Automation Studio Basis
TM210

Perfection in Automation
www.br-automation.com

Requirements

Training modules: TM200 - B&R Company Presentation
TM201 - The B&R Product Palette

Software: Automation Studio 3

Automation Runtime 2.90

Hardware: None

Table of contents

1. INTRODUCTION 4
1.1 Objectives 5
2. INSTALLATION 6
2.1 Installation wizards 6
2.2 Licensing 7
2.3 Directory structure 7
3. STARTING AUTOMATION STUDIO 8
4. THE FIRST FROJECT 10
4.1 Creating new projects 10
4.2 Creating a program 13
4.3 Compiling a project 20
4.4 Transferring the project 21
4.5 Testing the program sequence 26
5. THE AUTOMATION STUDIO CONCEPT 27
5.1 Using the AS online help system 27
5.2 Basic concept 29
5.3 The different views 30
5.4 Relationship between functionality and task 38
5.5 Teamwork 48
6. OPERATING COMFORT 50
6.1 Editor Views 50
6.2 Smart Edit 53
6.3 Open data storage 54
6.4 Cross reference 55
7. VARIABLES 56
7.1 Data types 56
7.2 Declaring variables and constants 57
8. INITIALIZATION 64
9. PROGRAMMING LANGUAGES 66
9.1 Overview 66
10. SUMMARY 70

Automation Studio Basis TM210 '

INTRODUCTION

1. INTRODUCTION

Automation Studio is a programming environment for the B&R automation
components, which include the controller, motion control and visualization.
The clear structure of projects and the ability to manage a wide range of
configurations and machine variations makes working in teams that much
easier.

In addition to a large number of diagnostics tools, the user is provided with
different programming languages and editors. The use of standard libraries
provided by B&R and IEC standards that are integrated in the system
enables a highly efficient workflow.

Automation Studio

Perfection in Automation -
wwrw br-astomationcom

Fig. 1 The Automation Studio splash screen

This training module will use examples — with the aid of the extensive
Automation Studio help system — to demonstrate how to use the great
many tools available in Automation Studio.

TM210 Automation Studio Basis

INTRODUCTION

1.1 Objectives

Participants will learn how to work with Automation Studio using examples
that outline how a typical project works.

You will master the online help system and its navigation.
You will master data types and variables as well as their declaration.

You will get an overview of the different programming languages as well as
the possibilities available for each.

_Installation

_Starting Automation Studio

_The First Project

Ll The Automation Studio Concept
L] f-—k
Automation
Studio Basis _ Handling

Variables

rlnitialization

Programming Languages
Overview

Fig. 2 Overview

Automation Studio Basis TM210 !

Installation

2. INSTALLATION

This part of the training module will cover the Automation Studio
installation. The following points will explain which actions are needed to
select the necessary components.

2.1 Installation wizards

Your Automation Studio installation is started by the Autorun command
after inserting the CD ROM or by running "Install.exe" in Explorer.

</ B&R Automation Software

Automation Studio 3.0.64

Automation Complete Programming

it BER Automation Studio™ provides scalability, multi-platform capability and
AR Install flexibility to meet all programming requirerments,

Kits

Install nowr
version information @
Click symbol to apen Y

Changes in current version '@
Click symbel to open r

Sprache
Language

2007 BaR , office@br-autamation.com |, Trpressurn

Fig. 3: Automation Studio installation: Selecting the desired language

The installation wizard will guide your through the entire installation after
selecting the desired language.

< BER Automation Software.

Automation Studio 3.0.64

Automation Complete Programming

i BAR Automation Studin™ provides scalability, multi-platform capability and
AR Install flexibility to meet all programming requirerments,

Kits

Install now
version information %
Click symbal to open Y

Changes in current version '@
Click symbol to open Y

sprache
Language

2007 B&R , office@br-automation.com , Impressum

Fig. 4: Automation Studio installation: Starting the installation setup

TM210 Automation Studio Basis

Installation

2.2 Licensing

A dongle is needed to register Automation Studio. This is connected to the
parallel interface or to a USB port on your PC.

2.3 Directory structure

After Automation Studio is installed, the following folders will be added
underneath the target directory you specified during installation:

=5 AS
) BrSetup
) HelpR-de
) HelpR-en
) Library
) System
) templates
=) AS30064
=I5 As
) gnuinst
) Hardware
) Images
) Motion
) Schemes
) Settings
) templates
) Tpu
oD VC
) VisualComponents
£ WInIO
) Wizards
) Bin-en
) BrSetup
) Help
) Samples
) Specials

Fig. 5 Directory structure of an Automation Studio installation

Automation Studio Basis TM210

Starting Automation Studio

3. STARTING AUTOMATION STUDIO

Installation creates an entry for Automation Studio in the Start menu.
Automation Studio can now be launched from the Start menu.

Automation Studio can be started multiple times.

il BER Automation Studio

@— ~File Edit Wiew Insert Open Project Online Tools Window Help
QE DD AR [
|Project Explarer - x|
€
@
x|
L3
&
5|5
g‘l E Dutput 1@] Debug |EﬂtFind in Filez |ﬁ€allslac<
®_ For Help, press F1 COML |

Fig. 6 Automation Studio user interface

The B&R Automation Studio user interface shown above is displayed once
the program has been started.

This interface consists of the following elements:

1. Main menu
The main menu in B&R Automation Studio provides access to all
available functions.

2. Toolbars
Contain buttons that provide fast access to a wide selection of
commands and functions. If the mouse is placed over a button, an
explanatory text (tooltip) is shown. Toolbars can be shown or hidden
using the View / Toolbars menu item.

TM210 Automation Studio Basis

Starting Automation Studio

3. Project Explorer
When a project is open, this area shows three different tabs that provide
different views of the project and allow it to be structured.

4. Workspace
This is where the window for an open project is shown. The project
window can either be maximized to fit into this area or sized
accordingly. This area can also be shown as a workbook.

5. Output window
The output window is located at the bottom of the program window. It
is used to display compiler and debugger messages, etc. In addition, it
is where the search results for the "Find in Files" function are output

6. Status bar
The status bar at the bottom of the window displays the following
information:

» Brief help about menu commands or toolbar icons
» Brief information concerning editing procedures

» Status of the online connection between the programming device
and the target system

» Status data for the currently active window

More in-depth information about editors and how they are used — as well
as the philosophy behind an application — will be given in the next few
sections.

Automation Studio Basis TM210

The First Froject

4. THE FIRST FROJECT

In this section, we will be creating a new project, writing a program, and
transferring everything to the target system.
The individual steps for each of these will be explained in detail.

Step-by-step procedure:

* Creating a new project

e Creating a program
 Compiling a project

* Transferring the project

» Testing the program sequence

4.1 Creating new projects

To create a new project with Automation Studio, use the File: New
project... menu item.

Configuration | B atch | Dezcription
= ¥ Configl O Default configuration
------ Hardware. hc Hardware topology
#- & PLC Fil=z belonging to this PLC
‘= [Pickup [Active] | [l Fickup
------ Hardware. hc Hardware topology
= & PLC Fil=z belonging to this PLC
...... 2] Cpu.sw S oftware configuration
[[®8 Cpu.per Declaration of permanent variables
------ lobdap.iom 10 mapping file
------ Prbd ap. v F mapping file
------ Yisual vom Y Mapping File
...... *g) AiConfigrtc Runtime configuration file
...... o] sveconf.br CPU systemn configuration
...... o] zvzconfayc CPU systemn configuration

Fig. 7 Creating a new project

The New Project Wizard helps you to complete this task.

TM210 Automation Studio Basis

The First Froject

The following settings need to be made:

New Project Wizard ilil

Enter the baze parameters for the new project [name.
path, description....].

Mame of the project;

|M_|,JFirstF‘miec:t

Fath of the project:

IE: \Projects\MyFirstProject Browse. .. |

¥ Copy Automation Runtime suppart files into projects
[v lse default target [AR000 - Avtomation Runtime w325

Dezcription of the project:

Default project

Einizh I Cancel

Fig. 8 Creating a new project

* Give your project a name (e.g. MyFirstProject).
» Select the path where your project will be stored (e.g. C:\Projects).

 Copy Automation Studio Runtime support files into projects means
that operating system files will be stored in the project.

» Select the option Use default target (AR000 — Automation Runtime
W32), to use the simulation in the new project.
* Enter a short description of the project.

Click on Finish once you have made all of the settings mentioned above.

Automation Studio Basis TM210

The First Froject

Now you'll see the following view:

@ MyFirstProject/Configl - Automation Studio - B&R Training Eggelsberg _s(x|
File Edit Wiew Insert Open Project Cnline Tools Window Help

BHG|) R | XxoLGE EEE AP MY D [4%3%| EEYE I IR 1 Y
G a@| ! WP c|EE|E| 2

Project Explorer x

Objact Name [Description

B 3 MyFisProjed Defeut project
EG\wbaHyp Global deta types
Globalvar Global varisbles
15 Libraries Global libraries

4| | »
" = Logical View | %s Configuration View | 3 Physical View |
I\

[Pavsing files for Smart Edit Suppart
Pavsing finished

% B Output | M Debuy | B4 Findlin Filas | R Callstack
For Help, press F1 [Tepip/REPO=0x2B98 /[DA=2 /[DAIP=127.0.0.1 [ARO0D N2.90 [RUN [T [

Fig. 9 New project

TM210 Automation Studio Basis

The First Froject

4.2 Creating a program

The following steps are necessary to insert a ladder diagram into the
project:

* Inserting a ladder diagram program
* Declaring variables

e Programming the ladder diagram

4.2.1 Inserting a ladder diagram program

Cpen with Explorer

- I Libraries
Insert Chject, .,

|_Append Object...]
il
oy

Fig. 10 Adding an object

The wizard for inserting an object is opened in the shortcut menu: Append
Object.

append Dbject x|

Cateqanizs: Templates: BE | &

{E] Package . E vizting Program
@ Frogram . Mew Program

& program in [EC-1137 languages. B&R Automation Basis or ANSI-C

Cancel Help

Fig. 11 Selecting the object type

Select Categories - Program and then choose New Program. Clicking on
Next will continue with the wizard.

