PVI Client Application

 12 TM711 PVI DLL Programming

Fig. 8: PVICOM Help

As you can see already with the first function, there is always a Pvi… and
PviX… function for the same task.

The Pvi… functions are sufficient for a simple PVI Client application.
However, if the application will be accessing multiple server PCs on a
distributed network, then the PviX… functions must be used.

This training module only uses the Pvi… functions.

 PVI Client Application

 PVI DLL Programming TM711 13

3.2 Establish a connection with the PVI Manager

The connection with the PVI Manager is established using the "PviInitialize"
function.

The function's arguments can be found in the PVI user documentation.

This example shows local communication between the PVI application and
the PVI Manager. A remote connection is transferred using the parameters
PN and IP with the argument "InitParameter".

InitParameter = "LM=0 PT=0 PN=20000 IP=HostName"

Caution:

The "PviDeinitialize" function should always be used. Communication
between the application and the PVI Manager is cancelled at this point.
The application could crash if this function is not called because
accumulated callbacks can no longer be processed.

Exercise: Establish and then cancel a connection with the
PviManager.

The "PviInitialize()" function and its parameters are used in the form's
"Load" event. The "PviDeinitialize()" function is called in the "Unload"
event.

PVI Client Application

 14 TM711 PVI DLL Programming

3.3 Setting up the process objects

The process objects can be put together according to
the PVI object hierarchy once the application has
established a connection with the PVI Manager.

When doing this, you should determine whether these
objects will be set up as static or temporary before
creating the objects (see TM710 or the PVI user
documentation).

Functions used:

• PviCreate / PviCreateRequest
• PviLink / PviLinkRequest

Result:

The PVI Manager is started after starting the application. PVI objects
can then be created or accessed on already existing PVI objects.

If the PVI Manager is already
running, then the application is
registered on the PVI Manager
– the PVI Manager detects a new
Client. Existing PVI objects (static)
can be accessed.

 PVI Client Application

 PVI DLL Programming TM711 15

3.3.1 Setting up temporary process objects

The process object is created including the link object (Create + Link) when
setting up a temporary process object. When disconnecting the link object
(unlink) or when terminating the PVICOM application, the temporary
process object is also disconnecting again (i.e. deleted on the PVI
Manager).

Steps for creating the process objects:

• Add a module with the name "myPviFunc" for creating the global
variables and the callback functions for evaluating the data

• Place a button on the form with the name "cmdCreateTempSync"
• Place a textbox with the name "txtLifesign"
• Create the callback function in the module "myPviFunc"

A variable must be set up in the "myPviFunc" module for each PVI object.
These variables are required for returning the handle (reference) of a PVI
object. This handle can be used for read or write access to a PVI object
during runtime.

Exercise: Creating temporary process objects with
synchronous PVI functions.

All process objects up to and including variable objects are set up and
the response data (see also 3.4) from the "Lifesign" variable is displayed
in a textbox.

PVI Client Application

 16 TM711 PVI DLL Programming

The following code is entered to the button's "Click" event:

Description of the setup procedure:

• Variables are created for the object name (path name), the
connection description and the link object.

• The variables are set with the path name and the connection
description of the respective process object. The link object does not
have to be preset for the line object.

• Call the synchronous function "PviCreate".
• The global variable "hLine" is transferred as handle with the object

type "POBJ_LINE".
• A temporary process object is set up by specifying the callback

function with "AddressOf PviCallback". A static object would be set
up if "NULL" were transferred for these arguments.

• By specifying the callback without the data "SET_PVICALLBACK", the
data in the callback function must be read with "PviReadResponse".

• "0" is transferred as object number because response data is not
necessary on this object. This is first evaluated and transferred
starting at the CPU object.

 PVI Client Application

 PVI DLL Programming TM711 17

The callback function is used without data in the "myPviFunc" module.

The message sent by the PVI Manager is acknowledge by calling the
"PviReadResponse" function.

Note:

The program cannot be started until the callback function has also been
set up. This item "evaluating the response data" is now anticipated, a
function is created where the response data from each PVI object is
evaluated.

Caution:

All messages from the PVI Manager must be acknowledged in the
callback, even if no PVI object data or errors are evaluated.

Task: Start the program and set up the line object.

After starting, the result should be tested in the PVI Monitor or in the
PVI SnapShot Viewer.

