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Preface

What Is Meant by “Planning Algorithms”?

Due to many exciting developments in the fields of robotics, artificial intelligence,
and control theory, three topics that were once quite distinct are presently on a
collision course. In robotics, motion planning was originally concerned with prob-
lems such as how to move a piano from one room to another in a house without
hitting anything. The field has grown, however, to include complications such as
uncertainties, multiple bodies, and dynamics. In artificial intelligence, planning
originally meant a search for a sequence of logical operators or actions that trans-
form an initial world state into a desired goal state. Presently, planning extends
beyond this to include many decision-theoretic ideas such as Markov decision pro-
cesses, imperfect state information, and game-theoretic equilibria. Although con-
trol theory has traditionally been concerned with issues such as stability, feedback,
and optimality, there has been a growing interest in designing algorithms that find
feasible open-loop trajectories for nonlinear systems. In some of this work, the
term “motion planning” has been applied, with a different interpretation from its
use in robotics. Thus, even though each originally considered different problems,
the fields of robotics, artificial intelligence, and control theory have expanded their
scope to share an interesting common ground.

In this text, I use the term planning in a broad sense that encompasses this
common ground. This does not, however, imply that the term is meant to cover
everything important in the fields of robotics, artificial intelligence, and control
theory. The presentation focuses on algorithm issues relating to planning. Within
robotics, the focus is on designing algorithms that generate useful motions by
processing complicated geometric models. Within artificial intelligence, the focus
is on designing systems that use decision-theoretic models to compute appropriate
actions. Within control theory, the focus is on algorithms that compute feasible
trajectories for systems, with some additional coverage of feedback and optimality.
Analytical techniques, which account for the majority of control theory literature,
are not the main focus here.

The phrase “planning and control” is often used to identify complementary
issues in developing a system. Planning is often considered as a higher level pro-
cess than control. In this text, I make no such distinctions. Ignoring historical
connotations that come with the terms, “planning” and “control” can be used
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interchangeably. Either refers to some kind of decision making in this text, with
no associated notion of “high” or “low” level. A hierarchical approach can be
developed, and either level could be called “planning” or “control” without any
difference in meaning.

Who Is the Intended Audience?

The text is written primarily for computer science and engineering students at
the advanced-undergraduate or beginning-graduate level. It is also intended as
an introduction to recent techniques for researchers and developers in robotics,
artificial intelligence, and control theory. It is expected that the presentation
here would be of interest to those working in other areas such as computational
biology (drug design, protein folding), virtual prototyping, manufacturing, video
game development, and computer graphics. Furthermore, this book is intended for
those working in industry who want to design and implement planning approaches
to solve their problems.

I have attempted to make the book as self-contained and readable as possible.
Advanced mathematical concepts (beyond concepts typically learned by under-
graduates in computer science and engineering) are introduced and explained. For
readers with deeper mathematical interests, directions for further study are given.

Where Does This Book Fit?

Here is where this book fits with respect to other well-known subjects:

Robotics: This book addresses the planning part of robotics, which includes
motion planning, trajectory planning, and planning under uncertainty. This is only
one part of the big picture in robotics, which includes issues not directly covered
here, such as mechanism design, dynamical system modeling, feedback control,
sensor design, computer vision, inverse kinematics, and humanoid robotics.

Artificial Intelligence: Machine learning is currently one of the largest and
most successful divisions of artificial intelligence. This book (perhaps along with
[384]) represents the important complement to machine learning, which can be
thought of as “machine planning.” Subjects such as reinforcement learning and
decision theory lie in the boundary between the two and are covered in this book.
Once learning is being successfully performed, what decisions should be made?
This enters into planning.

Control Theory: Historically, control theory has addressed what may be con-
sidered here as planning in continuous spaces under differential constraints. Dy-
namics, optimality, and feedback have been paramount in control theory. This
book is complementary in that most of the focus is on open-loop control laws,
feasibility as opposed to optimality, and dynamics may or may not be important.



el

Nevertheless, feedback, optimality, and dynamics concepts appear in many places
throughout the book. However, the techniques in this book are mostly algorith-
mic, as opposed to the analytical techniques that are typically developed in control
theory.

Computer Graphics: Animation has been a hot area in computer graphics in
recent years. Many techniques in this book have either been applied or can be
applied to animate video game characters, virtual humans, or mechanical systems.
Planning algorithms allow users to specify tasks at a high level, which avoids
having to perform tedious specifications of low-level motions (e.g., key framing).

Algorithms: As the title suggests, this book may fit under algorithms, which is a
discipline within computer science. Throughout the book, typical issues from com-
binatorics and complexity arise. In some places, techniques from computational
geometry and computational real algebraic geometry, which are also divisions of
algorithms, become important. On the other hand, this is not a pure algorithms
book in that much of the material is concerned with characterizing various de-
cision processes that arise in applications. This book does not focus purely on
complexity and combinatorics.

Other Fields: At the periphery, many other fields are touched by planning al-
gorithms. For example, motion planning algorithms, which form a major part of
this book, have had a substantial impact on such diverse fields as computational
biology, virtual prototyping in manufacturing, architectural design, aerospace en-
gineering, and computational geography.

Suggested Use

The ideas should flow naturally from chapter to chapter, but at the same time,
the text has been designed to make it easy to skip chapters. The dependencies
between the four main parts are illustrated in Figure 1.

If you are only interested in robot motion planning, it is only necessary to read
Chapters 1348| possibly with the inclusion of some discrete planning algorithms
from Chapter 2| because they arise in motion planning. Chapters 3 and |4 provide
the foundations needed to understand basic robot motion planning. Chapters 5
and 6 present algorithmic techniques to solve this problem. Chapters 7 and 8
consider extensions of the basic problem. If you are additionally interested in
nonholonomic planning and other problems that involve differential constraints,
then it is safe to jump ahead to Chapters 13+15] after completing Part TI.

Chapters/11 and 12 cover problems in which there is sensing uncertainty. These
problems live in an information space, which is detailed in Chapter [11. Chapter
12 covers algorithms that plan in the information space.
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PART I
Introductory Material
Chapters 1-2

PART I1 PART III

Motion Planning Decision-Theoretic
(Planning in Continuous Spaces) Planning

Chapters 3-8 (Planning Under Uncertainty)

Chapters 9-12

PART IV

Planning Under
Differential Constraints

Chapters 13-15

Figure 1: The dependencies between the four main parts of the book.

If you are interested mainly in decision-theoretic planning, then you can read
Chapter 2/ and then jump straight to Chapters 9-12. The material in these later
chapters does not depend much on Chapters [3H8, which cover motion planning.
Thus, if you are not interested in motion planning, the chapters may be easily
skipped.

There are many ways to design a semester or quarter course from the book
material. Figure |2 may help in deciding between core material and some optional
topics. For an advanced undergraduate-level course, I recommend covering one
core and some optional topics. For a graduate-level course, it may be possible
to cover a couple of cores and some optional topics, depending on the initial
background of the students. A two-semester sequence can also be developed by
drawing material from all three cores and including some optional topics. Also,
two independent courses can be made in a number of different ways. If you want to
avoid continuous spaces, a course on discrete planning can be offered from Sections
2.1-2.5, 9.1-9.5, 10.1-10.5, 11.1-11.3, 11.7, and 12.1-12.3. If you are interested
in teaching some game theory, there is roughly a chapter’s worth of material in
Sections 9.3-9.4, 10.5, 11.7, and 13.5. Material that contains the most prospects
for future research appears in Chapters 7, 8, 11, 12, and 14. In particular, research
on information spaces is still in its infancy.
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Motion planning
Core: 2.1-2.2, 3.1-3.3, 4.1-4.3, 5.1-5.6, 6.1-6.3
Optional: 3.4-3.5, 4.4, 6.4-6.5, 7.1-7.7, 8.1-8.5
Planning under uncertainty
Core: 2.1-2.3, 9.1-9.2, 10.1-10.4, 11.1-11.6, 12.1-12.3
Optional: 9.3-9.5, 10.5-10.6, 11.7, 12.4-12.5
Planning under differential constraints
Core: 8.3, 13.1-13.3, 14.1-14.4, 15.1, 15.3-15.4
Optional: 13.4-13.5, 14.5-14.7, 15.2, 15.5

Figure 2: Based on Parts|II, III, and TV there are three themes of core material
and optional topics.

To facilitate teaching, there are more than 500 examples and exercises through-
out the book. The exercises in each chapter are divided into written problems and
implementation projects. For motion planning projects, students often become
bogged down with low-level implementation details. One possibility is to use the
Motion Strategy Library (MSL):

http://msl.cs.uiuc.edu/msl/

as an object-oriented software base on which to develop projects. I have had great
success with this for both graduate and undergraduate students.

For additional material, updates, and errata, see the Web page associated with
this book:

http://planning.cs.uiuc.edu/

You may also download a free electronic copy of this book for your own personal
use.

For further reading, consult the numerous references given at the end of chap-
ters and throughout the text. Most can be found with a quick search of the
Internet, but I did not give too many locations because these tend to be unstable
over time. Unfortunately, the literature surveys are shorter than I had originally
planned; thus, in some places, only a list of papers is given, which is often in-
complete. I have tried to make the survey of material in this book as impartial
as possible, but there is undoubtedly a bias in some places toward my own work.
This was difficult to avoid because my research efforts have been closely intertwined
with the development of this book.
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Chapter 1

Introduction

1.1 Planning to Plan

Planning is a term that means different things to different groups of people.
Robotics addresses the automation of mechanical systems that have sensing, actu-
ation, and computation capabilities (similar terms, such as autonomous systems
are also used). A fundamental need in robotics is to have algorithms that convert
high-level specifications of tasks from humans into low-level descriptions of how to
move. The terms motion planning and trajectory planning are often used for these
kinds of problems. A classical version of motion planning is sometimes referred to
as the Piano Mover’s Problem. Imagine giving a precise computer-aided design
(CAD) model of a house and a piano as input to an algorithm. The algorithm must
determine how to move the piano from one room to another in the house without
hitting anything. Most of us have encountered similar problems when moving a
sofa or mattress up a set of stairs. Robot motion planning usually ignores dynam-
ics and other differential constraints and focuses primarily on the translations and
rotations required to move the piano. Recent work, however, does consider other
aspects, such as uncertainties, differential constraints, modeling uncertainties, and
optimality. Trajectory planning usually refers to the problem of taking the solu-
tion from a robot motion planning algorithm and determining how to move along
the solution in a way that respects the mechanical limitations of the robot.
Control theory has historically been concerned with designing inputs to phys-
ical systems described by differential equations. These could include mechanical
systems such as cars or aircraft, electrical systems such as noise filters, or even sys-
tems arising in areas as diverse as chemistry, economics, and sociology. Classically,
control theory has developed feedback policies, which enable an adaptive response
during execution, and has focused on stability, which ensures that the dynamics
do not cause the system to become wildly out of control. A large emphasis is also
placed on optimizing criteria to minimize resource consumption, such as energy
or time. In recent control theory literature, motion planning sometimes refers to
the construction of inputs to a nonlinear dynamical system that drives it from an
initial state to a specified goal state. For example, imagine trying to operate a
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remote-controlled hovercraft that glides over the surface of a frozen pond. Suppose
we would like the hovercraft to leave its current resting location and come to rest
at another specified location. Can an algorithm be designed that computes the
desired inputs, even in an ideal simulator that neglects uncertainties that arise
from model inaccuracies? It is possible to add other considerations, such as un-
certainties, feedback, and optimality; however, the problem is already challenging
enough without these.