Automation Studio Basis TM210

The First Froject

New Program

A NEw program

x|

Frogram name: |MyPrUg1

Description: |gram in[EC-1131 languages

What kind of files do you want to generate?

I_%Data type declaration: |MyPng1 typ
w [‘“ariable declaration: IMyPr0g1.var
< Back | MNext » I Cancel Help

Fig. 12 Object properties 1

Enter a Program name (e.g. MyProg1). A short

description can also be

entered in the Description field. The Data type declaration is not needed
now for the purpose of this example and can therefore be disabled.

Selecting Variable declaration generates a file

for the variable declaration

of local variables for the new program. Continue with the wizard by clicking

on Next.
New Program X|
A new pragrarm
Prograrm name: |MyPng1
Description: IA prograrn in IEC-1131 langu
‘What kind of files do vou want to generate?
[~ Init prograrm: IMyPng]InitId
Language ILadder Diagram LI
[Cyelic program: IMyPng] Cyclic.Id
Language ILadder Diagram LI
[Exitprogram: [MyPrag Exitid
Language ILadder Diagram LI
™ Merge init. cyclic and exit grogram into ane file
< Back | MNext > I Cancel | Help |

Fig. 13 Object properties 2

Deselect the option Init program and select Ladder Diagram as Language.

TM210 Automation Studio Basis

The First Froject

Clicking on Next will continue with the wizard.

8 NewProgram

Do wou wantto assign the new ohject now to a CPU?

@ “es 1o active CRU
 Yes toall CPUs

Mo, do nothing

< Back | Finish | Cancel Help

Fig. 14 Hardware-related object setting

Assigning the object to the CPU (Yes to active CPU) means that the created
program is automatically assigned the software configuration.

Click on Finish to close the wizard.

Ohject Marme | Dezcriptian
B = MyFirstProject
[alabal.typ [zlobal data kpes
Global var Global variables
H- I Libraries Glabal libraries
= [IM_I,IF'n:ng1 | program in IEC-1131 languages

] MyProgl var Local waniables
- kyProgl Cyclic.ld Ceclic code

Fig. 15 New object in the project explorer

Three items have now been added in the Project Explorer. The variables for
the Ladder Diagram will now be created in the next step.

Automation Studio Basis TM210

The First Froject

4.2.2 Declaring variables

S B MPr & new program

Open As Text

Cpen wikh Explorer
Insert Object...
fppend Object. .,

Fig. 16 Opening the declaration window

The variable declaration, for adding new variables, is opened by right-
clicking MyProg1.var and selecting Open as Table.

A blank white area now appears in the right half of the screen. Add a new
variable by right-clicking and selecting Insert Variable.

*Local variahles of program

Append Yariable [g ‘

Treark (Carmman F

Fig. 17 Inserting a variable

Enter the name of the variable here. Use the name "diLight".

LISINT O 1

Fig. 18 Setting the variable name

We now just have to set the variable data type. This should be set to the
data type "BOOL".

@ diLight

Fig. 19 Setting the variable type

A variable's data type can be changed by entering the data type name
directly in the Type column or by double-clicking on the =dicon.

TM210 Automation Studio Basis

The First Froject

Repeat this procedure on your own for the variable "doLight" and you will
arrive at the following variable declaration.

* Local wariables of program

@ diLight BOOL
@ dolight BOOL

Fig. 20 Variables for MyProg1

Now save your changes using the save icon g

The variables that we want to use in our ladder diagram are now defined.
That means that they can now be used in ladder diagram.

Automation Studio Basis TM210 17

The First Froject

4.2.3 Programming the ladder diagram

The following actions are necessary to program the ladder diagram.

Open the ladder diagram editor by double-clicking on MyProg1Cyclic.ld in
the Project Explorer.

‘—' L e T
= @ MyProgl & pragram in IEC-1
; kyProgl . wvar Lacal variables

| |:_I,I |::| i|:: [a{n] |:|Ee

Fig. 21 Editing the Ladder Diagram

The ladder diagram editor appears on the right side of the screen.

TF A ApE ok ek | () 4 {5} {RY (R}) (5} |
oo

Fig. 22 Ladder Diagram editor

The cursor (shown as a cross) blinks in the editor.

Now click on the 1F icon to insert a normally open contact. A field with a
blinking cursor appears over the contact.
Press the space bar.

This opens the following window.

aoo

) Select Yariable

% dolight
L | 2+
[T Show project stuctue Filter: jgl
k. Cancel | Help |
Y

Fig. 23 Connecting a normally open contact

Click OK to connect the variable diLight to the contact.

TM210 Automation Studio Basis

The First Froject

Insert a coil by clicking on the {}icon. Repeat the same procedure as
earlier with the variable doLight for the normally open contact.

3 Select Yariable =10l x|
I arne | Type | Scope | Desc
@ dli BOOL MuProgl
P BOOL | kywProgl
L« | 2
[Show project structure Filter:l jﬂ
(] Cancel | Help |
Y

Fig. 24 Connecting a coil

Your ladder diagram now looks like this:

oo
diLight doLight

L 1 1 I

F | L) |

Fig. 25 Finished ladder diagram

Save your work with the g icon.

Automation Studio Basis TM210

The First Froject

4.3 Compiling a project

We have now successfully finished creating the project and programming
the ladder diagram. We will now compile our project. In this step, we are
going to learn about any errors that might exist in our project or program.

£

Compile your project using the icon.

The following window appears after the project has been successfully
compiled:

Project Build B kIPJ

@ * The entire project is now up to date |

You musttransfer the project to the
targetin order for changes to take effect.

[~ Dan't show again

OF | Transfer |

This window informs us that the entire project has been compiled is now
up to date. It is also contains the note informing us that the project can
now be transferred to the target system.

In the following section we will learn how to define a target system for the
project.

TM210 Automation Studio Basis

The First Froject

4.4 Transferring the project

We will use Simulations Runtime AR00O as target system. This allows us to
test program sections during cyclic operation, even without any physical
hardware.

4.4.1 Starting the emulator
The AR000 must first be started before it can be used.

To do this, click on the Tools: AR000 menu item.

|T-:u:u|s Window Help

' Generate Transfer Lisk
- 5% BV Transfer Tool

T —

! Impart Fieldbus Device. .

Fig. 26 Starting the emulator

This opens the following dialog box:

AROO0O X

There is more than one version of ARID0
installed. "Which version should be executed ?

AROO0 wersion :

O I Cancel

Fig. 27: Choosing the AR00O version

Here you can choose which AR00O version to use. We will use the default
version and confirm our selection by clicking OK.

Automation Studio Basis TM210

The First Froject

The simulation is then started and the following window appears.

ARDOOD Startup x|

Services | Egnsdel

Restart in diagnose mode
Diagnosze |
Shut Down |

| N2.40 %

Startup status information

PFE 000 started

AR000 shatus information

|F| ur boat mode: warm restart

Schiiefen Sbbrechen [DEernetmen

Fig. 28 AR00O runtime emulation

The AR000 has now been successfully started and can now be used as
target system for testing our first project.

Before we can transfer the project, we must first establish a connection to
the target system.

4.4.2 Creating a connection

In order to be able to work with a controller, it's necessary to establish a
connection to it. This connection is needed for transferring the project to
the target system.

The following describes how to specify the type of connection.

Open the menu item Online:Settings.

Online Tools indo

Debug
Services L
Infao...

Fig. 29 Connection menu

TM210 Automation Studio Basis

The First Froject

This opens the following window:

B

Online: |

2

Orling Configuration :

ARO00_TCRIP add. | Remove |

[~ Stare to all projects

Device :
JaRO00_TCRIP Propeties... |
Extra settings :

Contection parameters :

|
Frouting :

Advanced... |
ok | sbbrechen | Hile |

Fig. 30 Connection settings

Pre-defined connection configurations can be selected from this window.
Select AR000_TCPIP from the Online Configuration combo box.

Accept the settings by clicking on OK.

As we can see on the status bar (online connection status "RUN"), a
connection has been established to the target system (AR00O).

|AROCO MN2.90 RUN |

Fig. 31: Online connection status

Automation Studio Basis TM210

The First Froject

4.4.3 Transferring a project

To transfer the ladder diagram to the target system, click on the ; icon.

The following dialog box is shown:

Project transfer X

Hardware mismatch
& The hardware configuration on the targetis

not evailakle. Mismeatches will be ignored. hi.. |

Operating systetn mistmateh

Q5 weraian it project [+/2.90
D5 wersion on target [2.90

@& [gnore the mismatch between project and target
| Beplace the OF on the target

Software mismateh. There are modules on the target that are not part
ofthe project.

@ [gnore the differences
¢ Delete sl modules framthe targes

| Unload all medules frarm the target .. |

& Transfering the application to the target will require 0 cold restart(s)
and 1 warmn restart(s), which may resultin data loss.

Dependeney cantflicts may cause some
mndules tobe deleted o e tarmet S, |

“aletile mode is active.
Approgrigte modules will be transfered into DEAR memony.

(6]9 I Cancel

Fig. 32 Dialog box before project transfer

This dialog box will inform you if there are already modules on your CPU.
Delete all gets rid of all of the objects on the target system that don't
belong to your project.

You are also informed whether the system requies a warm or cold restart.
Operating system parameters can only be applied after the system is
restarted.

TM210 Automation Studio Basis

The First Froject

Successful transfer of the project is confirmed with the following dialog
box.

Transfer Project

® @* The entire project on the targetis now up
to date !

[~ Don't show again

Fig. 33: Project successfully transferred

The ladder diagram program is now running on the target system. Now we
can test the program to make sure that it's working correctly.

Automation Studio Basis TM210

The First Froject

4.5 Testing the program sequence

To enable monitor mode for the ladder diagram, click on the @g icon.

The following view then appears.

li[ea|!aT|c | BRE(E
LHA AT O 0 6 0 6 0 @ [o

diLight doLight ‘
|_1 () |

0 0

Fig. 34: Monitor view of the Ladder Diagram with signal flow display

Now you can check whether the value changed at the input produces the
desired result at the output.

