

PVIServices
TM712

 2 TM712 PVIServices

Requirements

Training modules: TM211 – Automation Studio Online Communication

 TM710 – PVI Communication

Software: Visual Studio.NET 2003 / 2005
 Windows 2000 / XP

Hardware: Any SG3 or SG4 controller

 PVIServices TM712 3

Table of contents

1. INTRODUCTION 4

1.1 Objective 5

2. PVISERVICES BASICS 6

2.1 PVIServices installation files 7

3. PVISERVICES COMMUNICATION OBJECTS 9

3.1 Properties, events and methods 9
3.2 PVIServices classes and the PVI object hierarchy 13
3.3 PVIServices – Variable declaration 14
3.4 PviServices – Service class 15
3.5 PviServices – CPU class 15
3.6 PviServices – Task class 16
3.7 PviServices – Variable class 16
3.8 PviServices – Module class 20
3.9 Collections 21
3.10 Working with structures 22

4. PVISERVICES SAMPLE PROGRAM 23

4.1 Creating a new Visual Studio.NET application 23
4.2 Creating the PVIServices communication objects 24
4.3 Error evaluation 27
4.4 Evaluating data changes 29
4.5 Read and write access 32
4.6 Using a structure 35

5. SUMMARY 38

Introduction

 4 TM712 PVIServices

1. INTRODUCTION

This training module describes PVI access in the Visual Studio .NET
programming environment. All communication and diagnostics services,
from the PVICOM interface to the B&R controller can be used.

The PVI functions are grouped together for the user in easy-to-use classes
in the PVIServices Namespace.

Fig. 1: PVIServices

 Introduction

 PVIServices TM712 5

1.1 Objective

Participants will be able to create their own PVI Client application in Visual
Studio .NET using the practice examples.

The PVIServices User Documentation can be referred to for additional
information regarding application possibilities in the existing PVIServices
classes for the PVI Client application.

Fig. 2: Overview

PVIServices Basics

 6 TM712 PVIServices

2. PVISERVICES BASICS

PVIServices are used by all Visual Studio.NET based Windows applications
for communication and diagnostics services on B&R controllers.

They are based on the PVICOM interface and are represented in the
programming environment by an object-oriented structure.

Fig. 3: PVIServices classes

Note:

The PviServices components can be used in Windows XP/2000 as well
as Windows CE applications.

 PVIServices Basics

 PVIServices TM712 7

2.1 PVIServices installation files

The PVIServices DLLs are installed in the following directory after installing
the PVI Server&Runtime / Development package:

PVI Server&Runtime:

 BrAutomation/Pvi/PviServices/Win32 for Windows XP/2000
 BrAutomation/Pvi/PviServices/WinCE for Windows CE

PVI Development (starting with PVI 2.5.2.3060):

Program Files\BrAutomation\PVI\%Version%\PVI\PviServices\Win32
Program Files\BrAutomation\PVI\%Version%\PVI\PviServices\WinCE

The component "BR.AN.PVIServices.dll" is added to the Visual Studio.NET
project as a reference.

Only one PVI Runtime installation is necessary for the project's runtime
because the PVIServices component is provided with the installation of the
application.

2.1.1 Requirements for PVIServices programming

In this training module, the AR000 will be used for communicating with a
controller. The variables used to do this and the corresponding data type
are documented in this training module.

However, any existing Automation Studio project can be used – only the
variables names have to be accordingly replaced.

A task "pvitest" with the variables "Lifesign" and "PV1" is required.

Fig. 4: Automation Studio test project

PVIServices Basics

 8 TM712 PVIServices

2.1.2 Visual Studio.NET programming environment

All of the functions described in this training module are explained using
C# program code.

Any differences with the programming in VB.NET will be explicitly
indicated and described.

Numerous PVIServices examples created in the programming language C#
are also available for the user.

These examples can be found in the directory "..\Samples\PviServices"
when installing the PVIServices.

2.1.3 Adding the "BR.AN.PviServices.dll"

The reference to the corresponding DLL must be added to access the
PVIServices.