PVI Client Application

 18 TM711 PVI DLL Programming

If the application is closed now, the process object including link object is
also deleted.

The following program code is added to the function in the
"cmdCreateSync" button - click event:

As you can see here, the path name (ObjName) is expanded for each object.
The variable for the handle and the object type also change for each
process object.

Result:

Two process objects are displayed in the PVI Monitor (PVI object + line
object). A link object is also set up at the same time as the line object.

 PVI Client Application

 PVI DLL Programming TM711 19

Further in the program code:

Response data should be evaluated when creating the CPU object. To do
this, the event mask "EV" is set up for "e=Error" and "d=Data" in the link
description (variable LinkDescription). That means that the error is
registered in the callback for the user or object number "1" if the
connection to the controller is lost.

Task: Expanding the callback and evaluating a link error:

The user number is transferred to the callback in the "LPARAM"
argument.

PVI Client Application

 20 TM711 PVI DLL Programming

A CPU object error is evaluated in the callback function with LPARAM = 1
and then written to the form's caption. The caption also shows when the
connection to the controller has been established.

The attribute for read and write access "AT=rw" as well as the refresh time
"RF=250" (in [ms]) are also specified in the connection description (CD=) of
the variable object.

 The event mask "EV" is set up for "e=Error" and "d=Data" in the
description of the link object. A cast to a "Double" data type is performed
using the parameter "VT=f64".

Task:Add the task and variable object and evaluate the data
changes and errors in the callback function.

The task object for the "pvitest" user task and the "Lifesign" variable are
set up.

 PVI Client Application

 PVI DLL Programming TM711 21

When changing the type, a controller data type is converted to a data type
used in the VB.

This makes it possible to also display and process a UDINT data type from
a control variable in Visual Basic in its entire value range.

 Data type Value range

Automation Runtime – UDINT 0 - 4294967295

Visual Basic – LONG -247483648 - 247483647

The variable's data is written to the text property of the "txtLifesign"
textbox in the callback. The error number is output to the text box when
return value <> 0 comes from the response function.

Caution:

The value range of the data type used in VB is not automatically
monitored when writing. Therefore, the data function = scaling had to
be used with the parameter "FS".

PVI Client Application

 22 TM711 PVI DLL Programming

When the project is started and the button for creating the process object
is pressed, the connection to the controller is established and the value of
the variable is output to the textbox.

Fig. 9: Starting the application – Displaying the value

Task: Test a loss of connection with the controller

Cancel the connection to the controller. If it is being used, the AR000
must first be exited and the effects must be tested on a running VB
program. With other types of communication, the connection cable must
be disconnected from the controller.

The connection is automatically re-established once the connection is
made again or the AR000 has been restarted.

Result:

The variable object is automatically read by the PVI Manager (active
process object) when using the event mask "EV=ed".

The callback is automatically called only for active process objects each
time a value change occurs and in the event of an error.

As a result, it is not necessary to read cyclically from the application.

Error evaluation does not have to be specially programmed. Instead, the
application is automatically notified by the connection with the
controller and via errors in the project setup.

The process objects on the PVI Manager are also deleted when ending
the PVI Client application.

 PVI Client Application

 PVI DLL Programming TM711 23

3.3.2 Setting up static process objects

A static process object is only set up (created) once and remains active
throughout the entire runtime of PVI Manager. As many link objects as
necessary can be linked to this static process object and unlinked again.

When setting up a static process object, a PviCreate (in this case the
asynchronous call "PviCreateRequest()") is used without specifying the
callback.

This is specified with "PviLink()" when the link object is set up.

Steps for creating the process objects:

• The same global variables are used for the object references
(handles) as for the temporary process objects

• Pace a button on the form with the name
"cmdCreateStatAsync"

• Pace a button on the form with the name
"cmdLinkStatObj"

• Create a separate callback for the event data
and for response data

Exercise: Creating static process objects with asynchronous
PVI functions.

All process objects are set up into a variable object and the response
data from the "Lifesign" variable is displayed in a textbox.

PVI Client Application

 24 TM711 PVI DLL Programming

Static process objects are not set up with asynchronous PVI functions in
the "cmdCreateStatAsync" button's "Click" event.

The PviCreateRequest function requires two callback functions. One for the
response from Create and one for evaluating the response data and error
from the process object.