The signal flow display can be turned on with the @e icon.

The signal flow is shown by coloring both the lines and the symbols. In
addition to the values in the program, this provides another way to carry
out diagnostics.

We have now created an empty project with Automation Studio in addition
to establishing a connection to the target system.

After a new program was inserted, we added new variables to it. The
variables we created were connected in the ladder diagram editor. After
the transfer, we used the ladder diagram monitor to check the cause and
effect of entering different values.

TM210 Automation Studio Basis

The Automation Studio Concept

5. THE AUTOMATION STUDIO CONCEPT

There are several windows and menus in Automation Studio that can be

accessed when a project is opened. The relationship of these parts must be
explained and understood.

5.1 Using the AS online help system

The Automation Studio online help is a reference guide for working with
Automation Studio.

It contains all the information you need about operating Automation
Studio, its editors, and its user interface. Hardware documentation for
modules is also included.

£ B&R Automation Software Hilfe _ =]
8 & B © fal
Ausblenden Suchen Zurlick vorwarts Abbrechen Aktualisiersn Startseite Drucken Optionen

Inhalt ||me><|§ucheh|£avorlten| Diagnostics :I

@ Autornation Software

@ \ersion information B&R Automation Studio provides the user with a wide variety of diagnostics tools

=@ ‘*‘utw:wrrwa.t\w:-r'w'RE © for commissioning applications and searching for errors.
& @ Automatidn Studio
@ workspace These tools range from simple monitoring of operating states (variable and program
@ Programming model status, I/0, etc.), forcing I/O channels, and tracing variable states over time to
@ Project organization profiling the entire runtime behavior, debugging operations for programs and
@ Editors libraries, and simulating and commissioning axes.
@ Building a project X) N . . X
@ Transfer to farget Selecting the correct tool is decisive for quick success during problem analysis.

= @ Diagnostics
@ Status bar
@ Information about the target system
[21 Logbook
@ Forcing
@ Monitors
@ Vratch
@ Trace
@ NC Diagnose
@ Frofiler
@ Logger
@ Debugger
@ Fifter configuration
@ Establishing a connection to the target system
@ Libraries
@ ‘visual Components
@ visual Componenits SG4 User's Manual
@ TPU Cade Linker
@ AR Web Server
@ WinlO Switchboard
@ Fieldbuses
@ System modules
@ NC software
@ Motion Components
= @ Autornation Runtime
@ Automation Net
= @ Support
@ Autoration hardware

Fig. 35 Excerpt from the online help system

We recommend getting as much information as possible from the
Automation Studio online help. Like Automation Studio itself, this
documentation is constantly being revised and improved.

Pressing the F1 key opens up the help topic for the element that is selected

in Automation Studio. You can also use the search function in the help to
find information about a certain topic.

Automation Studio Basis TM210 27

The Automation Studio Concept

Note:

Using the Tools:Options menu item, the language of the Automation
Studio online help can be set (German/English).

Help system language IGerman

English

Fig. 36: Setting the language for the Automation Studio online help

Exercise: Using the Online Help system

Look for information about monitor mode in Automation Studio.
Determine which information you can find out about monitor mode.
Open up the online help for "Automation Software — Automation Studio -
Diagnosis".

TM210 Automation Studio Basis

The Automation Studio Concept

5.2 Basic concept

Creating software is structured in an Automation Studio project using the
machine structure. This allows a software organization with a clear
overview, because a real reference to the programs can be seen.

Configuration 1

Configuration 2

-

Machine Machine
“Low Cost” . SHighrEnd?,

Machine
“Medium™

Fig. 37 Structure and principle of Automation Studio

The programmed machine parts can be assigned different configurations.
As a result, different delivery states for certain machine types, which vary
in the software used and the hardware design, can be managed in a
project.

This basic concept creates many configuration possibilities, which will be
described in greater detailed for the following views.

Automation Studio Basis TM210

The Automation Studio Concept

5.3 The different views

In this section we will use a concrete example to describe the different
views in Automation Studio.

The following image illustrates our example.

Cars.typ
Cars wvar
Libraries
ngines
E Enginestyp

Engineswar
- = DieselEnginas
0 DE_BOKw
DE_BBkW
O DE_1085kw
PetrolEnigne
B PE_70kw
B PE_120kwW
------ Specifi
o Gears
Gears.byp
Gears.var
B autoGear
- F Manuear
Carriages
Carriages.typ
Carriages.var
B wvan
~ B Cabrialet

1
HHEFH

> Chassis
Chassistyp
Chassis var
B Break
Steeting
Frontwheel

Edn FLCI PR EECTS
SR 2005 G @ Cychc#l-(10ms] L Oyclic# -[10ms] @,.,EPCEU“M"W 2 Oyclic# -[10me]
ok IPS4ER3 i & Break B & Cyclic#Z-[20ms] % & Break
3 i & Steering ; & Break ik G - & Steeting
by 0 i & Frontwhesl - & Stesring g & Rearwhesl

i & AutoGear 2 [SE] clic#3-[50 ms
% 38‘32?956 o @ Cydic#2-[20me] SoDisas U 3/ ReaN\Ehee\] e [& AutoGear
IAI7756 & @ Cyclic#3- (50 mg] Rl e & ManuGear *20D03322 - @ Cyclic#2-[20ms]
H #20D049322
B, 307756 | - & DE_Bikw 20008322 B & Cyclic#d-[100 me] je=troren & PE_120kW
3 : G @ Cyclic#d-[100 ms] e agast Lo & OE 105kw <E0ACHER2 & Cyclic#3-[B0 ms]
- & Van K20AD46Z2 . & Pickup H2OATH222 - &F Cabriolet

TM210 Automation Studio Basis

The Automation Studio Concept

Let's assume someone wants to make three different vehicles, a van, a
convertible and a pickup. All vehicles have certain features in common, but
differ from one another in aspects such as engine, gears, chassis and
carriage. Our different machine parts (vehicle parts) should represent these
various components.

The four "machine parts", engine, gearbox, carriage and chassis are
represented in the upper section. These are located one layer deeper in the
Automation Studio software. These software packages are now used to put
together different vehicle models.

Let's take a look at the tree structure with the higher-order name Cars. A
lower-level hierachy contains three definitions (Cars.typ, Cars.var,
Libraries) that pertain to all "car parts".

These are followed by the four sub-trees Engines, Gears, Carriage and
Chassis.

The Engines sub-tree consists of definitions (Engines.typ, Engines.var),
which are valid for both motor types and the two additional sub-categories,
DieselEngines and PetrolEngines each with their own different
performance types.

B+) Engines all engines

B Ff] Enginestyp Package datatypes

B (@] Engineswvar Packange variahles

=+ | DieselEngines Dieszel engines

i m- O DE_ROKWY Diesel engine with B0 ki
B 0 DE_fgkw Diesel engine with 88 ki

§oEe 0 DE_10kw Diesel engine with 105 ki

Bt 2 PetralEnigne Fetral engine

{oE- B PE_70kW petrol engine with 70k

foE- @ PE_1Z0KW petrol engine with 120kW

‘o B Specification.doc

Fig. 38 Engines sub-tree

Automation Studio Basis TM210

The Automation Studio Concept

In the Gears sub-tree we find again general definitions (Gears.typ,
Gears.var) that are valid for both gear types and sub-categories for the two
special gear types AutoGear and ManuGear.

Eb- 5 Gears all gears

% Gearstyp Package data tvpes
+ Gearswar Fackage varables
B B AutoGear Automatic gearbax
F- 3 ManuGear banual gearbox

Fig. 39 Gears sub-tree

The Carriages sub-tree also contains definitions (Carriages.typ,
Carriages.var) that are the same for all contained vehicle carriage types,
but also a special function for each carriage type.

- [Carriages All carriages

% Carriagestyp Package datatypes
Carriageswvar Package variables

- O wan War

- @ Cabriolet Cabriolet

- B Pickup Pickup

R

Fig. 40 Carriages sub-tree

The same principle applies to the Chassis sub-tree which consists of Brake,
Steering, Front Wheel Drive and Rear Wheel Drive.

The previous described view / tree structure is called a "Logical View" in
Automation Studio.

TM210 Automation Studio Basis

The Automation Studio Concept

5.3.1 Logical view

All software elements are arranged in the Logical View in the form of a
tree. The elements in this tree are folders and objects. The folders will also
be referred to as packages.

Each package in the logical view represents e.g. the complete software and
documentation for a specific machine part. This makes is possible to
structure a project using the machine structure.

Each machine part can be configured individually. Any data type can be
added to the respective package for the documentation.

Packages can be imported/exported individually, which makes it possible
for each member of a team to work on one package or machine part.

There is no reference to hardware in this view. The focus here is on the
structuring and arrangement of program sections.

Project Explorer v ox
Dhject Mame Description
=L ICars
E Cars tvp Global data types for all cars
Carswvar Global variables for all cars
B () Libraries Glabal libraries
E+ [Engines All engines
Engines.typ Fackage data types
Engines.var Fackage wariahles
B) DieselEngines Diesel engines
) PetrolEnigne Petral engine

[% “. B Specificatian....

Gears All gears

: % Gears.typ Fackage data types
Gears.war Fackage wariahles
- O AutoGear Automatic gearbox
- B ManuGear Manual gearbox
= Carriages All carnages

: Carriagestyp Package datatypes
Carriageswvar Package wanables

FEEREE)PEETRQRTREQ

- @ wan War

- @ Cabriolet Cabriolet

- B Pickup Pickup

B Chassis All parts of the chassis
% Chassistvp Fackage data types
Chassiswvar Fackage wariahles

O Break Break system
B Steering Steering system
O Frontwheel Frontwheel drive
0 Rearvwheel Fearwheel drive

L Logical View | %5 Configuration View | 2§ Physical View

Fig. 41 Logical view

Let's go back to our "car example". As we determined earlier, we now have
all of the software components and definitions available that are needed to
start making different vehicle models.

Automation Studio Basis TM210

The Automation Studio Concept

But how can we now allocate parts to a single vehicle from all of these sub-

components?
Automotion Studio contains a Configuration View for this very purpose

which makes it possible to create and manage different configurations.