Fig. 5: Adding the BR.AN.PviServices.dll reference

Pressing the <Browse> button in the "Add Reference" dialog box allows
you to select the reference from the
"BrAutomation\Pvi\PviServices\Win32" directory (PVI Server&Runtime
Installation) or "Program
Files\BrAutomation\PVI\%Version%\PVI\PviServices\Win32“ (PVI
Development).

Caution:

If the component is displayed in the component list, make sure that the
PviControl.NET also uses this DLL. There is no guarantee that the
versions are identical.
This is why the directory described above should always be used.

 PviServices Communication Objects

 PVIServices TM712 9

3. PVISERVICES COMMUNICATION OBJECTS

A communication object represents an object located on the controller
such as a task object or variable object.

PVIServices recognizes the following communication objects or classes:

• Service class
• CPU class
• Task class
• Variable class
• Module class

3.1 Properties, events and methods

Each of these communication objects is made up of the following:

• Properties
• Methods
• Events

This enables consistent and complete application of the objects.

Fig. 6: PVIServices communication objects

PviServices Communication Objects

 10 TM712 PVIServices

3.1.1 Properties:

Each object is written with its specific properties.

After creating a new object (in this example, a "Cpu" type) the properties
are defined according to the requirements.

Note:

All tasks are processed asynchronously. Responses from a task are
made via events. For example, the "Read" method from a variable
object sends response data in the "ValueRead" event.

Methods, properties and events from all communication classes are
documented in the PVIServices help files.

 PviServices Communication Objects

 PVIServices TM712 11

3.1.2 Methods

The desired method or function of an object must be used to execute an
action on a specific object.

This is how a connection to the controller is established on the CPU object
using the "Connect" method.

The "Disconnect" method is used to terminate the connection to the
controller.

3.1.3 Events

The application is informed of the object's state by setting up events
(EventHandlers).

There are a few differences between Visual Basic.NET and C# in how this is
done.

In C#, the event handler is set up by specifying the desired event, writing
+= and pressing the <TAB> key two times.

The event handler is automatically set up and the corresponding program
code is added.

PviServices Communication Objects

 12 TM712 PVIServices

In Visual Basic.NET, the event handler is set up by specifying WithEvents.

From this point, the event can now be selected from the specified class
"myCpu" and the program code that is needed for the event can be entered.

Note:

The "Connected" event should be added for each object. The objects
can only be further accessed once this has been done.

Caution:

An event handler should always be set up BEFORE calling the method.
Otherwise, events might not be received when sent in the method call.

 PviServices Communication Objects

 PVIServices TM712 13

3.2 PVIServices classes and the PVI object hierarchy

As described in the earlier training modules TM700 and TM710, all objects
are mapped in a PVI application using the PVI object hierarchy.

In the PVIServices classes the line object, the device object, the station
object and the CPU object are mapped in the CPU class.

Fig. 7: PVIServices – PVI object hierarchy

Note:

PVIServices supports only the INA2000 line.

PviServices Communication Objects

 14 TM712 PVIServices

3.3 PVIServices – Variable declaration

Variables from the corresponding class must be created in order to create
PVIService objects.

The classes and members can be accessed directly by declaring the
Namespace "BR.AN.PviServices" in C#.

From this point on, PVIServices objects from the respective class can be
set up.

The declaration looks like this in Visual Basic.NET:

When making the declaration, you must determine whether events in this
object should be evaluated or not.

 PviServices Communication Objects

 PVIServices TM712 15

3.4 PviServices – Service class

A connection to the PVI Manager is established via the service class object.
This object is the basis for all subsequent objects (CPU, tasks, variables) in
a client application.

A new service object "myService" is set up with the logical name "service".

A local connection to the PVI Manager is created if an argument is not
transferred in the "Connect" method.

A remote connection can be established by specifying the IP address and
port number of the remote PC.

3.5 PviServices – CPU class

The connection to the controller is established via the CPU class object.
Furthermore, all global variables on the CPU object and all task objects are
managed with the local or global variables.

