

Automation RuntimeAutomation RuntimeAutomation RuntimeAutomation Runtime
TM213

 2 TM213 Automation Runtime

Requirements

Training modules: TM210 – The Basics of Automation Studio

TM211 – Automation Studio Online Communication

Software: Automation Studio 2.6 / 3.0

Automation Runtime 2.90

Hardware: None

 Automation Runtime TM213 3

Table of contents

1. INTRODUCTION 4

1.1 Objectives 5

2. OPERATING SYSTEM BASICS 6

2.1 Demands in the automation industry 7

3. MEMORY 9

3.1 Storage media 9

3.2 Division of memory 10

3.3 Variables and constants 11

3.4 Buffer concept 23

4. OPERATING STATES 24

4.1 Boot causes 25

4.2 Boot behavior 27

5. MULTITASKING 28

5.1 Task 28

5.2 Task properties 28

5.3 Task classes 29

5.4 Scheduling 32

5.5 Exceptions 37

5.6 Task initialization 39

6. AUTOMATION RUNTIME I/O MANAGEMENT 40

6.1 General 40

6.2 Basic functionalities 41

6.3 I/O handling in the task class system 44

6.4 External configuration 48

6.5 Configuration at runtime 49

7. INSTALLATION AND UPDATES 50

7.1 Upgrades 51

7.2 Changing the operating system version 53

7.3 Online connection 54

7.4 Downloading the operating system 55

8. SUMMARY 61

Introduction

 4 TM213 Automation Runtime

1. INTRODUCTION

On all PC and controller systems, the operating system serves as the
interface between the user and the hardware, thus making it the foundation
that must be present before any system can be used.

It provides the basic functionalities and is responsible for the management
of resources. Some of its most important tasks include scheduling and
allocating memory and time slots.

Demands on operating systems in the area of control include a modular
structure and the ability to quickly execute the application repeatedly
within a precise timeframe. For the user, this brings the highest production
numbers, quality, and accuracy.

 Fig. 1 Microchip

This training module is meant to provide a general overview of operating
systems and their characteristics.
By giving an exact description of the operating system known as
Automation Runtime and explaining how to use the different interaction
and configuration options, the user will be able to make adjustments to his
application.

 Introduction

 Automation Runtime TM213 5

1.1 Objectives

You will learn that there is a close relationship between accuracy, the
number of machine cycles, and the quantity/quality of a product.

You will also become acquainted with Automation Runtime and gain a
better understanding of how it works.

You will learn about the configuration options possible in Automation
Runtime.

And you will learn how to update Automation Runtime.

Fig. 2 Overview

Operating system basics

 6 TM213 Automation Runtime

2. OPERATING SYSTEM BASICS

Every computer requires an operating system before it can be used. This
provides the user with functionalities that make it easier to use the
hardware. The more functions that the operating system handles, the faster
and easier it is for the user to create software. Functions that are handled
by the operating system do not have to be programmed by the user. This
shortens the amount of time needed to create a program and reduces the
number of errors.

That's why operating systems are now appearing in ever smaller electronic
devices.

Fig. 3 Operating system architecture

An operating system essentially has two main tasks. On the one hand, it
manages a system's hardware and software resources. On the other hand,
it provides the user and his application with a stable and uniform way of
accessing hardware without having to know the details.

There are different types of operating systems, which are differentiated
according to their characteristics and how they work.

A real-time multitasking operating system runs on B&R Automation
Targets. This operating system is also called Automation Runtime (AR).

All program modules, also called tasks, are assigned to different task
classes. These task classes determine the time frame in which the tasks will
be processed. The time frame is always the same and is separate from the
execution time of the individual tasks. This is the meaning of "real-time".
The operating system is thus responsible for timing stability on the
controller system.

 Operating system basics

 Automation Runtime TM213 7

2.1 Demands in the automation industry

In the harsh field of automation, there are several demands placed on a
controller's operating system that need to be met.

These demands include the following:

• Modularity in the form of libraries
• Structuring possibilities in the application software
• Performance: The operating system should require few resources so
that the majority can be used for the application.

• Low jitter: Timing stability for the execution of individual task classes
(time slots where the programs are executed)

• Short cycle times
• Configuration options for the timing behavior
• Possibility to operate peripherals (interfaces, file system, etc.)
• Diagnostic options
• Uniform runtime system even on different platforms

Fig. 4 Automation Runtime

Because B&R Automation Runtime is able to meet all of these demands, it
remains the optimal solution.

Operating system basics

 8 TM213 Automation Runtime

2.1.1 Advantages of Automation Runtime

• Real-time operating system
• Modular software architecture
• Integrated system monitoring
• Platform-independent
• Debugging tools

2.1.2 Using different platforms

A platform basically means the processor architecture or and processor
type that a particular system is using.
The following list shows how these platforms can be different:

• Processor types
• Data management
• Task class types
• Boot behavior
• Watchdog
• Arithmetic operations
• Graphics capabilities
• Network possibilities
• Address management
• …

B&R uses two different platforms: SG3 (System Generation) and SG4
targets.

For the user however, there is no considerable difference between the two
platforms due to the uniformity of the programming system.

Note:

Details about these differences can be found in the online help under
Autmation Software:Automation Runtime:General.

 Memory

 Automation Runtime TM213 9

3. MEMORY

Each Automation Target requires a memory area. This is where various
software elements are stored:

• Automation Runtime
• Controller program
• Variable values
• Tables
• Recipes
• Data objects
• …

3.1 Storage media

Different storage media can be used on the automation targets. They can
be roughly divided into RAM and ROM. Sections of each of these memory
areas are available to the user while others are exclusively reserved for the
operating system and cannot be used by the user.

