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Abstract— This paper proposes a set-membership method
based on interval analysis to solve the pose tracking problem for
a team of robots. The originality of this approach is to consider
only weak sensor data: the visibility between two robots. The
paper demonstrates that with this poor information, without
using bearing or range sensors, a localization is possible. By
using this boolean information (two robots see each other or
not), the objective is to compensate the odometry errors and be
able to localize in an indoor environment all the robots of the
team, in a guaranteed way. The environment is supposed to be
defined by two sets, an inner and an outer characterizations.
This paper mainly presents the visibility theory used to develop
the method. Simulated results allow to evaluate the efficiency
and the limits of the proposed algorithm.

I. INTRODUCTION

Robot localization is an important issue in mobile robotics
[1], [2], [3] since it is one of the most basic requirement
for many autonomous tasks. The objective is to estimate the
pose (position and orientation) of a mobile robot by using
the knowledge of an environment (e.g. a map) and sensor
data.

In this paper the pose tracking problem is considered: the
objective is to compute the current pose of a robot knowing
its previous one and avoiding its drifting. To compensate the
drifting, due to odometry errors, external data are necessary.
Contrary to most of the localisation approaches that use range
sensors [4], [5], [6] this paper tends to prove that only weak
informations can lead to an efficient localization too. The
information to be considered is the visibility between robots:
two robots are visible if there is no obstacle between them,
else there are not visible. It can be noticed that visibility
sensors have already been considered for localization and
mapping [7], [8], [9]. But those approaches associate the
visibility information to bearing and/or range measurements.
In this paper the proposed visibility corresponds to a boolean
information (true or false), illustrated in Figure 1 and pre-
sented in Section III. This information can be obtained using
360◦ camera for example.

Note that the presented visibility information does not
depend of the robots’ orientations (it is assumed that the
robots can see all around themselves). In order to simplify
the localization problem it is assumed that each robots are
equipped with a compass. Thus the objective is to estimate
the position xi = (x1i ,x2i) of a robot ri.

A robot ri is characterized by the following discrete time
dynamic equation: qi(k + 1) = f (qi(k),ui(k)), with k the
discrete time, qi(k) = (xi(k),θi(k)) the pose of the robot,
xi(k) = (x1i(k),x2i(k)) its position, θi(k) its orientation (asso-
ciated to the compass) and ui(k) the input vector (associated
to the odometry). The function f characterizes the robot’s

dynamics. In order to exploit the visibility information a team
of n robots R = {r1, · · · ,ri, · · · ,rn} is considered.

The environment is assumed to be an indoor environment
E composed by m obstacles ε j, j = 1, · · · ,m. This environ-
ment is not known perfectly but is characterized by two
known sets: E − an inner characterization, and E + an outer
characterization, presented in the Section II-B.

To solve this problem a set-membership approach of the
localization problem based on interval analysis is considered
as in [10], [11].

II. ALGEBRAIC TOOLS

This section introduces some algebraic needful tools.

A. Interval analysis

An interval vector [12], or a box [x] is defined as a closed
subset of Rn: [x] = ([x1], [x2], · · ·) = ([x1,x1], [x2,x2], · · ·).

The size of an interval [x1] is defined as w([x1]) = (x1 −
x1). For instance w([2,5]) = 3.

It can be noticed that any arithmetic operators such as
+,−,×,÷ and functions such as exp,sin,sqr,sqrt, ... can be
easily extended to intervals, [13].

A Constraint Satisfaction Problem (CSP) is defined by
three sets. A set of variables V , a set of domains D for those
variables and a set of constraints C connecting the variables
together. Example of CSP: V = {x1,x2,x3}

D = {x1 ∈ [7,+∞],x2 ∈ [−∞,2],x3 ∈ [−∞,9]}
C = {x1 = x2 + x3}

 . (1)

Solving a CSP consists into reducing the domains by re-
moving the values that are not consistent with the constraints.
It can be efficiently solved by considering interval arithmetic
[14]. For the example (1):

x1 = x2 + x3 ⇒ x1 ∈ [x1]∩ ([−∞,2]+ [−∞,9]),
⇒ x1 ∈ [7,+∞]∩ [−∞,11] = [7,11].

x2 = x1 − x3 ⇒ x2 ∈ [x2]∩ ([7,11]− [−∞,9]),
⇒ x2 ∈ [−∞,2]∩ [−2,+∞] = [−2,2].

x3 = x1 − x2 ⇒ x3 ∈ [x3]∩ ([7,11]− [−2,2]),
⇒ x3 ∈ [−∞,2]∩ [5,13] = [5,13].