Diagnostics services (memory, transferring modules, etc) are also managed
by this class.

The reference to the higher-level service object is made by specifying the
parent name ("myService" in this example).

PviServices Communication Objects

 16 TM712 PVIServices

The type of connection (i.e. the medium) is defined via the
"Connection.DeviceType" property.

The properties should be defined in accordance to the selected
"DeviceType".

3.6 PviServices – Task class

The PVIServices task class object represents a task on the controller.
Global and local variables from the task are managed under this object.

The assignment to the respective CPU object is made by specifying the
parent name of the higher-level object.

3.7 PviServices – Variable class

The PVIServices variable class object represents a variable on the
controller.

The following variable types are available:

• Internal variables
• Global variables
• Local variables

A variable is assigned by specifying the parent name of the higher-level
object.

 PviServices Communication Objects

 PVIServices TM712 17

An internal variable is created if the service object is entered as parent
name.

A global variable is created in this example because the Cpu object was
specified as parent name.

3.7.1 Active / passive switching of variable objects

A variable object is switched to active /passive via the "Active" property.

3.7.2 Evaluating data changes

The application is informed of data changes by setting up the
"ValueChanged" event handler.

The "ValueChanged" event is called until either a "Disconnect" takes place
on the variable object or the "Active" property is set to =false.

PviServices Communication Objects

 18 TM712 PVIServices

3.7.3 Read and write access

Targeted, asynchronous access to a variable object is achieved using the
"ReadValue" method.

Another possibility is (with active variables) to directly access the "Value"
property.

The assigned value is written to the variable by defining the "Value"
property.

A response is also possible if needed because write access is
asynchronous. This is done by setting up the event handler for the
"ValueWritten" event.

Caution:

Make sure that the last value received for the PVIServices variable
object is read during read access to the value property of the variable
object – regardless whether the object is active or not (active property).

 PviServices Communication Objects

 PVIServices TM712 19

Note:

Operators cannot be assigned in Visual Basic.NET (7.0). However, there
are two alternatives:

PviServices Communication Objects

 20 TM712 PVIServices

3.8 PviServices – Module class

The PVIServices module class object defines a BR module located on the
controller with its properties.

The following actions are possible on the module object:

• Module upload
• Module download
• Delete module

As seen in this example, an object is created from the PVIServices module
class. The CPU object is used as parent name.

The module object is set up using the "Connect" method. The application is
informed of successful setup in the "Connected" event.

The module on the controller is deleted in this event using the "Delete"
method and the application is notified of a successful delete procedure in
the "Deleted" event.

Note:

It is also necessary to evaluate the "Error" event because errors can
occur when setting up (e.g. due to an incorrect module name). As a
result, the "Connected" event is not called.

 PviServices Communication Objects

 PVIServices TM712 21

3.9 Collections

Collections allow the user to manage multiple objects with the same type
together.

For example, if variables are grouped into a collection, then this collection
has similar properties, methods and events as the base variable class.

This means that each variable does not have to be managed individually.
Instead all of the variables in the collection are managed automatically
when calling a method (e.g. the "Connect" method) for the collection.

Management of variables for multiple screens can be seen as an example.
The variables for one screen can be managed in a collection in order to
switch these variables to active / passive at the same time.

The directory "BrAutomation\Samples\PviServices" contains a few
examples of using collections.

More detailed information can also be found in the PVIServices User
Documentation.

Fig. 8: PVIServices - Collections

PviServices Communication Objects

 22 TM712 PVIServices

3.10 Working with structures

If a variable object with the type "Structure" has been created, then the
structure member can be accessed after receiving the "Connected" event.

At "Connect", PVIServices reads all of the information from the structure
and manages it in the hash table.

This makes it possible to address a structure element directly using the
element name or the index of the array. An example with structures is
explained in the PVIServices sample program (item 4).

Detailed information is available in the PVIServices User Documentation.

A few examples of structures are provided in the directory
"BrAutomation\Samples\PviServices". A control program that contains a
structure variable is required.

