

Structured Software GenerationStructured Software GenerationStructured Software GenerationStructured Software Generation
TM230

 2 TM230 Structured Software Generation

Prerequisites

Training modules: TM210 – The Basics of Automation Studio

 TM211 – Automation Studio Online Communication

TM223 – Automation Studio Diagnostics

At least one programming language.

Software: Automation Studio

Hardware: none

 Structured Software Generation TM230 3

Table of Contents

1. INTRODUCTION 4

1.1 Objectives 5

2. THE SOFTWARE ENGINEERING PROCESS 6

2.1 Steps in Software Generation 6

2.2 Software Quality 7

2.3 Cost of Fixing Defects 8

3. PROJECT STRUCTURING 9

3.1 Structured Software Design 9

3.2 Case Study: Injection Molding Machine 11

4. STATE DIAGRAMS 14

4.1 Types of Logic 15

4.2 Finite State Machines 19

4.3 Implementation 22

4.4 Case Study: Sorting Material on a Conveyor Belt 25

5. B&R CODING GUIDELINES 29

5.1 Before You Code 30

5.2 Naming Conventions 30

5.3 Code Format 34

5.4 Programming Techniques 37

5.5 Testing 39

5.6 Documentation 40

6. SUMMARY 42

Introduction

 4 TM230 Structured Software Generation

1. INTRODUCTION

This training module is all about generating application software in the field
of automation. If you are (or are going to be) a programmer of machines or
plants, please ask yourself a few questions:

• Is software generation more than just coding, coding, coding?

• How can I improve the quality of the software I produce?

• By the way, what is software quality?

• What about costs to fix defects in software?

• How do I create well structured software?

• Is there a way to analyze, describe and discuss machine logic in a
formal and exact way?

• How can I write better source code?

• How should I test and document the code I create?

Interested? Head on and dive into the following sections! HAVE FUN!

Fig. 1 Buggy code

 Introduction

 Structured Software Generation TM230 5

1.1 Objectives

After successfully working through this module, the course participant will

• have been introduced to software engineering concepts, steps in
software generation and software quality issues

• be familiar with the method of state diagrams and finite state
machines to analyze, describe and discuss the logical function of
machines in an exact and formal way

• be familiar with the B&R Coding Guidelines to produce, test and
document high quality source code

Fig. 2 Overview

The Software Engineering Process

 6 TM230 Structured Software Generation

2. THE SOFTWARE ENGINEERING PROCESS

What is software engineering anyway? Here are two definitions:

• Software engineering is the application of a systematic, disciplined,
quantifiable approach to development, operation and maintenance of
software; that is the application of engineering to software (IEEE
Standard Computer Dictionary).

• Software engineering is a discipline whose aim is the production of
high quality software, delivered on time, within budget and satisfying
users’ needs (S. R. Schach: Software Engineering).

2.1 Steps in Software Generation

Typical steps in software generation are:

• Requirements analysis

• Software specification

• Software design (or software architecture)

• Coding (implementation)

• Testing

• Documentation

• Maintenance

The first task in creating a desired software product is analyzing and
extracting its requirements. It may require skill and experience to
recognize incomplete, ambiguous or contradictory requirements.

The result should be a precise description of the software to be written -
the software specification. Typically a specification is a written agreement
with the customer.

The software design (software architecture) is developed based on the
specification. It determines how the software is to function in a general
way without being involved in details.

Software architecture may be defined as ‘the internal conceptual design of
software, enabling the software to exhibit a certain set of attributes’. It is
wise to discuss the desired software architecture with the customer and
get an agreement on it.

In the following implementation step the software design is coded in a
specific programming language (specified program behavior is converted
into operational code).

Subsequent steps are testing, documentation and maintenance.

 The Software Engineering Process

 Structured Software Generation TM230 7

Issues that must already be considered in the requirements analysis and
software specification/design phases include:

• machine operating modes (such as manual, semi-automatic, setup,
automatic, stand alone, linked, …) and conditions for changing from
one mode to another

• emergency and safety

• error handling

• providing diagnostic information

• remote access (via HMI, VNC, HTTP, etc.)

2.2 Software Quality

Important quality issues of application software in automation are:

• clean architecture and design

• conformance to requirements and specifications

• absence of bugs

• source code quality: the way a program is written can have some
important consequences for the human maintainers, such as
readability, logical structuring of the code into manageable sections
low resources consumption (memory, CPU time)

• ease of maintenance

The Software Engineering Process

 8 TM230 Structured Software Generation

2.3 Cost of Fixing Defects

Building a software system is like any other project that takes people and
money. People introduce errors and errors cost (additional) money.

In software engineering it pays to do things right the first time, because the
expense of fixing defects rises dramatically as the time from when it is
introduced to when it is detected increases (as shown in the picture, which
is taken from S. McConnell: Code Complete).

Therefore the general principle is to find an error as close as possible to
the time at which it was introduced.

Fig. 3 Cost of fixing a defect as a function of when it is introduced and detected

 Project Structuring

 Structured Software Generation TM230 9

3. PROJECT STRUCTURING

3.1 Structured Software Design

Clean architecture and design are the foundation of any good software.

The capabilities and limitations of all target platforms on which the
software will be run must be taken into account.

Take your time in the conception phase and work on the design until you
are satisfied with your concept. Usually the time invested in a good
software design is well spent because it is saved many times later in the
implementation phase.

Studies have shown that programmers who rush to coding generally take
longer to finish their programs than programmers who plan first.

