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Abstract. The design of new manipulators requires the knowledge of their kinematic behaviour.

Important kinematic properties can be characterized by the determination of certain points of interest.

Important points of interest are cusps and nodes, which are special singular points responsible for the

non-singular posture changing ability and for the existence of voids in the workspace, respectively.

In practice, numerical errors should be properly tackled when calculating these points. This paper5

proposes an interval analysis based approach for the design of a numerical algorithm that finds

enclosures of points of interest in the workspace and joint space of the studied robot. The algorithm

is applied on 3R manipulators with mutually orthogonal joint axes.

1 Introduction

Algorithms and methods described in this article are applied to the study of a family of robotic ma-10

nipulators : 3 revolute-jointed manipulators with mutually orthogonal joint axes. Those manipulators

are first studied because they can be regarded as the positioning structure of a 6R manipulator with

a spherical wrist. A main point is that they can be cuspidal, which means that they can change their

posture without having to meet a singularity, as detailed in Baili et al. (2004) and Wenger (2007). It

may or may not be the desired behaviour. A cuspidal robot has at least one cusp in a planar cross15

section of its workspace. On the other hand, the existence of nodes in this section is intimately re-

lated to the existence of voids in the robot workspace. Thus, cusps and nodes are important points of

interest Husty et al. (2008). A classification based on the number of such points can be established

Corvez and Rouillier (2004); Baili et al. (2004).
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The main point of the algorithm and methods we are detailing here is to use Interval Analysis to20

enclose, in a guaranteed way, the cusps and nodes in the generator plane section of the manipulator

workspace. To find these points, we use two systems of equations, whose roots are joint space points

yielding the cusps and nodes. To enclose the roots of those systems of equations, the Interval Newton

method is used.

We will verify that, for manipulators with no internal motion, and with some imprecision in their25

geometric parameters, it is possible to find their cusp and node points, with the formerly introduced

algorithms.

Complete studies of manipulator families, as done in Baili et al. (2004), allow one to choose

a manipulator within a large range of geometric parameters, when a precise behaviour is needed.

Alternatively, algorithms presented in this article make it possible to study manipulators with geo-30

metric parameters between chosen bounds. It makes them a first step in guaranteeing the behaviour

of a manipulator, given its geometric parameters, and the precision affordable for building the actual

manipulator.

2 Studied manipulators

The studied manipulators have three unlimited revolute joints. Thus, it is sufficient to restrict the35

analysis to their last two joints. Since the workspace is symmetric about the first joint axis, it is

enough to restrict its analysis to a planar half cross-section in the plane defined by (
√
x2 + y2,z),

that we will identify to (x2 + y2,z) for computational purposes.

Figure 1 shows the studied manipulator and its geometric parameters. Note that, for a matter of

convenience in our algorithms, angles βi have been used instead of the standard αi, where βi =40

π/2−αi

P

Figure 1. Kinematic diagram of a general 3R manipulator with θ1 = 0.
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We will first consider the same manipulators as in Baili et al. (2004) that is, manipulators with

orthogonal rotations and no offset along their last joint. With conventions chosen in Figure 1, these

manipulators are defined by β2 = β3 = r3 = 0. We will show that our methodology is able to provide

the same results as in Baili et al. (2004). Furthermore, our approach can also be used for manipulators

with an offset along their last joint and always returns an exact enclosure of the searched singular45

joint space points.

3 Application of Interval analysis

3.1 Interval analysis

Interval analysis is a computing method, that operates on intervals instead of operating on values. The

point of this is mainly for numerical computation because it allows one to enclose values in intervals,50

whose bounds can be exactly stored by a computer. With this computing method, thus, values are

guaranteed to be between bounds (see Jaulin et al. (2001); Moore (1996)). Interval analysis is a

simultaneous computation of numbers and errors.

In this article, boxes will be vectors of intervals. The notion of interval can be extended by Carte-

sian product, so Interval analysis can be extended to boxes by the use of inclusion maps.55

Let f be a map. An inclusion map of f is a function [f ] that associates to a box D, a box [f ](D)

such that f(D)⊂ [f ](D) . Note that (x ∈D⇒ f(x) ∈ [f ](D)).

In practice, the inclusion map [f ] of f is chosen to minimize the boxes [f ](D) with respect to

inclusion.

This computing method is useful for its usability when a limited set of values can be exactly60

represented, as for numerical computations. In this case, a point P is represented by the smallest box

D containing P and f(P ) is represented by [f ](D), the smallest box in the image space containing

f(D).