 PVIServices Sample Program

 PVIServices TM712 23

4. PVISERVICES SAMPLE PROGRAM

In this section a PVIServices application will be created instead of
performing exercises and tasks.

What will be accomplished in this example:

• Creating a Visual Studio.NET application
• Creating the PVIServices objects
• Error evaluation
• Evaluating data changes
• Read and write access
• Using a structure

4.1 Creating a new Visual Studio.NET application

We will now create a new Visual Studio.NET application. This example will
be explained using a C# application. However, it should also be possible
for the user to create the application using Visual Basic.NET with the
information from the previous section.

Task: Creating the Visual Studio.NET application and
inserting the PVIServices reference.

The steps for this task should be followed with the help of the
instructions in chapter 2.

The reference to the PVIServices should be defined in the namespace.

Result:

From this point on, the classes and members
of PVIServices can be accessed.

PVIServices Sample Program

 24 TM712 PVIServices

4.2 Creating the PVIServices communication objects

In the next step, the PVIServices variables required for the program
example must be declared in the form class.

The "IsStatic" property is used to determine whether the subsequent
objects were set up static =true or temporary =false (default).

"Create" and "Link" are automatically performed when connecting a new
PVIServices object without arguments (i.e. the process object is created
and a link object is placed at the same time).

Example: Creating the service object in the
form load event.

The "Connected" event is set up so that the CPU object can be set up
after "Connect" has been successfully executed.

We will be using static objects in this example.

 PVIServices Sample Program

 PVIServices TM712 25

The following definitions are possible for static process objects with the
"ConnectionType" argument:

ConnectionType Description

Create Sets up the process object.

CreateAndLink Sets up the process object and the link object.

Link Sets up a link object on an existing process object.

An example of the separate "Create" and "Link" is described when setting
up the variable objects. All other objects are set up without arguments.

Example: Creating the CPU object and the task object

A TCPIP connection is made to the AR000 for the CPU object.

The name of the user task "pvitest" is used as task name.

Each subsequent object is created in the "Connected" event of the
preceding object. This ensures that the object has been successfully
created.

The "Error" event is additionally evaluated for CPU and task objects in
order to evaluate communication or configuration errors.

The error messages and "Connected" events are output to a MultiLine
text box control with the name "txtStatus".

PVIServices Sample Program

 26 TM712 PVIServices

The connected events for the respective objects are shown in the textbox
after starting the application.

Fig. 9: Set up objects

 PVIServices Sample Program

 PVIServices TM712 27

4.3 Error evaluation

If an error occurs executing the program, the corresponding error code and
the object are shown in the "txtStatus" textbox.

Fig. 10: Error event – Connection lost

The "Connected" event is called again once the connection has been
reestablished.

However, this would also mean that the objects are newly set up again
because they are created in the "Connected" event of the preceding object.

To prevent this from happening, a query must occur when creating the
objects to determine whether or not the object already exists.´

PVIServices Sample Program

 28 TM712 PVIServices

The "Error" event is called if the connection is lost while communicating
with the controller (E=4808).

This event is created for all active objects. That means for this variable and
for all higher-level objects (task object and CPU object) when a variable
object's "Active" property is set to "true".

The "Connected" event for these objects is called automatically once the
connection has been reestablished. At that point, the respective objects
can be accessed again.

 PVIServices Sample Program

 PVIServices TM712 29

4.4 Evaluating data changes

The two variables "Lifesign" and "PV1" are registered in the next step.

A new variable from the PVIService class "Variable" is required for the
"PV1" variable.

Example: Setting up the variables "LifeSign" and "PV1"

The variable "PV1" is only set up with the
"ConnectionType.Create" for the time being.

The "ValueChanged" and "Error" event should be used.

PVIServices Sample Program

 30 TM712 PVIServices

The name of the variable with error is returned in the PviEvent argument
"e.Name". The error number is returned in the PviEvent "e.ErrorCode".

In the "ValueChanged" event, the PviEvent argument "e.Name" also
determines which variables have changed.

The value of the "Lifesign" variable is displayed on the label control after
starting the program.

