
Chapter 1

Guaranteed numerical injectivity test via
interval analysis

1.1. Introduction

The purpose of this paper is to present a new method based on guaranteed numer-
ical computation able to verify that a function f : X ⊂ Rn → Rm satisfies

∀x1 ∈ X , ∀x2 ∈ X , x1 6= x2 ⇒ f(x1) 6= f(x2). (1.1)

To our knowledge, it does not exist any numerical method able to perform this in-
jectivity test and moreover, the complexity of the algebraic manipulations involved
often makes formal calculus in fault (especially when the function is not polynomial).
Presently, in the context on structural identifiability, Braems and al. have presented
in [BRA 01] an approximated method that verifies the injectivity around ε namely
ε-injectivity. It consists in verifying the following condition

∀x1 ∈ X ,∀x2 ∈ X , |x1 − x2| > ε ⇒ f(x1) 6= f(x2), (1.2)

which can be view as an approximation of the condition (1.1).

Note that, many problems could be formulated as the injectivity verification of a
specific function. For example, concerning the identification of parametric models, the
problem of proving the structural identifiability amounts to check injectivity [E.W 90,
BRA 01]. Other applications can be cited: For instance, consider the robotic arm
with two degrees of freedom (θ1 ∈ [0, π

2], θ2 ∈ [−π, π]) represented in the Figure

Chapter written by Sébastien LAGRANGE, Nicolas DELANOUE and Luc JAULIN.

1

2 Titre de l’ouvrage, à définir par \title[titre abrégé]{titre}

Figure 1.1. A point in the configuration space and its corresponding robot configuration.

1.1(right). Each point (θ1, θ2) of the configuration space is associated with a robot
position (y1, y2) by the function

f : (θ1, θ2) →
(

y1

y2

)
=

(
2cos(θ1) + 1.5cos(θ1 + θ2)
2sin(θ1) + 1.5sin(θ1 + θ2)

)
(1.3)

(See Figure 1.1). Now, a basic question is to known whether several pairs (θ1, θ2)
lead to identical position (y1, y2) of the robot ending. This problem amounts to test
the function f (defined in (1.3)) for injectivity.

This paper provides an efficient algorithm, based on interval analysis, able to check
that a differentiable function is injective. The paper is organized as follows. Section
1.2 presents interval analysis that will be used. In Section 1.3, a new definition of
partial injectivity makes possible the use of interval analysis techniques to test in-
jectivity and to get a guaranteed answer. Section 1.4 presents an algorithm able to
test a given differentiable function for injectivity. Finally, in order to show the ef-
ficiency of the algorithm, two illustrative examples are provided. A solver called
ITVIA (Injectivity Test Via Interval Analysis) implemented in C++ is made available
at http://www.istia.univ-angers.fr/~lagrange/.

1.2. Interval analysis

This section introduces some notions of interval analysis to be used in this paper.
A vector interval or a box [x] of Rn is defined by

[x] = [x, x] = {x ∈ Rn | x ≤ x ≤ x} , (1.4)

where x and x are two elements of Rn and the partial order ≤ is understood compo-
nentwise. The set of all bounded boxes of Rn is denoted by IRn as in [JAU 01].

Guaranteed numerical injectivity test via interval analysis 3

Figure 1.2. Inclusion function [f] of a function f .

Remarque 1 By extension, one defines an interval matrix [M] = [M, M] as the set
of the matrices of the form :

[M] = {M ∈ Rn×m | M ≤ M ≤ M} (1.5)

and IRn×m denoted the set of all interval matrices of Rn×m. The properties of punc-
tual matrices can naturally be extended to interval matrices. For example, [M] is full
column rank if all the matrices M ∈ [M] are full column rank.

To bisect a box [x] means to cut it along a symmetry plane normal to a side of
maximal length. The length of this side is the width of [x]. A bisection of [x] generates
two non overlapping boxes [x1] and [x2] such that [x] = [x1] ∪ [x2]. The hull box [X]
of a bounded subset X ∈ Rn is the smallest box of IRn that contains X .

Interval arithmetic defined in [MOO 66] provides an effective method to extend all
concepts of vector arithmetic to boxes.
Let f : Rn → Rm be a vector function; the set-valued function [f] : IRn → IRm is
a inclusion function of f if, for any box [x] of IRn, it satisfies f([x]) ⊂ [f]([x]) (see
Figure 1.2). Note that f([x]) is usually not a box contrary to [f]([x]). Moreover, since
[f([x])] is the hull box of f([x]), one has

f([x]) ⊂ [f([x])] ⊂ [f]([x]). (1.6)

The computation of an inclusion function [f] for any analytical function f can be ob-
tained by replacing each elementary operator and function by its interval counterpart
[MOO 66, NEU 90].