The solutions of that CSP are the following contracted
domains [x1]

∗ = [7,11], [x2]
∗ = [−2,2] and [x3]

∗ = [5,13].
In this example a backward/forward propagation method is
used to contract the domains. The forward propagation refers
to the contraction of [x1], then the earned information is
propagated to the domains [x2] and [x3], which corresponds to
the backward step. In the proposed localization method, the
backward/forward propagation is used to contract the robots’
poses.



Fig. 1. In the left figure: (x1Vx2)ε j , (x2Vx3)ε j and (x1Vx3)ε j . The right
figure illustrates an environment E (black shapes) and its characterizations
E − (light grey segments) and E + (dark grey segments). It can be noticed
that an obstacle can have an empty inner characterization.

Fig. 2. The light grey space represents Eε j (x) whereas the dark grey space
represents Eε j (x). The black shape corresponds to ε j .

B. The environment and its characterizations

An environment E =
⋃m

j=1 ε j corresponds to a set of m
obstacles, with ε1, · · · ,ε j, · · · ,εm connected subsets of R2.

The environment is never known perfectly but always
approximated, using maps for example. In order to deal with
uncertain environments and to provide guaranteed results, we
consider an inner E − and an outer E + characterizations of
the environment E such that E − ⊆ E ⊆ E +.

Those characterizations are considered to be sets of seg-
ments (Figure 1): E − =

⋃m′
j=1 εs−

j and E + =
⋃m′′

j=1 εs+
j , with

εs
j = Seg(e1 j ,e2 j) the segment defined by the points e1 j and

e2 j .

III. VISIBILITY PRESENTATION

All the points and sets are assumed to be in R2.

A. Point Visibility

1) According to an obstacle ε j: The visibility relation
between two points x1, x2 regards to an obstacle ε j is defined
as (x1Vx2)ε j ⇔ Seg(x1,x2) ∩ ε j = /0, with Seg(x1,x2) the
segment defined by the two points x1 and x2.

The complement of this relation, named the non-visibility
relation, is denoted (x1Vx2)ε j .

Examples of visibility and non-visibility relations are
presented Figure 1. It can be noticed that

(x1Vx3)ε j ⇔ Seg(x1,x3)∩ ε j 6= /0, (2)

(x1Vx2)ε j ⇔ (x2Vx1)ε j , (Symmetric) (3)

(x1Vx3)ε j ⇔ (x3Vx1)ε j . (4)

The visible space of a point x regards to an obstacle ε j with
x∩ε j = /0, is defined as Eε j(x) = {xi|(xVxi)ε j}, and the non-
visible space of x regards to ε j is defined as Eε j(x) = Ec

ε j
(x).

Examples of visible and non-visible spaces are presented
in Figure 2.

2) According to an environment E : As the robots are
moving in a environment E composed by m obstacles, it
is needed to extend the previous definitions to multiple
obstacles:

(x1Vx2)E ⇔ Seg(x1,x2)∩E = /0, (5)
EE (x) = {xi|(xiVx)E }, (6)

Ec
E (x) = EE (x). (7)

It is possible to characterize the visibility over an environ-
ment by considering the visibility regards to the obstacles
that composed this environment.

Lemma 1: Let x1 and x2 be two distinct points and E an
environment, with x1 6∈ E and x2 6∈ E . Then

(x1Vx2)E ⇔
m∧

j=1

(x1Vx2)ε j , (8)

(x1Vx2)E ⇔
m∨

j=1

(x1Vx2)ε j . (9)

Lemma 2: Let x be a point and E an environment such
as x 6∈ E . Then

EE (x) =
m⋂

j=1

Eε j(x), (10)

EE (x) =
m⋃

j=1

Eε j(x). (11)

3) According to the environment characterizations E +

and E −: As noticed in the Section II-B, the environment is
not known but characterized by two sets, E + and E −. The
following lemma provides a relation between the visibility
according to the environment and the characterizations.

Lemma 3: Let x1 and x2 be two points, E an environ-
ment such as x 6∈ E , and E − and E + the inner and outer
characterizations of the environment. Then

(x1Vx2)E ⇒ (x1Vx2)E− , (12)

(x1Vx2)E ⇒ (x1Vx2)E+ . (13)

B. Set Visibility

This Section extends the visibility notions to connected
sets. Let X be a connected set and ε j an obstacle such as
X∩ ε j = /0. The visible space of X regards to ε j is defined
as Eε j(X) = {xi|∀x ∈ X,(xiVx)ε j}.