TM210 Automation Studio Basis

The Automation Studio Concept

5.3.2 Configuration view

The different configurations are managed in this view. Managing in this
case stands for creating, changing, deleting and activating a configuration.
Each of these configurations contains hardware and software.

Only one configuration may be active at a time. The active configuration is
shown in bold and contains the add-on [Active].

Depending on which configuration is activated, the hardware selected for
the configuration is displayed in the Physical View.

All settings for the target system can be made in the Configuration View.

Project Explorer

Configuration Batch |Desu:riptiu3n
B [ﬁ%‘i..l....[.......l__ﬁn Active
b Hardware.hc Harchware tapolagy
B @& PLC Files belonging ta this PLC
Cpu.sw Software configuration
Cpu.per Declaration of permanent wvariables
lohap.iom I mapping file
b @] Pubdapasm P mapping file
b] ArCaonfigrc Runtime canfiguration file
b |ub] syscanfhr CPU system configuration
L |u] syscanfsyc CPU system configuration
= I8 PickUp
b Hardware hc Hardware topology
B @ PLC Files belanging ta this PLC
----- #] Cpusw Software configuration
- %] Cpuper Declaration of permanent variables
----- lobap.iom 10 mapping file
----- Putdap.wwm Py mapping file
----- “isualwom WC Mapping File
----- W ArConfig.rc Runtime configuration file
-----]| sysconfhbr CPU systern configuration
-----]| sysconf.syo CPU systern configuration
= [F Cabriolet
b Harchware.hc Hardware topology
B @& PLC Files belonging ta this PLC
b (2] Cpusw Software configuration
i % Cpuper Declaration of permanent wvariables
b lobdap.iom 10 mapping file
b Puhdap wam P mapping file
b] ArCaonfigrc Runtime configuration file
- |wb] sysconfhbr CPU systerm configuration
-----] sysconf.syc CPU systerm configuration
" Logical Wiew % Configuration Yiew | Tl Physical Wiew

Fig. 42 Configuration view

Automation Studio Basis

TM210

The Automation Studio Concept

5.3.3 Physical view

The hardware tree of the configuration selected in the Configuration View
is shown in the Physical View.

The hardware for the corrersponding configuration can be defined and
adjusted here.

The following actions can be performed here:

» Set the interface cards (e.g. for the online connection)
» Set I/O modules

* Assign I/O data points

* Open the software configuration

| Praject Explarer e
taodel na. Slat Descriptian
S PLCT
=% 2005 FPLC1.B Base Plate
&k 3PS465.9 2= Pawer Supply 50V, 24vDC
SL1E
SL1 & Central Frocessor, 1x aPCl, 1EMEBRAR
IF3
IF3.5T1
=51
=K1
o, 3014756 sL3 16 Inputs 24 ¥DC, <12 ms
—'L 3004796 SL4 16 Outputs, 24D/ 0.5 4
—ﬂ, 3AIPTR.E SLA 8 Inputs 0to 20 maA, 12 Bit
—ﬂ, 3407756 SLe 8 Cutputs 010 20 ma, 12 Bit
-9 5L7

™ Logical View | @ Configuration View I3 Physical Yiew

Fig. 43 Physical view

TM210 Automation Studio Basis

The Automation Studio Concept

5.3.4 Output window

The output window displays warnings with green text, errors with red text
and information with normal text. This is important information when
solving errors during compilation.

* Compiling temp ... d
b pote’y 2imt cpuh temwp . Ssre: (21 Warning: [Cyolic] '=' signed/unsigned miswatch
b pore’y 2imh cpuh temp . Ssro: (41 :Error: [Cyclic] Type mismatch: Cannot convert INT to U3IINT.
¥ Compiling iomap ...
* Compiling iomap ok
1 Error(s) - 1 Warning(s)
[

" Elouput [Debuy | G Findin Fils | Gl Calitck |

Fig. 44: Automation Studio output window

The output window combines the following:

* Compiler warning and error messages
Double-clicking on a message brings you to the program line that
caused the error.
* Progress and status display when downloading a project
Message display when inserting and deleting objects in the project
or on the target system
e Output window for debugger messages
Output of results for the "Find in Files" function that searches all the files in
the project

Automation Studio Basis TM210 37

The Automation Studio Concept

5.4 Relationship between functionality and task

The logical view shows us the available software components which we
can now use for creating our project.

Project Explorer

Ohject Name | Description

B ICars |
B Carsitvp Global data types for all cars
i Carswvar Global wariables for all cars
i Libraries Global libraries
- Engines Al engines

Fackage data twpes
Fackage variahles
Diesel engines
Fetral engine

E Engines.typ

Engines.yar
£ DieselEngines
B [PetrolEnigne
Specificatian....
Gears

Allgears

E Gearstyp

Fackage data twpes

Gearsvar Fackage variahles
B autaGear Automatic gearbox
B ManuGear Wanual gearbox
=8 Carriages All carriages

Cariagestyp Package data types

Cariageswvar Package variables

B wan Wan
Cabriolet Cabrialet
B Pickup Fickup

All parts of the chassis
Fackage data twpes
Fackage variahles
Break system
Steering svstem

Front wheel drive
Fear wheel drive

Chassis.tvp
Chassis.var
Break
Steering
Frontwheel
Fearwheel

" ®2 | agical View | %5 Corfiguration View | i Physical View

Fig. 45 Logical view

Configuration example - "Pickup"

[

Now we're going to make the configuration for the pickup in accordance
with our "car example".

Solution approach:

* Create a new configuration called "Pickup"
e Add the required hardware
* Open the software configuration

Assign the software

TM210 Automation Studio Basis

The Automation Studio Concept

5.4.1 Creating a new configuration

The Insert Configuration shortcut menu in the configuration view can be
used to insert a new configuration.

| Praject Explarer

Description -

Configuration

Set a5 Active Conflguration bolooy

ng to this PLC

Imeert Fikhdart

Fig. 46 Inserting a new configuration

The name of the new configuration is defined in the following dialog box.
We will choose Define a new hardware configuration and continue the
setup wizard by clicking on Next.

New Configuration Wizard X|

Enter the parameters of the new configuration.

Mame of the configuration:
IPickup

i Marne of the PLC:
e]

*W‘ [PLC

- - (@ Define a new hardware configuration
m (™ Identify contral system online
(™ Reference an existing hardware configuration

I Erowse..

Description of the configuration:

Pickup

MNext » I Cancel

Fig. 47 New configuration — Define settings

Automation Studio Basis TM210

The Automation Studio Concept

We will now select the CPU for the pickup in the following dialog box. In
our example we will use a 4PP420.1043-75. Clicking on Next will continue
with the wizard.

21X

Select a CPU module for the new configuration.

Model no. | Description :I
— 4PP282.1043-B5 PP282 TFT CVGA 10.4in FT MH 2aP(
— 4PP420.0571-45 PP420 LCD BAW OWGAB.Tin T MH 1a
— 4PP420.0571-65 PP420 LCD C OWGA B.7in T MH 1aPC

— 4PP420.0571-A5 FF420 LCD C OVGAB7in T MH 2aPC
— 4PP420.0573-75 FF420 TFT CYGA S Fin T MH 1aPCl

|| 10 20 4in T 18l
— 4PP420.1043-B5 PP420 TFT CVGA 10.4in T hH 2aPCl
— 4PP420.1505-75 PP420 TFT CXGA15.0in T kH 1aPCl
— 4PP420.1505-B5 PP420 TFT CXGA15.0in T MH 2aPCl
— 4PP451.0571-65 PP451 LCD © GWGA 5.7in F MH 1aPC
— 4PP452.0571-65 PP452 LCD © GWGA 5.7in F MH 1aPC
— 4PP480.1043-75 PP480 TFT CVGA 10.4in FT bH 1aP(J
I~ 4PP480.1505-75 PP480 TFT CXGA 15.0in FT MH 1aPt
= 4PP481.1043-75 PP481 TFT CYGA 10.4in FT MH 1aP(
= 4PP481.1043-B5 PP481 TFT CYGA 10.4in FT MH 2aP(
Sh . = 4PP481.1505-75 PP481 TFT CXGA 15.0in FT MH 1aPC T
n ow custamized P | »
products

Varsion of the Autormation Runtirme: INE.SD - I
< Back | N,gm > I Cancel |
by

Fig. 48 Selecting the CPU for the new configuration

We will now complete the insertion of the configuration by clicking Finish.

New Configu n Wizard 21X

Location of the project:

IC:\Angie_F\Trainings and DocumentationAS3_2.10 Modul’,

CPU rmodule: Power supply module
[4PP420.1043-75 |

MName of the configuration Mame of the PLC:

IPicKup IPLC1

Yarsion of the target Automation Runtirme:
[nzg0

™| Launch Inser Ojest izard

< Back | FinisE | Cancel

Fig. 49 Finished inserting the new configuration

TM210 Automation Studio Basis

The Automation Studio Concept

The newly created configuration "Pickup" has not been successfully
inserted. You can change between individual configurations by double-
clicking on the configuration names.

Configuration | Batch | Description
= @ Configl O Default configuration
Hardware he Hardware topalogy
f PLEA Filez belonging tao this PLC
(B [[Pickup [Active] Fickup

Hardware. hc

PLCY
El

Cpu.sw

Cpu.per

9 loMap.iom
i Pkl ap.vvm
%3 “izual vom
| ArConfig e
] syscaont br
| syzcaonf spe

Hardware topalogy

Filez belonging tao this PLC
Sofbware configuration
Declaration of permanent vanablas
10 mapping file

P rapping file

W Mapping File

Runtime configuration file

CPU zpstem configuration

CPU gystem configuration

Fig. 50 New configuration "Pickup" successfully created

Automation Studio Basis

TM210

The Automation Studio Concept

5.4.2 Adding the required hardware

The corresponding hardware tree of the configuration activated in the
Configuration View is shown in the Physical View. The required hardware
can now be entered here for the pickup.