In artificial intelligence, the terms planning and Al planning take on a more
discrete flavor. Instead of moving a piano through a continuous space, as in the
robot motion planning problem, the task might be to solve a puzzle, such as
the Rubik’s cube or a sliding-tile puzzle, or to achieve a task that is modeled
discretely, such as building a stack of blocks. Although such problems could be
modeled with continuous spaces, it seems natural to define a finite set of actions
that can be applied to a discrete set of states and to construct a solution by giving
the appropriate sequence of actions. Historically, planning has been considered
different from problem solving; however, the distinction seems to have faded away
in recent years. In this book, we do not attempt to make a distinction between the
two. Also, substantial effort has been devoted to representation language issues
in planning. Although some of this will be covered, it is mainly outside of our
focus. Many decision-theoretic ideas have recently been incorporated into the Al
planning problem, to model uncertainties, adversarial scenarios, and optimization.
These issues are important and are considered in detail in Part [III.

Given the broad range of problems to which the term planning has been applied
in the artificial intelligence, control theory, and robotics communities, you might
wonder whether it has a specific meaning. Otherwise, just about anything could
be considered as an instance of planning. Some common elements for planning
problems will be discussed shortly, but first we consider planning as a branch of
algorithms. Hence, this book is entitled Planning Algorithms. The primary focus
is on algorithmic and computational issues of planning problems that have arisen
in several disciplines. On the other hand, this does not mean that planning algo-
rithms refers to an existing community of researchers within the general algorithms
community. This book it not limited to combinatorics and asymptotic complexity
analysis, which is the main focus in pure algorithms. The focus here includes nu-
merous concepts that are not necessarily algorithmic but aid in modeling, solving,
and analyzing planning problems.

Natural questions at this point are, What is a plan? How is a plan represented?
How is it computed? What is it supposed to achieve? How is its quality evaluated?
Who or what is going to use it? This chapter provides general answers to these
questions. Regarding the user of the plan, it clearly depends on the application.
In most applications, an algorithm executes the plan; however, the user could even
be a human. Imagine, for example, that the planning algorithm provides you with
an investment strategy.

In this book, the user of the plan will frequently be referred to as a robot or a
decision maker. In artificial intelligence and related areas, it has become popular
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Figure 1.1: The Rubik’s cube (a), sliding-tile puzzle (b), and other related puzzles
are examples of discrete planning problems.

in recent years to use the term agent, possibly with adjectives to yield an intelligent
agent or software agent. Control theory usually refers to the decision maker as a
controller. The plan in this context is sometimes referred to as a policy or control
law. In a game-theoretic context, it might make sense to refer to decision makers
as players. Regardless of the terminology used in a particular discipline, this book
is concerned with planning algorithms that find a strategy for one or more decision
makers. Therefore, remember that terms such as robot, agent, and controller are
interchangeable.

1.2 Motivational Examples and Applications

Planning problems abound. This section surveys several examples and applications
to inspire you to read further.

Why study planning algorithms? There are at least two good reasons. First, it
is fun to try to get machines to solve problems for which even humans have great
difficulty. This involves exciting challenges in modeling planning problems, design-
ing efficient algorithms, and developing robust implementations. Second, planning
algorithms have achieved widespread successes in several industries and academic
disciplines, including robotics, manufacturing, drug design, and aerospace appli-
cations. The rapid growth in recent years indicates that many more fascinating
applications may be on the horizon. These are exciting times to study planning
algorithms and contribute to their development and use.

Discrete puzzles, operations, and scheduling Chapter 2 covers discrete
planning, which can be applied to solve familiar puzzles, such as those shown in
Figure 1.1. They are also good at games such as chess or bridge [899]. Discrete
planning techniques have been used in space applications, including a rover that
traveled on Mars and the Earth Observing One satellite [209, 384, 897]. When
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Figure 1.2: Remember puzzles like this? Imagine trying to solve one with an
algorithm. The goal is to pull the two bars apart. This example is called the Alpha
1.0 Puzzle. It was created by Boris Yamrom and posted as a research benchmark
by Nancy Amato at Texas A&M University. This solution and animation were
made by James Kuffner (see [560] for the full movie).

combined with methods for planning in continuous spaces, they can solve compli-
cated tasks such as determining how to bend sheet metal into complicated objects
[421]; see Section 7.5 for the related problem of folding cartons.

A motion planning puzzle The puzzles in Figure 1.1 can be easily discretized
because of the regularity and symmetries involved in moving the parts. Figure /1.2
shows a problem that lacks these properties and requires planning in a continuous
space. Such problems are solved by using the motion planning techniques of Part
II. This puzzle was designed to frustrate both humans and motion planning algo-
rithms. It can be solved in a few minutes on a standard personal computer (PC)
using the techniques in Section [5.5. Many other puzzles have been developed as
benchmarks for evaluating planning algorithms.

An automotive assembly puzzle Although the problem in Figure 1.2 may
appear to be pure fun and games, similar problems arise in important applications.
For example, Figure|1.3/shows an automotive assembly problem for which software
is needed to determine whether a wiper motor can be inserted (and removed)
from the car body cavity. Traditionally, such a problem is solved by constructing
physical models. This costly and time-consuming part of the design process can
be virtually eliminated in software by directly manipulating the CAD models.
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Figure 1.3: An automotive assembly task that involves inserting or removing a
windshield wiper motor from a car body cavity. This problem was solved for clients
using the motion planning software of Kineo CAM (courtesy of Kineo CAM).

The wiper example is just one of many. The most widespread impact on
industry comes from motion planning software developed at Kineo CAM. It has
been integrated into Robcad (eM-Workplace) from Tecnomatix, which is a leading
tool for designing robotic workcells in numerous factories around the world. Their
software has also been applied to assembly problems by Renault, Ford, Airbus,
Optivus, and many other major corporations. Other companies and institutions
are also heavily involved in developing and delivering motion planning tools for
industry (many are secret projects, which unfortunately cannot be described here).
One of the first instances of motion planning applied to real assembly problems is
documented in [188].

Sealing cracks in automotive assembly Figure [1.4 shows a simulation of
robots performing sealing at the Volvo Cars assembly plant in Torslanda, Sweden.
Sealing is the process of using robots to spray a sticky substance along the seams
of a car body to prevent dirt and water from entering and causing corrosion. The
entire robot workcell is designed using CAD tools, which automatically provide
the necessary geometric models for motion planning software. The solution shown
in Figure 1.4/ is one of many problems solved for Volvo Cars and others using
motion planning software developed by the Fraunhofer Chalmers Centre (FCC).
Using motion planning software, engineers need only specify the high-level task of
performing the sealing, and the robot motions are computed automatically. This
saves enormous time and expense in the manufacturing process.

Moving furniture Returning to pure entertainment, the problem shown in Fig-
ure [1.5] involves moving a grand piano across a room using three mobile robots
with manipulation arms mounted on them. The problem is humorously inspired
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Figure 1.4: An application of motion planning to the sealing process in automotive
manufacturing. Planning software developed by the Fraunhofer Chalmers Centre
(FCC) is used at the Volvo Cars plant in Sweden (courtesy of Volvo Cars and
FCC).
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Figure 1.5: Using mobile robots to move a piano |246].

by the phrase Piano Mover’s Problem. Collisions between robots and with other
pieces of furniture must be avoided. The problem is further complicated because
the robots, piano, and floor form closed kinematic chains, which are covered in

Sections and [7.4.

Navigating mobile robots A more common task for mobile robots is to request
them to navigate in an indoor environment, as shown in Figure/1.6a. A robot might
be asked to perform tasks such as building a map of the environment, determining
its precise location within a map, or arriving at a particular place. Acquiring
and manipulating information from sensors is quite challenging and is covered in
Chapters [11 and 12| Most robots operate in spite of large uncertainties. At one
extreme, it may appear that having many sensors is beneficial because it could
allow precise estimation of the environment and the robot position and orientation.
This is the premise of many existing systems, as shown for the robot system in
Figure [1.7, which constructs a map of its environment. It may alternatively be
preferable to develop low-cost and reliable robots that achieve specific tasks with
little or no sensing. These trade-offs are carefully considered in Chapters |11 and
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Figure 1.6: (a) Several mobile robots attempt to successfully navigate in an indoor
environment while avoiding collisions with the walls and each other. (b) Imagine
using a lantern to search a cave for missing people.

T 2 L

Figure 1.7: A mobile robot can reliably construct a good map of its environ-
ment (here, the Intel Research Lab) while simultaneously localizing itself. This
is accomplished using laser scanning sensors and performing efficient Bayesian
computations on the information space [353].
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12. Planning under uncertainty is the focus of Part III.

If there are multiple robots, then many additional issues arise. How can the
robots communicate? How can their information be integrated? Should their
coordination be centralized or distributed? How can collisions between them be
avoided? Do they each achieve independent tasks, or are they required to collab-
orate in some way? If they are competing in some way, then concepts from game
theory may apply. Therefore, some game theory appears in Sections 9.4,[10.5,
11.7, and [13.5.