If the callback is only specified for "Create", then a static process object is
created.

A callback is not required for the synchronous function PviCreate because
the response to "Create" is contained in the function call.

In the next step we will create the callback function in the "myPviFunc"
module for evaluating the Create function.

 PVI Client Application

 PVI DLL Programming TM711 25

A PviCreateRequest is acknowledged with PviCreateResponse in the
callback for the response from the function call.

Further in the program code for creating all process objects:

Note:

Error evaluation is not covered in this example. The user can implement
this individually.

Task: Start the program and check the process objects in the
PVI Monitor

Two process objects, the PVI and the Line object are set up. Unlike the
temporary process objects, there is still no link object.

PVI Client Application

 26 TM711 PVI DLL Programming

 PVI Client Application

 PVI DLL Programming TM711 27

The callback for the CreateResponse function is also expanded:

Task: Start the program and check the process objects in
the PVI Monitor

All process objects are displayed in the PVI Monitor after starting the
program.

Result:

The process objects remain on the PVI Manager even when the
application is ended.

A link object is not created for any process objects.

PVI Client Application

 28 TM711 PVI DLL Programming

If the program is started again, then the error 12002 is returned at the
PviCreateResponse.

That means that the object name already exists. In this case, a link object
can be set up immediately on the existing process object.

Caution:

If a static or temporary process object is set up by two different
applications with the same path names (@/Pvi/LnIna2…) but with
different connection descriptions, then the connection description of
the existing process object is used.

That means that it is not possible if a second application has the same
path name and must communicate with e.g. another device.

When setting up an application with static objects you should also be
aware that a change to the connection description due to a program or
configuration error does not take effect until after terminating the PVI
Manager.

 PVI Client Application

 PVI DLL Programming TM711 29

3.3.3 Creating a link object

A link object with the function "PviLink()" or "PviLinkRequest()" must be
created for a static process object. As many link objects as necessary can
be connected to the same process object.

Each of these link objects can have different parameters e.g. for the data
type or scaling. This makes it possible for example to simultaneously
process a control variable in the application as raw value (i.e. the physical
value of the controller) as well as the scaled and converted process value.

Exercise: Create the link objects up to the task object

The link objects are set up in the click even of the "cmdLinkStatObj"
button.

The same callback function is used as the one for the temporary objects
"PviCallback".

Note:

It is recommended to use the asynchronous "PviLinkRequest()"
functions because they can also be called in a loop. This also
significantly speeds up the processing of the functions for simultaneous
linking and unlinking multiple link objects.

PVI Client Application

 30 TM711 PVI DLL Programming

As with the temporary process objects, the event mask is activated in the
LinkDescriptor for errors and data "EV=ed" in the CPU object.

 PVI Client Application

 PVI DLL Programming TM711 31

If the program is started now and the buttons "cmdCreateStatAsync" and
"cmdLinkStatObj" are pushed consecutively, then a connection to the task
object is established. All process objects (PVI- up to variable object) and
link objects (PVI- up to task object) are displayed in the PVI Monitor.

Exercise: Create the link object to the variable's process object

The process object is activated by linking to the variable object (event
mask "EV=ed" in the LinkDescriptor). From this point on, the variable is
read by the Manager and displayed in the "txtLifesign" textbox.

A new "cmdLinkVar" button should be created and a PviLink() to the
variable object should be established in the click event.

PVI Client Application

 32 TM711 PVI DLL Programming

After restarting the program, the variable's link object can be created by
pressing the button "cmdLinkVar" without creating the static process
objects because the process objects up to the task object already exist.

The variable is read by the PVI Manager and displayed on the form's
textbox.

Fig. 10: Link to variable object

Exercise: Create multiple link objects to the same variable
object

If the "cmdLinkVar" button is now pressed multiple times, then multiple
link objects are created on the variable's process object.

This can be seen in the PVI Monitor with the number of link objects.

Result:

Static process objects are set up one time and stay the same while the
PVI Manager is running, even if the application is ended.

The process object is activated when one ore more link objects have
been created.

 PVI Client Application

 PVI DLL Programming TM711 33

3.3.4 Deleting a link object

The link to the process object is unlinked by "deleting" the link object with
"PviUnlink()" or "PviUnlinkRequest()".