The following hardware should be added:

Elgs PLCI
EEr3 APP420.1043-75 i PLC1.CPU PP420 TFET CYGA 10.4in T 1aPCl
Feg USB1 IFB
> LISB2 IF?
& Display D31 FR420 TFT CYGA10.4in T
o SubSlat =Y 1 glot for screw in modules
LaL 3IF779.9 551 Interface Module RS422/485, CAN, X2xX
SK1
#20BRI300 PLC1.CPUSL1.ESTIFIET] 24%DC power supphy module for internal 10 supply and bus
#20D1937 PLC1.CPUSLLESTIFISTR 12 Digital Inputs 24%DC, Sink, IEC61131-2, Type 1
#e0DI937 FLC1.CRUSL.EE1IF3ETS 12 Digital Inputs 24%DC, Sink, IEC 61131-2, Type 1
»20D1937 FLC1.CRUSL.E51IF3ETS 12 Digital Inputs 24%DC. Sink. IEC 61131-2, Type 1
X20D0Y9322 FLC1 CPUSL1.551IF3.5T6 12 Outputs 24wDC /05 A
Fils X200D089322 PLC1.CPUSLLES1IF3STE 12 Outputs 24wDC/ 05 A
H20Al4622 FPLC1.CPUSLLESTIFIST? A lnputs £10% /010 20 md
#20A04622 FLC1.CPUSLLESTIF3STS 4 Outputs £10% /010 20 mA

Fig. 51 List of the hardware required for the pickup

The corresponding interface module can be inserted by right-clicking on

SubSilot.
B PLCI
::: APP4201043-7 FLC1C FR4Z0TFT CYWGEA 10 4in T 1aPCl
= LUSBE1 IF&
Use 2 IF?

Displa D=1

FPF420 TFT CYWGEA10.4in T
f w in modules

g Open Profiler
Cpen Logger

WI
[Dietista

50 Toi Master

Enahle
Disable
Properties ...

Fig. 52 Inserting the interface card

TM210 Automation Studio Basis

The Automation Studio Concept

The desired interface module (with X2X) can be selected here. The
selection is completed by clicking on OK.

SelectModule R P

Model no. | Description :I
— 3IF7B249 Interface Module RS422/485, L2DF Slave
— 3IF76R2 81 Interface Module RS422/485, L2DP Slave
— 3IF766.9 Interface Module RS232, PROFIBUS DF Maste
— 3IF?F71.8 Interface Maodule CAN
— 3lF77z4 Interface Module RS232, 2x CAN
3 i | Interf dodule B
— 3IF7a1A Interéce Module Ethernet 100 BASE-T
— 3JIF7E249 Interface Module R5422/485, Powerlink
— 3IF7E2.81 Interface Module RE422/485, EFLW1/MVE
— 3IF7a64 Interface Module RS232, Fowerlink
— 3IF766.91 Interface Module RS232, EPL W1/VE
— 3IF787.9 Interface Module CAMN, Powerlink
— 3IF787.91 Interface Module CAN, EPL %152
— 3IF783.9 Interface Module 2, Powetlink |
— 3IF789.9-1 Interface Module $2x, EPL W1 /v2
— 3F?31.4 Interface Module X2
— 3IF?3z24 Interface Module RS232, 2x x<2X =
L 2E7a7a Intmdamm hdadnla D072 AR WO
o Show customized 4 | »
products
| Insertmadule @ Replace module

Ok | Cancel |

Fig. 53: Selecting the interface module

The configuration area for the I/O connection is opened on the right side of
the screen by right-clicking on the interface card and selecting Open X2X
Link.

Elgm PLCT
EHR APP420.1043 FLC1.C PRAZ0TFT CYGEA10.4in T 1aPCl
= USE1 IF&B
o USE:Z IF?
8 Display D=1 PR4Z20TFT CYGEA10.4in T
SubSlot 51 1 slotfor screw in modules
ﬁ& ki [=T ntorfaco bdocilo Fied-
Open Serial
Cpen CAN

Cpen IF1 Serlal Configuration
Cpen IF2 CAN [/O Mapping
Cpen IF2 CAN Configuration
Open IF3 X2X I/0 Mapping

Mman TR Y 2% Confion ration

Fig. 54 Opening the X2X connection

All of the required I/O modules can be inserted at the same time by right-
clicking the selected interface. This procedure can be repeated as many
times needed until all specified I/O modules have been added to the
hardware tree.

Slawve Module | SIaveElackal Connectl [
=¥ IF3

ngﬂ

et

5o To
Properties. .

Fig. 55: Inserting 1/0 modules

Automation Studio Basis TM210

The Automation Studio Concept

5.4.3 Open the software configuration

Now that the hardware has been configured for the pickup, we can get
started assigning software.

The software configuration for our pickup is opened by double-clicking on
the CPU entry in the Physical View.

Edw PLCT
B4 APE420.1043-75 :
= LISE1 IFG
= LISB? IF?
& Display DS
L SubSlat 571
L4L 3IF779.3 551

Fig. 56 Opening the software configuration

The corresponding software configuration appears on the right side of the
screen. The software elements in the cyclie system are managed here.

Object Name YWErs... | Transf... | Size (b.. | Source | Source .. | Dlescription
B [z |CEU

...... o Cyclic#1 -[10ms]

...... 2 Cyclic#2 -[20 ms]

...... & Cyclic#3-[50 ms]

...... & Cyclic#4-1100 ms]
------ & Cyclic#5-[200 ms]
...... & Cyclic#6 - [500 ms]
...... 2 Cyclic#7 -[1000 ms]
...... & Cyclic#3-[10ms]

...... @ Data Ohjects

------ & Mo Data Objects

...... & “isualisation

------ % Binary Objects

------ 4 Library Objects

------ 0 Configuration Objects

Fig. 57 Software configuration

TM210 Automation Studio Basis

The Automation Studio Concept

5.4.4 Assigning the software

Programs from the logical view can be added to the software
configuration at any time when the software configuration is opened on
the right side of the screen and the logical view is active on the left side.

Pro]e.ct Explorer x.‘ 77 4 a @ @ @ -8 ¢
Object Name I Descri -
BRI 1 Object Mame
[Carstyp Global| [2@ [CPU
- Cars war Global - &3 Cyclic#1-[10ms]
B [Libraries Glabal - & Cyclic#2 - [20ms]
Bt = Engines all eng 2 Cyclic#3-[60 ms)
% Engines.typ Facka - & Cyclic#4-[100 ms)
Engineswar Packa, @ Cyclic#5-[200 ms]
- (2 DieselEngines Diesel . & Cyclic#6 - [500 ms]
g B DE_BOKW Diesel =
- [DE_sskw Diesel - & Cyelic#7-[1000 ms]
w- B DE_105kw Diesel - & Cyclic #8 - [10 ms]
B =) PetrolEnigne Petrol - [Data Objects
B [PE_70kW petral — g McData Objects
. o [@ PE_70kWwar Local - & “isualisation
: - PE_7Dkiy.st Irnple — @ Binary Objects
S. P_'?—120k\’; petral — (@ Librany Objects
b5 Gearspeu ication.coc all g=a [Configuration Ohjects
% Gearstyp Packa,
Gears.var Packa,
- @ AutoGear Autarn
B [0 ManuGear hanus
- banuGear.ar Lacal
B |sf] ManuGearst Imple
B) Carisges all car
B 5 Chassis all part
«| | b

| *# Logical... | ¥y Configu... | B Physic... | J PLCICR.

Fig. 58 Relationship between software configuration and logical view

You can assign an object by dragging it from the Logical View into the
desired task class of the Software Configuration.

This is how all software components required for the pickup can be
assigned.

Automation Studio Basis TM210

The Automation Studio Concept

Our software configuration then looks like this.

s e Sy g

Object Name IDEA -
B O Cars — || Dbject Name
Carstyp Cile Bl @;I CPU
Cars var Gle o 3 Oyclic#1 -[10 ms]
=) Libraries Gle B £ Cyclic #2 - [20 ms)
B+ 3 Engines all .
% Engines.typ Pa
Engines.var Pa
- 1) DieselEngines Die
B DE_sokw Die o & Reatheel
DE_gakiw/ oie ||| ¢ & ManuGear
B DE_105kw Die - & [Syclic#4-[T00 ms]
B+ 3 PetrolEnigne Pe e B DE_T05kW
B @ PE_70KW per L. & Pickup

PE_70kaar Lo L] - o Cyclic #5-[200 ms]
sf] PE_70kM st Lﬂ © Cyclic#6- [500 ms]
- s it N | B = Cyclic#7-[1000 ms]
- 5 earsp all = WC“C#S._[mmS]
B) Caniages al L 8 DataObject.s
Bt~ 3 Chassis ST Y | B & McData Objects
% Chassis.typ == | . & Visualisation
Chassis.ver Pa @ Binary Objects
= Break STE | I il Library Objects
g

Steering Se ol e # Configuration Objects
; Frontwheel Frc ™ o
«| | >

1 "= Logical... | g Configu... | 4 Physic.. | I PLCICP.

Fig. 59: Finished software configuration for the pickup

Note:

Only programs from the active configuration can be carried over to the
software configuration (selected in the configuration view by double
clicking).

Programs (logical view) become control tasks when transferred to the
software configuration.

Task: "Integrating your own configuration"

With the help of the "Pickup" configuration example, try to create your
own configuration.

Solution approach:

» Create the project structure

* Create a new configuration

e Add the required hardware

* Open the software configuration
* Assign the software

TM210 Automation Studio Basis

The Automation Studio Concept

5.4.5 Directory structure of a project
A project is divided up between several folders. This division is based on
the project views.

= 5 Cars e AS
Egsystem The o_perating s.ystems and libraries
= [Binaries used in the project
=) Cabriolet N ; ;
& PiekUp Blnarlt_as
= &) Van Compiled programs separated by
2 [Diagnosis configuration
| Cabriolet . .
= PickUp * Diagnosis
= Van Diagnostics information (e.g. saved
= 3 Logical watch window) separated by
I Carriages . .
=) Chassis configuration
I3 Engines . Logical
Eﬁzfr;es !:’ackets a.nd filt_es, which can be found
= [Physical in the logical view
I3 Cabriclet .
= PickUp * Physical _ _
&) Van Configurations, which can be found in
o Temp the physical view.