One approach to software design is the structured design approach. It is
also known as top-down design, stepwise or successive refinement
technique and decomposition approach. In this approach a problem is
analyzed by repeatedly dividing it into smaller functional parts (modules),
which are easier to handle (successive refinement technique).

In human history this problem solving strategy has been known for at least
two thousand years (‘divide et impera’ = ‘divide and conquer’ = ‘teile und
herrsche’ was the motto of ancient Roman emperor Marcus Aurelius).

The structured design approach is characterized by moving from a general
statement of what the program does to detailed statements about specific
tasks that are performed.

In a first step sub-systems are identified, the program is partitioned into
major components and interfaces in between are defined. In the following
decomposition steps more details are introduced successively.

An especially important issue of software design is the design of data and
information flow, which defines:

• where data resides in your software modules

• data exchange between software modules

• how data is organized into data structures

In general, software design is not a deterministic process but requires
creativity and is often an iterative process.

Project Structuring

 10 TM230 Structured Software Generation

Software design with the structured design approach can be summarized
as follows:

• Design top level first

• Postpone details to lower levels

• Formalize each level

• Verify each level (if it complies with the specification)

• Move on to the next level

• Stop decomposing, when it is easier to code the next level than to
decompose it. The design should seem obvious and easy then.

 Project Structuring

 Structured Software Generation TM230 11

3.2 Case Study: Injection Molding Machine

Let's have a look now at an injection molding machine. The top level of the
software design is the machine in total. Every detail is postponed to lower
levels.

Fig. 4 Software architecture at top level

At level 2, the machine is decomposed into its basic functional (in this case
mechanical) parts. Injection Unit, Hydraulic Clamp Cylinder, Mold,
Transport, Feeder, Dosage and a General module, which is responsible for
the basic logical function of the machine.

The next pciture shows the level 2 software architecture including data
dependencies and data interfaces.

Fig. 5 Level 2 software architecture

Project Structuring

 12 TM230 Structured Software Generation

At level 3 the basic functional parts are further refined: the functional part

Transport is decomposed into Scales and Conveyor belt .

Fig. 6 Decomposition of functional part Transport

The Scales module performs weight checking of the product and signals

the Conveyor belt module what to do with the product (further

processing if product weight is ok or throw away otherwise). Conveyor
belt gives feedback if it is ready to process the next piece.

The functional part Mold is decomposed into Hydraulic ejector , Cores
and Mold Heating . Hydraulic ejector and Cores must not be active
at the same time. Both have no functional connection to Heating , which

exchanges data with the General module.

Fig. 7 Decomposition of functional part Mold

Injection Unit is decomposed into Injection Piston and Barrel Heating.
There is no data connection and dependency between Injection Piston and
Barrel Heating, these modules get their commands from General.

 Project Structuring

 Structured Software Generation TM230 13

Fig. 8 Decomposition of functional part Injection Unit

The next picture outlines the data dependency and connection between the
modules General, Mold and Transport.

Fig. 9 Inter module data dependencies

State Diagrams

 14 TM230 Structured Software Generation

4. STATE DIAGRAMS

One of the most common tasks for software engineers in the field of
automation is the programming of machine or plant logic, which
determines the general function of a machine or plant.

Usually the machine or plant logic is specified by a textual description,
which is often inaccurate. With the help of state diagrams you can describe
machine or plant logic in an exact and formalized way. State diagrams are
also a convenient way of discussing machine logic with customers on a
formal level.

Once you have developed a state diagram for your desired logic, the
implementation (coding) is a straight forward and easy task. This section
should familiarize you with state diagrams as a powerful method to analyze
and describe machine sequences and plant procedures.

In this section all code fragments are given in the ANSI C programming
language. For those who are not familiar with C, here is a short table with a
description of operators in ANSI C:

! logical negation operator

= assignment operator

== comparison operator

&& logical AND operator

++ increment operator

 State Diagrams

 Structured Software Generation TM230 15

4.1 Types of Logic

4.1.1 Combinatorial Logic

Let’s have a look now at a water tank:

Fig. 10 Water tank temperature control

water is taken from the tank if an external valve is opened. The water level
in the tank is held constant with a pump, which is switched on if the water
level falls below a certain level, detected by a level switch:

pumpOn = (!levelSwitch)

Furthermore, the water should be conditioned to temperature Tset with a
heating element. The actual water temperature Tact is measured with a
temperature sensor. The heating element is switched on, if the water level
in the tank is ok and if the actual water temperature is below the set
temperature:

heaterOn = ((levelSwitch == 1) && (Tact < Tset))

In this simple example we have three inputs,

• set temperature Tset (of data type INT)

• actual temperature Tact (INT)

• level switch senor levelSwitch (BOOL)

and two outputs:

• pumpOn (BOOL)

• heaterOn (BOOL)

State Diagrams

 16 TM230 Structured Software Generation

The outputs are a function of, and only of, the present inputs. There is a
static relation between inputs and outputs. Such type of logic is called a
combinatorial logic. It does not have memory (or storage).

Because of this static input to output relation there is no inherent system
dynamic with possible associated stability problems (e.g. deadlocks) in a
combinatorial logic.

Because of this missing ability to remember what happened in the past,
combinatorial logic is too simple for the desired functionality of common
machines or plants.

This is a severe limitation and some drawbacks of this approach can be
seen easily even in our simple example:

• If the water level falls below the level switch, our simple logic will
switch on the pump. The water level will increase causing the logic
to switch off the pump. The result is a continuous switching with
negative effects on the lifetime of the pump.