3.1.1 RAM

RAM is a high-speed read/write memory which mostly contains the data for
executing programs. Data stored here is only kept as long as the memory
is provided with power. It's divided into the following:

• DRAM
DRAM is RAM memory that can be used to store software objects,
variable values, tables, etc. It is distinguished by its high-speed
access. This type of memory is not battery-backed, which means that
all data is lost in the event of a power failure.

• SRAM
Also called static RAM. Unlike DRAM, SRAM is battery-backed. Data
is maintained as long as the buffer is working properly.

3.1.2 ROM

ROM memory is slow and is used for long-term storage of data. The data is
also maintained even in the absence of power supply. Flash (Compact
Flash) is a typical type of ROM memory. The operating system and the
application are stored here.

Memory

 10 TM213 Automation Runtime

3.2 Division of memory

In Automation Studio, RAM and ROM are divided further into logical
groups. Each contains a system area and a user area.

Fig. 5 Memory management

User areas are logical sections of memory where user tasks (ROM);
remanent, permanent, and volatile variables (RAM); and data objects (RAM
and ROM) can be stored.

System areas are logical sections of memory used to store the operating
system (ROM) and system-relevant, permanent, and temporary data (RAM).
These sections are intended solely for the operating system.

 Memory

 Automation Runtime TM213 11

3.3 Variables and constants

Variables and constants are symbolic elements used in programming
whose structure and size are determined by a data type. They are assigned
a physical place in memory by the compiler. There are different memory
areas that behave differently when a system is booted and at runtime.

3.3.1 Global and local variables

Global variables can be accessed from any task in a control application. A
global variable is guaranteed to be recognized by all tasks and to have the
same memory address because they are stored in an extra memory area.

Local variables are only recognized in their own task. Other tasks cannot
access local variables being used in another task, which is why there are
global variables.

 Fig. 6 Global / Local

Memory

 12 TM213 Automation Runtime

3.3.2 Volatile, remanent / RETAIN and permanent variables

Volatile variables

Unless defined differently, variables are usually initialized during boot-up
with the values configured when the variable is declared. In other words,
they're volatile.

Remanent / RETAIN variables
It is often necessary for variable values to remain even after a system
restart (warm restart). Variables that behave in this manner are called
remanent variables.

If power is lost, a special logic operation copies remanent / RETAIN
variables to a battery-backed memory area (SRAM) and back to their
original location after a restart.

Permanent variables
Like remanent / RETAIN variables, permanent variables are also copied
back after a system restart. Unlike remanent variables, however, they can
also be restored after a cold restart.

Note:

Remanent / RETAIN or permanent variables should be used only when
absolutely necessary. There are other ways to store data securely, e.g.
data objects or files.

 Memory

 Automation Runtime TM213 13

Task: Variables in Automation Studio 2.x

To learn more about working with local & global variables and constants,
create an ST program that is divided into two tasks. Create the logical
procedure for a press in the "press" task. When the "btnStart" button is
pressed, the "doCylDwn" output should be controlled until the
"diCylDwn" input is activated. This input should raise the cyclic counter
"gCyclCnt". When the "btnStart" button is released, the "doCylUp" output
should be controlled until the "diCylUp" input is activated. Local

variables are used for the inputs and outputs. The "gCyclCnt" variable is
global.

The code could look like this:

Fig. 8: Source code for the "press" task

The variable declaration should like this:

Fig. 8: Declaration for the "press" task

Memory

 14 TM213 Automation Runtime

A global variable, "gLubricatet", is set in a second task, "mon", if the
cyclic counter is larger than the constant "LUBR_CNT".

Fig. 11: Source code for the "mon" task

Fig. 11: Declaration for the "mon" task

When this program is transferred to the controller and started, the cyclic
counter will be incremented with each cycle of the press. However,
"gCyclCnt" is reset to zero each time the system is restarted or each time
the task is downloaded because it is declared as a volatile variable.
Modify the program so that this variable is maintained after a restart. To
do this, you must enter "remanent" in the Value column of the
declaration.

Fig. 11: Remanent variable declaration for the "mon" task

 Memory

 Automation Runtime TM213 15

The cyclic counter will now be modified so that it is maintained after a
cold restart. To do this, it must be located in the permanent memory.

This can be done as follows:

Select the Permanent tab in the software tree and add the "gCyclCnt"
variable via the shortcut menu Variables:Insert Variables.

Fig. 12: Adding permanent variables

The offset for all configured permanent variables is calculated via the
shortcut menu Variables:Recalculate.

Another permanent memory area must be configured before you can
transfer the project.

To do this, open the shortcut menu CPU:properties from the Software
tab in the software tree. Select the Memory tab.

Memory

 16 TM213 Automation Runtime

Fig. 14: Memory configuration

The following window is opened by clicking the button "PV Memory"

Fig. 14: PV memory configuration

Enter the number of required bytes for the permanent memory area.
Click OK and retransfer the project.

 Memory

 Automation Runtime TM213 17

Task: Variables in Automation Studio 3.x

To learn more about working with local & global variables and constants,
create an ST program that is divided into two tasks. Create the logical
procedure for a press in the "press" task. When the "btnStart" button is
pressed, the "doCylDwn" output should be controlled until the
"diCylDwn" input is activated. This input should raise the cyclic counter
"gCyclCnt". When the "btnStart" button is released, the "doCylUp" output
should be controlled until the "diCylUp" input is activated. Local

variables are used for the inputs and outputs. The "gCyclCnt" variable is
global.