The non-visible space of X regards to ε j is defined as
Eε j(X) = {xi|∀x ∈ X,(xiVx)ε j}.

Remark 1: When considering a set, a third visibility space
has to be defined. This space, named partial-visibility space,
corresponds to all the points that are neither in the visible
nor non-visible spaces of the set:

Ẽε j(X) = {xi|∃x1 ∈ X,∃x2 ∈ X,(xiVx1)ε j ∧ (xiVx2)ε j}.
(14)

Examples of visibility spaces considering a connected set
are presented in the Figure 3.



Fig. 3. Left Figure: The light grey space represents Eε j (X), the dark grey
space represents Eε j (X) and the medium grey space represents Ẽε j (X). The
black shape corresponds to ε j and the white one to X. Right Figure: In
this example it can be noticed that EE (X) (the union of the hatched and
dark grey) includes Eε1 (X)∪Eε2 (X) (dark grey without hatched).

It is possible to extend those notions to an environment

EE (X) = {xi|∀x ∈ X,(xVxi)E }, (15)

EE (X) = {xi|∀x ∈ X,(xVxi)E }. (16)

The visibility over an environment can be characterized
by considering the visibility regards to the obstacles that
composed this environment.

Lemma 4: Let X be a connected and E an environment
with X∩E = /0. Then,

EE (X) =
m⋂

j=1

Eε j(X), (17)

EE (X)⊇
m⋃

j=1

Eε j(X). (18)

Figure 5 illustrates the inclusion of Equation 18.
The following lemma provides a relation between the visi-

bility according to the environment and the characterizations.
This represents the basis of the proposed localization method.

Lemma 5: Let x1 ∈X1 and x2 ∈X2 be two distinct points,
with X1, X1 two connected sets such as X1 ∩ X2 = /0.
Considering an an environment E with its characterizations
E + and E −

(x1Vx2)E ⇒

{
X1 ⊆ X1 ∩ (

⋂m′
j=1 Ec

εs−
j
(X2))

X2 ⊆ X2 ∩ (
⋂m′

j=1 Ec
εs−

j
(X1))

(19)

(x1Vx2)E ⇒

X1 ⊆ X1 ∩ (
⋃m′′

j=1 Ec
εs+

j
(X2))

X2 ⊆ X2 ∩ (
⋃m′′

j=1 Ec
εs+

j
(X1))

(20)

This lemma is an extension of Lemma 3.

IV. THE CONTRACTORS

In this section the two contractors CV([x1], [x2],εs
j) and

CV([x1], [x2],εs
j) are presented. A contractor is an operator

that can remove the points of the domains ([x1] and [x2])
that are not consistent with a given constraint (visibility
information). In our case the contractor CV contracts over
the visibility relation and CV over the non-visibility relation.
The Figure 5 presents an example of contraction according
to the visibility and non-visibility. Those contractors are
based on Equations 19 and 20. It can be noticed that the
computation of the visible and non-visible spaces Eεs+

j
([x2])

and Eεs−
j
([x2]) are needed to contract the domains [x1] and

[x2].

Fig. 4. Left Figure: Let x1 ∈ [x1] and x2 ∈ [x2] be two points such
that (x1Vx2)εs

j
, then using the contractor CV([x1], [x2],εs

j) it is possible to
remove the hatched parts of the domains [x1] and [x2]. Right Figure: With
(x1Vx2)εs

j
, it is possible to contract the hatched parts.

Considering a segment εs
j as an obstacle, the visible and

non-visible spaces of a box [x] regards to the obstacle are
delimited by lines. Those lines are passing throw the segment
bounds and the box vertices (Figure 5). The objective is
to identify the extremal lines that characterize the visible
and non-visible spaces. It can be noticed that those lines
correspond to the lines with the maximal and minimal slopes
(Figure 5).

Fig. 5. Eεs
j
([x1]) (light grey), Ẽεs

j
([x1]) (medium grey) and Eεs

j
([x1]) (dark

grey) are delimited by lines defined by the segment and box vertices.

Remark 2: In order to avoid line singularities, the deter-
minant is used to characterize the lines. Let a = (a1,a2),
b = (b1,b2) and c = (c1,c2) be three points, the sign of
det(a−b|c−b) = (a1 − b1)(c2 − b2) − (a2 − b2)(c1 − b1)

indicates the side of a regards to the vector
−→
bc (Figure 6).