3.2 Interval analysis in Robotics

Interval analysis is a tool that can be used for many applications in Robotics (see Merlet (2011)) such65

as computing the kinematics of manipulators, including parallel ones. Indeed, the Interval Analysis

properties seen in Subsection 3.1 allow one to search interest points, without any round-off error

(see Merlet (2011) again).

One of the robotic applications of Interval Analysis is singularity analysis, that is, finding singular

points of the kinematic map of a manipulator. To find those singular points, a general scheme is70

used, which consists of a subdivision and shrinking process on the box of study. The main idea is

that the searched points are defined as roots of an equation. Then, any box whose image by the map

associated with the equation does not contain 0, does not contain any searched point. If a box may
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contain a root, then an operator is used to shrink the box to smaller ones containing the roots in the

initial box. Ultimately, when the box cannot be reduced this way, it is cut into several sub-boxes that75

are studied again. An instance of this scheme, to enclose the singular points of manipulators, can be

found in Bohigas et al. (2012) and Bohigas et al. (2013). What makes the general scheme synergistic

with Interval Analysis, is that they both operate on boxes and have the purpose to enclose computed

values.

Figure 2. Example uncertainty of singular set crossing for an enclosure of a singular set in the workspace

Several methods, using Interval Analysis or not, exist to enclose the singular points of a manipu-80

lator. But, it is also necessary to verify the nature of those singular points. For instance, suppose you

succeeded in finding the enclosure of the singular set in the workspace as in Fig. 2. The real singular

set can be either one of the two instance depicted in this Fig. 2. To conclude on the behaviour of the

manipulator, it is necessary to verify if the two curves intersect or not.

In this paper, we propose an algorithm to enclose specific singular points that define the be-85

haviour of a manipulator, using Interval analysis. Accordingly, next subsection proposes a method

to enclose numerically roots from a system of equations, through Interval Analysis : The Interval

Newton method.

3.3 The Interval Newton algorithm

Given a square system of equations described by f = 0, we can define an operator over boxes. This90

Interval Newton operator Nf associated to the map f is defined by :

Nf :D 7→ x− ((df(D))−1× f(x)), where D is a box and x ∈D (1)

df(D) is the matrix of intervals enclosing all the matrices associated to the linear map of the differ-

ential of f at a point in D and (.)−1 is the operator of matrix inversion. The main point is that the

topological relation between D and Nf (D) depends on the presence of a root in D :95

1. if Nf (D)⊂D then ∃!x ∈D such as f(x) = 0 and x ∈Nf (D),

2. if Nf (D)∩D = ∅ then @x ∈D such as f(x) = 0,

3. if Nf (D)∩D 6= ∅ then (if ∃x ∈D such as f(x) = 0 then x ∈Nf (D)∩D).
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The Interval Newton method applied with f is defined (see Neumaier (1990)) as being the Algo-

rithm 1

Algorithm 1 Interval Newton Algorithm

Require: A list "boxes-of-study" of boxes (Dj)j∈J and a real number "precision", ε > 0

return Two lists of vectors of intervals : "roots" and "indeterminate"

Core of the algorithm {The algorithm computes the Interval Newton operator, associated with the studied

map, on the boxes in "box-of-study", and adds the ones that check the inclusion of condition 1. to "roots",

while cutting the boxes for which the presence of a root is unclear (condition 3.) and adding back the defined

boxes to "boxes-of-study" (as long as their sizes are not smaller than ε).}

100

The Interval Newton algorithm is able to find the roots of a square system of equations if the

Jacobian matrix associated with it is invertible for the roots of the studied system, implying that the

Interval Newton method can only find isolated roots.

The Interval Newton method can also fail if the chosen precision is not small enough. For instance

it can allow a studied box with a size smaller than the precision to contains several roots. One then105

has to choose a smaller precision, such as no box can contain several roots.

4 Finding cusps and nodes

4.1 Notations and definitions

– JS refers to the joint space formed by couples (θ2,θ3),

– SWS refers to a plane section of the workspace, containing the first rotation axis of the robotic110

manipulator and described by couples (ρ= x2 + y2,z),

– f : JS = R2 7→ R2 = SWS is the kinematic map of the robotic manipulator,

– f1,f2 : JS = R2 7→ R are the components of f . Their expressions are, with β2 = β3 = 0 :

– f1(θ1,θ2) = (cos(θ1)(d4 cos(θ2) + d3) + d2− r3 sin(θ1))2 + (d4 sin(θ2) + r2)2,

– f2(θ1,θ2) = sin(θ1)(d4 cos(θ2) + d3) + r3 cos(θ1),115

– df refers to the differential of f and Df refers to the Jacobian matrix of f (the matrix associ-

ated to df ).