The code could look like this:

Fig. 16: Source code for the "press" task

The variable declaration should like this:

Fig. 16: Declaration for the "press" task

Memory

 18 TM213 Automation Runtime

A global variable, "gLubricate", is set in a second task, "mon", if the
cyclic counter is larger than the constant "LUBR_CNT".

Fig. 19: Source code for the "mon" task

Fig. 19: Declaration for the "mon" task

When this program is transferred to the controller and started, the cyclic
counter will be incremented with each cycle of the press. However,
"gCyclCnt" is reset to zero each time the system is restarted or each time
the task is downloaded because it is declared as a volatile variable.
Modify the program so that this variable is maintained after a restart. To
do this, you must enter "RETAIN" in the Value column of the declaration.

Fig. 19: RETAIN variable declaration

 Memory

 Automation Runtime TM213 19

The cyclic counter will now be modified so that it is maintained after a
cold restart. To do this, it must be located in the permanent memory.

This can be done as follows:

Select the shortcut menu of the cpu in the Physical View shortcut

menu:Open Permanent Variables add the "gCyclCnt" variable via the
shortcut menu Variables:Append Variable.

Fig. 20: Adding permanent variables

The offset for all configured permanent variables is calculated via the
shortcut menu Variables:Recalculate.

Another permanent memory area must be configured before you can
transfer the project.

To do this, open the shortcut menu CPU:properties from the Software
Configuration tab in the software tree. Select the Memory tab.

Memory

 20 TM213 Automation Runtime

Fig. 22: Memory configuration

The following window is opened by clicking the button "PV Memory"

Fig. 22: PV memory configuration

Enter the number of required bytes for the permanent memory area.
Click OK and retransfer the project.

 Memory

 Automation Runtime TM213 21

3.3.3 Task download

When downloading a task, you can determine how the task variables
should behave.

In most cases, the task is retransferred, variables are initialized with the
value assigned when they are declared, the initialization subprogram (Init-
Sp) is executed, and the cyclic part of the program is started. This is
referred to as overload mode.

The following download modes are available:

• Overload:
The value of the local variables is initialized. The Init subprogram is
executed.

• Copy mode:
The value of the local variables is maintained. No Init subprograms
are executed. It could take several task cycles to copy the local
variables.

• One cycle mode:
Changes cannot be made to data types, number of variables, and
existing variables; Init-Sp not executed. The task change is executed
in one cycle.

Memory

 22 TM213 Automation Runtime

Automation Studio 2.x

The download mode can be set by clicking on the Advanced... button
under the Transfer tab after selecting the Project: Settings... entry in the
main menu.

Fig. 23 Task download modes in AS 2.x

Automation Studio 3.x

The download mode can be set by clicking on the Advanced... button
under the Transfer tab after selecting the shortcut menu of
PLC1:Properites in the Configuration View.

Fig. 24 Task download modes in AS 3.x

 Memory

 Automation Runtime TM213 23

3.4 Buffer concept

Since a lot of data constantly changes, it is managed in a high-speed
memory area. This data must be temporarily saved in the event of a power
failure or warm restart. For this reason, there is buffering. Buffers can
consist of rechargeable or normal batteries as well as gold foil capacitors.
Most of the time they are located either on the module rack or directly built
into the CPU. External buffering is also possible.

The status of battery buffering can be determined with the battery LED. In
addition, the state of the battery can be checked from the controller
program. It is often the case that the state is indicated on the visualization
device. In any event, the backup battery should be replaced at certain
maintenance intervals to guarantee maximum operational safety and data
security.

Fig. 25 Battery

The following areas / data are buffered:

• Real-time clock (RTC)
• SRAM (variable values)
• USER RAM (data objects)
• System RAM

Note:

Information about the lifespan of a battery can be found in the
respective user's manual. How to change the battery is also described.

Operating states

 24 TM213 Automation Runtime

4. OPERATING STATES

The following operating states are possible after the controller is booted:

Mode Description

RUN After booting, all software modules to be executed are copied to
DRAM and started. The controller runs, i.e. all programs are
executed. Beforehand, the system was started with the configured
boot cause (usually warm restart, see Boot Causes).

SERVICE After booting, the task class system is not started. All activities
(download, upload logger module, …) can be carried out, as in RUN
mode.

DIAGNOSTICS This operating state only allows modules to be deleted from the
target system, the logbook to be read, memory to be deleted, and a
cold / warm restart to be carried out. Only modules from SystemROM
are loaded.
Memory can only be erased in diagnostics mode.

BOOT Allows an operating system download to be executed. CompactFlash
can be formatted and partitioned.

Note:

If you save the system configuration (Sysconf) to System ROM, then the
connection settings for the interfaces are loaded in diagnostics mode as
well.

 Operating states

 Automation Runtime TM213 25

4.1 Boot causes

The various boot causes can either be triggered by the user, library

functions, or by the operating system itself.

The following table lists the different boot causes:

Mode Description

Warm restart
Loss of power

Buffering allows remanent data to be kept.

A warm restart can be triggered by Automation Studio, PVI
Transfer, pressing the reset button, or issuing a command in
the controller application.

Cold restart The complete RAM memory is deleted except for the
permanent memory. The permanent variables are kept.

A cold restart can be triggered by Automation Studio™, PVI
Transfer, pressing the reset button, or issuing a command in
the controller application.

4.1.1 RUN

This operating state is put into effect as follows:

• Cold or warm restart, loss of power
The boot behavior when a power loss occurs can be set in the
system configuration.