• The same thing happens with the heater: when the heater is on, the
water temperature will increase causing the heater to shut down.
Then the water will get cooler causing the heater to start and so on.
The same effect may be caused by a flickering temperature sensor.
Both will lead to a decreasing contactor lifetime.

In the next section we will make our simple logic a little more intelligent to
overcome these disadvantages.

 State Diagrams

 Structured Software Generation TM230 17

4.1.2 Sequential Logic

First, we do not switch off the pump immediately when levelSwitch
changes to 1, but after a time delay of tDelay seconds.

Fig. 11 Sequential water level control logic: time delay

Our second improvement is to add a hysteresis to the threshold value for

switching off the heater: we do not switch off the heater when Tact
reaches Tset , but when Tact > (Tset+deltaT) .

Now the outputs (heaterOn and pumpOn) are no longer determined by the
present inputs:

• When Tset < Tact < (Tset+deltaT) it depends on the history

of Tact , if the heater is on or off: The heater will now be on if less
time has passed since the last occurrence of event ‘Tact == Tset’

than time passed since the last occurrence of event ‘Tact ==
(Tset+deltaT)’ , otherwise the heater will be off.

• The pump can now be on, even if (levelSwitch == 1). Again in

this case it depends on the history of levelSwitch if the pump is on

or off. The pump will now be on if less than tDelay seconds have

passed since the last occurrence of event ‘levelSwitch changes

from 0 to 1’.

State Diagrams

 18 TM230 Structured Software Generation

Fig. 12 Sequential water temperature control logic: hysteresis

The outputs of our improved logic depend not only on present inputs but
also on past inputs. Such type of logic is called a sequential logic.
Sequential logic is capable of storing and remembering information.

To describe the behavior of a sequential logic we need additional variables
to represent the information the logic remembers. Such variables are called
state variables because they uniquely define the state the logic is in.

Remark: In the last picture there are some overshoots (Tact >
(Tset+deltaT)) and undershoots (Tact < Tset) in the temperature

signal. This is a consequence of some dead time in the control loop.

 State Diagrams

 Structured Software Generation TM230 19

4.2 Finite State Machines

The first step in the analysis of a sequential logic is to determine the
number of state variables and all their possible values.

In our example we can choose the following state variables:

• pumpState with three possible values of:

PUMP_OFF
PUMP_ON_LEVELTOOLOW
PUMP_ON_TIMEDELAY

• heaterState with two possible values of:

HEATER_OFF
HEATER_ON

Our sequential logic has two state variables, where state variable 1 can
have three possible values and state variable 2 can have two possible
values.

A finite state machine is the description of a sequential logic with a finite
number of states. A finite state machine consists of

• States: one state is the init or default state, in which the machine is,
when turned on

• Events: they trigger transitions between states and must be
prioritized, if more than one event can occur at the same time in a
specific state (see following example)

• Actions: there are two types of actions:

• actions, which are taken at state transitions (e.g. setting outputs)

• actions, which are taken while being in a state (e.g. increasing
counters)

• Transitions between states, which are triggered by events and cause
actions (‘if we are in state x1 and event y occurs take action z and
transit to state x2’)

State Diagrams

 20 TM230 Structured Software Generation

In our example a transition between states can be triggered by the
following events:

• TooCold: (Tact < Tset) changes from FALSE to TRUE

• TooHot:(Tact > ((Tset+deltaT)) changes from FALSE to TRUE

• LevelOk : levelSwitch changes from FALSE to TRUE

• LevelNotOk : levelSwitch changes from TRUE to FALSE

• TimerElapsed : tDelay seconds have passed since last occurrence

of LevelOk

We have to take the following actions:

• SwitchPumpOn

• SwitchPumpOff

• SwitchHeaterOn

• SwitchHeaterOff

• ResetTimer

• IncrementTimer (this action is not taken at a state transition, but is

performed while being in state TIMER_ON)

4.2.1 State Transition Table

A state transition table is the description of transitions in a tabular form:

State Event Action Transit to state

HEATER_OFF TooCold SwitchHeaterOn HEATER_ON

HEATER_ON TooHot SwitchHeaterOff HEATER_OFF

State Event Action Transit to state

PUMP_OFF LevelNotOk SwitchPumpOn PUMP_ON

PUMP_ON LevelOk ResetTimer TIMER_ON

TIMER_ON TimerElapsed SwitchPumpOff PUMP_OFF

 State Diagrams

 Structured Software Generation TM230 21

4.2.2 State Diagrams

State diagrams are graphical representations of state machines.

Fig. 13 State diagram for the heater

Fig. 14 State diagram for the pump

State Diagrams

 22 TM230 Structured Software Generation

4.3 Implementation

If you have successfully described and formalized the sequential machine
logic in a state diagram, implementation is an easy and straight forward
task.