Fig. 60 Project structure

Automation Studio Basis TM210 47

The Automation Studio Concept

5.5 Teamwork

In a project team, responsibilities must be split and assigned to team
members. Automation Studio supports working in a project team with
dedicated functionalities. It provides functionalities for efficient project data
exchange with minimum data sizes.

5.5.1 Project Export

When selecting the point File — Export Project from the main menu it is
possible to export any desired subset of objects in your project. First,
select all objects to be exported from the logical project view and the
configurations view.

x
r_fzv E xport logical project
Object Mame | Description |
B 3 Cas Default project |
[Global typ Global data types
Global war Global variables
- B Visu BA0480 [VGA)
-) Motars Available motars
) Gears Available gears
B [Libraries Glabal libraries

< Back | Mext » I Cancel Help

Fig. 61: Selecting software objects from the Logical View

1I
DE E=port configurations
Configuration |Descripti0n |
= Eg Base_Configuratio. .. |
> ----- Hardware. hc Hardware topology
E PLC1 Filez belonging to this PLC
= Egi Pickup
> ----- Hardware. hc Hardware topology
E PLC1 Filez belonging to this PLC

< Back | Mext » I Cancel Help

Fig. 62: Selecting configurations from the Configuration View

The ZIP-archive will be generated with the selected compression level in
the selected directory.

TM210 Automation Studio Basis

The Automation Studio Concept

5.5.2 Project Import

Exported projects may be imported by selecting the point File — Import
Project from the main menu.

If objects with identical names exist in your project you will be prompted
for confirmation of replacement:

Confirm Object Replace x|

Hh . .
%F;] Target already containg a object named 'Global war',
57

Would pou like to replace the existing object

4595 Byte
modified: 11:23:40

with this one’?

495 Buyte
modified: 11:23:51

Yes Yes bo All Mo Mo ta &l Cancel

Fig. 63: Confirm Object Replace dialogue

5.5.3 Clean Project

With the point Project — Clean Project from the main menu the size of a

project can be substantially reduced. This is especially convenient if the
project is sent to other team members by email.

If you choose the options in the clean dialogue the project will be reduced
to a minimum size. In any case no source information will be lost.

x
Please choose the category of Files to be deleted!
I Delete all temporary files

[Delete binary files

Delete generated b and .a files
{attention: this effects all configurations!)

oK I Cancel

Fig. 64: Clean project dialogue

Note that deleting all temporary files will destroy information necessary for
debug purposes.

Automation Studio Basis TM210

Operating Comfort

6. OPERATING COMFORT

6.1 Editor Views

The division of the Automation Studio workspaces into different views
makes it possible to simultaneously open multiple working environments.

6.1.1 Switching via menu or shortcut key

Switching between windows can be done either from the Window menu or
using the <CTRL + TAB> key combination.

| Window Help

Cascade

| 'lﬁﬁ"ﬁ|@t|z‘l§l|++ Don BE 10 164 e B | a

ar [Variable Declaration]

Tile Harizonkal

Tile Wertical

Arrange lcons tB.typ [Data Type Declaration]

Splik zProgX.war [¥ariable Declaration]

og¥X:ProgXCyclic.ld [Ladder Diagram - Cyclic]
[Close Chrl+F4 j MyProg1:MyProgl.var [Yariable Declaration]

MyProgl:MyProglCyclic.ld [Ladder Diagram - Cyclic]

q A E A AR A () 9) 1) G e o [T3 0T | (¢ B |4 > 4 4 | o
2 MyProgl: :MyProglCyclic.Id [Ladder Diagram - Cwclic]

3 PartB::PartB, var [Variable Declaration] 0001
4 PartE::PartB.typ [Daka Type Declaration] ‘

S Progi::Progy.var [Yariable Declaration]
& Progi: :PragiCyclic.ld [Ladder Diagram - Cyelic]

Fig. 65 Switching between the individual windows

Note:

It is helpful to close windows that are not needed (if finished editing for
quite a while). This leaves only those windows open that are actually
needed.

The result is a cleaner, more efficient method of working.

TM210 Automation Studio Basis

Operating Comfort

6.1.2 Workbook mode
The individual windows can also be managed as workbooks. This option

can be switched on using the setting in the main menu View:Workbook.

Wiews Inserk Open Projeck FED Online

Toolbars. ..

Status Bar
Cukpuk
Project Explorer

Other Wwindows L

—F.

Fig. 66 Workbook view

The windows can now be switched using tabs in the workbook.

dAfr—

ti... @ Physical Yiew | @MyProgt:M... M_l,Jng‘I;;M___ @ Elott‘aé.var [| Globaltyp ... | @Epu.sw [Sof...|

Fig. 67 Using the workbook mode

Automation Studio Basis TM210

Operating Comfort

6.1.3 Open as text or table

All declaration tables can be displayed as either text or table in Automation
Studio using the open data storage as IEC files.

The option Open as Text or Open as Table can be selected from the
shortcut menu by right-clicking on the declaration object.

& new program

" (Open &s Table k‘

- 8 “MyProgl A news program

Open As Text

Fig. 68 Open as table or text

This causes the declaration to be displayed as a table or as text, in
accordance to the IEC-Norm 61131-3.

& Reference | a Constant | Value ey
e e 0002 *COPYRIGHT —hbar
* CORYRIGHT — bar anos
aoo4 *Program: MyProgl
*Program: hyProgl aoos *File: MyProgl var
*File: MyProgl var 0aas *Author: brunnerh
* Author: brunnerh aoo? *Created: 16.02.2005
*Created: 16.02.2005 aislen
0003 *|ocalvariables of program MyFrogl
0a1a

*Localvariables of program kyProgl

o011 VAR
rE— rta = = EiEE o012 doSwitch: BOOL = FALSE;
@ doSwitc o1z dolight: BEO0L = FALSE;
@ dolight BOoL] O FALSE

0014 END_WAR

Fig. 69 Open as table or text

TM210 Automation Studio Basis

Operating Comfort

6.2 Smart Edit

The following language elements can be automatically complemented
using the CTRL-Space shortcut:

e Variable names

e Structure member

* Function name

» Language constructs (IF THEN, CASE,..)

The following navigation aids are available:

Goto

Locating the variable declaration
Locating the variable declaration
Use in the source code

* Corresponding brackets

Move the mouse pointer over objects to display the following tooltips:

« Parameter lists for functions and function blocks
« Variable data type

ZIFTHZN
Feeder. IF expression THEN
e EMND_IF;
. — Matching delimiter at Line: 32
Cupy -
Pastz
Selert oll
£ Celee

o To Declaratior OF Fesder
o To Dakz Type OF Zeeder

Adcer

Adde{BOCL CLK, BODL 1, BOOL M)
users adde” hunchion

Fig. 70: Smart Edit

The Zoom-In option offers more operating convenience when editing
project sections.

Automation Studio Basis TM210

Operating Comfort

6.3 Open data storage

The data storage in Automation Studio offers an open entrance. The
following possibilities result:

» All project data stored in ASCII files

» External generation possible

» Separation of source data and compiled data
* Use of version checking systems possible

» Zip export/import

[Deserpin]
Pachrge from Qusizes

Fig. 71: Open data storage

TM210 Automation Studio Basis

Operating Comfort

6.4 Cross reference

Common search tasks can be handled easily with the help of the cross
reference list.

For example, all variables that are used in a program can be listed.
Additionally, information about where and how a variable is used is made
available (read or write access).

To use the cross reference list, go to the menu item Project: Settings in
the General tab and activate the option "Generate cross reference data
during build".

Settings |£|

General | [EC En:nmpliann::el AMS| T En:nmpliann:el \:"ariahlesl Mn:-tin:nnl

"

Lacation:
II::'xT emphCarsh,

D ezcription;

T emporary directon:

II‘-T emp Browsze. ..
Binary directan:
I'xBinaries Browsze. ..

v Use default include mechanism for AMS1 C programs

¥ Store Automation Buntime support files to project

@s reference data du@
2k, I Cancel | Help

After compiling, cross reference list features are available.

Detailed information about the cross reference list can be found in the
online help.

Automation Studio Basis TM210

Variables

7. VARIABLES

Variables are symbolic elements that are used in programming.

They represent memory positions that can be either read or written by
accessing a variable.

Using these symbolic elements allows the user to not worry so much about
memory management since this is handled by the programming task.

Constants are much like variables. Unlike variables, however, constants
can only be assigned an initial value when the software is being created.
Constants can no longer be written during runtime.

7.1 Data types

Data types describe the properties of a variable. For example, these can
include the possible range of the number stored in the variable, its
accuracy, or which operations are possible with it.

7.1.1 Basic data types

The following data types are among what are called basic data types. They
can be used in all programming languages.

Binary | Unsigned Signed Floating Time, date, string
point
BOOL USINT SINT REAL TIME
UINT INT LREAL DATE_AND_TIME
UDINT DINT STRING
Data type Memory Value range
requirements
[bytes]
BOOL 1 TRUE (1), FALSE (0)
Digital inputs and outputs
SINT 1 -128 ... +127
INT 2 -32768 ... +32767
Analog inputs and outputs
DINT 4 -2147483648 ... +2147483647
USINT 1 0...255
UINT 2 0 ... 65535
UDINT 4 0 ...4294967295

H TM210 Automation Studio Basis

Variables

REAL 4 -3.4E38 ... +3.4E38

LREAL 8 -1.79769313486231E308 ...
+1.79769313486231E308

TIME 4 T#-24d 20h_31m_23s 648ms
..T#24d 20h 31m_23s 647ms

DATE_AND TIME | 4 DT#1970-01-01-00:00:00 ...
DT#2106-02-07-06:28:15

STRING Variable Character string display

7.2 Declaring variables and constants

Variables and constants are declared in Automation Studio as follows.

Open the variable declaration in the desired packet by double clicking.
Variable declarations use the file extension *.var.