• Reset button on the CPU
• Library function

4.1.2 SERVICE

This operating state is put into effect as follows:

• Reset button on the CPU
• Stopping the target system with Automation Studio
• Error detected by the system at runtime
e.g. cycle time violation, division by 0, etc.

Leaving service mode is done by performing a warm or cold restart.

Operating states

 26 TM213 Automation Runtime

4.1.3 DIAGNOSTICS

This operating state is put into effect as follows:

• Reset button on the CPU
• Mode selector switch
• Diagnostics mode with Automation Studio.
• Fatal system error

Leaving diagnostics mode is done by performing a warm or cold restart.

4.1.4 BOOT

This operating state is put into effect as follows:

• Requirement: CPU with default AR
• Mode selector switch
• No CompactFlash inserted
• No operating system present on CompactFlash

Leaving boot mode is done by performing a warm or cold restart (set mode
selector switch correctly).

Note:

The boot behavior after a power failure or after pressing the reset
button can be configured in the system configuration. Warm restart,
cold restart, service and diagnostics are all possible settings.

 Operating states

 Automation Runtime TM213 27

4.2 Boot behavior

The following table shows the relationships between the boot causes and
operating states:

Boot causes Operating states

Warm

restart

Cold

restart

Run Service Diagnostics Boot

Deletes outputs x x x x x x

Deletes SRAM x (x) (x) (x)

Deletes PVs x x x x x x

Deletes
remanent PVs

 x (x) (x) (x)

Recognizes HW
system modules

x x x x

Sets PVs to Init
value

x x x

Starts task
classes

x x x

Cyclic
processing

x x x

Transfers application x x

Starts system monitor x x x

Reads logbook x x x x

Performs warm restart x x x x

Performs cold restart x x x x

Clear memory... x x x

Transfers OS x x x x

Formats or partitions CompactFlash x

(x) … Depends on the configured boot cause

Boot causes are shown in blue. Yellow indicates the operating states, and
the availability of service functions is shown in green.

Multitasking

 28 TM213 Automation Runtime

5. MULTITASKING

Multitasking refers to software technology that makes it possible to both
start several programs at the same time as well as for the computer to run
certain program sequences in the background. The programs take turns
using the CPU's processing power for this, but it goes so fast that the user
gets the impression that everything is being done simultaneously.

The word itself is put together from "multi", a prefix meaning many, and
"task", or something that is being carried out.

Automation Runtime is a deterministic real-time multitasking operating
system. That means that al tasks are executed in a fixed, predictable time
frame.

5.1 Task

A task refers to something that needs doing. In this case, its contents
represent an independent controller task. A complete application is usually
made up of several tasks that work together.

5.2 Task properties

A task has several properties that are determined by the system and can be
set by the user.

A task has the following properties:

• Description
• Date / time
• Version number
• Target memory
• Compiler options (back-end options)
• Priority (task class)
• Checksum (monitored by the operating system)

 Multitasking

 Automation Runtime TM213 29

5.3 Task classes

Not all tasks have to run within the same timeframe. For many controller
tasks, it's extremely important that they run very fast and very often (e.g.
loop controller). For others, it's OK if they aren't processed as often (e.g.
output for visualization).

The task classes enable a task to optimally meet its requirements. A task
class comprises of tasks with the same cycle time. The task class is used
to define the priority, cycle time and tolerance time.

The number of task classes and their default settings is different depending
on the target (processor capacity). The default settings for a CP360 are
listed in the following table.

Task classes and default values:

Task class Cycle time [ms] Tolerance [ms]

Cyclic #1 10 10

Cyclic #2 20 20

Cyclic #3 50 50

Cyclic #4 100 100

Cyclic #5 200 100

Cyclic #6 500 100

Cyclic #7 1000 100

Cyclic #8 10 3000

The following image shows the correlation between executing one or more
tasks within a task class and available resources.

 Fig. 26 Runtime, idle time, cycle time

Each task class has a predefined cycle time. All of the tasks in a task class
must be executed within this amount of time. The time it takes for a task to
be executed is called its runtime. The sum of all task runtimes must be less
than the cycle time of the task class. Any leftover time is called idle time.

Multitasking

 30 TM213 Automation Runtime

 Task: Cycle time

Create a task in which the status of an output changes with each cycle.

The code could look like this:

Fig. 28: Code

Fig. 28: Declaration

Run the task once in the 20ms, the 100ms and a 700ms task class.

The task class can be set to a task in the shortcut menu properties.

 Multitasking

 Automation Runtime TM213 31

5.3.1 Tolerance

The tolerance is reached when the sum of all task runtimes in a task class
exceeds the cycle time. A task class's tolerance is primarily used to
intercept sporadic cycle time violations. However, this has the effect of
pushing the start of the new task class back, which is generally not
desirable since it creates timing problems in the application.

 Fig. 29 Exceeding cycle time + tolerance = cycle time violation

A cycle time violation is when the cycle time of the task class and the
tolerance is exceeded. This is a very dangerous state and causes the
system to restart in service mode.

In all cases, you must check as to whether the task runtimes are permitted
for the respective task class in order to guarantee that the application can
be executed reliably.

Task: Cycle time violation

Create a task with a loop whose final value is a variable. Increase the
final value until a cycle time violation occurs. Take a look at the error
message in the Logger. Try this in different task classes.

The code could look like this:

Fig. 31: Source code

Fig. 31: Declaration

Multitasking

 32 TM213 Automation Runtime

5.4 Scheduling

Several tasks in a project are executed more or less at the same time.
Coordinating the execution of these tasks is handled by what is called the
I/O scheduler.

The I/O scheduler

Fig. 32 I/O scheduler

The I/O scheduler activates the respective tasks when a task class is started
and provides them with the I/O image.