Playing hide and seek One important task for a mobile robot is playing the
game of hide and seek. Imagine entering a cave in complete darkness. You are
given a lantern and asked to search for any people who might be moving about, as
shown in Figure/1.6b. Several questions might come to mind. Does a strategy even
exist that guarantees I will find everyone? If not, then how many other searchers
are needed before this task can be completed? Where should I move next? Can I
keep from exploring the same places multiple times? This scenario arises in many
robotics applications. The robots can be embedded in surveillance systems that
use mobile robots with various types of sensors (motion, thermal, cameras, etc.). In
scenarios that involve multiple robots with little or no communication, the strategy
could help one robot locate others. One robot could even try to locate another
that is malfunctioning. Outside of robotics, software tools can be developed that
assist people in systematically searching or covering complicated environments,
for applications such as law enforcement, search and rescue, toxic cleanup, and
in the architectural design of secure buildings. The problem is extremely difficult
because the status of the pursuit must be carefully computed to avoid unnecessarily
allowing the evader to sneak back to places already searched. The information-
space concepts of Chapter 11 become critical in solving the problem. For an
algorithmic solution to the hide-and-seek game, see Section [12.4.

Making smart video game characters The problem in Figure [1.6b might
remind you of a video game. In the arcade classic Pacman, the ghosts are pro-
grammed to seek the player. Modern video games involve human-like characters
that exhibit much more sophisticated behavior. Planning algorithms can enable
game developers to program character behaviors at a higher level, with the expec-
tation that the character can determine on its own how to move in an intelligent
way.

At present there is a large separation between the planning-algorithm and
video-game communities. Some developers of planning algorithms are recently
considering more of the particular concerns that are important in video games.
Video-game developers have to invest too much energy at present to adapt existing
techniques to their problems. For recent books that are geared for game developers,
see [154, 373].
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Figure 1.8: Across the top, a motion computed by a planning algorithm, for a
digital actor to reach into a refrigerator [500]. In the lower left, a digital actor
plays chess with a virtual robot [546]. In the lower right, a planning algorithm
computes the motions of 100 digital actors moving across terrain with obstacles
593).

Virtual humans and humanoid robots Beyond video games, there is broader
interest in developing virtual humans. See Figure [1.8. In the field of computer
graphics, computer-generated animations are a primary focus. Animators would
like to develop digital actors that maintain many elusive style characteristics of
human actors while at the same time being able to design motions for them from
high-level descriptions. It is extremely tedious and time consuming to specify all
motions frame-by-frame. The development of planning algorithms in this context
is rapidly expanding.

Why stop at virtual humans? The Japanese robotics community has inspired
the world with its development of advanced humanoid robots. In 1997, Honda
shocked the world by unveiling an impressive humanoid that could walk up stairs
and recover from lost balance. Since that time, numerous corporations and in-
stitutions have improved humanoid designs. Although most of the mechanical
issues have been worked out, two principle difficulties that remain are sensing and
planning. What good is a humanoid robot if it cannot be programmed to accept
high-level commands and execute them autonomously? Figure [1.9 shows work
from the University of Tokyo for which a plan computed in simulation for a hu-
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Figure 1.9: (a) This is a picture of the H7 humanoid robot and one of its developers,
S. Kagami. It was developed in the JSK Laboratory at the University of Tokyo.
(b) Bringing virtual reality and physical reality together. A planning algorithm
computes stable motions for a humanoid to grab an obstructed object on the floor
563).

manoid robot is actually applied on a real humanoid. Figure 1.10/shows humanoid
projects from the Japanese automotive industry.

Parking cars and trailers The planning problems discussed so far have not
involved differential constraints, which are the main focus in Part TV. Consider
the problem of parking slow-moving vehicles, as shown in Figure [1.11. Most peo-
ple have a little difficulty with parallel parking a car and much greater difficulty
parking a truck with a trailer. Imagine the difficulty of parallel parking an airport
baggage train! See Chapter (13 for many related examples. What makes these
problems so challenging? A car is constrained to move in the direction that the
rear wheels are pointing. Maneuvering the car around obstacles therefore becomes
challenging. If all four wheels could turn to any orientation, this problem would
vanish. The term nonholonomic planning encompasses parking problems and many
others. Figure 1.12a shows a humorous driving problem. Figure [1.12b shows an
extremely complicated vehicle for which nonholonomic planning algorithms were
developed and applied in industry.

“Wreckless” driving Now consider driving the car at high speeds. As the speed
increases, the car must be treated as a dynamical system due to momentum. The
car is no longer able to instantaneously start and stop, which was reasonable for
parking problems. Although there exist planning algorithms that address such
issues, there are still many unsolved research problems. The impact on industry
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(b)

Figure 1.10: Humanoid robots from the Japanese automotive industry: (a) The
latest Asimo robot from Honda can run at 3 km/hr (courtesy of Honda); (b)
planning is incorporated with vision in the Toyota humanoid so that it plans to
grasp objects [450].

has not yet reached the level achieved by ordinary motion planning, as shown in
Figures 1.3 and 1.4, By considering dynamics in the design process, performance
and safety evaluations can be performed before constructing the vehicle. Figure
1.13 shows a solution computed by a planning algorithm that determines how to
steer a car at high speeds through a town while avoiding collisions with build-
ings. A planning algorithm could even be used to assess whether a sports utility
vehicle tumbles sideways when stopping too quickly. Tremendous time and costs
can be spared by determining design flaws early in the development process via
simulations and planning. One related problem is wverification, in which a me-
chanical system design must be thoroughly tested to make sure that it performs
as expected in spite of all possible problems that could go wrong during its use.
Planning algorithms can also help in this process. For example, the algorithm can
try to violently crash a vehicle, thereby establishing that a better design is needed.

Aside from aiding in the design process, planning algorithms that consider dy-
namics can be directly embedded into robotic systems. Figure [1.13b shows an
application that involves a difficult combination of most of the issues mentioned
so far. Driving across rugged, unknown terrain at high speeds involves dynam-
ics, uncertainties, and obstacle avoidance. Numerous unsolved research problems
remain in this context.
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Figure 1.11: Some parking illustrations from government manuals for driver test-
ing: (a) parking a car (from the 2005 Missouri Driver Guide); (b) parking a tractor
trailer (published by the Pennsylvania Division of Motor Vehicles). Both humans
and planning algorithms can solve these problems.

Flying Through the Air or in Space Driving naturally leads to flying. Plan-
ning algorithms can help to navigate autonomous helicopters through obstacles.
They can also compute thrusts for a spacecraft so that collisions are avoided around
a complicated structure, such as a space station. In Section |14.1.3| the problem of
designing entry trajectories for a reusable spacecraft is described. Mission plan-
ning for interplanetary spacecraft, including solar sails, can even be performed
using planning algorithms [438].

Designing better drugs Planning algorithms are even impacting fields as far
away from robotics as computational biology. Two major problems are protein
folding and drug design. In both cases, scientists attempt to explain behaviors
in organisms by the way large organic molecules interact. Such molecules are
generally flexible. Drug molecules are small (see Figure 1.14), and proteins usually
have thousands of atoms. The docking problem involves determining whether a
flexible molecule can insert itself into a protein cavity, as shown in Figure [1.14,
while satisfying other constraints, such as maintaining low energy. Once geometric
models are applied to molecules, the problem looks very similar to the assembly
problem in Figure 1.3 and can be solved by motion planning algorithms. See
Section 7.5 and the literature at the end of Chapter [7.

Perspective Planning algorithms have been applied to many more problems
than those shown here. In some cases, the work has progressed from modeling, to
theoretical algorithms, to practical software that is used in industry. In other cases,
substantial research remains to bring planning methods to their full potential. The
future holds tremendous excitement for those who participate in the development
and application of planning algorithms.
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Figure 1.12: (a) Having a little fun with differential constraints. An obstacle-
avoiding path is shown for a car that must move forward and can only turn left.
Could you have found such a solution on your own? This is an easy problem for
several planning algorithms. (b) This gigantic truck was designed to transport
portions of the Airbus A380 across France. Kineo CAM developed nonholonomic
planning software that plans routes through villages that avoid obstacles and sat-
isfy differential constraints imposed by 20 steering axles. Jean-Paul Laumond, a
pioneer of nonholonomic planning, is also pictured.

Figure 1.13: Reckless driving: (a) Using a planning algorithm to drive a car quickly
through an obstacle course [201]. (b) A contender developed by the Red Team
from Carnegie Mellon University in the DARPA Grand Challenge for autonomous
vehicles driving at high speeds over rugged terrain (courtesy of the Red Team).
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Nicotine

Figure 1.14: On the left, several familiar drugs are pictured as ball-and-stick
models (courtesy of the New York University MathMol Library [736]). On the
right, 3D models of protein-ligand docking are shown from the AutoDock software
package (courtesy of the Scripps Research Institute).

1.3 Basic Ingredients of Planning

Although the subject of this book spans a broad class of models and problems,
there are several basic ingredients that arise throughout virtually all of the topics
covered as part of planning.

State Planning problems involve a state space that captures all possible situa-
tions that could arise. The state could, for example, represent the position and
orientation of a robot, the locations of tiles in a puzzle, or the position and ve-
locity of a helicopter. Both discrete (finite, or countably infinite) and continuous
(uncountably infinite) state spaces will be allowed. One recurring theme is that
the state space is usually represented implicitly by a planning algorithm. In most
applications, the size of the state space (in terms of number of states or combi-
natorial complexity) is much too large to be explicitly represented. Nevertheless,
the definition of the state space is an important component in the formulation of
a planning problem and in the design and analysis of algorithms that solve it.

Time All planning problems involve a sequence of decisions that must be applied
over time. Time might be explicitly modeled, as in a problem such as driving a
car as quickly as possible through an obstacle course. Alternatively, time may be
implicit, by simply reflecting the fact that actions must follow in succession, as
in the case of solving the Rubik’s cube. The particular time is unimportant, but
the proper sequence must be maintained. Another example of implicit time is a
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solution to the Piano Mover’s Problem; the solution to moving the piano may be
converted into an animation over time, but the particular speed is not specified in
the plan. As in the case of state spaces, time may be either discrete or continuous.
In the latter case, imagine that a continuum of decisions is being made by a plan.

Actions A plan generates actions that manipulate the state. The terms actions
and operators are common in artificial intelligence; in control theory and robotics,
the related terms are inputs and controls. Somewhere in the planning formulation,
it must be specified how the state changes when actions are applied. This may be
expressed as a state-valued function for the case of discrete time or as an ordinary
differential equation for continuous time. For most motion planning problems,
explicit reference to time is avoided by directly specifying a path through a con-
tinuous state space. Such paths could be obtained as the integral of differential
equations, but this is not necessary. For some problems, actions could be chosen
by nature, which interfere with the outcome and are not under the control of the
decision maker. This enables uncertainty in predictability to be introduced into
the planning problem; see Chapter[10.