I I Libraries Glabal ibraries

*“File: Global war
E| Part_#, A package of related
@ packad . *Author: brunnerh

* Created: 26.01.2005

. Global data bpes
_| Global variables
An empty package

E el

LB . Frag & program in JEC-1131 *Globalvariables of project
: n Progs. var Local variables
. ProgeCyclic.d Cyclic code
i '@ Documentation_a. pdf
= @ Parte A package of related p
B R = T Rlakal Azba himes

Fig. 72 Opening the variable declaration

The declaration window is opened on the right side of the screen.
Select shortcut menu: Insert Variable to add variables.

*Local wariables of prograrm

dppend Yariable [! ‘

Treark (TAarrank

Fig. 73 Adding variables

Choose a name for the variable and the desired data types, then save the
declaration. The variable / constants can now be used in your programs.

Automation Studio Basis TM210 57

Variables

The variable can be declared as a constant by selecting the checkbox. An
initial value can also be determined for a variable or constant.

Fig. 74 Variable

A variable's data type can be changed as follows: Either write the data
types directly in the Type column, or double click on the variable and then

click on the J icon.

The following window is opened.

=[P
Category: MName + IScope I Descrigti... |Dee
m BOOL TRUE or .. |
IBaaic datatypes B DATE_AND_TIME 3e-Bittyp...
B 5 W DINT 32-Bit sig...
5 m DT 32-Bittyp..
Function blocks N NT 16-Bit sig...
W |REAL G4-Bit sig...
[| Show external libraries B REAL 32-Bit sig...
W SINT 8-Bit sigh...
[v | Show project stucture B STRING ASCI stri...
m TIME 32-Bittyn...
W UDINT 32-Bituns...
Afray inclex range: m UNT 16-Bit uns...
I W USINT B-Bitunsi...
Length:
Jo
‘ i
Filter: =15

OK I Cancel | Help |/
%

Fig. 75 Selecting the data type

You can choose from Basic data types, Structured data types and
Function blocks in the Category pull-down menu. This enables you to
assign your variables the suitable data type.

The size of fields is determined by the Array index range text field. For
example the entry for a size 4 field could be 0..3.

TM210 Automation Studio Basis

Variables

7.2.1 Structures (user data types)

The user can group a collection of variables in a structure. This allows
individual values that would otherwise be scattered around to be grouped
together to form structures that reflect a certain function or task.

Example: User data type

You have been given an assignment in which you have to create a
program that can bake two types of bread.

One type of bread is defined using the variables Water, Flour, Salt and
Yeast. The bread data type could consist of the following elements:
Wat er

Fl our

Sal t
Yeast

You need the bread types mixed and homemade. One advantage of the
structure is that you only have one variable "mixed_bread" and one
variable "homemade_bread" in your software. These variables each
contain the elements water, flour, salt and yeast.

To expand your program to include an extra type of bread, you only
have to create an additional variable (e.g. "white_bread") and have all of
the respective data. If you notice later that you also have to specify the
baking time for each type of bread, then you can simply expand the
structure to include the "baking time" element. As a result, you
immediately have a "backing time" for all bread types.

In this example, you have three variables with the bread data type
instead of 15 individual variables.

Automation Studio Basis TM210

Variables

Creating a user data type:

To create data types in Automation Studio, the data type declaration of the
desired packet must be opened by double-clicking. Data type declarations
use the file extension *.typ.

— e e — -
Dé:qect@hlameacmne | Dezcription Name Toram & Feh
| Global data tupes .
Global variables COPYRIGHT —bdr
B) Libranies Global libraries e
E| = Part_A A package of related p " File: :
Part_g typ Global data types . Author:
: Part_s. war Global variables Crestec:
- [SupPart_& A emnpty package)
[OB B Progx & program in IEC-1131 * Glohal data types of project
F- @] Progevar Local vaniables
ProgxCyclic.d Cyclic code
: @ Documentation_o, pdf
- T e [R R U Y

Fig. 76 Opening the data type declaration

The declaration window is located on the right half of the screen. A new
data type can be inserted by selecting Insert Datatype from the shortcut
menu. Enter a name.

*Global data types of project Mact

pielrecicpe_ty

Fig. 77 Adding and naming a data type

The individual elements, which the datatype will contain, are added by
selecting Insert Datatype Member from the shortcut menu.

Insert Data Type

Append Data Type

Insert Data Type Member
Append Data Type Member

Fig. 78 Adding elements

TM210 Automation Studio Basis

Variables

Data types and their elements can also be inserted using the following

toolbar.

*COFYRIGHT — Bernecker + Rainer

*File: Global typ
*aythor: fellnera
* Created: June 18, 2007

* Global data types of project hardware

"8 reciepe_type

Fig. 79 Toolbar for creating data types

A finished data type might look something like this:

= Y reciepe_type
...... @ water
...... i flaur
...... @ salt
e @ yeast

Fig. 80 Data type

After being saved, this can be used immediately in your programs.

LISINT
LISINT
LISINT
LISIMT

Automation Studio Basis

TM210

Variables

7.2.2 Function block data types

Each function block has inputs and outputs that are grouped together in
the form of a structure. When the function block is called, the actual
program behind the function block receives this data structure.

In the Watch window, you can clearly see that a function block consists of
individual elements when it is added.

7.2.3 Arrays

Arrays are variables that contain several elements with the same data type.
These elements are accessed using an index. These elements can be
declared either as basic data types (simple array) or as a user data type
(array of structures).

The array index always begins with 0. This means that the array index can
only receive values 0 to (size of the array - 1) when accessing the
individual variables.

Accessing an element in a simple array looks like this:

ArrayVari abl e[Arrayl ndex]

Arrays of structures would look like this:

ArrayVari abl e[Arrayl ndex] . El enent

In Automation Studio, a variable can be declared as an array in the variable
declaration window when selecting a data type.

& Select Data Type

Categoty MName 4

BOOL
DATE_AND_TIME
DINT

IBasic datatypes LI

[T Show anly used
[| Show extermel librarias

¥ | Ehaw project structine

EEEEEEEEEE ..
s
m
b
—

Arrary index range:

E [& UsNT

L]
C
“
=
3

Fig. 81 Setting the size of an array

Arrays are used when variables of the same data type are needed (array of
base data type or structure).

TM210 Automation Studio Basis

Variables

7.2.4 Variable scope

A project's packages can be as deeply nested / structured in the logical
view as needed. This enables the encapsulation of data.

This structure determines the scope / visibility of the declared variables
and data types. This allows us to define variables "logically" at a suitable
location in the project.

This results in the following difference regarding the visibility of variables
in Automation Studio:

* Global variables at the highest level are visible in the entire project.
These are also global from the standpoint of the controller.

» Package-local variables, declared within a package are valid in the
respective package and all subordinate package and programs.
However, the validity of these variables is global from the standpoint
of the controller.

* Local variables, declared in a program and only visible in this
program. These are also local from the standpoint of the controller.

Object Mame | Description |
B 5 Machine
*e] Globaltyp Global data types
3 E Global war Global variables
[[Libraries Global ibraries
E| I Part_a A package of related programs and data objects.
: E Part_A typ (lobal data types
@ Part_&, war Global variables
B 5 SupPar_a & emply package
i B E Frog< A program in IEC-1131 languages, BER Automation Basis or AMNSI-C
[#] Progvar Local variables
ProgsCyclic.|d Cyclic code
: @ Documentation_A, pdf
= @ PartB A package of related programs and data objects.

Global data types
) Global variables

A pragram in [EC-1131 languages, B4R Automation Basis or ANSI-C

@ Documentation_B. pdf

= E Steps A pragram in [EC-1131 languages, B4R Automation Basis or ANSI-C
F- [Stepsvar Local wariables
= E StepslCyclic.ab Cyclic code
Lo @ _CYCLIC Cament

Fig. 82 Variables declared within packets

For example, we have two equal packages, package A and package B. We
define the variable "MachineType" in both packages. What would happen if
we were to compile the project?

Automation Studio Basis TM210

Initialization

8. INITIALIZATION

Initializing data — in this case, variables and constants — is an important
topic.

Variables should have defined values at all times. There are several ways
for variables to be initialized - either by the system or by the user.

The initializations become accomplished in this order:

+ Variable declaration window
+ Task initialization
e Cyclic task section

Variable declaration: Initialization values can be entered for variables and
constants in the variable declaration window.
The Value column is used to set the initialization value. There are two
possibilities:

« Variables can be initialized with a fixed value (numeric value within
the value range of the variable).

» Variables can be identified as remanent (RETAIN). These values are
backed up in a buffered memory area before a system restart and
reloaded during the restart (remain after a warm restart).

O RETAIM
1

@ condition LISIMT
@ zetvalue LISINT

Fig. 83 Declarations

Oood
O

Task initialization: If available, each task cycles through its initialization
subprogram (Init-Sp) when the cyclic system starts (this occurs before the
cyclic part of the program is executed).

This Init-Sp can contain program code that defines variable values.

Cyclic task section: The cyclic part of the program starts after the variable
declaration and the task initialization. Variables that are assigned values
there retain them until they receive new ones or the system is restarted
(see the sections on variable declarations and remanent variables).

TM210 Automation Studio Basis

Initialization

Remanent / RETAIN and permanent variables: As mentioned above, remanent
variables are stored in a secure memory area during a system restart
(warm restart of power loss) where they can be read back once the system
is finished restarted. Permanent variables are handled in much the same
way, except they can withstand cold restarts, too. In both cases, the
buffering (battery, rechargeable battery) in the CPU or backplane is
responsible for holding on to the data.

Jd 2 FAaT@Y

todel no. I glo MName IT pe I Lenc
Elmts FLCT = @ wvariables
EHi% 2005 BP o [Newvar I
3 Ps
4 5L1
B/ '&’WSIF?SC Open Software Configuration
|: 9 : Bl Open Permanent '-.'*-Jr'iahle::

ﬂ.. 2813756 Cpen Serial

e Oinen Frhernet

Fig. 84 Inserting a permanent variable

For variables to be created in the permanent area, they have to be defined
as RETAIN in the variable declaration window.

Automation Studio Basis TM210

Programming Languages

9. PROGRAMMING LANGUAGES

9.1 Overview

Programs can be created in several different programming languages in
Automation Studio. For this reason, mixing several programming
languages together within a project is both allowed and desired as long as
it gets you to your goal.