Fig. 6. The sign of det(a−b|c−b) depends of the side of a regards to−→
bc.

1) Equation of the non-visible space of a box: The non-
visible space of a box [x] regards to an obstacle εs

j =
Seg(e1 j ,e2 j) corresponds to the intersection of the non-
visible spaces of the vertices of the box:

Eεs
j
([x]) =

4⋂
z=1

Eεs
j
(xz), (21)

with x1, x2, x3, x4 the vertices of the box [x] (Figure 5).
Remark 3: The following equations correspond to the

non-visible space of a point xz regards to an obstacle εs
j =



Seg(e1 j ,e2 j)

Eεs
j
(xz) = {xi| ζxz det(xi − e1 j |e2 j − e1 j) ≤ 0 ∧

ζxz det(xi −xz|e1 j −xz) ≥ 0 ∧
ζxz det(xi −xz|e2 j −xz) ≤ 0 },

(22)
with

ζxz =

{
1 if det(xz − e1 j |e2 j − e1 j)> 0,
−1 else.

The Figure 7 presents an example of non-visibility
characterization. In this example ζxz = −1 (Figure 6).
Eεs

j
(xz) is then characterized by the points xi such that

det(xi − e1 j |e2 j − e1 j) ≥ 0 and det(xi −xz|e1 j −xz) ≤ 0 and
det(xi −xz|e2 j −xz) ≥ 0 (Equation 22). This corresponds to
all the points above the line (e1 j ,e2 j), under the line (xz,e1 j)
and above the line (xz,e2 j) (Figure 6).

Fig. 7. Example of the non-visible space characterizations. Eεs
j
(xz)

corresponds to all the points that are under the line (xz,e1 j ) and above
the line (xz,e2 j ) and above the line (e1 j ,e2 j ).

From the Equations 19 and 21 it can be deduced that

(x1Vx2)ε j ⇒ [x1]
∗ = [x1]∩ (

4⋃
z=1

Ec
εs

j
(x2z)). (23)

with x1 ∈ [x1] and x2 ∈ [x2].
According to the equations 23 and 22 it is possible to

build the visibility contractor CV([x1], [x2],εs
j), presented in

the Algorithm 1. This contractor uses the backward/forward
propagation presented in the Section II-A. It can be noticed
that the equations lines 4 to 6 correspond to the complement
of the Equation 22 (the ∧ become ∨ and the signs change).

Algorithm 1: CV([x1],[x2],εs
j)

Data: [x1], [x2],εs
j = Seg(e1 j ,e2 j)

1 \\ contraction of [x1] ;
2 for z=1 to 4 do
3 backward/forward propagation over
4 ζx2z

det([x1]− e1 j |e2 j − e1 j)> 0∨
5 ζx2z

det([x1]−x2z |e1 j −x2z)< 0∨
6 ζx2z

det([x1]−x2z |e2 j −x2z)> 0;
7 \\ The resulting box is noted [x1]

∗
z .

8 [x1]
∗ =

⋃4
z=1[x1]

∗
z ;

9 \\ The same idea for the contraction of [x2] ;
Result: [x1]

∗, [x2]
∗.

2) Equation of the visible space of a box: Whereas
the computation of the non-visible space of a box can be
simplified to the computation of the non-visible spaces of its
vertices (Equation 21), for the visible space it is needed to
test all the possible lines. Let [x] be a box with xz, z= 1, · · · ,4
its vertices and εs

j an obstacle, the visible space of the box
regards to the obstacle can be defined as

Eεs
j
([x]) =

4⋂
z=1

{xi|(ζxz det(xi − e1 j |xz − e1 j)> 0 ∧

ζxz+1 det(xi − e1 j |xz+1 − e1 j)> 0 ∨
ζxz det(xi − e2 j |xz − e2 j)< 0 ∧
ζxz+1 det(xi − e2 j |xz+1 − e2 j)< 0 ∨
ζxz det(xi − e1 j |e2 j − e1 j)> 0 ∧
ζxz+1 det(xi − e1 j |e2 j − e1 j)> 0) ∧
(ζe1 det(xi − e1 j |xz − e1 j)> 0 ∨
ζe1 det(xi − e1 j |xz+1 − e1 j)< 0) ∧
(ζe2 det(xi − e2 j |xz − e2 j)> 0 ∨
ζe2 det(xi − e2 j |xz+1 − e2 j)< 0) }.

(24)

with

x5 = x1,

ζxz =

{
1 if det(xz − e1 j |e2 j − e1 j)> 0,
−1 else.