Initial and goal states A planning problem usually involves starting in some
initial state and trying to arrive at a specified goal state or any state in a set of
goal states. The actions are selected in a way that tries to make this happen.

A criterion This encodes the desired outcome of a plan in terms of the state
and actions that are executed. There are generally two different kinds of planning
concerns based on the type of criterion:

1. Feasibility: Find a plan that causes arrival at a goal state, regardless of its
efficiency.

2. Optimality: Find a feasible plan that optimizes performance in some care-
fully specified manner, in addition to arriving in a goal state.

For most of the problems considered in this book, feasibility is already challenging
enough; achieving optimality is considerably harder for most problems. There-
fore, much of the focus is on finding feasible solutions to problems, as opposed
to optimal solutions. The majority of literature in robotics, control theory, and
related fields focuses on optimality, but this is not necessarily important for many
problems of interest. In many applications, it is difficult to even formulate the
right criterion to optimize. Even if a desirable criterion can be formulated, it may
be impossible to obtain a practical algorithm that computes optimal plans. In
such cases, feasible solutions are certainly preferable to having no solutions at all.
Fortunately, for many algorithms the solutions produced are not too far from opti-
mal in practice. This reduces some of the motivation for finding optimal solutions.
For problems that involve probabilistic uncertainty, however, optimization arises
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more frequently. The probabilities are often utilized to obtain the best perfor-
mance in terms of expected costs. Feasibility is often associated with performing
a worst-case analysis of uncertainties.

A plan In general, a plan imposes a specific strategy or behavior on a decision
maker. A plan may simply specify a sequence of actions to be taken; however, it
could be more complicated. If it is impossible to predict future states, then the
plan can specify actions as a function of state. In this case, regardless of the future
states, the appropriate action is determined. Using terminology from other fields,
this enables feedback or reactive plans. It might even be the case that the state
cannot be measured. In this case, the appropriate action must be determined from
whatever information is available up to the current time. This will generally be
referred to as an information state, on which the actions of a plan are conditioned.

1.4 Algorithms, Planners, and Plans

State
Machine

Y Infinite Tape
1j0(1]1{0|1/10|1 coe

Figure 1.15: According to the Church-Turing thesis, the notion of an algorithm is
equivalent to the notion of a Turing machine.

1.4.1 Algorithms

What is a planning algorithm? This is a difficult question, and a precise math-
ematical definition will not be given in this book. Instead, the general idea will
be explained, along with many examples of planning algorithms. A more basic
question is, What is an algorithm? One answer is the classical Turing machine
model, which is used to define an algorithm in theoretical computer science. A
Turing machine is a finite state machine with a special head that can read and
write along an infinite piece of tape, as depicted in Figure [1.15. The Church-
Turing thesis states that an algorithm s a Turing machine (see [464,892] for more
details). The input to the algorithm is encoded as a string of symbols (usually
a binary string) and then is written to the tape. The Turing machine reads the
string, performs computations, and then decides whether to accept or reject the
string. This version of the Turing machine only solves decision problems; however,
there are straightforward extensions that can yield other desired outputs, such as
a plan.
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Figure 1.16: (a) The boundary between machine and environment is considered as
an arbitrary line that may be drawn in many ways depending on the context. (b)
Once the boundary has been drawn, it is assumed that the machine, M, interacts
with the environment, F, through sensing and actuation.

The Turing model is reasonable for many of the algorithms in this book; how-
ever, others may not exactly fit. The trouble with using the Turing machine in
some situations is that plans often interact with the physical world. As indicated
in Figure[1.16, the boundary between the machine and the environment is an ar-
bitrary line that varies from problem to problem. Once drawn, sensors provide
information about the environment; this provides input to the machine during
execution. The machine then executes actions, which provides actuation to the
environment. The actuation may alter the environment in some way that is later
measured by sensors. Therefore, the machine and its environment are closely cou-
pled during execution. This is fundamental to robotics and many other fields in
which planning is used.

Using the Turing machine as a foundation for algorithms usually implies that
the physical world must be first carefully modeled and written on the tape before
the algorithm can make decisions. If changes occur in the world during execution
of the algorithm, then it is not clear what should happen. For example, a mobile
robot could be moving in a cluttered environment in which people are walking
around. As another example, a robot might throw an object onto a table without
being able to precisely predict how the object will come to rest. It can take
measurements of the results with sensors, but it again becomes a difficult task to
determine how much information should be explicitly modeled and written on the
tape. The on-line algorithm model is more appropriate for these kinds of problems
[512, 770, 893]; however, it still does not capture a notion of algorithms that is
broad enough for all of the topics of this book.

Processes that occur in a physical world are more complicated than the inter-
action between a state machine and a piece of tape filled with symbols. It is even
possible to simulate the tape by imagining a robot that interacts with a long row
of switches as depicted in Figure 1.17. The switches serve the same purpose as the
tape, and the robot carries a computer that can simulate the finite state machine.!

LOf course, having infinitely long tape seems impossible in the physical world. Other versions
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Figure 1.17: A robot and an infinite sequence of switches could be used to simulate
a Turing machine. Through manipulation, however, many other kinds of behavior
could be obtained that fall outside of the Turing model.

The complicated interaction allowed between a robot and its environment could
give rise to many other models of computationp Thus, the term algorithm will be
used somewhat less formally than in the theory of computation. Both planners
and plans are considered as algorithms in this book.

1.4.2 Planners

A planner simply constructs a plan and may be a machine or a human. If the
planner is a machine, it will generally be considered as a planning algorithm. In
many circumstances it is an algorithm in the strict Turing sense; however, this
is not necessary. In some cases, humans become planners by developing a plan
that works in all situations. For example, it is perfectly acceptable for a human to
design a state machine that is connected to the environment (see Section 12.3.1).
There are no additional inputs in this case because the human fulfills the role of
the algorithm. The planning model is given as input to the human, and the human
“computes” a plan.

1.4.3 Plans

Once a plan is determined, there are three ways to use it:

1. Execution: Execute it either in simulation or in a mechanical device (robot)
connected to the physical world.

2. Refinement: Refine it into a better plan.
3. Hierarchical Inclusion: Package it as an action in a higher level plan.

Each of these will be explained in succession.

of Turing machines exist in which the tape is finite but as long as necessary to process the given
input. This may be more appropriate for the discussion.

2Performing computations with mechanical systems is discussed in [817]. Computation models
over the reals are covered in [120].
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Figure 1.18: (a) A planner produces a plan that may be executed by the machine.
The planner may either be a machine itself or even a human. (b) Alternatively,
the planner may design the entire machine.

Execution A plan is usually executed by a machine. A human could alterna-
tively execute it; however, the case of machine execution is the primary focus of
this book. There are two general types of machine execution. The first is depicted
in Figure 1.18a, in which the planner produces a plan, which is encoded in some
way and given as input to the machine. In this case, the machine is considered
programmable and can accept possible plans from a planner before execution. It
will generally be assumed that once the plan is given, the machine becomes au-
tonomous and can no longer interact with the planner. Of course, this model could
be extended to allow machines to be improved over time by receiving better plans;
however, we want a strict notion of autonomy for the discussion of planning in this
book. This approach does not prohibit the updating of plans in practice; however,
this is not preferred because plans should already be designed to take into account
new information during execution.

The second type of machine execution of a plan is depicted in Figure [1.18b.
In this case, the plan produced by the planner encodes an entire machine. The
plan is a special-purpose machine that is designed to solve the specific tasks given
originally to the planner. Under this interpretation, one may be a minimalist and
design the simplest machine possible that sufficiently solves the desired tasks. If
the plan is encoded as a finite state machine, then it can sometimes be considered
as an algorithm in the Turing sense (depending on whether connecting the machine
to a tape preserves its operation).

Refinement If a plan is used for refinement, then a planner accepts it as input
and determines a new plan that is hopefully an improvement. The new plan
may take more problem aspects into account, or it may simply be more efficient.
Refinement may be applied repeatedly, to produce a sequence of improved plans,
until the final one is executed. Figure [1.19 shows a refinement approach used
in robotics. Consider, for example, moving an indoor mobile robot. The first
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Figure 1.20: In a hierarchical model, the environment of one machine may itself
contain a machine.

plan yields a collision-free path through the building. The second plan transforms
the route into one that satisfies differential constraints based on wheel motions
(recall Figure 1.11). The third plan considers how to move the robot along the
path at various speeds while satisfying momentum considerations. The fourth
plan incorporates feedback to ensure that the robot stays as close as possible to
the planned path in spite of unpredictable behavior. Further elaboration on this
approach and its trade-offs appears in Section [14.6.1.

Hierarchical inclusion Under hierarchical inclusion, a plan is incorporated as
an action in a larger plan. The original plan can be imagined as a subroutine
in the larger plan. For this to succeed, it is important for the original plan to
guarantee termination, so that the larger plan can execute more actions as needed.
Hierarchical inclusion can be performed any number of times, resulting in a rooted
tree of plans. This leads to a general model of hierarchical planning. Each vertex
in the tree is a plan. The root vertex represents the master plan. The children
of any vertex are plans that are incorporated as actions in the plan of the vertex.
There is no limit to the tree depth or number of children per vertex. In hierarchical
planning, the line between machine and environment is drawn in multiple places.
For example, the environment, E;, with respect to a machine, M7, might actually
include another machine, M,, that interacts with its environment, F>, as depicted
in Figure 1.20. Examples of hierarchical planning appear in Sections [7.3.2 and
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1.5 Organization of the Book

Here is a brief overview of the book. See also the overviews at the beginning of
Parts TI-HV.

PART 1I: Introductory Material
This provides very basic background for the rest of the book.

e Chapter [1: Introductory Material
This chapter offers some general perspective and includes some motivational
examples and applications of planning algorithms.

e Chapter 2: Discrete Planning
This chapter covers the simplest form of planning and can be considered as
a springboard for entering into the rest of the book. From here, you can
continue to Part I, or even head straight to Part TIIl Sections[2.1 and 2.2
are most important for heading into Part II. For Part III, Section 2.3 is
additionally useful.