There is still no value change for the variable "PV1" because it has only
been created and not yet connected.

Note:

The variable "linkVarPV1" will be created in the next exercise when
creating the link object.

 PVIServices Sample Program

 PVIServices TM712 31

In order to create a link to an already existing object, the LinkName
property of the link variable object must be set to the variable object to be
referenced (FullName) as a value of the hierarchical name.

The Link connection type must also be given when calling the Connect
method so that the LinkName property is enabled.

The same event as for the "Lifesign" variable is applied to the
"ValueChanged" and "Error" event handler.

The "Disconnect" method must be called to delete the link object again.

Result:

A link object is created on the "PV1" link object by pressing the button
"cmdConnectPV1". The "Active" property is used to determine that each
value change in the "ValueChanged" event should be registered.

Example: Creating a connection object for the
variable "PV1"

A link object is created using the button, "cmdConnectPV1". A new link
object "myLinkPV1" is created with the connection type "Link".

PVIServices Sample Program

 32 TM712 PVIServices

4.5 Read and write access

Variable objects that are activated via the "Active = true" property (event
mask EV=ed) are automatically monitored by the PVI Manager for data
changes – regardless of whether these variables are polled by the PVI line
(default) or monitored as event variable by the controller via the property
"Polling = false" (attribute AT=re).

That means that these variables no longer have to be additionally read by
the application. The application is automatically informed of any data
changes in the "ValueChanged" event.

This training module will use different examples to cover three access
methods for read and write access.

4.5.1 Reading variables

A variable object is read using the "ReadValue" method. The value is
returned in the "ValueRead" event because PVIServices processes all tasks
asynchronously.

Example: Reading the value of the "Lifesign" variable

The read process for the "Lifesign" variable is initiated by pressing the
"cmdReadVar" button. The value is output to a label control "lblReadVar"
by setting up the the event handler for the "ValueRead" event.

 PVIServices Sample Program

 PVIServices TM712 33

4.5.2 Read the time from the controller

The date / time is read in the PVIServices CPU class.

The "ReadDateTime" method is called on the CPU object to read the time.
The application is informed about the event by setting up an event handler
"DateTimeRead".

Example: Reading the date and time on the controller

The read procedure for the time is initiated by pressing the new button
"cmdReadTime". The read time is output to the form text property.

Result:

Pressing the "cmdReadVar" button causes the current value of the
"Lifesign" variable to be read and output to the label control.

PVIServices Sample Program

 34 TM712 PVIServices

4.5.3 Writing a value

To define a variable, the "Value" property must be defined with the desired
value.

A write task is performed immediately after defining this property.

For example, automatic definition can be suppressed by setting the
property "WriteValueAutomatic = false" in order to write the member of an
array or structure.

The array or structure is only written once when the "WriteValue" method
is called.

Example: Resetting the "Lifesign" variable

The "Lifesign" variable is set with the value "0" by pressing the new
"cmdWriteVal" button.

The write task is confirmed via the event "ValueWritten".

 PVIServices Sample Program

 PVIServices TM712 35

4.6 Using a structure

The Automation Studio project can be expanded for the exercise examples
with a structure. A structure called "Pv_Struct" is created with three
members (elements).

Fig. 11: AS test project with a structure

The new BR.AN.PviServices variable is defined in the form class.

Example: Defining the variable and creating the
structure variable

Create a structure variable for the PVIServices class variable. The
structure variable "myStructPV" is created in the task's "Connected"
event.

PVIServices Sample Program

 36 TM712 PVIServices

The variable is then set up. The same event handlers are used for the
"ValueChanged" and "Error" event as with other variables.

In the "ValueChanged" event, the variable is checked to see if it is a
"Structure" data type and the value of each member is read.

Example: Evaluating the value change in the structure

Every value change in the structure is registered in the "ValueChanged"
event. The value of each member in the structure is output in the text
box "txtStatus".

 PVIServices Sample Program

 PVIServices TM712 37

"e.ChangedMember" is used to notify the application of the member name
on which a value change occurred if data changes only in the affected
members should be output.