If there are multiple link objects on the same process object, then it is not
"inactive" until the last link object has been deleted.

After starting the program, one or more link objects can be created by
pressing the "cmdLinkVar" button. The value of the "Lifesign" variable is
displayed in the textbox and refreshed cyclically.

The link object is deleted by pressing the "cmdUnlinkVar" button. The
variable is no longer read once the last link object has been deleted.

An error is output by evaluating the return value from the "PviLink()" if the
function is called when there are no more link objects.

Exercise: Delete the link object for the variable object

The link object is deleted using the function "PviUnlink()".

A new button with the name "cmdUnlinkVar" should be created and the
function should be called in the click event. The handle (i.e. the
reference of the variable object) should be transferred to the function
"hPV_Lifesign".

PVI Client Application

 34 TM711 PVI DLL Programming

3.4 Evaluating the response data

Two different types of callback functions can be used in Visual Basic.

• Callback without data
• Callback with data

The user messages are signaled with "Post Messages" for programming
environments that support Window Messages.

"Asynchronous callbacks" are another possibility for evaluating response
data. This method is used for Visual C++ applications without windows
(DLL driver).

3.4.1 General information about evaluating response data

In general, you should make sure that the response data or event data is
not evaluated in the respective callback / Window Message (e.g. access to
databases).

3.4.2 Callback without data

In the previous exercises, the callback function was used without data.

With this type of callback, the data must be read with the corresponding
Pvi…Response() function – the "PviCreateResponse()" function must be
called in the callback for the "PviCreateRequest()" or "PviCreate()" function.

Caution:

Within a callback function, unrestricted asynchronous PVICOM
functions can be used, but synchronous PVICOM functions CANNOT.

 PVI Client Application

 PVI DLL Programming TM711 35

The "WPARAM" and "LPARAM" arguments transferred in the function are
required to arrange the response function assigned to the request function.

Public Sub PviCallback(ByVal WPARAM As Long, ByVal LPARAM As Long)
Dim returnval As Long
Dim DataPV As Double

Select Case LPARAM

Case 1: ' CPU object
 returnval = PviReadResponse(WPARAM, 0, 0)
Case 10: ' variable object
 returnval = PviReadResponse(WPARAM, DataPV, 8)
Case Else:
 PviReadResponse WPARAM, 0, 0

 End Select

 End Sub

The "LPARAM" argument indicates the user number specified in the
respectively called function (e.g. PviCreate).

 returnval = PviLink(hPV_Lifesign, ByVal ObjName, AddressOf PviCallback, _
 SET_PVICALLBACK, 10, LinkDescription)

Caution:

If the return value that was transferred in the response function is <> 0,
then an error has occurred and the data contained in the function is not
valid.
Therefore, it is recommended to always evaluate the return value!

PVI Client Application

 36 TM711 PVI DLL Programming

3.4.3 Callback with data

In this type of callback function, the response data and event data are
transferred together in the callback function. Calling the corresponding
response function is no longer necessary or possible.

The CallbackData is transferred with the function call instead of the normal
callback function.

ReturnVal = PviLink(hPV_Lifesign, ByVal ObjName, AddressOf
 PviCallbackData, SET_PVICALLBACK_DATA, 10, LinkDescription)

Public Sub PviCallbackData(ByVal WPARAM As Long, ByVal LPARAM As Long,
 ByVal pData As Long, ByVal dataLen As Long, _
 ByRef pResInfo As T_RESPONSE_INFO)

 End Sub

Exercise: Use the callback with data to evaluate the event
data for the "Lifesign" variable

The callback with data is used in the "cmdLinkVar" button's click event
instead of the normal callback.

The callback function "PviCallbackData" is created in the "myPviFunc"
module.

 PVI Client Application

 PVI DLL Programming TM711 37

In the callback function with data, a query is made in the
"T_RESPONSE_INFO" PVI structure asking whether this is data or if an
error has occurred. The data is then valid and can be evaluated.

The corresponding process object is assigned again when evaluating the
user parameter "LPARAM".

The "nMode" Member in the "T_RESPONSE_INFO" structure evaluates
whether or not it is a data event (POBJ_MODE_EVENT).

The "ErrCode" member determines whether an error has occurred or if the
transferred to "pData" is valid.

The point to the data and the data length are transferred in the self-made
function "GetDataInformation".