In pseudo code a simple implementation of a finite state machine could
look like:

switch(state)
for all states i

case (state i)
perform actions in state i
for all events j

 if event j
then take action k
transit to state l

This is a pretty compact notation. A real implementation can get lengthy as
our simple example demonstrates:

/** *****************
 * COPYRIGHT – B&R Industrial Automation
 ** *****************
 * Program: TankControl
 * File: TankControl.c
 * Created: 04-March-2005
 ** *****************
 * Implementation of program TankControl
 ** *****************/

#include <bur\plctypes.h>

#ifdef _DEFAULT_INCLUDES
 #include <AsDefault.h>
#endif

#define PUMP_OFF 0
#define PUMP_ON 1
#define TIMER_ON 2

#define HEATER_OFF 0
#define HEATER_ON 1

 State Diagrams

 Structured Software Generation TM230 23

/* ----------- events -------------- */

BOOL TooCold(void)
{
 return(Tact < Tset);
}

BOOL TooHot(void)
{
 return(Tact > (Tset + deltaT));
}

BOOL LevelOk(void)
{
 return(!levelSwitch);
}

BOOL LevelNotOk(void)
{
 return(levelSwitch);
}

BOOL TimerElapsed(void)
{
 return(timer == tDelay);
}

/* ---------- actions ---------- */

void SwitchPumpOn(void)
{
 pumpOn = 1;
}

void SwitchPumpOff(void)
{
 pumpOn = 0;
}

void SwitchHeaterOn(void)
{
 heaterOn = 1;
}

void SwitchHeaterOff(void)
{
 heaterOn = 0;
}

void ResetTimer(void)
{
 timer = 0;
}

void IncrementTimer(void)
{
 timer++;
}

State Diagrams

 24 TM230 Structured Software Generation

/* ---------- transitions -------- */

void _CYCLIC WaterTankCYCLIC(void)
{

/* ---------- pump ----------- */

 switch (pumpState)
 {
 case PUMP_OFF:
 if (LevelNotOk())
 {
 SwitchPumpOn();
 pumpState= PUMP_ON;
 }
 break;

 case PUMP_ON:
 if (LevelOk())
 {
 pumpState = TIMER_ON;
 ResetTimer();
 }
 break;

 case TIMER_ON:
 IncrementTimer();
 if (TimerElapsed())
 {
 SwitchPumpOff();
 pumpState = PUMP_OFF;
 }
 break;

 } /* end switch */

 /* ---------- heater ---------- */

 switch (heaterState)
 {
 case HEATER_OFF:
 if (TooCold())
 {
 SwitchHeaterOn();
 heaterState= HEATER_ON;
 }
 break;

 case HEATER_ON:
 if (TooHot())
 {
 SwitchHeaterOff();
 heaterState= HEATER_OFF;
 }
 break;

 } /* end switch */

} /* end WaterTankCYCLIC */

 State Diagrams

 Structured Software Generation TM230 25

4.4 Case Study: Sorting Material on a Conveyor Belt

Now let's take a look at a conveyor belt transporting pieces with different

lengths. A control logic should sort out pieces, which length L ≤ A1 or L ≥
A2. The length is determined with photoelectric barrier sensors with digital
input signals B1, B2 and B3. A signal is high if a piece passes through a
barrier.

Sorting is done by setting the digital signal lengthOk = 1 for one clock

period which causes the pneumatic actuator to push a piece of correct
length onto another conveyer belt. We do not have to worry about the
actuator. It will return to its original position automatically.

Distances between the photoelectric barriers are A1 and A2, where A1 >
A2/2 . The distance between different pieces of material is much larger than

A2.

Fig. 15 Sorting arrangement

Our job is to design a control logic for the pneumatic actuator. In this
example we focus on the process logic and explicitly neglect error
handling (which is an important part in real life applications).

In the following, (B 1B2B3) denotes the actual input signals of all photo-
electric barriers, e.g. (010) means B1 = 0 , B2 = 1 and B3 = 0 .

State Diagrams

 26 TM230 Structured Software Generation

The input sequence for a piece with the correct length is:

A1 < L < A2: (000),(100),(110),(010),(011),(001),(0 00) � lengthOk = 1

Input sequences for incorrect lengths are:

L > A2: (000),(100),(110),(111),(011),(001),(000)

L = A2: (000),(100),(110),(011),(001),(000)

L = A1: (000),(100),(110),(010),(001),(000)

A4 < L < A1: (000),(100),(110),(010),(000),(001),(0 00)

L = A4: (000),(100),(010),(000),(001),(000)

L < A4: (000),(100),(000),(010),(000),(001),(000)

Events:

• Enter1 : B1 changes from 0 to 1 (piece enters photoelectric barrier 1)

• Enter2 : B2 changes from 0 to 1 (piece enters photoelectric barrier 2)

• Enter3 : B3 changes from 0 to 1 (piece enters photoelectric barrier 3)

• Pass1 : B1 changes from 1 to 0 (piece leaves photoelectric barrier 1)

• Pass2 : B2 changes from 1 to 0 (piece leaves photoelectric barrier 2)

• Pass3 : B3 changes from 1 to 0 (piece leaves photoelectric barrier 3)

Actions:

• Push: set lengthOk = 1

• Reset: set lengthOk = 0

A solution with 13 states and 19 transitions is depicted in the state diagram
in Fig. 23.

In the state transition table, events with highest priority are marked with

(P). This means, that e.g. if we are in state OK1 and the event Pass1
happens, we will transit to state TOOSHORT1 - but if Pass1 and Enter2

happen at the same clock cycle, we will transit to state TOOSHORT2.

 State Diagrams

 Structured Software Generation TM230 27

state event action transit to state

INIT Enter1 - OK1

OK1 Pass1 & Enter2 (P) - TOOSHORT2

OK1 Pass1 - TOOSHORT1

OK1 Enter2 - OK2

OK2 Pass1 & Enter3 (P) - TOOLONG2

OK2 Enter3 - TOOLONG1

OK2 Pass1 - OK3

OK3 Pass2 & Enter3 (P) - FAILED

OK3 Pass2 - TOOSHORT3

OK3 Enter3 - OK4

OK4 Pass2 - OK5

OK5 Pass3 Push FINALOK

FINALOK - Reset INIT

TOOSHORT1 Enter2 - TOOSHORT2

TOOSHORT2 Pass2 - TOOSHORT3

TOOSHORT3 Enter3 - FAILED

TOOLONG1 Pass1 - TOOLONG2

TOOLONG2 Pass2 - FAILED

FAILED Pass3 - INIT

Please note that actions are to be taken only in 2 out of 19 transitions. The

transition from FINALOK to INIT need not be triggered by an event. This

happens by default at the next clock cycle.