ζxz+1 =

{
1 if det(xz+1 − e1 j |e2 j − e1 j)> 0,
−1 else.

ζe2 =

{
1 if det(e1 j −xz|xz+1 −xz)> 0,
−1 else.

ζe2 =

{
1 if det(e2 j −xz|xz+1 −x1)> 0,
−1 else.

The first six relations of the Equation 24 determinate the
lines with the maximal and minimal slopes. The last four
equations deal with a singularity presented in the Figure
8. Without those four equations, the partial-visible space
(medium grey) could be considered as included in the visible
space.

Note that the non-visibility contractor CV([x1], [x2],εs
j) can

be built as it is done for the visibility contractor presented
in the Section IV-.1.

V. THE POSE TRACKING ACCORDING TO THE VISIBILITY

A. The Pose Tracking Algorithm

As mentioned in the introduction we are interested in the
pose tracking localization problem. Knowing the initial pose
qi(k0) of a robot ri, the objective is to estimate the pose qi(k)
at each time k. Using the dynamic equation of the system
(Section I) it is possible to compute the pose of the robots
at time k knowing the pose at time k − 1. To be able to



Fig. 8. Example of the visible space characterizations (light grey space).
The arrows correspond to the several constraints of the Equation 24
(ten relations, ten arrows). The filled arrows correspond to the first six
constraints, and the empty ones to the last four constraints. As in the other
figures, the light grey area corresponds to the visible space, the medium
grey to the partial-visible space and the dark grey to the non-visible space.

Fig. 9. The three simulated environments E1, E2 and E3. The black shapes
correspond to the obstacles and the grey doted lines delimited the space of
the robots moves.

compute the new pose, the orientation θi(k) is measured by
the compass and the input vector ui(k) is estimated by the
odometry. In order to deal with the sensor imprecisions, we
consider a bounded error context. Thus it is possible to define
[θi(k)] and [ui(k)] according to the sensors’ measurements,
such that θi(k) ∈ [θi(k)] and ui(k) ∈ [ui(k)], and [qi(k0)] the
initial robot’s pose estimation such that qi(k0) ∈ [qi(k0)]. In
this context it is possible to compute the pose [qi(k+1)] =
f ([qi(k)], [ui(k)]) using interval analysis principles.

In order to avoid the drifting of the robots (the increase of
[qi(k)] size), the visibility information between the robots is
considered. At each time k each robot computes the visibility
information regards to the other robots of the team. Let ri
and ri′ be two different robots of R,

ri sees ri′ ⇔ (xiVxi′)E , (25)

ri does not see ri′ ⇔ (xiVxi′)E . (26)

It is also needed that at each time k, each robot ri
communicates its current pose estimation [qi(k)] with the
team R.

Algorithm 2 presents the proposed pose tracking approach.
First, Line 1, the initial poses of the robots are defined.
Line 3, for each robots, the new pose is estimated regards
to the knowledge of the previous one. Line 4, the robots
share their pose estimations with the team. Finally, Lines 5
to 9 the visibility information is used to contract the robot’s
pose estimations. Lines 7 and 9, two contractors are used:
the visibility contractor CV and the non-visibility contractor
CV. The objective of those functions is to remove from
the domains [xi] and [xi′ ], the values that are not consistent
with the visibility and non-visibility informations. They are
detailed in the previous Section.

Algorithm 2: The pose tracking algorithm
Data: R, E −, E +

1 ∀ri ∈ R, initialize [qi(k0)] ;
2 for k = 1 to end do
3 ∀ri ∈ R, [qi(k)] = f ([qi(k−1)], [ui(k−1)]);
4 ∀ri ∈ R, share [qi(k)] with the team;
5 forall the ri ∈ R, ri′ ∈ R, ri 6= ri′ do
6 if ri sees ri′ then
7 ([xi(k)]∗, [xi′(k)]∗) =⋂

∀εs−
j ∈E−{CV([xi(k)], [xi′(k)],εs−

j )};

8 else
9 ([xi(k)]∗, [xi′(k)]∗) =⋃

∀εs+
j ∈E+{CV([xi(k)], [xi′(k)],εs+

j )};

B. Experimental Results

In order to test this approach, a simulator has been
developed. The efficiency of the algorithm has been tested
for three different environments E1, E2 and E3 (Figure 9).
Each environment has a 10×10 m2 size. It can be noticed
that the simulated environments are polygonal. This has
be done in order to simplify the computation of simulated
data. The proposed algorithm manipulates only the inner and
outer characterisations and would work as well in a non-
polygonal environments (the characterisations considered for
the presented experimentations are not perfect and could have
been associated to non-polygonal shapes).