The API "CopyMemory" is used in Visual Basic to copy the data to a
variable. This API is declared in the declaration part of the module
"myPviFunc".

PVI Client Application

 38 TM711 PVI DLL Programming

In the "GetDataInformation" function, the data is now copied to the Visual
Basic "DataPV" variable and to the "txtLifesign" textbox.

The function "GetDataInformaton" is implemented for simple data types in
this example.

To implement the function for all data types, The "Format Event" can also
be evaluated. This event is sent before the first data event.

More information about the creating and evaluating the format event can
be found in the PVI user documentation.

Note:

In this example "VT=f64" is specified in the LinkDescriptor of the
variable object. This results in a type conversion to "double" in the PVI
Manager.
In the callback with data, the corresponding length is included for each
data type – in this case "8" for the data type "double".

Result:

After starting the program and pressing "cmdLinkVar" button, the value
of the variable object is output to the textbox as in the exercise for the
callback function without data.

 PVI Client Application

 PVI DLL Programming TM711 39

3.5 Read and write access

Process objects that are switched to "active" by the "EV=ed" event mask
are automatically monitored for data changes by the PVI Manager –
regardless of whether these process objects are polled by the PVI Line or
setup as event variables by the "AT=re" attribute.

That means that these process objects no longer have to be additionally
read by the application.

PVI offers read and write access for
accessing the respective process objects in
the PVI object hierarchy.

These access functions are described in the
PVI user documentation <PVI Base
System> / <PVICOM interface> / <Access
types>.

This training module uses various exercises to describe three access
functions for read and write access to a process object.

3.5.1 Writing a value

The function "PviWriteRequest()" and the access function
"POBJ_ACC_DATA" are used to perform asynchronous write access with
data to a variable object.

The application is notified of the successful write task in the corresponding
callback. Any errors that occurred are reported in the response function's
return value.

Fig. 11: Access functions

PVI Client Application

 40 TM711 PVI DLL Programming

Data access to the variable object is specified by defining the LinkID
(handle) of the variable object and the access type "POBJ_ACC_DATA".

In the callback function, the return value notifies the application whether
the write access was successful (ReturnVal = 0) or if an error occurred
(ReturnVal <> 0).

Exercise:

Write to the "lifesign" variable with the value "0"

The function is implemented in the click event of a new button
"cmdWriteLifesign". A callback function for write access should be
created in the "myPviFunc" module.

Result:

After starting the program and setting up the process objects
(regardless of whiter these were created as static or temporary), the
value of the variable is set to "0" when pressing the "cmdWriteLifesign"
button.

 PVI Client Application

 PVI DLL Programming TM711 41

3.5.2 Changing the event mask

With static process objects, the "active" switching of the process object by
specifying the event mask "EV=ed" is controlled by the link / unlink
procedure.

With temporary process objects, this is done by writing the process
object's event mask with the access type "POBJ_ACC_EVMASK".

This access type can be used to enable or lock the different types of events
for a process object – both static and temporary – during runtime.

Exercise:

Enabling and disabling the event types "Error" and "Data"

The event mask is "disabled" at index [0] and "re-enabled" at index [1]
using an OptionButton field with the name "optEventMask" on the form.

These accesses can be performed using a synchronous write task
because this change is made right on the PVI Manager and does not
have to wait for a confirmation from the controller.

PVI Client Application

 42 TM711 PVI DLL Programming

3.5.3 Reading the controller time

In this last exercise, the controller's time will be read and output.

The access function "POBJ_ACC_DATE_TIME" on the CPU object is used to
read the time from the controller.

The time is saved on a structure variable in Visual Basic. The Member
variables of this structure are used to perform the evaluation and
formatting for the display.

The necessary time structure is created in the "myPviFunc" module.

Result:

When the program is started, each value change in the variable is
displayed in the textbox after setting up the process objects.

The value change is no longer refreshed after pressing the OptionButton
with index [0] (i.e. the variable is no longer read).

The variable is read again after "enabling" the event mask with "EV=ed".

Note:

In addition to reading the controller's time, this function can also be
used to read the time and the data from a module or a user task for
service applications.
The differentiation between CPU and module objects is made by
specifying the respective handle in the object hierarchy.