PART 1II: Motion Planning

The main source of inspiration for the problems and algorithms covered in this
part is robotics. The methods, however, are general enough for use in other appli-
cations in other areas, such as computational biology, computer-aided design, and
computer graphics. An alternative title that more accurately reflects the kind of
planning that occurs is “Planning in Continuous State Spaces.”

e Chapter[3: Geometric Representations and Transformations
The chapter gives important background for expressing a motion planning
problem. Section 3.1 describes how to construct geometric models, and the
remaining sections indicate how to transform them. Sections (3.1 and[3.2 are
important for later chapters.

e Chapter [4: The Configuration Space
This chapter introduces concepts from topology and uses them to formu-
late the configuration space, which is the state space that arises in motion
planning. Sections 4.1} 4.2, and 4.3.1 are important for understanding most
of the material in later chapters. In addition to the previously mentioned
sections, all of Section 4.3 provides useful background for the combinatorial
methods of Chapter 6!

e Chapter [5: Sampling-Based Motion Planning

This chapter introduces motion planning algorithms that have dominated
the literature in recent years and have been applied in fields both in and
out of robotics. If you understand the basic idea that the configuration
space represents a continuous state space, most of the concepts should be
understandable. They even apply to other problems in which continuous
state spaces emerge, in addition to motion planning and robotics. Chapter
14 revisits sampling-based planning, but under differential constraints.
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e Chapter |6: Combinatorial Motion Planning
The algorithms covered in this section are sometimes called exact algorithms
because they build discrete representations without losing any information.
They are complete, which means that they must find a solution if one exists;
otherwise, they report failure. The sampling-based algorithms have been
more useful in practice, but they only achieve weaker notions of completeness.

e Chapter 7: Extensions of Basic Motion Planning
This chapter introduces many problems and algorithms that are extensions
of the methods from Chapters |5/ and 6. Most can be followed with basic un-
derstanding of the material from these chapters. Section 7.4 covers planning
for closed kinematic chains; this requires an understanding of the additional
material, from Section 4.4

e Chapter [8: Feedback Motion Planning

This is a transitional chapter that introduces feedback into the motion plan-
ning problem but still does not introduce differential constraints, which are
deferred until Part IV. The previous chapters of Part I/ focused on comput-
ing open-loop plans, which means that any errors that might occur during ex-
ecution of the plan are ignored, yet the plan will be executed as planned. Us-
ing feedback yields a closed-loop plan that responds to unpredictable events
during execution.

PART [III: Decision-Theoretic Planning

An alternative title to Part III'is “Planning Under Uncertainty.” Most of Part ITI
addresses discrete state spaces, which can be studied immediately following Part
1. However, some sections cover extensions to continuous spaces; to understand
these parts, it will be helpful to have read some of Part II.

e Chapter |9: Basic Decision Theory
The main idea in this chapter is to design the best decision for a decision
maker that is confronted with interference from other decision makers. The
others may be true opponents in a game or may be fictitious in order to model
uncertainties. The chapter focuses on making a decision in a single step and
provides a building block for Part because planning under uncertainty
can be considered as multi-step decision making.

e Chapter 10: Sequential Decision Theory
This chapter takes the concepts from Chapter|9 and extends them by chain-
ing together a sequence of basic decision-making problems. Dynamic pro-
gramming concepts from Section 2.3 become important here. For all of the
problems in this chapter, it is assumed that the current state is always known.
All uncertainties that exist are with respect to prediction of future states, as
opposed to measuring the current state.
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e Chapter|11: Sensors and Information Spaces
The chapter extends the formulations of Chapter 10 into a framework for
planning when the current state is unknown during execution. Information
regarding the state is obtained from sensor observations and the memory of
actions that were previously applied. The information space serves a similar
purpose for problems with sensing uncertainty as the configuration space has
for motion planning.

e Chapter 12: Planning Under Sensing Uncertainty
This chapter covers several planning problems and algorithms that involve
sensing uncertainty. This includes problems such as localization, map build-
ing, pursuit-evasion, and manipulation. All of these problems are unified
under the idea of planning in information spaces, which follows from Chap-
ter [11.

PART TV: Planning Under Differential Constraints

This can be considered as a continuation of Part[II. Here there can be both global
(obstacles) and local (differential) constraints on the continuous state spaces that
arise in motion planning. Dynamical systems are also considered, which yields
state spaces that include both position and velocity information (this coincides
with the notion of a state space in control theory or a phase space in physics and
differential equations).

e Chapter [13: Differential Models
This chapter serves as an introduction to Part IV by introducing numerous
models that involve differential constraints. This includes constraints that
arise from wheels rolling as well as some that arise from the dynamics of
mechanical systems.

e Chapter Sampling-Based Planning Under Differential Con-
straints
Algorithms for solving planning problems under the models of Chapter [13
are presented. Many algorithms are extensions of methods from Chapter
5L All methods are sampling-based because very little can be accomplished
with combinatorial techniques in the context of differential constraints.

e Chapter [15: System Theory and Analytical Techniques
This chapter provides an overview of the concepts and tools developed mainly
in control theory literature. They are complementary to the algorithms
of Chapter [14 and often provide important insights or components in the
development of planning algorithms under differential constraints.



Chapter 2

Discrete Planning

This chapter provides introductory concepts that serve as an entry point into
other parts of the book. The planning problems considered here are the simplest
to describe because the state space will be finite in most cases. When it is not
finite, it will at least be countably infinite (i.e., a unique integer may be assigned
to every state). Therefore, no geometric models or differential equations will be
needed to characterize the discrete planning problems. Furthermore, no forms
of uncertainty will be considered, which avoids complications such as probability
theory. All models are completely known and predictable.

There are three main parts to this chapter. Sections 2.1 and [2.2 define and
present search methods for feasible planning, in which the only concern is to reach
a goal state. The search methods will be used throughout the book in numerous
other contexts, including motion planning in continuous state spaces. Following
feasible planning, Section 2.3 addresses the problem of optimal planning. The
principle of optimality, or the dynamic programming principle, [86] provides a key
insight that greatly reduces the computation effort in many planning algorithms.
The value-iteration method of dynamic programming is the main focus of Section
The relationship between Dijkstra’s algorithm and value iteration is also
discussed. Finally, Sections 2.4 and 2.5 describe logic-based representations of
planning and methods that exploit these representations to make the problem
easier to solve; material from these sections is not needed in later chapters.

Although this chapter addresses a form of planning, it encompasses what is
sometimes referred to as problem solving. Throughout the history of artificial
intelligence research, the distinction between problem solving [737] and planning
has been rather elusive. The widely used textbook by Russell and Norvig [841]
provides a representative, modern survey of the field of artificial intelligence. Two
of its six main parts are termed “problem-solving” and “planning”; however, their
definitions are quite similar. The problem-solving part begins by stating, “Problem
solving agents decide what to do by finding sequences of actions that lead to
desirable states” ([841], p. 59). The planning part begins with, “The task of
coming up with a sequence of actions that will achieve a goal is called planning”
([841], p. 375). Also, the STRIPS system [339] is widely considered as a seminal
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planning algorithm, and the “PS” part of its name stands for “Problem Solver.”
Thus, problem solving and planning appear to be synonymous. Perhaps the term
“planning” carries connotations of future time, whereas “problem solving” sounds
somewhat more general. A problem-solving task might be to take evidence from a
crime scene and piece together the actions taken by suspects. It might seem odd
to call this a “plan” because it occurred in the past.

Since it is difficult to make clear distinctions between problem solving and
planning, we will simply refer to both as planning. This also helps to keep with
the theme of this book. Note, however, that some of the concepts apply to a
broader set of problems than what is often meant by planning.

2.1 Introduction to Discrete Feasible Planning

2.1.1 Problem Formulation

The discrete feasible planning model will be defined using state-space models,
which will appear repeatedly throughout this book. Most of these will be natural
extensions of the model presented in this section. The basic idea is that each
distinct situation for the world is called a state, denoted by x, and the set of all
possible states is called a state space, X. For discrete planning, it will be important
that this set is countable; in most cases it will be finite. In a given application,
the state space should be defined carefully so that irrelevant information is not
encoded into a state (e.g., a planning problem that involves moving a robot in
France should not encode information about whether certain light bulbs are on in
China). The inclusion of irrelevant information can easily convert a problem that
is amenable to efficient algorithmic solutions into one that is intractable. On the
other hand, it is important that X is large enough to include all information that
is relevant to solve the task.

The world may be transformed through the application of actions that are
chosen by the planner. Each action, u, when applied from the current state,
x, produces a new state, x’, as specified by a state transition function, f. It is
convenient to use f to express a state transition equation,

¥ = f(x,u). (2.1)

Let U(z) denote the action space for each state x, which represents the set of
all actions that could be applied from z. For distinct x,2" € X, U(x) and U(z')
are not necessarily disjoint; the same action may be applicable in multiple states.
Therefore, it is convenient to define the set U of all possible actions over all states:

U=JU(). (2.2)

As part of the planning problem, a set X C X of goal states is defined. The
task of a planning algorithm is to find a finite sequence of actions that when ap-
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plied, transforms the initial state x; to some state in X. The model is summarized
as:

Formulation 2.1 (Discrete Feasible Planning)
1. A nonempty state space X, which is a finite or countably infinite set of states.
2. For each state = € X, a finite action space U(z).

3. A state transition function f that produces a state f(z,u) € X for every
r € X and u € U(x). The state transition equation is derived from f as

¥ = f(x,u).
4. An nitial state x; € X.
5. A goal set Xg C X.

It is often convenient to express Formulation 2.1 as a directed state transition
graph. The set of vertices is the state space X. A directed edge from =z € X to
2’ € X exists in the graph if and only if there exists an action u € U(x) such that
' = f(z,u). The initial state and goal set are designated as special vertices in
the graph, which completes the representation of Formulation 2.1 in graph form.

2.1.2 Examples of Discrete Planning

Example 2.1 (Moving on a 2D Grid) Suppose that a robot moves on a grid
in which each grid point has integer coordinates of the form (7,7). The robot
takes discrete steps in one of four directions (up, down, left, right), each of which
increments or decrements one coordinate. The motions and corresponding state
transition graph are shown in Figure|2.1, which can be imagined as stepping from
tile to tile on an infinite tile floor.

This will be expressed using Formulation 2.1. Let X be the set of all integer
pairs of the form (4, 7), in which i,j € Z (Z denotes the set of all integers). Let
U = {(0,1),(0,-1),(1,0),(—1,0)}. Let U(x) = U for all z € X. The state
transition equation is f(x,u) = « + u, in which € X and u € U are treated as
two-dimensional vectors for the purpose of addition. For example, if z = (3,4)
and v = (0, 1), then f(z,u) = (3,5). Suppose for convenience that the initial state
is z; = (0,0). Many interesting goal sets are possible. Suppose, for example, that
X¢ = {(100,100)}. It is easy to find a sequence of inputs that transforms the
state from (0,0) to (100, 100).