– An internal motion occurs when the end tip point P reaches a joint axis. In this case, the

inverse kinematics admits a continuum of solutions, which forms a line in the joint space.

– The joint space singular points are the points such as det(Df) = 0.120

– The workspace singular points are the images through f of the joint space singular points.
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– Cusps points and nodes points in the workspace are singular points satisfying some additional

properties : a cusp admits three equal inverse kinematic solutions and a node admits two

distinct pairs of equal inverse kinematic solutions.

– Cusps and nodes in the joint space are the sets of the inverse kinematic solutions of the cusp125

points and node points in the workspace, respectively.

– Sj is the singular set in the joint space.

– ∆E = {(a,a)|a ∈ E}

4.2 Applying the Interval Newton algorithm

Applying the Interval Newton algorithm to find cusps and nodes requires to define those points and130

pairs of points as roots of square systems of equations, as it is done in Delanoue and Lagrange

(2014). Additionally, the situations where the defining systems are degenerated will be handled in a

non-trivial manner to allow a quicker execution of the constructed algorithm.

4.2.1 Application to the cusps

Geometric considerations : We consider that a joint cusp point, C, is a point for which the orthog-135

onal of Ker(df(C)) is collinear with the gradient of the singular curve, defined by det(Df) = 0.

It is worth noting that in R2, being collinear with a vector v = (v1;v2) 6= 0 is the same as being

orthogonal to the vector w = (−v2;v1) 6= 0. Also, if Df(P ) 6= 0, the rows of Df are a base of the

orthogonal of Ker(df(P )) and as long as Df(P ) is invertible, the orthogonal of Ker(df(P )) is of

dimension 2 and thus it cannot be collinear with grad(det(Df))(P ). Putting all of this together, we140

can conclude that if grad(det(Df))(P ) is not the null vector andDf(P ) is not the null matrix, then

P is a cusp point if :
∂f1
∂θ1

(P ) ·
(
−∂det(df)

∂θ2
(P )

)
+
∂f1
∂θ2

(P ) · ∂ det(df)

∂θ1
(P ) = 0

∂f2
∂θ1

(P ) ·
(
−∂det(df)

∂θ2
(P )

)
+
∂f2
∂θ2

(P ) · ∂ det(df)

∂θ1
(P ) = 0

(2)

Specificities for the algorithm : System (2) is square, which allows one to use the Interval Newton

Method to find its isolated roots. The roots of system (2) that we are searching are singular points.145

Then, we will apply the Interval Newton Method only if a studied box contains a singular point, that

is, if det(Df) may be null on the box. The final point is that grad(det(Df))(P ) and Df(P ) must

not be null for the searched roots P , in order to detect those. Then, we will always verify that the

components of grad(det(Df)) andDf(P ) are not null on the boxes that should contain a cusp-root.

If it is not the case on one of the isolated box, it will be cut into pieces that will be studied again.150
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4.2.2 Application to the nodes

Geometric considerations : Node points are much simpler than cusp points for transcription in roots

of a map. Indeed, we are searching for couples (x1,x2) ∈ R2×R2−∆R2, satisfying :
f(x1) = f(x2)

det(Df(x1)) = 0

det(Df(x2)) = 0

(3)

Specificities for the algorithm : To apply the Interval Newton method to the system (3), this system155

needs to be a square one, which is the case here, with 4 joint variables and 4 equations. We search the

roots in JS×JS ⊂ R2×R2 while avoiding the roots in ∆JS ⊂∆R2, because on this last subset, the

Jacobian matrix associated with the system (3) is not invertible while having roots and the Interval

Newton method fails.

Instead of applying the time consuming process of verifying that a studied box does not intersect160

∆JS and verifying the injectivity of f , restricted to a subset of Sj each time the intersection occurs,

one can build a covering of Sj verifying a well chosen property. Indeed, if the covering is done so

that any intersecting boxes admit a hull on which f , restricted to Sj , is injective, then, it suffices to

apply Interval Newton algorithm with system (3) to couples of disjoint boxes, in this last covering.

Note that the covering, built along with the process, is a guaranteed covering of the singular set.165

5 Performances of the Algorithms

5.1 Implementing and running the cusp and node algorithms

All results in this section are valid for any value, or interval of values, of r3.

To implement, in C++, the algorithms defined in Subsection 4.2, for 3 revolute-jointed manipula-

tors with mutually orthogonal joint axes, formal expressions of the derivatives and matrices derived170

from f , needed in the algorithms, were calculated. The algorithms evaluate the needed expression on

the required boxes, replacing the standard functions and operators by corresponding inclusion maps.