State Diagrams

 28 TM230 Structured Software Generation

Fig. 16 State diagram for the conveyor belt logic

 B&R Coding Guidelines

 Structured Software Generation TM230 29

5. B&R CODING GUIDELINES

Computer programming is an engineering discipline (software engineering)
and as usual in engineering there is an absolute truth … whether a program
does work or it does not work.

But computer programming also is an art (see the famous book 'The Art of
Computer Programming' by Donald E. Knuth which has been named
among the best twelve scientific monographs of the century) as sometimes
it is more a question of aesthetics how a program does it's job and if the
code looks appealing. Without question programming is a creative process.

Software production costs money - and - earns you money. It is the B&R
philosophy to produce high quality products, and software is no exception
here. So let's produce high quality software code!

Attributes of high quality code are (among others):

• clean architecture and design

• easy to read and understand

• easy to maintain

• re-usable

• well commented

• bug free

This document should assist you in improving your code quality. If you
follow the guidelines outlined here your code should be of reasonable
quality.

You are working in a team so please be considerate of your colleagues,
who maybe won't appreciate dealing with those quick'n’dirty completely
undocumented routines you hacked at 2:00 am Saturday night.

In the end you (the author) are responsible for the code you create. Do it
well and then be proud of what you have created and achieved!

B&R Coding Guidelines

 30 TM230 Structured Software Generation

5.1 Before You Code

The foundations of any good software are a clean architecture and design.
Take your time in the conception phase and work on the design until you
are happy with your software concept.

Before you actually code please mind the concepts and methods discussed
in sections of this document.

5.2 Naming Conventions

Good variable and data type names are a key element of program
readability. All names should be descriptive and easy to read. Use either
underscores or capital letters (don’t mix them) in composite names to
enhance readability, like

actPressure = actForce / pistonArea;
cmdCount++;

or

act_pressure = act_force / piston_area;
cmd_count++;

An identifier may contain letters and numbers and must start with a letter.
You cannot use reserved keywords as identifiers. A complete list of
reserved key words for each programming language can be found in the
Automation Studio online help.

5.2.1 Language

If no different specification is given by the customer it is strongly
recommended to code and comment in English for trouble-free
international usage of software. Within B&R this recommendation is
compulsory.

 B&R Coding Guidelines

 Structured Software Generation TM230 31

5.2.2 User Data Types (Structures)

User data types start with an upper case letter and end with the postfix

‘_type’ , in between lower and upper case letters may be mixed.

TYPE
 Recipe_type: STRUCT
 base: UINT;
 binder: UINT;
 additive: USINT;
 END_STRUCT;
 MachineParams_type: STRUCT
 speed: REAL;
 pressure: REAL;
 temperature: INT;
 pRecipe: REFERENCE TO Recipe_type;
 END_STRUCT;
END_TYPE

5.2.3 Constants

Constants are all upper case. Use underscores ‘_’ to enhance readability.

VAR CONSTANT
 STEP_CONDITIONING: USINT := 23; (* [-] *)
 HEATING_TIME_OUT: UINT := 5000; (* [s] *)
 MAX_PRESSURE: REAL := 6.7e+006; (* [Pa]*)
END_VAR

These rules also apply to constants defined by the #define pre-processor

directive and the enum statement in C source code. Please note that

declarations via the #define directive and enum statement are local to the
scope of your C code!

B&R Coding Guidelines

 32 TM230 Structured Software Generation

5.2.4 Local Variables

Local variables start with a lower case letter. Upper case-letters (or under-
scores ‘_’) are only used to enhance readability.

VAR
 machineStep: USINT; (* [-] *)
 actPressure: REAL; (* [bar] *)
 avgTemperature: INT; (* [0.1°C] *)
END_VAR

VAR
 machine_step: USINT; (* [-] *)
 act_pressure: REAL; (* [bar] *)
 avg_temperature: INT; (* [0.1°C] *)
END_VAR

In the following, only examples without underscores are included. If you
prefer naming with underscores you will be able to figure it out.

5.2.5 Global Variables

Global variables start with the pre-fix ‘g’ followed by an upper-case letter or
‘_’:

VAR
 gHeaterOn: BOOL;
 gActCmd: Cmd_typ;
 gCmdCount: UINT;
END_VAR

This convention is reserved for global variables - do not use it for non-
global variables.

 B&R Coding Guidelines

 Structured Software Generation TM230 33

5.2.6 Pointers

Local pointers start with the pre-fix ‘p’ followed by an upper-case letter or
‘_’. Global pointers start with the pre-fix ‘gp’ followed by an upper-case
letter or ‘_’:

VAR
 pActRecipe: REFERENCE TO Recipe_type;
END_VAR

VAR
 gpActRecipe: UDINT;
END_VAR

The above convention is reserved for pointers - do not use it for other
variables.