At the beginning of each cycle, the following checks are made:

• Whether the tasks have finished within the configured time
• Whether the new input image was received completely
• Whether the output image has been written

 Multitasking

 Automation Runtime TM213 33

5.4.1 Idle time

The following graphic compares task class Cyclic #1 (10ms) and Cyclic #4
(100ms). A task with 9 ms runtime is used once in Cyclic #1 and once in
Cyclic #4.

Fig. 33 Task runtimes

The following points can be seen in the diagram above:

Task class Processing time in

100 msec

Idle time per

process [ms]

System utilization

in %

Cyclic #1 10 1 90

Cyclic #4 1 91 9

This graphic clearly shows the influence that the task class selection can
have on the system load. The distribution of the individual tasks into
different task classes, which sufficiently meet the application's
requirements, is an important topic.

The more idle time that remains on a system, the more time resources are
available for expansions.

The following tasks are taken care of by the operating system in the idle
time:

• Online interface communications
• Visualization operation and animation
• Checksum monitoring for all modules on the target system
• File access

Multitasking

 34 TM213 Automation Runtime

5.4.2 Idle time configuration

This can be defined in the system configuration so that there is enough idle
time for communication when the CPU is under a high load. The idle time is
assigned to a task class, where it is placed at the end.
At the beginning of the idle time, the priority of the task class where the
idle time has been configured and all underlying task classes is reduced
(e.g. if the idle time is specified in Cyclic #2, then Cyclics #3, 4, etc. are
affected).
All idle time services (e.g. communication, etc.) have a higher priority and
are processed by the system. Once the idle time expires, the original
priorities of the task classes are restored.

The idle time configuration can be opened in the software tree / software
configuration by selecting the Timing tab from the Properties... shortcut

menu entry.

Fig. 34 Idle time configuration

Note:

Higher priority task classes are not affected by the temporary change of
priority at the beginning of the idle time (e.g. idle time in Cyclic #2 does
not affect Cyclic #1).

 Multitasking

 Automation Runtime TM213 35

5.4.3 Multitasking mode

We will use an example to demonstrate how multitasking takes place on
the controller.

Tasks that have varying runtimes are placed in several different task
classes; tasks that have a longer runtime are put into task classes with a
longer cycle time.

Runtime [ms] Resource Task class cycle time

[ms]

Tolerance

[ms]

0.8 Cyclic #1 (C#1) 10 ms 10 ms

1.6 Cyclic #2 (C#2) 50 ms 50 ms

20.0 Cyclic #3 (C#3) 100 ms 100 ms

2.2 Cyclic #4 (C#4) 10 ms (as fast as possible
when the system has free
time)

1000 ms

Fig. 35 Multitasking

The following behavior is depicted in the image:

Task classes have different priorities. These priorities go down with the
number of the task class.

The Cyclic #1 task class has the highest priority. After that follows Cyclic
#2, etc. The Cyclic #4 task class is executed as often as possible, but only
if there is time still available.

When the system is booted, the task classes are started beginning with
those that have the highest priority. After Cyclic #1 starts, there is already
available time, which allows Cyclic #4 to start.

Multitasking

 36 TM213 Automation Runtime

Task classes with lower priority are interrupted by task classes with higher
priority.

After Cyclic #2 starts, there is once again time remaining for Cyclic #4.
Then Cyclic #3 starts, is interrupted by Cyclic #1, and then continues for
as long as it takes until the task class is finished. In the meantime, there is
no available time left for Cyclic #4.
Now all task classes have been started, and multitasking mode is in effect.

The nearly simultaneous execution of tasks in a multitasking operating
system that we talked about earlier is now a little bit clearer.

More or less at the same time means that the different priorities may lead
to some interruptions.
This makes it possible for each task class to be processed in its own time
slot even if task classes with lower cycle times are executed more often.

5.4.4 Real-time

Real-time refers to the ability of an operating system to provide services
within a predictably limited response timeframe.

When transplanted to a multitasking system, this means that the I/O
scheduler is always executed at an exact moment. The result is that task
classes execution is started at a predictable moment, hence "deterministic".

Automation Runtime is a deterministic real-time multitasking operating
system.

Several tasks can be executed more or less at an exactly predictable point
in time.

 Multitasking

 Automation Runtime TM213 37

5.5 Exceptions

Exceptions are fatal errors that occur during runtime and cannot be
corrected by the operating system alone.

By default, the system carries out an emergency stop when an exception
occurs, i.e. the controller boots in service mode.

In contrast to other errors, exceptions give the user the possibility not only
to detect that an error or exception occurred, but also the opportunity to
react to it. For this purpose, the operating system provides an exception

handler which can handle the most common exceptions according to the
application.

The exception task class has the highest priority in the system. When an
exception occurs, the accompanying exception task interrupts all tasks.

The following errors can be detected by an exception task:

• Division by zero
• Cycle time violation

Note:

Although the errors listed above can be intercepted by exceptions, it's
much more important to make sure that these errors never occur when
the application is being created.

Multitasking

 38 TM213 Automation Runtime

5.5.1 Inserting an exception task

An exception task must be enabled in the system configuration before it
can be added to the project.

In the software tree / software configuration, click on the Properties...
menu item from the shortcut menu, switch to the Resources tab, and
enable the "Enable exception task class" option.

Fig. 36 Enabling the exception resource

 Multitasking

 Automation Runtime TM213 39

An additional resource then is available in the software tree / software
configuration when a task is inserted. To determine what the exception in
the respective task corresponds to, select the Properties... entry in the
shortcut menu.