Example 2 An inclusion function for f(x1, x2) = x2
1+cos(x1x2) is [f]([x1], [x2]) =

[x1]2 + cos([x1][x2]). For instance, if [x] = ([−1, 1], [0, π
2]) then the box [f]([x]) is

computed as follows:

[f]([−1, 1], [0, π
2]) = [−1, 1]2 + cos([−1, 1]× [0, π

2]) = [0, 1] + cos([−π
2 , π

2])
= [0, 1] + [−1, 1] = [−1, 2].

4 Titre de l’ouvrage, à définir par \title[titre abrégé]{titre}

Figure 1.3. Despite the fact that f|[x1] and
f|[x2] are injection, f is not an injection.

Figure 1.4. Graphs of functions f1,f2 and f3.

1.3. Injectivity

Recall that this paper proposed to build a effective method to test differentiable
function f : X ⊂ Rn → Rm for injectivity. The main idea of the algorithm to be
proposed is to divide X into subsets Xi where f restricted to Xi (denoted f|Xi

) is an
injection. However, as illustrated in Figure 1.3, the injectivity is not stable by union
i.e.

(
f|X1 is an injection and f|X2 is an injection

)
; f|X1∪X2 is an injection.

Thus, the injectivity cannot directly be used. That why we are going to consider a
concept akin to injectivity, namely the partial injectivity, that will be stable by union.
First, we introduce the definition of the partial injectivity and give some illustrative
examples. Then, we propose theorem which give a sufficient condition to test function
for partial injectivity. This section presents the fundamental results that we will be
used in the algorithm able to test function for injectivity.

1.3.1. Partial Injectivity

Let us introduce the definition of partial injectivity of a function.

Definition 1 Consider a function f : X ⊂ Rn → Rm and any set X1 ⊂ X . The
function f is a partial injection of X1 over X , noted (X1,X)-injective, if ∀x1 ∈
X1,∀x ∈ X ,

x1 6= x ⇒ f (x1) 6= f (x) . (1.7)

f is said to be X -injective if it is (X ,X)-injective.

Example 3 Consider the three functions of Figure 1.4. The functions f1 and f2 are
([x1] , [x])-injective (although f2 is not [x]-injective) whereas f3 is not.

Guaranteed numerical injectivity test via interval analysis 5

The following proposition will motivate the implementation of the algorithm pre-
sented in Section 1.4.

Proposition 4 Consider a function f : X ⊂ Rn → Rm and X1, . . . ,Xp a collection
of subsets of X . We have

∀i, 1 ≤ i ≤ p, f is (Xi,X)− injective ⇔ f is (
p⋃

i=1

Xi,X)− injective. (1.8)

Proof. (⇒) One has ∀xi ∈ Xi,∀x ∈ X , xi 6= x ⇒ f (xi) 6= f (x). Hence ∀x̌ ∈
(∪iXi) ,∀x ∈ X , x̌ 6= x ⇒ f (x̌) 6= f (x). (⇐) Trivial.

1.3.2. Partial Injectivity Condition

In this paragraph, a fundamental theorem, which gives a sufficient condition of
partial injectivity, is presented. First, let us introduce a generalization of the Mean
Value Theorem1.

Theorem 5 (Generalized Mean Value Theorem) Consider a differentiable function
f : X ⊂ Rn → Rm. Let ∇f be its Jacobian matrix and [x] ⊂ X . One has

∀x1, x2 ∈ [x], ∃Jf ∈ [∇f([x])] such that f(x2)− f(x1) = Jf · (x2 − x1), (1.9)

where [∇f([x])] denotes the hull box of ∇f([x]).

Proof. According to Mean-Value Theorem applied on each components fi : Rn → R
of f (1 ≤ i ≤ m) and since the segment seg(x1, x2) belongs to [x], we have

∃ξi ∈ [x] such that fi(x2)− fi(x1) = ∇fi(ξi) · (x2 − x1). (1.10)

Taking Jfi = ∇fi(ξi), we get

∃Jfi ∈ ∇fi([x]) such that fi(x2)− fi(x1) = Jfi · (x2 − x1). (1.11)

1. Let f : X ⊂ Rn → R, f ∈ C1. If x1, x2 ∈ X such that the segment between x1 and x2,
noted seg(x1, x2), is included in X . Then, there exists ξ ∈ seg(x1, x2) such that

f(x2)− f(x1) = ∇f(ξ) · (x2 − x1).

6 Titre de l’ouvrage, à définir par \title[titre abrégé]{titre}

Figure 1.5. Graph of f : R→ R2. Figure 1.6. Illustration of the set [∇f([x])].

Thus

∃Jf ∈ (∇f1 ([x]) , . . . ,∇fm ([x]))T
such that f(x2)− f(x1) = Jf · (x2 − x1).