The entire structure is written by defining the "Value" property – not only
the individual member as might be assumed here.

To write multiple members in the structure at the same time, set the
"WriteValueAutomatic" property to the value "false" and after making the
setting, all members are written with the "WriteValue" method.

A value can also be assigned before calling the method "WriteValue" using
for example, "myStructPV.Value["Member2"].Assign(20)".

Example: Defining a structure element

The structure variable "Pv_Struct.Member3" is defined with the value of
the "Lifesign" variable using a new button, "cmdSetStruct".

Summary

 38 TM712 PVIServices

5. SUMMARY

PVIServices can be used to create a Windows Client application from the
visualization up to the creation of the service tools within the programming
environment VisualStudio.NET.

This training module covers a small scope of the PVIServices classes. Refer
to the PVIServices User Documentation and the PVIServices samples
included in the PVI Server&Runtime / Development installation to expand
basic knowledge of this topic.

Fig. 12: PVIServices

 Summary

 PVIServices TM712 39

Notes

Summary

 40 TM712 PVIServices

Notes

 Summary

 PVIServices TM712 41

Overview of training modules

TM200 – B&R Company Presentation ** TM600 – The Basics of Visualization
TM201 – B&R Product Spectrum ** TM610 – The Basics of ASiV
TM210 – The Basics of Automation Studio TM630 – Visualization Programming Guide
TM211 – Automation Studio Online Communication TM640 – ASiV Alarm System
TM212 – Automation Target ** TM650 – ASiV Internationalization
TM213 – Automation Runtime TM660 – ASiV Remote
TM220 – The Service Technician on the Job * TM670 – ASiV Advanced
TM221 – Automation Components and Sources of Errors *
TM223 – Automation Studio Diagnostics TM700 - Automation Net PVI
TM230 – Structured Software Generation TM710 - PVI Communication
TM240 – Ladder Diagram (LAD) TM711 - PVI DLL Programming
TM243 – Sequential Function Chart (SFC) * TM712 - PVIServices
TM245 – Instruction List (IL) * TM730 - PVI OPC
TM246 – Structured Text (ST)
TM247 – Automation Basic (AB) * TM800 – APROL System Concept
TM248 – ANSI C TM801 – APROL Engineering Basics
TM250 – Memory Management and Data Storage TM810 – APROL Setup, Configuration and Recovery
TM260 – Automation Studio Libraries I TM811 – APROL Runtime System
 TM812 – APROL Operator Management
TM400 – The Basics of Motion Control TM813 – APROL XML Queries and Audit Trail
TM402 – Dimensioning Motion Control Systems * TM830 – APROL Project Engineering
TM410 – The Basics of ASiM TM840 – APROL Parameter Management and Recipes
TM440 – ASiM Basic Functions TM850 – APROL Controller Configuration and INA
TM441 – ASiM Multi-Axis Functions TM860 – APROL Library Engineering
TM445 – ACOPOS ACP10 Software TM865 – APROL Library Guide Book
TM450 – ACOPOS Control Concept and Adjustment TM870 – APROL Python Programming *
TM460 – Starting up Motors * TM880 – APROL Report *

 *) upon request
 **) see Product Catalog

Summary

 42 TM712 PVIServices

Hinteres Deckblatt (auf durch 4 Teilbarer Seitenzahl)

Kontakt (Headquarter)

Weblink

Internationalität

Copyright – Bestellnummer

T
M

71
2T

R
E

.0
0-

E
N

G

 0
70

6
©

20
06

 b
y

B
&

R
. A

ll
ri

gh
ts

 r
es

er
ve

d
.

A
ll

tr
ad

em
ar

ks
 p

re
se

n
te

d
 a

re
 th

e
p

ro
p

er
ty

 o
f t

he
ir

 r
es

p
ec

tiv
e

co
m

p
an

y.

W
e

re
se

rv
e

th
e

ri
gh

t t
o

 m
ak

e
te

ch
ni

ca
l c

ha
ng

es
.