Fig. 37 Settings for an exception task

The Exception no. specifies the type of exception; information about it can
be read in the Automation Studio™ online help documentation.

5.6 Task initialization

Each task can have its own initialization sub-program (Init-Sp). This sub-
program allows task-specific initialization operations to be carried out.
The initialization subroutines of all tasks are executed one after the other
when the controller is booted.
The controller only enters multitasking mode when the last Init-Sp is
finished executing.
Since Init subprograms are not time-monitored, initialization phases that
take a long time do not result in cycle time violations.

Automation Runtime I/O management

 40 TM213 Automation Runtime

6. AUTOMATION RUNTIME I/O MANAGEMENT

One central function of a PLC system is being able to transport I/O states to
or from an I/O terminal as fast as possible, both inside and outside of the
application program.

B&R Automation Runtime I/O management makes it possible for I/O
transport to meet the highest demands on response time, minimized jitter,
and configurability.

6.1 General

Transferring data from a data point to the I/O terminal is the task of the I/O
manager. The I/O manager is controlled by the I/O configuration and the
I/O mapping. The application software is processed in the task class

system. The I/O manager carries out its task both before and after a task
class.

 Automation Runtime I/O management

 Automation Runtime TM213 41

6.2 Basic functionalities

When the controller is booted, the active I/O configuration is transferred to
the I/O modules. This guarantees that valid I/O data is already provided in
the Init-Sp.

6.2.1 Principle

The I/O configuration makes sure that the interfaces and the fieldbus
devices are initialized before the Init subroutine begins.

Fig. 38 Basic function of I/O handling I

Blocked input data from the fieldbus devices is stored in memory. The data
is sorted into control variables using I/O mapping.
The output data is written in reverse order via the blocked output data.

Automation Runtime I/O management

 42 TM213 Automation Runtime

The following graphic shows the described function in more detail.

Fig. 39 Basic function of I/O handling II

6.2.2 I/O Mapping

I/O mapping determines which I/O data is transferred to or from which
process variable. I/O mapping can be generated externally as well as
during runtime.

Each variable that exists in an application (no C-internal variables) can be
assigned to an I/O module channel regardless of the scope.

The desired I/O module must be selected to assign variables to the
hardware. The right-hand side of the screen now shows the view for the
selected I/O modules.

 Automation Runtime I/O management

 Automation Runtime TM213 43

Fig. 40 Editing the I/O mapping

In addition to the Logical name and the Data type for the variables that can
be connected, the Task class and PV name columns are also listed here.

For global variables, the respective task class in which the data transfer to
or from the I/O image takes place must be configured in the Task class
column. Selecting the task class as Automatic means that Automation
Studio automatically determines the fastest task class where the variable is
being used when the project is built.
Local variables are always updated in the task class of their task. Specifying
an automatic task class is unnecessary for local variables and ignored by
the compiler.

Note:

Specifying a cyclic task class classifies a variable as a global variable,
i.e. the system assumes that the variable listed in the "PV name" column
is a global variable. If the declaration for this variable is missing, then
the compiler returns an error.

Automation Runtime I/O management

 44 TM213 Automation Runtime

6.2.3 I/O configuration

Module-specific properties can be configured on the I/O Configuration.
The I/O configuration can be generated externally as well as during runtime.

Fig. 41 Editing the I/O configuration

6.3 I/O handling in the task class system

The I/O manager handles or passes on the blocked I/O data of the I/O
interfaces and forwards it to the process variables used in the tasks
according to the I/O mapping. This process is also called singling out. The
task class where the process variables are being used is taken into
consideration.

Since a lower-priority class can be interrupted by a higher-priority class,
it's necessary that a separate I/O image be provided each time a task class
is started.

Inputs are transferred at the beginning of the task class; outputs are
transferred at the end. Because of this, the input states remains the same
during the task's runtime and the output state are only output at the end of
the task class. The task class is always provided with only one complete

image. That means that a check takes place at any time to see if an image
arrives completely. If this is not the case, then the last image recognized as
valid is used.

The I/O scheduler controls when task class data is prepared and when the
task classes are started.

Note:

When creating the I/O mapping, inputs can be used more than once. An
additional mapping can be added by opening up the shortcut menu for
the respective channel.

 Automation Runtime I/O management

 Automation Runtime TM213 45

Properties can be configured for task class #1 using the shortcut menu in
the software tree, to determine whether the outputs should be written after
the last task in a task class (fast-response writing) or at the end of the task
class cycle (jitter-free writing).

Fig. 42: Setting for fast-response or jitter-free writing of outputs

Automation Runtime I/O management

 46 TM213 Automation Runtime

6.3.1 Fast-response writing of outputs

The outputs are written immediately after the last task in the respective
task class when I/O with fast reaction is selected.

Fig. 43 Fast-response writing of output data

 Automation Runtime I/O management

 Automation Runtime TM213 47

6.3.2 Jitter-free writing of outputs

Unlike the fast-response writing of outputs, the I/O without jitter option

means that outputs are written at the end of the task class. In this way, the
outputs are always written at the same point in time even when the
individual tasks in the task class have different runtimes.

Fig. 44 Jitter-reduced writing of output data

Automation Runtime I/O management

 48 TM213 Automation Runtime

6.4 External configuration

The B&R system provides the opportunity of creating the I/O configuration
and I/O mapping without needing the Automation Studio user interface.
This is called creating an external configuration.

In practice, configuration data is programmed using script languages or
XML translations from product or machine configuration data stored in a
company database.

Fig. 45 External configuration

Once this source data has been created, the available compiler program
can be used to generate the binary configuration files (.br modules), which
can then be transferred to the respective controller using the PVI Transfer
tool.