Global pointers have the data type ‘UDINT’ because IEC doesn’t support
pointers to generic data types. Cast the global pointer to a generic local
pointer to access structure members:

pActRecipe = (Recipe_type*)gpActRecipe;
actSpeed = pActRecipe->speed;

5.2.7 Hardware-Connected Variables

Variables assigned to hardware I/O points start with a pre-fix defining the
I/O point type:

Prefix Type

di digital input

do digital output

ai analog input

ao analog output

The pre-fix is followed by an upper-case letter or ‘_’:

VAR
 diEmergencyOff: BOOL;
 doSolidStateOn: BOOL;
 aiActTemp: INT; (* [0.1°C] *)
 aoValvePos: INT; (* 0=closed, 32767=open *)
END_VAR

This convention is reserved for HW connected variables - do not use it for
other variables.

B&R Coding Guidelines

 34 TM230 Structured Software Generation

5.2.8 C-local Variables

Variables defined in C source code are not visible outside their definition
scope – you cannot see them e.g. in a Watch or Trace window.

Recipe_type* pPrevRecipe = 0;
USINT cmdCount = 0;
REAL actSpeed = 0; /* [m/s] */

If not declared ‘static’ they are allocated from stack each time the C

routine is executed (and therefore non-remanent) and are not initialized! It
is therefore wise to initialize them in the declaration (as done above).

5.2.9 Instances of Function Blocks

Instances of function blocks should be named to contain the name of the
function block:

VAR
 valveSwitchTON: TON_type;
 solidStateTOF: TOF_type;
 pressureLCPID: LCPID_type;
END_VAR

5.3 Code Format

Visual layout of the code should accurately represent the logical structure
of a computer program. Thus visual information acquisition of the human
brain can support the reader in code understanding.

5.3.1 Indentation

Proper indentation is a key element for the readability of a code and is a
must in all programs!

The whole idea behind indentation is to clearly visualize where a block of
control starts and ends.

A large indentation size (6 or 8 characters) makes the code structure easier
to see, while a smaller indentation size (2 or 4 characters) saves space on
the right hand side of your screen.

We suggest an indentation size of 4 characters. If you have good reasons
choose another indentation size that you prefer and stick to it.

 B&R Coding Guidelines

 Structured Software Generation TM230 35

5.3.2 File Header

Every file must have a header, which includes:

• Information about author and copyright

• Short description (summary comments) with a focus on purpose of
the code, input and output variables, global effects of the routine,
limitations and interface assumptions

• Timing behavior and memory requirements (if critical)

• Revision number, history and date (in an international unmistakable
format, e.g. 04-March-2005 instead of 04-03-05 or 03/04/05)

A template header is automatically included when you create a program in
Automation Studio™.

Revision number format is Vxx.yy, where xx is incremented with every
major code update (e.g. when new features are added or incompatibilities
to the previous version are introduced) and yy is incremented with minor
improvements and bug fixes.

5.3.3 Placing Braces

There are a lot of brace placement strategies around. The preferred method
is putting each brace on a line by itself combined with proper indentation:

if (inst.request > 0)
{
 inst.ok2jump = 1;
 inst.status = 0;
}
else
{
 inst.ok2jump = 0;
 inst.status = 5;
}

UINT CheckStatus(REAL xDeviation, REAL yDeviation)
{
 function body
}

If this doesn’t look visually appealing to you, choose another consistent
style, e.g. as suggested by Kernighan and Ritchie:

if (inst.request > 0) {
 inst.ok2jump = 1;
 inst.status = 0;
}
else {
 inst.ok2jump = 0;
 inst.status = 5;
}

B&R Coding Guidelines

 36 TM230 Structured Software Generation

5.3.4 Spaces

For readability reasons add a space before and after each operator:

xAxisPos = x0 + deltaX;
if (machineState == STATE_RUN)
 ...

with exception of:

. member selection operator

-> member selection operator

[] subscription operator

() function call and function declaration operator

(type) unary casting operator

++ pre- and post increment operator

-- pre- and post decrement operator

! unary negation operator

~ unary one’s complement

If the assignment operator ‘=’ is placed directly behind the variable, a

search (or search and replace) in the editor for e.g. ‘someVariable=’ will

only find assignments to this variable in the code. If this is important for
you, format assignments this way:

 xAxisPos= x0 + deltaX;

We recommend placing the reference ‘&’ and dereference operators ‘*’

near the type in declarations:

void GetCtrlParams(REAL deadTime, REAL dXmax, Param s_type*
pCtrlParams)

5.3.5 Visual Alignment

Visual alignment of elements that belong together reinforces the visual
binding of these elements:

stPar.X0 = pIntern->X0;
stPar.deltaX = stPar.dir * abs(inst.options.deltaX) ;
stPar.t1set = 0; /* [ms] */
stPar.t2set = 0;

 B&R Coding Guidelines

 Structured Software Generation TM230 37

5.4 Programming Techniques

5.4.1 GOTO statement

You should not use the GOTO statement because it will prevent you from
clearly structuring your code.

Should you feel tempted to include a GOTO into your code think of Edsger
W. Dijkstra’s famous classic paper ‘Go To Statement Considered Harmful’
published in 1968 (http://www.acm.org/classics/oct95/):

“For a number of years I have been familiar with the observation that the

quality of programmers is a decreasing function of the density of GOTO
statements in the programs they produce.”

We have nothing to add to Dijkstra.

5.4.2 Usage of Standard Algorithms

If you need to include a standard algorithm (e.g. for ring buffers, sorting,
searching, etc.) don’t implement it yourself. Most likely your
implementation will not be bug free without some time invested in testing
and debugging.