The problem can be made more interesting by shading in some of the square
tiles to represent obstacles that the robot must avoid, as shown in Figure 2.2l In
this case, any tile that is shaded has its corresponding vertex and associated edges
deleted from the state transition graph. An outer boundary can be made to fence
in a bounded region so that X becomes finite. Very complicated labyrinths can
be constructed. [ |
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Figure 2.1: The state transition graph for an example problem that involves walk-
ing around on an infinite tile floor.

Example 2.2 (Rubik’s Cube Puzzle) Many puzzles can be expressed as dis-
crete planning problems. For example, the Rubik’s cube is a puzzle that looks like
an array of 3 x 3 x 3 little cubes, which together form a larger cube as shown in
Figure/1.1a (Section/1.2)). Each face of the larger cube is painted one of six colors.
An action may be applied to the cube by rotating a 3 x 3 sheet of cubes by 90
degrees. After applying many actions to the Rubik’s cube, each face will generally
be a jumble of colors. The state space is the set of configurations for the cube
(the orientation of the entire cube is irrelevant). For each state there are 12 pos-
sible actions. For some arbitrarily chosen configuration of the Rubik’s cube, the
planning task is to find a sequence of actions that returns it to the configuration

Figure 2.2: Interesting planning problems that involve exploring a labyrinth can
be made by shading in tiles.
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in which each one of its six faces is a single color. |

It is important to note that a planning problem is usually specified without
explicitly representing the entire state transition graph. Instead, it is revealed
incrementally in the planning process. In Example [2.1, very little information
actually needs to be given to specify a graph that is infinite in size. If a planning
problem is given as input to an algorithm, close attention must be paid to the
encoding when performing a complexity analysis. For a problem in which X
is infinite, the input length must still be finite. For some interesting classes of
problems it may be possible to compactly specify a model that is equivalent to
Formulation 2.1. Such representation issues have been the basis of much research
in artificial intelligence over the past decades as different representation logics have
been proposed; see Section [2.4 and [384]. In a sense, these representations can be
viewed as input compression schemes.

Readers experienced in computer engineering might recognize that when X is
finite, Formulation 2.1 appears almost identical to the definition of a finite state
machine or Mealy/Moore machines. Relating the two models, the actions can
be interpreted as inputs to the state machine, and the output of the machine
simply reports its state. Therefore, the feasible planning problem (if X is finite)
may be interpreted as determining whether there exists a sequence of inputs that
makes a finite state machine eventually report a desired output. From a planning
perspective, it is assumed that the planning algorithm has a complete specification
of the machine transitions and is able to read its current state at any time.

Readers experienced with theoretical computer science may observe similar
connections to a deterministic finite automaton (DFA), which is a special kind of
finite state machine that reads an input string and makes a decision about whether
to accept or reject the string. The input string is just a finite sequence of inputs,
in the same sense as for a finite state machine. A DFA definition includes a set of
accept states, which in the planning context can be renamed to the goal set. This
makes the feasible planning problem (if X is finite) equivalent to determining
whether there exists an input string that is accepted by a given DFA. Usually, a
language is associated with a DFA| which is the set of all strings it accepts. DFAs
are important in the theory of computation because their languages correspond
precisely to regular expressions. The planning problem amounts to determining
whether the empty language is associated with the DFA.

Thus, there are several ways to represent and interpret the discrete feasible
planning problem that sometimes lead to a very compact, implicit encoding of the
problem. This issue will be revisited in Section [2.4. Until then, basic planning
algorithms are introduced in Section 2.2, and discrete optimal planning is covered
in Section 2.3.
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(a) (b)

Figure 2.3: (a) Many search algorithms focus too much on one direction, which
may prevent them from being systematic on infinite graphs. (b) If, for example,
the search carefully expands in wavefronts, then it becomes systematic. The re-
quirement to be systematic is that, in the limit, as the number of iterations tends
to infinity, all reachable vertices are reached.

2.2 Searching for Feasible Plans

The methods presented in this section are just graph search algorithms, but with
the understanding that the state transition graph is revealed incrementally through
the application of actions, instead of being fully specified in advance. The presenta-
tion in this section can therefore be considered as visiting graph search algorithms
from a planning perspective. An important requirement for these or any search
algorithms is to be systematic. If the graph is finite, this means that the algorithm
will visit every reachable state, which enables it to correctly declare in finite time
whether or not a solution exists. To be systematic, the algorithm should keep track
of states already visited; otherwise, the search may run forever by cycling through
the same states. Ensuring that no redundant exploration occurs is sufficient to
make the search systematic.

If the graph is infinite, then we are willing to tolerate a weaker definition for
being systematic. If a solution exists, then the search algorithm still must report it
in finite time; however, if a solution does not exist, it is acceptable for the algorithm
to search forever. This systematic requirement is achieved by ensuring that, in the
limit, as the number of search iterations tends to infinity, every reachable vertex
in the graph is explored. Since the number of vertices is assumed to be countable,
this must always be possible.

As an example of this requirement, consider Example 2.1/ on an infinite tile
floor with no obstacles. If the search algorithm explores in only one direction, as
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FORWARD_SEARCH
Q.Insert(xry) and mark z; as visited

while () not empty do
x — Q.GetFirst()
if r € X¢
return SUCCESS
forall u € U(x)
v — f(z,u)
if 2/ not visited
Mark z’ as visited
Q.Insert(z’)
else

Resolve duplicate x’
13 return FAILURE

O© 00 1 O UL W N

—_
)

—_
[\

Figure 2.4: A general template for forward search.

depicted in Figure 2.3a, then in the limit most of the space will be left uncovered,
even though no states are revisited. If instead the search proceeds outward from
the origin in wavefronts, as depicted in Figure 2.3b, then it may be systematic. In
practice, each search algorithm has to be carefully analyzed. A search algorithm
could expand in multiple directions, or even in wavefronts, but still not be system-
atic. If the graph is finite, then it is much simpler: Virtually any search algorithm
is systematic, provided that it marks visited states to avoid revisiting the same
states indefinitely.

2.2.1 General Forward Search

Figure 2.4 gives a general template of search algorithms, expressed using the state-
space representation. At any point during the search, there will be three kinds of
states:

1. Unvisited: States that have not been visited yet. Initially, this is every
state except .

2. Dead: States that have been visited, and for which every possible next state
has also been visited. A next state of x is a state x’ for which there exists a
u € U(z) such that ' = f(z,u). In a sense, these states are dead because
there is nothing more that they can contribute to the search; there are no
new leads that could help in finding a feasible plan. Section 2.3.3 discusses
a variant in which dead states can become alive again in an effort to obtain
optimal plans.

3. Alive: States that have been encountered and possibly some adjacent states
that have not been visited. These are considered alive. Initially, the only
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alive state is zj.

The set of alive states is stored in a priority queue, @), for which a priority
function must be specified. The only significant difference between various search
algorithms is the particular function used to sort (). Many variations will be
described later, but for the time being, it might be helpful to pick one. Therefore,
assume for now that @ is a common FIFO (First-In First-Out) queue; whichever
state has been waiting the longest will be chosen when Q.GetFirst() is called. The
rest of the general search algorithm is quite simple. Initially, () contains the initial
state 7. A while loop is then executed, which terminates only when @ is empty.
This will only occur when the entire graph has been explored without finding
any goal states, which results in a FAILURE (unless the reachable portion of X
is infinite, in which case the algorithm should never terminate). In each while
iteration, the highest ranked element, x, of @) is removed. If x lies in X, then it
reports SUCCESS and terminates; otherwise, the algorithm tries applying every
possible action, u € U(z). For each next state, ' = f(z,u), it must determine
whether 2’ is being encountered for the first time. If it is unvisited, then it is
inserted into (); otherwise, there is no need to consider it because it must be
either dead or already in Q).

The algorithm description in Figure 2.4 omits several details that often become
important in practice. For example, how efficient is the test to determine whether
x € X¢g in line 47 This depends, of course, on the size of the state space and
on the particular representations chosen for x and Xgs. At this level, we do not
specify a particular method because the representations are not given.

One important detail is that the existing algorithm only indicates whether
a solution exists, but does not seem to produce a plan, which is a sequence of
actions that achieves the goal. This can be fixed by inserting a line after line
7 that associates with z’ its parent, x. If this is performed each time, one can
simply trace the pointers from the final state to the initial state to recover the
plan. For convenience, one might also store which action was taken, in addition
to the pointer from z’ to x.

Lines 8 and 9 are conceptually simple, but how can one tell whether 2’ has
been visited? For some problems the state transition graph might actually be a
tree, which means that there are no repeated states. Although this does not occur
frequently, it is wonderful when it does because there is no need to check whether
states have been visited. If the states in X all lie on a grid, one can simply make
a lookup table that can be accessed in constant time to determine whether a state
has been visited. In general, however, it might be quite difficult because the state
2’ must be compared with every other state in () and with all of the dead states.
If the representation of each state is long, as is sometimes the case, this will be
very costly. A good hashing scheme or another clever data structure can greatly
alleviate this cost, but in many applications the computation time will remain
high. One alternative is to simply allow repeated states, but this could lead to an
increase in computational cost that far outweighs the benefits. Even if the graph
is very small, search algorithms could run in time exponential in the size of the
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state transition graph, or the search may not terminate at all, even if the graph is
finite.

One final detail is that some search algorithms will require a cost to be com-
puted and associated with every state. If the same state is reached multiple times,
the cost may have to be updated, which is performed in line 12, if the particular
search algorithm requires it. Such costs may be used in some way to sort the
priority queue, or they may enable the recovery of the plan on completion of the
algorithm. Instead of storing pointers, as mentioned previously, the optimal cost
to return to the initial state could be stored with each state. This cost alone is suf-
ficient to determine the action sequence that leads to any visited state. Starting at
a visited state, the path back to x; can be obtained by traversing the state transi-
tion graph backward in a way that decreases the cost as quickly as possible in each
step. For this to succeed, the costs must have a certain monotonicity property,
which is obtained by Dijkstra’s algorithm and A* search, and will be introduced
in Section 2.2.2. More generally, the costs must form a navigation function, which
is considered in Section 8.2.2 as feedback is incorporated into discrete planning.