(1.12)
i.e., since (∇f1 ([x]) , . . . ,∇fm ([x]))T ⊂ [∇f([x])] (see (1.6)),

∃Jf ∈ [∇f([x])] such that f(x2)− f(x1) = Jf · (x2 − x1).

Example 6 Consider the function

f :
{
R → R2

x → (y1, y2)
T . (1.13)

depicted in Figure 1.5. Figure 1.6 represents the set ∇f([x]) of all derivatives of f
(drawn as vectors) and its hull box [∇f([x])]. One can see that the vector Jf defined
in (1.9) belongs to [∇f ([x])] (but Jf /∈ ∇f ([x])) as forecasted by Theorem 5.

Now, the following theorem introduces a sufficient condition of partial injectivity.
This condition will be exploited in next section in order to design a suitable algorithm
that test injectivity.

Theorem 7 Let f : X ⊂ Rn → Rm be a differentiable function and [x1] ⊂ [x] ⊂ X .
Set [x̃] =

[
f−1 (f ([x1])) ∩ [x]

]
. If the interval matrix [∇f ([x̃])] is full column rank

then f is ([x1] , [x])-injective.

Proof. The proof is by contradiction. Assume that f is not ([x1],[x])-injective then

∃x1 ∈ [x1] , ∃x2 ∈ [x] such that x1 6= x2 and f (x1) = f (x2) . (1.14)

Now, since f(x1) = f(x2), one has x2 ∈ f−1 (f ([x1])) ∩ [x] and trivially x1 ∈
f−1 (f ([x1]))∩[x]. Therefore, since (f−1 (f ([x1]))∩[x]) ⊂ [

f−1 (f ([x1])) ∩ [x]
]

=

Guaranteed numerical injectivity test via interval analysis 7

[x̃] (see Equation (1.6)), one has x1, x2 ∈ [x̃].
Hence, (1.14) implies

∃x1, x2 ∈ [x̃] , such that x2 6= x1 and f (x1) = f (x2) . (1.15)

To conclude, according to Theorem 5, ∃x1, x2 ∈ [x̃], ∃Jf ∈ [∇f ([x̃])] such that

x1 6= x2 and 0 = f(x2)− f(x1) = Jf · (x2 − x1), (1.16)

i.e. ∃Jf ∈ [∇f ([x̃])] such that Jf is not full column rank and therefore the (interval)
matrix [∇f ([x̃])] is not full column rank.

1.4. ITVIA Algorithm

This section presents the Injectivity Test Via Interval Analysis (ITVIA) algorithm
designed from Propposition 4 and Theorem 7. ITVIA uses the divide and conquer
strategy to check a given differentiable function f : [x] ⊂ Rn → Rm for injectivity.
It can be decomposed in two distinct sub-algorithms :
- Algorithm 1 checks if the interval matrix

[∇f
([

f−1 (f ([x1])) ∩ [x]
])]

is full col-
umn rank. In the positive case, according to Theorem 7, the function f is ([x1], [x])-
injective. Therefore, Algorithm 1 can be viewed as a test for partial injectivity.
- Algorithm 2 divides the initial box [x] into a paving {[xi]}i such that, for all i, the
function f is ([xi], [x])-injective. Then, since [x] = (∪i[xi]) and according to Propo-
sition 4, f is [x]-injective.

In Algorithm 1, a set inversion technique [GOL 05, JAU 01] is first exploited to
characterize a box [x̃] that contains [f−1(f([x1])) ∩ [x]]. Secondly, an evaluation of
[∇f]([x̃]) is performed in order to test its column rank2. Thus, since [∇f([x̃])] ⊂
[∇f]([x̃]) and according to Theorem 7, one can test whether f is ([x1], [x])-injective.
Algorithm 2 creates a paving of the initial box [x] such that, for all i, the function f

is ([xi] , [x])-injective. Therefore, if the algorithm terminates, then f is an injection.
By combination of these two algorithms, we can prove that a function is injective over
a box [x]. A solver, called ITVIA, developed in C++ is made available and tests the
injectivity of a given function f : R2 → R2 (or f : R→ R2) over a given box [x].

1.5. Examples

In this section, two examples are provide in order to illustrate the efficiency of the
solver ITVIA presented in previous section. We are going to check the injectivity of
two functions f : R2 → R2 over a given box [x].

2. Several techniques exist to test an interval matrix for full column ranking. If it is square, the
simplest way consists in verifying that the determinant (which is an interval) not contains zero.
Otherwise (i.e. f : Rn → Rm), the Interval Gauss Algorithm could be used [NEU 90].

8 Titre de l’ouvrage, à définir par \title[titre abrégé]{titre}

Algorithm 1 Partial_Injectivity_Test
Require: f ∈ C1, [x] the initial box and [x1] ⊂ [x].
Ensure: A boolean :

- true : f is ([x1], [x])-injective,
- false : f may or not be partially injective.