The better way is to copy it in electronic form from a trusted source (e.g.
CDs that come with standard text books).

5.4.3 Usage of IEC Data Types

For consistency and target independent code, use the IEC data types in C
source code. They are automatically defined with the following statement:

#include <bur\plctypes.h>

5.4.4 Handling Hardware-Connected (I/0) Variables

It is a good idea to copy (and scale or negate if desired) hardware-
connected variables to/from data structures of your software modules in a
special task which does just that and nothing else.

You can easily disable this task and disconnect all I/Os for testing
purposes. As another benefit you will only have to make minor changes at
one single place in the code if external sensor or actor logic changes
(which happens quite frequently).

B&R Coding Guidelines

 38 TM230 Structured Software Generation

5.4.5 Dynamic Memory Management

Please take care when using dynamically allocated memory. Access to
memory which you have not properly allocated leads to errors which are
really hard to discover!

Don’t allocate and free memory frequently in cyclic code because it will
lead to memory fragmentation. As a consequence the system will
sometimes run out of memory.

5.4.6 Communication between Software Modules

Inter-module communication has to be implemented with global data
structures. Therefore it needs to be designed with special care. Please
mind appropriate naming of your communication data structures.

5.4.7 Compiler Warnings

Compiler warnings may indicate some unexpected program behavior. Be
sure to understand the warning message and correct your code to avoid
the warning. If this is not possible or not intended, document the warning
at the corresponding line of code.

5.4.8 Determining Array Size

If you need to determine the size of an array (e.g. if you need to check the
last array element or need to loop over all elements) use the sizeof
function:

for (i = 0; i < (sizeof(array)/sizeof(array[0])); i ++)
{
 loop body
}

5.4.9 Data Alignment

When defining user-defined data types you should note data alignment: in
general the compiler has to add empty storage (typically 1 – 3 bytes)
between structure members to place (or ‘align’) the members to specific
(e.g. even) memory addresses for memory access.

The actual compiled data size is then larger than the sum of individual
member sizes. You can easily check the compiled size with the sizeof
function. It may be different for different target hardware architectures.

If you have to write platform-independent code take data alignment into
consideration (especially when using data modules). You may place
unused alignment bytes into your data structure by yourself to force
identical data layout on all your target hardware:

 B&R Coding Guidelines

 Structured Software Generation TM230 39

TYPE
 Cutter_type: STRUCT
 speed: REAL; (* 4 bytes *)
 cmdcount: USINT; (* 1 byte *)
 reserve1: USINT; (* alignment *)
 xPosition: UINT; (* 2 bytes *)
 yPosition: UINT; (* 2 bytes *)
 reserve2: USINT; (* alignment *)
 reserve3: USINT; (* alignment *)
 cutterTON: TON_type; (* align like 4 byte t ype *)
 END_STRUCT;

Please see the Automation Studio online help for details about compiler
data alignment.

5.5 Testing

Software testing is a crucial issue for software quality issue. It ensures that
the behavior of the code is compliant to the specifications.

Usually the first task in testing is the definition of test cases on the basis of
software specification. Testing of special situations and functionalities
(special and corner cases) requires special care, e.g. what happens if an
incorrect value is passed to a function (‘An effective way to test code is to
exercise it at its natural boundaries.’ – Brian Kernighan, one of the creators
of the C language).

If you are working in a project team consider testing your code mutually
(the code you create is tested by one of your colleagues as an independent
tester and vice versa).

Automation Studio™ provides excellent features for software testing:
watching, tracing and forcing of variables. These diagnostic methods are
extensively discussed in B&R Training Module ‘Automation Studio
Diagnostics’.

5.5.1 Unit Testing

The goal of unit testing is to show that isolated individual parts (libraries,
modules, functions, …) are correct.

5.5.2 Integration Testing

In integration testing, individual software modules are combined and tested
as a group to verify if they properly work together.

B&R Coding Guidelines

 40 TM230 Structured Software Generation

5.5.3 System Testing

System testing is conducted on a complete, integrated system to evaluate
the system’s compliance with its specified requirements (IEEE Standard
Computer Dictionary). System testing is typically performed at machine or
plant commissioning.

5.5.4 Usability Testing

Usability testing measures how well people can handle the machine or
plant you have programmed. Usability testing typically focuses on the HMI.

5.6 Documentation

Documenting the software you have created is an important task. On the
one hand it supports the users in working with all the functionalities you
have provided for him and on the other hand it provides valuable
information for other programmers who have to fix a bug or implement
some additional functionality into your code.

Documentation on a software project typically consists of information both
inside the source-code listings (the code itself and ‘comments’) and outside
them (typically in the form of separate documents).

5.6.1 Comments

Documentation at code level is always aimed at other developers and not
at users.

The main contribution to code-level documentation isn’t comments, but
good programming style: good code is its own best documentation.

However, in every program some comments are necessary to explain
things about the code that the code can’t say about itself (e.g. high-level
and low-level organization of programs).

Types of comments:

• Summary comments: should give an overview and a summary of the
program at the beginning of the code (like a preface)

• Intent comments (comments on the code’s intent): should explain
the purpose of a section of code and operate more at the level of the
problem than at the level of the solution (explaining the why more
than the how).

• Marker comments: should mark locations where you suspect a bug
may exist or where code improvements are planned. They are useful
in the development phase and should not appear in completed code.