2.2.2 Particular Forward Search Methods

This section presents several search algorithms, each of which constructs a search
tree. Each search algorithm is a special case of the algorithm in Figure ob-
tained by defining a different sorting function for (). Most of these are just classical
graph search algorithms [245].

Breadth first The method given in Section|2.2.1/specifies ) as a First-In First-
Out (FIFO) queue, which selects states using the first-come, first-serve principle.
This causes the search frontier to grow uniformly and is therefore referred to as
breadth-first search. All plans that have k steps are exhausted before plans with
k + 1 steps are investigated. Therefore, breadth first guarantees that the first
solution found will use the smallest number of steps. On detection that a state
has been revisited, there is no work to do in line 12. Since the search progresses in
a series of wavefronts, breadth-first search is systematic. In fact, it even remains
systematic if it does not keep track of repeated states (however, it will waste time
considering irrelevant cycles).

The asymptotic running time of breadth-first search is O(|V'| + | E|), in which
|V| and |E| are the numbers of vertices and edges, respectively, in the state tran-
sition graph (recall, however, that the graph is usually not the input; for example,
the input may be the rules of the Rubik’s cube). This assumes that all basic
operations, such as determining whether a state has been visited, are performed
in constant time. In practice, these operations will typically require more time
and must be counted as part of the algorithm’s complexity. The running time
can be expressed in terms of the other representations. Recall that |V| = |X| is
the number of states. If the same actions U are available from every state, then
|E| = |U||X]. If the action sets U(z;) and U(zy) are pairwise disjoint for any
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x1, %9 € X, then |E| = |U|.

Depth first By making @) a stack (Last-In, First-Out; or LIFO), aggressive ex-
ploration of the state transition graph occurs, as opposed to the uniform expansion
of breadth-first search. The resulting variant is called depth-first search because
the search dives quickly into the graph. The preference is toward investigating
longer plans very early. Although this aggressive behavior might seem desirable,
note that the particular choice of longer plans is arbitrary. Actions are applied in
the forall loop in whatever order they happen to be defined. Once again, if a state
is revisited, there is no work to do in line 12. Depth-first search is systematic for
any finite X but not for an infinite X because it could behave like Figure|2.3a. The
search could easily focus on one “direction” and completely miss large portions of
the search space as the number of iterations tends to infinity. The running time
of depth first search is also O(|V| + |E]).

Dijkstra’s algorithm Up to this point, there has been no reason to prefer one
action over any other in the search. Section 2.3 will formalize optimal discrete
planning and will present several algorithms that find optimal plans. Before go-
ing into that, we present a systematic search algorithm that finds optimal plans
because it is also useful for finding feasible plans. The result is the well-known
Dijkstra’s algorithm for finding single-source shortest paths in a graph [275], which
is a special form of dynamic programming. More general dynamic programming
computations appear in Section 2.3 and throughout the book.

Suppose that every edge, e € E, in the graph representation of a discrete plan-
ning problem has an associated nonnegative cost [(e), which is the cost to apply
the action. The cost [(e) could be written using the state-space representation as
[(x,u), indicating that it costs [(x,u) to apply action u from state x. The total
cost of a plan is just the sum of the edge costs over the path from the initial state
to a goal state.

The priority queue, @, will be sorted according to a function C': X — [0, 00
called the cost-to-come. For each state z, the value C*(z) is called the optimal'
cost-to-come from the initial state x;. This optimal cost is obtained by summing
edge costs, I(e), over all possible paths from z; to z and using the path that
produces the least cumulative cost. If the cost is not known to be optimal, then
it is written as C'(x).

The cost-to-come is computed incrementally during the execution of the search
algorithm in Figure[2.4. Initially, C*(x;) = 0. Each time the state 2’ is generated,
a cost is computed as C(z') = C*(x) + l(e), in which e is the edge from z to '’
(equivalently, we may write C'(z') = C*(z) + l(z,u)). Here, C(z’) represents the
best cost-to-come that is known so far, but we do not write C* because it is not
yet known whether x” was reached optimally. Due to this, some work is required in
line 12. If 2’ already exists in @, then it is possible that the newly discovered path

LAs in optimization literature, we will use * to mean optimal.
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to x’ is more efficient. If so, then the cost-to-come value C'(z’) must be lowered
for 2/, and @ must be reordered accordingly.

When does C(z) finally become C*(z) for some state 27 Once z is removed
from @ using Q).Get Flirst(), the state becomes dead, and it is known that x cannot
be reached with a lower cost. This can be argued by induction. For the initial
state, C*(zy) is known, and this serves as the base case. Now assume that every
dead state has its optimal cost-to-come correctly determined. This means that
their cost-to-come values can no longer change. For the first element, z, of ), the
value must be optimal because any path that has a lower total cost would have
to travel through another state in (), but these states already have higher costs.
All paths that pass only through dead states were already considered in producing
C(z). Once all edges leaving = are explored, then x can be declared as dead,
and the induction continues. This is not enough detail to constitute a proof of
optimality; more arguments appear in Section 2.3.3/and in [245]. The running time
is O(|V|1g|V|+ |E|), in which |V| and |E| are the numbers of edges and vertices,
respectively, in the graph representation of the discrete planning problem. This
assumes that the priority queue is implemented with a Fibonacci heap, and that
all other operations, such as determining whether a state has been visited, are
performed in constant time. If other data structures are used to implement the
priority queue, then higher running times may be obtained.

A-star The A* (pronounced “ay star”) search algorithm is an extension of Di-
jkstra’s algorithm that tries to reduce the total number of states explored by
incorporating a heuristic estimate of the cost to get to the goal from a given state.
Let C(z) denote the cost-to-come from z; to z, and let G(x) denote the cost-to-go
from x to some state in Xg. It is convenient that C*(z) can be computed in-
crementally by dynamic programming; however, there is no way to know the true
optimal cost-to-go, G*, in advance. Fortunately, in many applications it is possible
to construct a reasonable underestimate of this cost. As an example of a typical
underestimate, consider planning in the labyrinth depicted in Figure 2.2, Suppose
that the cost is the total number of steps in the plan. If one state has coordinates
(7,7) and another has (7', j/), then |i’ —i| 4 |j’ — j| is an underestimate because this
is the length of a straightforward plan that ignores obstacles. Once obstacles are
included, the cost can only increase as the robot tries to get around them (which
may not even be possible). Of course, zero could also serve as an underestimate,
but that would not provide any helpful information to the algorithm. The aim is
to compute an estimate that is as close as possible to the optimal cost-to-go and
is also guaranteed to be no greater. Let G* (x) denote such an estimate.

The A* search algorithm works in exactly the same way as Dijkstra’s algorithm.
The only difference is the function used to sort ). In the A* algorithm, the sum
C* (') + G*(a') is used, implying that the priority queue is sorted by estimates of
the optimal cost from x; to X¢. If G*(z) is an underestimate of the true optimal
cost-to-go for all x € X, the A* algorithm is guaranteed to find optimal plans
339, 779]. As G* becomes closer to G*, fewer vertices tend to be explored in
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Figure 2.5: Here is a troublesome example for best-first search. Imagine trying to
reach a state that is directly below the spiral tube. If the initial state starts inside
of the opening at the top of the tube, the search will progress around the spiral
instead of leaving the tube and heading straight for the goal.

comparison with Dijkstra’s algorithm. This would always seem advantageous, but
in some problems it is difficult or impossible to find a heuristic that is both efficient
to evaluate and provides good search guidance. Note that when G*(x) = 0 for all
x € X, then A* degenerates to Dijkstra’s algorithm. In any case, the search will
always be systematic.

Best first For best-first search, the priority queue is sorted according to an
estimate of the optimal cost-to-go. The solutions obtained in this way are not
necessarily optimal; therefore, it does not matter whether the estimate exceeds
the true optimal cost-to-go, which was important to maintain optimality for A*
search. Although optimal solutions are not found, in many cases, far fewer vertices
are explored, which results in much faster running times. There is no guarantee,
however, that this will happen. The worst-case performance of best-first search is
worse than that of A* search and dynamic programming. The algorithm is often
too greedy because it prefers states that “look good” very early in the search.
Sometimes the price must be paid for being greedy! Figure 2.5 shows a contrived
example in which the planning problem involves taking small steps in a 3D world.
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For any specified number, k, of steps, it is easy to construct a spiral example that
wastes at least k steps in comparison to Dijkstra’s algorithm. Note that best-first
search is not systematic.

Iterative deepening The iterative deepening approach is usually preferable if
the search tree has a large branching factor (i.e., there are many more vertices in
the next level than in the current level). This could occur if there are many actions
per state and only a few states are revisited. The idea is to use depth-first search
and find all states that are distance ¢ or less from z;. If the goal is not found,
then the previous work is discarded, and depth first is applied to find all states
of distance ¢ + 1 or less from z;. This generally iterates from ¢ = 1 and proceeds
indefinitely until the goal is found. Iterative deepening can be viewed as a way of
converting depth-first search into a systematic search method. The motivation for
discarding the work of previous iterations is that the number of states reached for
i+ 1 is expected to far exceed (e.g., by a factor of 10) the number reached for i.
Therefore, once the commitment has been made to reach level 7 + 1, the cost of
all previous iterations is negligible.

The iterative deepening method has better worst-case performance than breadth-
first search for many problems. Furthermore, the space requirements are reduced
because the queue in breadth-first search is usually much larger than for depth-
first search. If the nearest goal state is i steps from x, breadth-first search in
the worst case might reach nearly all states of distance i + 1 before terminating
successfully. This occurs each time a state x ¢ X of distance ¢ from x; is reached
because all new states that can be reached in one step are placed onto ). The
A* idea can be combined with iterative depending to yield IDA*, in which 7 is
replaced by C*(2') + G*(«/). In each iteration of IDA*, the allowed total cost
gradually increases [779)].

2.2.3 Other General Search Schemes

This section covers two other general templates for search algorithms. The first
one is simply a “backward” version of the tree search algorithm in Figure2.4. The
second one is a bidirectional approach that grows two search trees, one from the
initial state and one from a goal state.