The BR.AS.ConfigurationBuilder.exe and BR.AS.IOMapBuilder.exe
compilers are available to create I/O mapping and the I/O configuration
without having to use the AS user interface.

Note:

More information about this topic can be found in the Automation
Studio online help.

 Automation Runtime I/O management

 Automation Runtime TM213 49

6.5 Configuration at runtime

I/O operation is generally based on the I/O configuration (arconfig.br) and
the I/O mapping (iomap.br). Corresponding libraries (AsIOMMan) make it
possible to manage different I/O configurations and I/O mappings as data
objects on the target and enable them whenever needed (converting a data
object to an I/O configuration module or an I/O mapping module).

Fig. 46 Configuration at runtime

The configuration at runtime is thus put together with the following parts:

• Managing data objects with I/O configuration data
• Managing data objects with I/O mapping data
• Editing data objects using the DataObj library
• Activating or deactivating individual modules (converting a data
object to an I/O configuration module or I/O mapping module).

Other libraries (e.g. AsIO, AsIOAcc, etc.) can be used to handle appropriate
interactions between the application and the I/O manager, beginning with
reading the hardware tree up to reading or setting individual I/O data
points.

Installation and updates

 50 TM213 Automation Runtime

7. INSTALLATION AND UPDATES

There are various operations system versions available. The reason for this
is that there are constantly new developments being made for this system.
The most current operating system version is located on the Automation
Studio CD. However, all older operating system versions can be installed
with Automation Studio as well. This makes it possible to only have to
update the project if new operating system functions are needed.

Fig. 47 Information

 Installation and updates

 Automation Runtime TM213 51

7.1 Upgrades

A few operating system versions are included on the Automation Studio
CD. Newer operating systems, which are released at regular intervals, can
be obtained from the download area of www.br-automation.com and then
added to the existing Automation Studio installation.

There is also the possibility to upgrade hardware, operating system and
parts of the Motion Components and Visual Components by clicking on
Tools:Upgrades. The new components will be downloaded and installed
from the homepage.

Fig. 48: Updating hard- and software

Differences between the individual operating systems can be found in the
revision history in the download area.

The CPU is always delivered with a default operating system. From the
time he gets it, the user can establish a serial online connection to carry
out an operating system download. The default operating system is simply
a minimal version of Automation Runtime.

Installation and updates

 52 TM213 Automation Runtime

The operating system and application are stored on CompactFlash if the
system is using this for memory. The default operating system is stored in
the CPU's internal memory.

There are essentially three ways to carry out an operating system
download.

• Download or update in a running state, i.e. RUN, SERVICE, or
DIAGNOSTICS.

• Update in BOOT mode. To switch to BOOT mode, you have to
change the hardware selection switch from RUN to BOOT. More
information about the individual CPUs can be found in their manuals.
Only the default operating system is loaded in BOOT mode.

• The Compact Flash is created on the PC via the PVI Transfer Tool.

The operating system can be downloaded over a serial interface or by
putting it on a CompactFlash card (for target systems that use
CompactFlash as application memory).

Note:

All memory is erased when an operating system is updated. For this
reason, all important data should be backed up beforehand.

 Installation and updates

 Automation Runtime TM213 53

7.2 Changing the operating system version

After you have installed the operation system on your PC as active
Automation Studio version, it can be selected in the project.

Click on Project: Change OS

Version in the main menu.

Fig. 49: Changing the opterating Sytem Version
in AS 2.x

Click on Project: Change Runtime

Version in the main menu.

Fig. 50: Changing the operating System Version in AS 3.x

You receive a message that the project should be recompiled after the
change because the library versions can also change in a new operating
system.

Fig. 51 Message

Use the combo box to select the desired operating system and confirm
your selection by clicking on OK.

Fig. 52 Selecting the new operating system version

Compile your project via Project:Build All.

Installation and updates

 54 TM213 Automation Runtime

7.3 Online connection

Follow the steps below to establish an online connection.

Select the Tools: Options menu
item in Automation Studio.

Fig. 53 Opening the connection settings in AS
2.x

Select the Online:Settings menu item
in Automation Studio.

Fig. 54 Opening the connection settings in AS 3.x

Select an existing serial connection in the combo box or add a new one
with the Add... button.

Fig. 55 Checking the settings

The status bar will indicate whether
there is now a connection to the
target system.

Make sure that the correct interface
on the PC is specified.

The status bar will indicate whether
there is now a connection to the
target system.

 Installation and updates

 Automation Runtime TM213 55

7.4 Downloading the operating system

Before downloading, make sure the correct configuration is active.

7.4.1 Transferring with Automation Studio

Follow the steps below to transfer an operating system to the target
system with Automation Studio:

Select Project:Services:Transfer

Operating System... from the main
menu.

Fig. 56 Download Operating System with AS 2.x

Select Online:Services:Transfer

Operating System... from the main
menu.

Fig. 57: Download Operating System with AS 3.x

The operating system can be selected in the next dialog box. The operating
system configured in the project is always recommended.

Installation and updates

 56 TM213 Automation Runtime

Fig. 58 Selecting an operating system version

After selecting Next, you can select whether modules that have been set to
be transferred to System ROM in the software configuration should be
transferred along with the operating system. For example, this makes
sense when updating via Ethernet. When doing this, system ROM must be
set as the target memory in the system configuration (sysconf). This
ensures that the Ethernet settings will be present after the operating
system update.

Fig. 59 Transferring project modules

Selecting Next then shown an overview of the selected operating system
and the target hardware.