 B&R Coding Guidelines

 Structured Software Generation TM230 41

What you should document:

• Data types (structures)

• Variable declarations (including physical units if applicable)

• Major steps of your routines

• Limitations of your routines

• Global effects of routines

• Interface assumptions

• Timing issues and memory requirements (if critical)

• Revision history

What not to comment:

• Do not use comments to explain things that are obvious to
programmers!

• If your code is too difficult to be understood by others rewrite it!

Remember to keep comments up to date when changing the code!

5.6.2 External Documentation

There are two types of external documentation:

• User documentation: contains all information relevant to users of the
software (HMI pages, alarms, errors, etc.)

• Developer documentation: contains information for software
programmers (description of software design, flow charts, interfaces,
etc.)

5.6.3 Documentation Standards

The American National Standards Institute (ANSI) provides ANSI/ANS 10.3-
1995 standard for documentation of engineering and scientific computer
software at their website http://www.ansi.org for purchase.

The military standard MIL-STD-498 defines software development and
documentation standards and is is approved for use by all departments
and agencies of the department of defense of the USA
(http://www.pogner.demon.co.uk/mil_498/).

Both standards do not focus on industrial automation application software
but may provide some valuable general information.

This is version V1.40 [19/07/05] of the B&R Coding Guidelines.

Summary

 42 TM230 Structured Software Generation

6. SUMMARY

In this module we have discussed structured software generation in the
field of automation.

Section “The Software Enineering Process” presented concepts of software
engineering. We have seen that computer programming is not just coding,
but that typical steps in software generation are requirements analysis,
software specification, software design, coding, testing, documentation
and maintenance.

We have also seen that software quality is much more than a bug-free
code, it involves (among others) conformance to requirements and
specifications, readability, ease of maintenance and logical structuring into
manageable sections.

Fig. 17: Objectives

Section “Project Structuring” focused on software architecture and design
as the foundations of all good software. We have seen that good
programmers don’t rush into coding, but design their software architecture
first.

Section “State Diagrams” presented combinatorial and sequential logics,
where the latter is capable of storing and remembering information and
therefore is perfectly suited to describe the logical function of machines.

Finite state machines are a formal and exact description of sequential
machine logics and consist of states, events, actions and transitions. State
diagrams are graphical representations of finite state machines.

The concept of state diagrams and finite state machines is not only useful
to develop correct code but also to discuss machine functions on an exact
and formalized level with customers and for software specification.

Section “B&R Coding Guidelines” presented the B&R Coding Guidelines for
automation application software which should guide the user in developing
a programming style to produce, test and document high quality source
code.

 Summary

 Structured Software Generation TM230 43

Overview of training modules

TM200 – B&R Company Presentation ** TM600 – The Basics of Visualization
TM201 – B&R Product Spectrum ** TM610 – The Basics of ASiV
TM210 – The Basics of Automation Studio TM630 – Visualization Programming Guide
TM211 – Automation Studio Online Communication TM640 – ASiV Alarm System
TM212 – Automation Target ** TM650 – ASiV Internationalization
TM213 – Automation Runtime TM660 – ASiV Remote
TM220 – The Service Technician on the Job TM670 – ASiV Advanced
TM223 – Automation Studio Diagnostics
TM230 – Structured Software Generation TM700 – Automation Net PVI
TM240 – Ladder Diagram (LAD) TM710 – PVI Communication
TM241 – Function Block Diagram (FBD) TM711 – PVI DLL Programming
TM246 – Structured Text (ST) TM712 – PVIServices
TM247 – Automation Basic (AB) TM730 – PVI OPC
TM248 – ANSI C
TM250 – Memory Management and Data Storage TM800 – APROL System Concept
TM260 – Automation Studio Libraries I TM810 – APROL Setup, Configuration and Recovery
TM261 – Closed Loop Control with LOOPCONR TM811 – APROL Runtime System
 TM812 – APROL Operator Management
TM400 – The Basics of Motion Control TM813 – APROL XML Queries and Audit Trail
TM410 – The Basics of ASiM TM830 – APROL Project Engineering
TM440 – ASiM Basic Functions TM840 – APROL Parameter Management and Recipes
TM441 – ASiM Multi-Axis Functions TM850 – APROL Controller Configuration and INA
TM445 – ACOPOS ACP10 Software TM860 – APROL Library Engineering
TM450 – ACOPOS Control Concept and Adjustment TM865 – APROL Library Guide Book
TM460 – Starting up Motors TM870 – APROL Python Programming
 TM890 – The Basics of LINUX
TM500 – The Basics of Integrated Safety Technology
TM510 – ASiST SafeDESIGNER
 **) see Product Catalog

Summary

 44 TM230 Structured Software Generation

Hinteres Deckblatt (auf durch 4 Teilbarer Seitenzahl)

Kontakt (Headquarter)

Weblink

Internationalität

Copyright – Bestellnummer

T
M
2
3
0
T
R
E
.0
0
-E
N
G

0
9
0
7

©
2
0
0
7
b
y
 B
&
R
.
A
ll
 r
ig
h
ts
 r
e
s
e
rv
e
d
.

A
ll
 r
e
g
is
te
re
d
 t
ra
d
e
m
a
rk
s
 p
re
se
n
te
d
 a
re
 t
h
e
 p
ro
p
e
rt
y
 o
f
th
e
ir
 r
e
s
p
e
c
ti
v
e

c
o
m
p
a
n
y
.
W
e
 r
e
s
e
rv
e
 t
h
e
 r
ig
h
t
to
 m
a
ke
 t
e
c
h
n
ic
a
l
c
h
a
n
g
e
s
.