To handle intervals and operations on them, the library "Filib++" is used.

The application to more general 3 revolute-jointed manipulators, with β2 6= 0 or β3 6= 0, can be

done by calculating their kinematic map. But, as the formal expressions increase in length, the run-175

ning time of the algorithm may increase and the precision needed to enclose the interest points may

need to be higher.

In the implemented algorithms, the initial box of study for (θ2,θ3) can be defined using any box

or list of boxes, in R2. The box of geometric parameters can also be chosen. Our algorithms are

currently being improved to contain a procedure enclosing the usable joint space, given a simple180

volumetric model of the manipulator.
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Table 1 shows results returned by the algorithms, applied to examples of classes of studied pa-

rameters for 3 revolute-jointed manipulators, with orthogonal axes and with an initial box of study

for (θ2,θ3) of [−3.1415,3.1415]× [−3.1415,3.1415] close to the [−π,π]× [−π,π] full range for the

joint angles.185

5.2 The cusp enclosing Algorithm

Manipulator inducing no indeterminate (cases a, b, d and e of Table 1) : The algorithm has been

applied to every example of geometric parameters sets in Baili et al. (2004). When the manipulator

does not have an internal motion, for a moderate precision, the algorithm needs little time to find the

rigorous enclosures of the cusps, and does not return any indeterminate box.190

Manipulator inducing indeterminate (case f of Table 1) : When the algorithm is applied to a robot

that has internal motions, it finds the cusps outside the internal motions, with the same running time

as before. The algorithm then has to run for some time until it encloses the lines associated with the

internal motions with boxes whose size is the chosen precision. The running time is then dependant

of the chosen precision.195

5.3 The nodes enclosing Algorithm

On boxes where there is no cusps and no internal motion lines (case d of Table 1) the nodes enclosing

algorithm concludes after a running time close to the one needed for the cusp enclosing algorithm

with no internal motion. However, when the box includes a cusp (cases a, b and e of Table 1) the

running time of the algorithm increases quite significantly, because, near cusps, f restricted to Sj , is200

injective only on small boxes. In the same way, the Interval Newton method can conclude, only on

small boxes when the hull box of its two components is close to a cusp point.

5.4 Application with boxes of geometric parameters

Our algorithms have been implemented to handle intervals of geometric parameters, so to use inter-

vals of parameters (as for case b of Table 1) it is only needed to define a box of geometric parameters205

which is not restricted to a point.

If the algorithms find a solution box, then, for any set of geometric parameter in the defined box

of parameters, there is a single interest point in the solution box. There will be no interest point in

any box that is neither a solution box nor an indeterminate box for any set of geometric parameter,

in the defined box of parameters. Ultimately, it can exist interest points, for any set of geometric210

parameter in the defined box of parameters, only in solution boxes and in indeterminate boxes. For

a manipulator with an internal motion, the algorithms return, at least, enclosures for a subset of the

interest point and a covering of the research space that can contain interest points.
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6 Improvements of the Algorithm

6.1 Using contraction methods215

As it has been formerly noted, the main drawback of the algorithm is its relatively slow check of

the absence of nodes near cusps. To improve on this, we decided to rely on the contraction method

library Ibex, available freely at http://www.ibex-lib.org/, with documentation.

6.1.1 Contraction methods

A Contractor is an operator on Boxes, associated to a set, that reduce the box to a smaller box without220

removing any element of the associated set. Contraction methods are used in Interval Analysis to

enclose a set. It relies on contractors, associated to the chosen set, and may use subdivisions, so as

to get a enclosure of the chosen set.

The main interest of those methods is that reducing a box using contractors is a lot less time

consuming than bisecting it until a chosen precision.225

6.1.2 Including Ibex in the algorithm

An Ibex contraction procedure is included in the algorithm as an additional check before applying

an iteration of the node Interval Newton method on a couple of disjoint boxes. The procedure is

based upon a contractor using the Interval Newton method with the system dedicated to the node as

parameter. As the Ibex procedure’s contractor reduce quite efficiently the studied boxes, we use it as230

a quick way to check the absence of node in a couple of boxes (see as a box of double dimension).

If the procedure return an empty box as a result, then, there is no node in the initial couple of boxes

and it is not needed to apply any subdivision process or interval Newton iterations further.

6.1.3 Performance improvement

As a result of including the Ibex calling test in the node searching step, the performances of the235

algorithm toward the length of checking the absence of nodes have been greatly improved. Indeed,

the 20 hours of time needed before to execute the node searching step, for 3R manipulators with

nodes and cusps is decreased to less than an hour.