The following table presents the number of segments of
the characterisations of each environment:

E1 E2 E3
E − 19 59 89
E + 26 69 101

At each iteration (one moving and one contraction step)
a robot does a 20cm distance move, with a bounded error
of ±1%, and has a bounded compass error of ±1deg. Note
that ∀ri ∈ R, [xi(k0)] = [xi(k0)−50cm,xi(k0)+50cm].

The processor used for the simulations has the following
characteristics: Intel(R) Core(TM) CPU - 6420 @ 2.13GHz.

During those tests the simulated robots moved randomly
in the environment, from k0 = 0 to k = 1500. The results
of the experimentations are presented in the Table I. Note
that average w([x{1,2}i ]) corresponds to the average size of
[x{1,2}i ] during the all experimentation and final w([x{1,2}i ])
corresponds to the average of [x{1,2}i ] just for the final step.

As it can be noticed that the size of the initial boxes
w([x{1,2}i ]) are equal to 100cm (initial incertitude about the
position). It can be concluded that the experimentations
providing a final incertitude around 100cm (or smaller)
lead to successful localizations (avoiding the drifting of the
robots). In addition to that it is possible to classify as suc-
cessful the experimentations that have: average w([x{1,2}i ])≈
final w([x{1,2}i ]) (the imprecision is maintained and do not
increase).



number of robots
4 8 12 16 20 24

E1

average w([x1i ]) 439 310 196 131 127 115
average w([x2i ]) 460 334 176 147 121 117

final w([x1i ]) 897 668 172 147 121 117
final w([x2i ]) 919 674 193 167 159 133
iteration time 3 28 92 204 351 589

E2

average w([x1i ]) 545 355 183 102 93 84
average w([x2i ]) 552 375 185 115 108 97

final w([x1i ]) 1029 780 440 107 100 62
final w([x2i ]) 1038 811 435 110 97 95
iteration time 11 65 191 443 745 1160

E3

average w([x1i ]) 404 120 75 62 63 56
average w([x2i ]) 325 77 59 50 47 46

final w([x1i ]) 817 126 81 69 87 47
final w([x2i ]) 688 65 58 50 57 45
iteration time 15 116 313 646 1058 1727

Without the visibility information
- odometry and compass only -

average w([x1i ]) 588 final w([x1i ]) 1075
average w([x2i ]) 595 final w([x2i ]) 1084

TABLE I
EXPERIMENTAL RESULTS (the values are in cm and ms).

Those successful experimentations are depicted in bold in
Table I. Iteration time correspond to the average iteration
time of the 1500 iteration step time (in ms).

Looking at those results it appears that two elements are
important factors for the success of the localization: the
topology of the environment and the number of robots.

It appears that for a given environment a minimal number
of robots is necessary to perform an efficient pose track-
ing. It can be explained by the fact that with few robots,
the visibility measurements carry few informations. In our
experimentations, at least 8 robots are necessary to perform
an efficient localization in the environment E3, 12 for the
environment E1 and 16 for the environment E2. On the other
hand, too many robots does not improve significantly the
localization but increase the computation time.

It also appears that for a given number of robots the
localization process can be efficient in one environment
whereas it is not in the others. For instance with a team of
8 robots, the algorithm provides a good localization in the
environment E3, but not in the environment E1 neither in E2.
The number of obstacles, their sizes and their dispositions
in the environment are important factors for an efficient
localization. It can be explained by the fact that without any
obstacle, or with too small obstacles, the robots see each
other constantly, thus the visibility sensor will return always
the same value and will not provide useful information. It is
the same argument with too many obstacles.

C. Conclusion

In this paper it is shown that using interval analysis it
is possible to localize a team of robots only assuming weak
informations: the visibility between the robots. The proposed
algorithm is a guaranteed method that is able to exploit this
boolean information. Note that the context of the presented
experimentations is borderline as it only considers the weak

boolean visibility information. In practice this information
can be added to classical localization methods, using range
sensors for example, when a team of robots is considered,
as in [15], [16].

It appears in Section V-B that the topology of an en-
vironment is an important factor for the efficiency of the
proposed localization. In a future work it could be interesting
to characterize the environments, allowing to calculate for a
given environment, a minimal number of robots required to
perform a pose tracking.

Finally we are planning to consider a maximal range for
the visibility information and to restrain the field of vision
of the robots.
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