Exercise: Read the time from the controller

Reading the time is started by pressing a new button "cmdReadTime".
The response from the read task is displayed on a Visual Basic label
control with the name "lblTime".

 PVI Client Application

 PVI DLL Programming TM711 43

The read task for the time is started in the Click event of the
"cmdReadTime" button:

A separate callback function with the name "RespService" is created in
which the time that was read is then evaluated. An existing callback
function can also be used.

PVI Client Application

 44 TM711 PVI DLL Programming

Correct formatting of the display is not taken into consideration here.

Result:

The controller's time is displayed on the form after starting the program
and pressing the "cmdReadTime" button.

To set the time on the controller, the time structure must be written with
that of the PC and written to the controller with the "PviWriteRequest()"
function.

 Summary

 PVI DLL Programming TM711 45

4. SUMMARY

The PVI functions make it possible implement any Windows Client
application, from visualizations that require data for displaying and
operating up to creating Service Tools – such as the PviTransfer tool.

This training module covered a small range of the PVI functionalities. The
PVI user documentation as well as the PVI Samples and the PVI Tutorial for
the supported program language included in the PVI Server&Runtime /
Development installation can be used to build upon basic knowledge.

The PviTutorial uses several steps to explain application of the PVI
functions from creating a process object up to using most of the access
functions.

Fig. 12: PVI DLL programming

Summary

 46 TM711 PVI DLL Programming

Notes

 Summary

 PVI DLL Programming TM711 47

Overview of training modules

TM200 – B&R Company Presentation ** TM600 – The Basics of Visualization
TM201 – B&R Product Spectrum ** TM610 – The Basics of ASiV
TM210 – The Basics of Automation Studio TM630 – Visualization Programming Guide
TM211 – Automation Studio Online Communication TM640 – ASiV Alarm System
TM212 – Automation Target ** TM650 – ASiV Internationalization
TM213 – Automation Runtime TM660 – ASiV Remote
TM220 – The Service Technician on the Job * TM670 – ASiV Advanced
TM221 – Automation Components and Sources of Errors *
TM223 – Automation Studio Diagnostics TM700 - Automation Net PVI
TM230 – Structured Software Generation TM710 - PVI Communication
TM240 – Ladder Diagram (LAD) TM711 - PVI DLL Programming
TM243 – Sequential Function Chart (SFC) * TM712 - PVIServices
TM245 – Instruction List (IL) * TM730 - PVI OPC
TM246 – Structured Text (ST)
TM247 – Automation Basic (AB) * TM800 – APROL System Concept
TM248 – ANSI C TM801 – APROL Engineering Basics
TM250 – Memory Management and Data Storage TM810 – APROL Setup, Configuration and Recovery
TM260 – Automation Studio Libraries I TM811 – APROL Runtime System
 TM812 – APROL Operator Management
TM400 – The Basics of Motion Control TM813 – APROL XML Queries and Audit Trail
TM402 – Dimensioning Motion Control Systems * TM830 – APROL Project Engineering
TM410 – The Basics of ASiM TM840 – APROL Parameter Management and Recipes
TM440 – ASiM Basic Functions TM850 – APROL Controller Configuration and INA
TM441 – ASiM Multi-Axis Functions TM860 – APROL Library Engineering
TM445 – ACOPOS ACP10 Software TM865 – APROL Library Guide Book
TM450 – ACOPOS Control Concept and Adjustment TM870 – APROL Python Programming *
TM460 – Starting up Motors * TM880 – APROL Report *

 *) upon request
 **) see Product Catalog

Summary

 48 TM711 PVI DLL Programming

Hinteres Deckblatt (auf durch 4 Teilbarer Seitenzahl)

Kontakt (Headquarter)

Weblink

Internationalität

Copyright – Bestellnummer

T
M

71
1T

R
E

.0
0-

E
N

G

 0
70

6
©

20
06

 b
y

B
&

R
. A

ll
ri

gh
ts

 r
es

er
ve

d
.

A
ll

tr
ad

em
ar

ks
 p

re
se

n
te

d
 a

re
 th

e
p

ro
p

er
ty

 o
f t

he
ir

 r
es

p
ec

tiv
e

co
m

p
an

y.

W
e

re
se

rv
e

th
e

ri
gh

t t
o

 m
ak

e
te

ch
ni

ca
l c

ha
ng

es
.