The following programming languages are available:

Programming language Comment

Ladder diagram (LD) Graphical

Function Block Diagram (FBD) Graphical
Continuous Function Chart (CFC) Graphical
Sequential Function Chart (SFC) Graphical & textual
Instruction List (IL) Textual

Structured Text (ST) Textual
Automation Basic (AB) Textual

ANSI C (C) Textual

In Automation Studio, all textual programming languages use the same
editor. Diagnostic tools are therefore always the same and are operated in
the same way. This uniformity makes it easier to work and increases
productivity.

The Watch window for checking and setting values is operated the same
way regardless of whether the programming language is textual or
graphical.

Note:

Function blocks from B&R standard libraries can be called and used in
all programming languages.

H TM210 Automation Studio Basis

Programming Languages

9.1.1 Possibilities

It is possible to set the desired application with any programming
language. Each language has its special strengths.

The following table lists the programming languages in the header
columns. The rows represent different function groups.

LAD | FBD | CFC | SFC | IL | ST | AB
Logic v Vv v AR

Arithmetic Vv

Decisions \/ \/ \/ \/ \/

Loops

< S] <
< S] <
I S S Y

Step sequencers \/

Dyn. variables (\/)

Function blocks \/ \/ \/ \/ \/ \/

< <
< <

Note:

Using function blocks allows functions that are not supported by a
programming language to be expanded.

Automation Studio Basis TM210

Programming Languages

A graphic editor is used to create the logic for ladder diagram

*2 %3 ud W& ol
| 1l 1 1 (r—
6 i o2
i N L(|
%8 x3 *10 x11 w12
I |} |1 | |1 | | |
I T LI LI LI
x13
I
x14 %15 W16 w17 *18
I] |] | | |] |
I T LI T T
x19 *20 w21
*¥22 ¥23
w24 %25
! | |
I T
w27 %26
I] |
T 1T
%28 *29 %30
!] |] |
I 1T 1T
*31 %32 %33 x34
I] |] | | |
T 1T 1T T
%30 %36 *37
I 1 | 1 |
I T LI
x35 *39
I 1 |
I LI
®40 xd1
: 11

Fig. 85 Ladder diagram programming

The function chart editor offers another possibility for graphical
programming.

oont:

Fig. 86: Function chart programming

TM210 Automation Studio Basis

Programming Languages

Sructured text is a type of textual high-level language programming.

PROGRAN INIT

(* calculate max. number of stations 7|

ModGrpNrMax:= UDINT TO UINT(SIZEOF (Station)/SIZEOF (Station[0]1]);

(* calculate max. numper of modules per station #)

ModNrMeax:= UDINT TO_UINT(SIZECF (Station[0].HModul)/SIZEOF (Station[0].Modul[0]})

ModGrpNrError:= READY_FOR NEW_ENTRY: (* reset module group number for errorhandling)
ModNrError:= READY_FOR_NEW_ENTRY; (* reset module number for errorhandling)

END_PROGRAN
FROGRAN _CYCLIC

twpModOK: = TRUE;
FOR ModGrpN O TQO (ModGrpNrMax - 1) DO
FOR Modr 0 TO (ModNrMax - 1) Do
(* check only configured modules *)
IF (Station[ModGrpNr] .Modul [ModNr] . Used = TRUE) THEN
(* check only those configured modules with a connected PV on ModuleOK-Flag *)
IF (Srtation[ModGrpNr] .Modul [ModNr] . pModulOkPv <> 0) THEN
dModuloK ACCESS Station[ModGrpNr] . Modul [ModNr] . pModulOkPw:
Station[ModGrplr] .Modul [HodNr] . 0K:= dModulOK:
IF (Station[ModGrpNr].Modul [ModNr].OK = FALZE) THEN

tmpModOK: = FALZE; (* set error *)
(* error not recognized yet and logger ready for & new entry ¥
IF (BIT_TST{Station[ModGrpNr].Modul [ModNr].StatusInfo, 0 = FALSE] AND (ModGrpNrError = READY FOR NEW ENTRY] THEN
Station[ModGrpNr] .Modul [ModNr] .StatusInfo:= BIT SET(Station[ModGrpHr].Modul[ModNr].StatusInfo, 0);
ModGrpNrError:= ModGrpNr; (* set module group mumber for errorhandling *)
ModNrError:= ModNr; (* set module number for errorhandling ¥)
END_IF:
ELSE
Station[ModGrpNr] .Modul [ModNr] .StatusInfo:= BIT CLR{Station[ModGrpHr] .Modul[Modir] .StatusInfa, 0);
END_IF:
ELSE

(* no PV connected on ModuleOK-flag &)
Station[ModGrpNr] Modul [ModNr] . OK:= FALSE:
END_IF;
ELSE
(* module not configured *)
Station[ModGrplr] .Modul [ModNr] . OK:= FALSE:
END_IF:
END_FOR:
END_FOR:
AllModulesOK: = trplModOk:

END_PROGRAN

Fig. 87 Structured Text programming

ANSI C is also a text-based high-level language. It has a different notation
and syntax than B&R Automation Basic.

i "
int _CYCLIC main{ void) /* Eyklischer Teil des C-Chjektes */
{

int i;

int Nachfok:

if (GrpSelected) /* Wey in Listhox ausgewdhlt */

{
WMegPtr[1l] .BEez=&WegEBezl;
strncpy (BezEdit, WegPtr[GrpSelected] .Bez->Bez[Teglelected[GrpSelected]], 21):
SaveGrplelected=GrpSelectead:;
GrpSelected=FALLSE;

'II’T

=

if (TimerHupe) TimerHupe--;
for (i=1;1<=ANZ GRP:i++
{ /% Mbschaltverzdgerung bei Verlust des Nachfolgers
in Eetriebsart verriegelt %/
if (3toerTimer[i]) StoerTimer[i]--:
/* Verriegelung ein bei Automatik */
if (GrpStatus[i] .autom) GrpStatus[i] .verriegelt=TRUE;

/% for(i=1;i<=7;i++) nur filr Test */
for (i=1;i<=ANZ M;i++)
{
/% Tastenfarben zuweisen %/
Color[i]=0; /% alle Bits riicksetzen */
if [Taste[i]) Color[i]=TASTE_EIN:
else Color[i]=TASTE_A4US:

Fig. 88 ANSI C programming

Automation Studio Basis TM210

Summary

10. SUMMARY

Automation Studio makes it possible to program all of the automation
components provided by B&R. The ability to clearly structure the software
based on machine parts and to work with different configurations makes it

possible to manage multiple machine variations in one project and allows a
whole team to work on the same project.

Configuration 1

Configuration 2

-

Machine Machine
“Low Cost” - SHigh End’

Machine
“Medium®

Fig. 89 Basic concept of Automation Studio

70 TM210 Automation Studio Basis

Summary

The structure of data types and variable declarations are always the same,
which limits the number of different user interfaces. In turn, this makes it
easier to find your way around and work with the system.

The scopes for variables, constants and data types are clearly structured
using the logical view.

You are now familiar with Automation Studio and have gotten to know the
Automation Studio online help system that will support you in the future
while you are working.

The programming language overview allows you to select the language
that is best suited to your application.

More details about them can be found in later training modules.

Automation Studio Basis TM210 71

Summary

Notes

72 TM210 Automation Studio Basis

Summary

Overview of training modules

TM200 — B&R Company Presentation **

TM201 — B&R Product Spectrum **

TM210 — The Basics of Automation Studio
TM211 — Automation Studio Online Communication
TM212 — Automation Target **

TM213 — Automation Runtime

TM220 — The Service Technician on the Job
TM223 — Automation Studio Diagnostics

TM230 — Structured Software Generation

TM240 — Ladder Diagram (LAD)

TM241 - Function Block Diagram (FBD)

TM246 — Structured Text (ST)

TM247 — Automation Basic (AB)

TM248 — ANSI C

TM250 — Memory Management and Data Storage
TM260 — Automation Studio Libraries |

TM261 — Closed Loop Control with LOOPCONR

TM400 — The Basics of Motion Control
TM410 — The Basics of ASIiM

TM440 — ASiM Basic Functions
TM441 — ASiM Multi-Axis Functions
TM445 — ACOPOS ACP10 Software

TM450 — ACOPOS Control Concept and Adjustment

TM460 — Starting up Motors

TM500 — The Basics of Integrated Safety Technology

TM510 — ASIiST SafeDESIGNER

TM600 — The Baf Visualization
TM610 — The BasifsASiV
TM630 —14bzation Programming Guide
TNG4 ASiV Alarm System
TM650 — ASiV Internahalization
TM660 — ASiV Remote
TM670SA\AAdvanced

TM700 — Aation Net PVI
TM710 — PVI Communicat
TM711 — PVI DIProgramming
TM712 — PVIServices
TM730 — PVI OPC

TM8BAPROL System Concept
TM810 — APR@etup, Configuration and Recovery
TM811 PROL Runtime System
TM812 — APROL Operator Management
TM813 — APRA&ML Queries and Audit Trail
TM830 — APROL Projectdiireering
TM840 — APROL Paraméfimnagement and Recipes
TM850 — APROL Cuawoller Configuration and INA
TM860 — APROL Libr&nygineering
TM865PROL Library Guide Book
TM870 — APROL Python gramming
TMB890 — The Basics of LINUX

**) see Product Catalog

140 offices in more than 55 countries - www.br-automation.com/contact

Australia » Argentina « Austria « Belarus « Belgium < Brazil - Bulgaria < Canada « Chile « China » Colombia « Croatia « Cyprus
Czech Republic « Denmark « Egypt Emirates + Finland - France « Germany < Greece ¢ Hungary India « Indonesia
Ireland « Israel o ltaly « Japan - Korea « Luxemburg ¢ Kyrgyzstan « Malaysia + Mexico « The Netherlands « New Zealand
Norway - Pakistan « Poland Portugal « Romania « Russia + Serbia < Singapore - Slovakia - Slovenia « South Africa
Spain + Sweden - Switzerland « Taiwan - Thailand + Turkey ¢ Ukraine + United Kingdom « USA + Venezuela ¢ Vietnam