6.2 Collisions detection through Interval Analysis

An additional procedure have been added to our algorithm, allowing the user to get an enclosure of240

the set of parameters inducing collisions and of the set of parameters inducing no collisions at all.
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6.2.1 Used model

Solids that may collide (either elements of the manipulator’s kinematic chain or environment obsta-

cle) are considered oblong object defined by a segment and a radius, where the oblong object is the

set of all points distant to the segment from at most the defining radius. With this model, two objects245

collide if and only the distance between the respective defining segments is equal or less than the

sum of the two defining radius.

+

Figure 3. Oblong solid model as a Minkowski sum of a segment and a ball

6.2.2 Implemented procedure

Algorithm 2 Set Inversion Via Interval Analysis (SIVIA) algorithm

Require: A set S, a function, and a real number ε (a limit of size) and a list of boxes of research L

return 3 lists of boxes I , O and U

while L is not empty do

extract B from L

evaluate D = f(B) through Interval Analysis

if D = f(B)⊂ S then

add B to I

else if D = f(B)∩S = ∅ then

add B to O

else if size(B)> ε then

split B in B1 and B2 and add them to L

else

add Bi to U

end if

end while

In the end (∪B∈IB)⊂ S ⊂ (∪B∈(I∪U)B) and S ∩ (∪B∈OB) = ∅

The implemented procedure is based upon the SIVIA inversion algorithm, and consists in applying

it for the distance between every pair of defined segments. As it implies computing the minimum of250

the distance between a point in one segment and a point in a second one, the two segments are split
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until a limit size and the distance between each couple of sub-segment is checked if greater than the

sum of the radius.

As the distance varies with the articular parameters, the former process is applied for sub-boxes

of the initial list of boxes of articular parameters. To sum up, the procedure is applying a list of255

consecutive double-SIVIA for each couple of solids that may collide, the user defined to be studied.

7 Conclusions

The main interest of the proposed method is that it can be used to find any isolated point of interest

for the evaluation of the behaviour of any manipulator, provided it can be defined by a root of

a square system of equations. Then, this methodology constitutes a possible way of describing a260

robotic manipulator singular set, allowing for the guaranteed detection of isolated specific singular

points of interest.

It is to be noted that most of the running time of the algorithm is used to treat boxes where the

Interval Newton algorithm fails to conclude. To increase the performance of the algorithm, alternate

methods for splitting and localized tests need to be used and are searched.265

As for a lot of Interval Analysis algorithms, our algorithm can be time consuming when dealing

with complicated kinematic functions or high dimension boxes of study, especially for the nodes

enclosing algorithm, due to the doubled dimension of the box of study, although attenuated by a

pre-subdividing in the joint space. However, provided that the algorithm runs for the time needed

with a sufficient precision, it is able to find enclosures for the searched points without errors, or at270

least a subset of those enclosures and a covering of the searched points.
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Table 1. Some studied cases of robotic manipulators and algorithms performances on them

characteristics geometric parameters properties of manipulator

designation d2 d3 d4 r2 r3 internal motion cusps nodes

a 1 2 1.5 1 0 no 4 0

b 1 2 1.5 1 0.5 no 4 0

c [1,1.001] [2,2.001] [1.5,1.501] [1,1.001] 0 NA 4 NA

d 1 [0.7] [0.3] [0.2] 0 no 0 0

e 1 1.5 [0.7] 0.5 0 no 4 2

f 1 0.5 [1.3] [0.2] 0 yes 0 2

Cusp algorithm Node algorithm

designation precision cusps indeterminate time precision nodes indeterminate time

a 10−4 4 no 32 s 2.5× 10−10 0 no 10 hours

b 10−4 4 no 46 s 2.5× 10−10 0 no 18 hours

c 10−4 4 no 35 s 2.5× 10−10 N/A yes N/A

d 10−4 0 no 12 s 2.5× 10−10 0 no 52 s

e 10−4 4 no 52 s 2.5× 10−10 2 no 35 hours

f 10−2 0 yes 12 min 10−2 2 yes 42 s

f 10−3 0 yes 90 min 10−3 2 yes 41 s

The running times are given for a computer with a 64 bits operating system and an Intel® Core™ i7 CPU.

When the parameter p is not computer storable, then it is replaced by the smallest interval containing it, noted [p].

Table 2. Execution times of the improved algorithm, for the non internal motion cases of Table 1

Designation a b c d e

Time 23 min 45 min Out of memory 16 sec 5h and 42 min

The running times are given for a computer with a 64 bits operating system and an Intel® Core™ i7 CPU.
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