 Installation and updates

 Automation Runtime TM213 57

Fig. 60 Summary

Clicking on Next erases the flash memory.

Fig. 61 Erasing memory

Once flash memory has been erased, the operating system starts
downloading.

Fig. 62 Transferring the operating system

Follow any additional instructions from Automation Studio.

Note:

A download can be interrupted at any time by clicking on Cancel. The
previous version of the operating system on the target system
continues to be used.

Installation and updates

 58 TM213 Automation Runtime

7.4.2 Downloading with PVI Transfer

PVI Transfer can be used for diagnostic and downloading purposes. It's
also possible to use CompactFlash directly on the PC, providing another
alternative for downloading the operating system.

PVI Transfer works with transfer lists that are executed sequentially.

The CompactFlash card needs to be inserted into a suitable CompactFlash
reader or adapter connected to the PC.

Select the Tools: Generate Transfer List... item from the main menu.

Fig. 63 Creating a transfer list

Check the options Generate complete transfer list and Include operating

system.

Fig. 64 Including the operating system

 Installation and updates

 Automation Runtime TM213 59

The transfer list is then created.

Fig. 65: Transfer list created

Select the Tools: PVI Transfer Tool menu item.

Fig. 66 Starting PVI Transfer

The correct transfer list has already been loaded automatically. In the PVI
Transfer tool, select the Tools: Generate Compact Flash... menu item.

Fig. 67 Generating CompactFlash

Installation and updates

 60 TM213 Automation Runtime

Select where the CompactFlash card is located with Select Disk....

Fig. 68 Selecting the disk

Use the Generate Disk button to begin creating the CompactFlash.

Fig. 69 Generating the disk

Follow any additional instructions.
Insert the Compact Flash that you have set up into the CPU and turn it on.

Note:

The Compact Flash card should always be removed using the Windows

function "Safely Remove Hardware".

 Installation and updates

 Automation Runtime TM213 61

Summary

The operating system serves as the interface between the user and the
hardware. In addition, it's responsible for resource management, especially
with regard to time and memory.
Multitasking enables a modular structure. The distribution of the
application into tasks in connection with different task classes enables
optimum utilization of the resources.

Fig. 70 Microchip

Adapting the application to the multitasking system keeps all aspects of
timing in check. Different software parts can therefore be prioritized as
needed. Parts of the application that need to be executed quickly and often
run in a faster task class that those that, while certainly not unimportant,
may not be as time-critical. This makes it possible to optimally configure
the performance of the application and machine while using the existing
resources selectively.

Installation and updates

 62 TM213 Automation Runtime

Notes

 Installation and updates

 Automation Runtime TM213 63

Overview of training modules

TM200 – B&R Company Presentation ** TM600 – The Basics of Visualization
TM201 – B&R Product Spectrum ** TM610 – The Basics of ASiV
TM210 – The Basics of Automation Studio TM630 – Visualization Programming Guide
TM211 – Automation Studio Online Communication TM640 – ASiV Alarm System
TM212 – Automation Target ** TM650 – ASiV Internationalization
TM213 – Automation Runtime TM660 – ASiV Remote
TM220 – The Service Technician on the Job TM670 – ASiV Advanced
TM223 – Automation Studio Diagnostics
TM230 – Structured Software Generation TM700 – Automation Net PVI
TM240 – Ladder Diagram (LAD) TM710 – PVI Communication
TM241 – Function Block Diagram (FBD) TM711 – PVI DLL Programming
TM246 – Structured Text (ST) TM712 – PVIServices
TM247 – Automation Basic (AB) TM730 – PVI OPC
TM248 – ANSI C
TM250 – Memory Management and Data Storage TM800 – APROL System Concept
TM260 – Automation Studio Libraries I TM810 – APROL Setup, Configuration and Recovery
TM261 – Closed Loop Control with LOOPCONR TM811 – APROL Runtime System
 TM812 – APROL Operator Management
TM400 – The Basics of Motion Control TM813 – APROL XML Queries and Audit Trail
TM410 – The Basics of ASiM TM830 – APROL Project Engineering
TM440 – ASiM Basic Functions TM840 – APROL Parameter Management and Recipes
TM441 – ASiM Multi-Axis Functions TM850 – APROL Controller Configuration and INA
TM445 – ACOPOS ACP10 Software TM860 – APROL Library Engineering
TM450 – ACOPOS Control Concept and Adjustment TM865 – APROL Library Guide Book
TM460 – Starting up Motors TM870 – APROL Python Programming
 TM890 – The Basics of LINUX
TM500 – The Basics of Integrated Safety Technology
TM510 – ASiST SafeDESIGNER
 **) see Product Catalog

Installation and updates

 64 TM213 Automation Runtime

Hinteres Deckblatt (auf durch 4 Teilbarer Seitenzahl)

Kontakt (Headquarter)

Weblink

Internationalität

Copyright – Bestellnummer

T
M
2
1
3
T
R
E
.0
0
-E
N
G

0
9
0
7

©
2
0
0
7
 b
y
 B
&
R
.
A
ll
 r
ig
h
ts
 r
e
s
e
rv
e
d
.

A
ll
 t
ra
d
e
m
a
rk
s
 p
re
s
e
n
te
d
 a
re
 t
h
e
 p
ro
p
e
rt
y
 o
f
th
e
ir
 r
e
s
p
e
c
ti
v
e
 c
o
m
p
a
n
y
.

W
e
 r
e
se
rv
e
 t
h
e
 r
ig
h
t
to
 m
a
k
e
 t
e
c
h
n
ic
a
l
c
h
a
n
g
e
s
.