1: Initialization : Lstack := {[x]}, [x̃] := ∅.
2: while Lstack 6= ∅ do
3: Pop Lstack into [w].
4: if [f] ([w]) ∩ [f] ([x1]) 6= ∅ then
5: if width([w]) > width([x1]) \\ To avoid useless splitting of [w] ad infinitum

then
6: Bisect [w] into [w1] and [w2].
7: Stack [w1] and [w2] in Lstack.
8: else
9: [x̃] = [[x̃] ∪ [w]].

10: end if
11: end if
12: end while
13: if [∇f]([x̃]) is full column rank then
14: Return true \\ "f is ([x1], [x])-injective"
15: else
16: Return False \\ "Failure"
17: end if

Algorithm 2 Injectivity_Test_Via_Interval_Analysis
Require: f a C1 function and [x] the initial box.

1: Initialization : L := {[x]}.
2: while L 6= ∅ do
3: Pull [w] in L.
4: if Partial_Injectivity_Test(f, [x] , [w]) = False then
5: Bisect [w] into [w1] and [w2].
6: Push [w1] and [w2] in L.
7: end if
8: end while
9: Return "f is injective over [x]".

Guaranteed numerical injectivity test via interval analysis 9

Figure 1.7. Graph of the function f
defined in (1.17)

Figure 1.8. Bisection of [x] obtained by ITVIA
for the function f defined in (1.17). All the grey

boxes have been proved partially injective.

1.5.1. Spiral function

Consider the function f , depicted in Figure 1.7, defined by

f :

R2 → R2

(
x1

x2

)
→

(
y1

y2

)
=

x1 sin(x1) + x2
x1 sin(x1)−cos(x1)√

x2
1+1

x1 cos(x1) + x2
sin(x1)+x1 cos(x1)√

x2
1+1

 (1.17)

and test its injectivity over the box [x] =
(
[0, 10], [0, 4

10]
)T

. After less than 0.1 sec on
a Pentium 1.7GHz, ITVIA proved that f is injective over [x]. The initial box [x] has
been divided in a set of sub-boxes where f is partially injective. Figure 1.8 shows the
successive bisections of [x] made by ITVIA.

1.5.2. Ribbon function

Consider the ribbon function f (depicted in Figure 1.9) defined by

f :
R2 → R2(
x1

x2

)
→

(
y1

y2

)
=

(
x1
2 + (1− x2) cos (x1)

(1− x2) sin (x1)

)
(1.18)

and get interest with its injectivity over the box [x] = ([−1, 4] ,
[
0, 1

10

]
)T . Since the

ribbon overlapping, one can see that f is not injective over [x]. After 3 seconds, the
solver ITVIA is stopped (before going to end). It returns the solution presented in
Figure 1.10. The function f has been proved to be a partial injection on the gray
domain over [x], whereas the white domain corresponds to the indeterminate domain
where ITVIA was not able to prove the partial injectivity. Indeed, the indeterminate
domain corresponds to the non injective zone of f where all points are mapped in the
overlapping zone of the ribbon.

10 Titre de l’ouvrage, à définir par \title[titre abrégé]{titre}

Figure 1.9. Graph of the function f
defined in (1.18).

Figure 1.10. Partition of the box [x]
obtained by ITVIA for the function f defined

in (1.18). In gray, the partial injectivity domain
and, in white, the domain where the f is not

proved partially injective.

1.6. Conclusion

In this paper, we have presented a new algorithm, based on interval analysis, able
to test differentiable functions for injectivity. In case of functions f : R → R2 and
f : R2 → R2, a C++ solver is available. From a given function f and a given
box [x], the solver divides [x] in two domains : a partially injective domain and a
indeterminate domain (where the function may or not be injective). Of course, when
the indeterminate domain is empty, the function is proved injective over [x].

1.7. Bibliography

[BRA 01] BRAEMS I., JAULIN L., KIEFFER M., WALTER E., “Guaranteed numerical alterna-
tives to structural identifiability testing”, Conference on Decision and Control., 2001.

[E.W 90] E.WALTER, PRONZATO L., “Qualitative and quantitative experiment design for phe-
nomenological models, a survey.”, Automatica, vol. 26, p. 195-213, 1990.

[GOL 05] GOLDSZTEJN A., “A Right-Preconditioning Process for the Formal-Algebraic Ap-
proach to Inner and Outer Estimation of AE-solution Set.”, Reliable Computing, 2005.

[JAU 01] JAULIN J., KIEFFER M., DIDRIT D., WALTER E., Applied Interval Analysis,
Springer, 2001.

[MOO 66] MOORE R., Interval Analysis, Prentice-Hall, Englewood Cliffs, 1966.

[NEU 90] NEUMAIER A., Interval Methods for Systems of Equations, Camb. Univ. Pres, 1990.