Backward search Backward versions of any of the forward search algorithms of
Section 2.2.2 can be made. For example, a backward version of Dijkstra’s algorithm
can be made by starting from x¢. To create backward search algorithms, suppose
that there is a single goal state, x¢. For many planning problems, it might be the
case that the branching factor is large when starting from x;. In this case, it might
be more efficient to start the search at a goal state and work backward until the
initial state is encountered. A general template for this approach is given in Figure
2.6l For forward search, recall that an action v € U(z) is applied from z € X to
obtain a new state, ' = f(z,u). For backward search, a frequent computation
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will be to determine for some ', the preceding state x € X, and action u € U(x)
such that 2’ = f(z,u). The template in Figure 2.6 can be extended to handle a
goal region, X, by inserting all x¢ € X into ) in line 1 and marking them as
visited.

For most problems, it may be preferable to precompute a representation of the
state transition function, f, that is “backward” to be consistent with the search
algorithm. Some convenient notation will now be constructed for the backward
version of f. Let U™ = {(x,u) € X xU |z € X,u € U(x)}, which represents the
set of all state-action pairs and can also be considered as the domain of f. Imagine
from a given state 2’ € X, the set of all (x,u) € U~! that map to 2’ using f. This
can be considered as a backward action space, defined formally for any ' € X as

U N2)={(z,u) e U | 2" = f(x,u)}. (2.3)

For convenience, let u™! denote a state-action pair (z,u) that belongs to some
U~'(2). From any u~! € U~!(z’), there is a unique x € X. Thus, let f~! denote
a backward state transition function that yields z from 2’ and v=! € U~1(2/). This
defines a backward state transition equation, x = f~1(2’,u™!), which looks very
similar to the forward version, ' = f(z,u).

The interpretation of f~! is easy to capture in terms of the state transition
graph: reverse the direction of every edge. This makes finding a plan in the
reversed graph using backward search equivalent to finding one in the original
graph using forward search. The backward state transition function is the variant
of f that is obtained after reversing all of the edges. Each u~! is a reversed edge.
Since there is a perfect symmetry with respect to the forward search of Section
2.2.1} any of the search algorithm variants from Section 2.2.2 can be adapted to
the template in Figure 2.6 provided that f~! has been defined.

Bidirectional search Now that forward and backward search have been cov-
ered, the next reasonable idea is to conduct a bidirectional search. The general
search template given in Figure 2.7 can be considered as a combination of the two
in Figures[2.4 and [2.6l One tree is grown from the initial state, and the other
is grown from the goal state (assume again that X is a singleton, {zg}). The
search terminates with success when the two trees meet. Failure occurs if either
priority queue has been exhausted. For many problems, bidirectional search can
dramatically reduce the amount of required exploration. There are Dijkstra and
A* variants of bidirectional search, which lead to optimal solutions. For best-
first and other variants, it may be challenging to ensure that the two trees meet
quickly. They might come very close to each other and then fail to connect. Addi-
tional heuristics may help in some settings to guide the trees into each other. One
can even extend this framework to allow any number of search trees. This may
be desirable in some applications, but connecting the trees becomes even more
complicated and expensive.
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BACKWARD_SEARCH
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Q.Insert(rg) and mark zg as visited
while () not empty do
' — Q.GetFirst()
if v = xTr
return SUCCESS
forall u=!t € U (z)
v fH (2 ut)
if  not visited
Mark x as visited
Q.Insert(z)
else
Resolve duplicate x
return FAILURE

Figure 2.6: A general template for backward search.

2.2.4 A Unified View of the Search Methods

It is convenient to summarize the behavior of all search methods in terms of
several basic steps. Variations of these steps will appear later for more complicated
planning problems. For example, in Section 5.4, a large family of sampling-based
motion planning algorithms can be viewed as an extension of the steps presented
here. The extension in this case is made from a discrete state space to a continuous
state space (called the configuration space). Each method incrementally constructs
a search graph, G(V, E), which is the subgraph of the state transition graph that
has been explored so far.

All of the planning methods from this section followed the same basic template:

1. Initialization: Let the search graph, G(V, E), be initialized with E empty

and V' containing some starting states. For forward search, V' = {z}; for
backward search, V' = {zg}. If bidirectional search is used, then V =
{z1,xc}. Tt is possible to grow more than two trees and merge them during
the search process. In this case, more states can be initialized in V. The
search graph will incrementally grow to reveal more and more of the state
transition graph.

Select Vertex: Choose a vertex n.,, € V for expansion; this is usually
accomplished by maintaining a priority queue. Let z., denote the state
associated with ney,.

. Apply an Action: In either a forward or backward direction, a new state,

Tpew, is obtained. This may arise from e, = f(x,u) for some u € U(z)
(forward) or = f(Zpew,u) for some u € U(Zpew) (backward).
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BIDIRECTIONAL_SEARCH

Q.Insert(xry) and mark z; as visited
Qq-Insert(rg) and mark z¢ as visited

3 while Q; not empty and ()¢ not empty do
4 if Q7 not empty

5 x «— Qr.GetFirst()

6 ifr=xgo0rzeQqg
7

8

N —

return SUCCESS
forall u € U(x)

9 ' — f(x,u)

10 if 2’ not visited

11 Mark 2’ as visited
12 Q. Insert(z’)

13 else

14 Resolve duplicate x’
15 if Q¢ not empty

16 ' — Qg.GetFirst()

17 if o/ =z or 2/ € Q;

18 return SUCCESS

19 forall u=! € U~(a')

20 r— [ (2 ut)

21 if x not visited

22 Mark x as visited
23 Qq-Insert(x)

24 else

25 Resolve duplicate x

26 return FAILURE

Figure 2.7: A general template for bidirectional search.
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4. Insert a Directed Edge into the Graph: If certain algorithm-specific
tests are passed, then generate an edge from x to x,., for the forward case,
or an edge from x,., to x for the backward case. If x,., is not yet in V, it
will be inserted into Vﬁ

5. Check for Solution: Determine whether G encodes a path from z; to x¢.
If there is a single search tree, then this is trivial. If there are two or more
search trees, then this step could be expensive.

6. Return to Step 2: Iterate unless a solution has been found or an early
termination condition is satisfied, in which case the algorithm reports failure.

Note that in this summary, several iterations may have to be made to generate
one iteration in the previous formulations. The forward search algorithm in Figure
2.4/tries all actions for the first element of ). If there are k actions, this corresponds
to k iterations in the template above.

2.3 Discrete Optimal Planning

This section extends Formulation 2.1 to allow optimal planning problems to be
defined. Rather than being satisfied with any sequence of actions that leads to the
goal set, suppose we would like a solution that optimizes some criterion, such as
time, distance, or energy consumed. Three important extensions will be made: 1)
A stage index will be used to conveniently indicate the current plan step; 2) a cost
functional will be introduced, which behaves like a taxi meter by indicating how
much cost accumulates during the plan execution; and 3) a termination action will
be introduced, which intuitively indicates when it is time to stop the plan and fix
the total cost.

The presentation involves three phases. First, the problem of finding optimal
paths of a fixed length is covered in Section [2.3.1. The approach, called value
iteration, involves iteratively computing optimal cost-to-go functions over the state
space. Although this case is not very useful by itself, it is much easier to understand
than the general case of variable-length plans. Once the concepts from this section
are understood, their extension to variable-length plans will be much clearer and
is covered in Section 2.3.2. Finally, Section [2.3.3 explains the close relationship
between value iteration and Dijkstra’s algorithm, which was covered in Section
2.2.1

With nearly all optimization problems, there is the arbitrary, symmetric choice
of whether to define a criterion to minimize or mazimize. If the cost is a kind of
energy or expense, then minimization seems sensible, as is typical in robotics
and control theory. If the cost is a kind of reward, as in investment planning or
in most Al books, then maximization is preferred. Although this issue remains

°In some variations, the vertex could be added without a corresponding edge. This would
start another tree in a multiple-tree approach
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throughout the book, we will choose to minimize everything. If maximization is
instead preferred, then multiplying the costs by —1 and swapping minimizations
with maximizations should suffice.

The fixed-length optimal planning formulation will be given shortly, but first
we introduce some new notation. Let mx denote a K -step plan, which is a sequence
(u1, ug, ..., ug) of K actions. If mx and z; are given, then a sequence of states,
(x1, T2, ..., Tx41), can be derived using the state transition function, f. Initially,
xr1 = xy, and each subsequent state is obtained by x4 = f(zk, ug).

The model is now given; the most important addition with respect to Formu-
lation|2.1 is L, the cost functional.

Formulation 2.2 (Discrete Fixed-Length Optimal Planning)

1. All of the components from Formulation 2.1 are inherited directly: X, U(x),
f, x1, and Xg, except here it is assumed that X is finite (some algorithms
may easily extend to the case in which X is countably infinite, but this will
not be considered here).

2. A number, K, of stages, which is the exact length of a plan (measured as the
number of actions, wuy, ug, ..., ug). States may also obtain a stage index.
For example, xp, 1 denotes the state obtained after wuy is applied.

3. Let L denote a stage-additive cost (or loss) functional, which is applied to a
K-step plan, mx. This means that the sequence (uy,...,ux) of actions and
the sequence (x1,...,xx41) of states may appear in an expression of L. For
convenience, let F' denote the final stage, ' = K + 1 (the application of ux
advances the stage to K 4 1). The cost functional is

K

k=1
The cost term I(xy, uy) yields a real value for every x € X and uy € U(xy).
The final term lp(xp) is outside of the sum and is defined as lp(zr) = 0 if
zr € Xg, and [p(xp) = 0o otherwise.

An important comment must be made regarding [r. Including [z in (2.4) is
actually unnecessary if it is agreed in advance that L will only be applied to eval-
uate plans that reach Xg. It would then be undefined for all other plans. The
algorithms to be presented shortly will also function nicely under this assumption;
however, the notation and explanation can become more cumbersome because the
action space must always be restricted to ensure that successful plans are pro-
duced. Instead of this, the domain of L is extended to include all plans, and those
that do not reach X are penalized with infinite cost so that they are eliminated
automatically in any optimization steps. At some point, the role of [ may become
confusing, and it is helpful to remember that it is just a trick to convert feasibility
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constraints into a straightforward optimization (L(7x) = oo means not feasible
and L(mg) < oo means feasible with cost L(mk)).

Now the task is to find a plan that minimizes L. To obtain a feasible planning
problem like Formulation 2.1 but restricted to K-step plans, let I(z,u) = 0. To
obtain a planning problem that requires minimizing the number of stages, let
[(x,u) = 1. The possibility also exists of having goals that are less “crisp” by
letting lp(z) vary for different x € X¢, as opposed to {g(x) = 0. This is much
more general than what was allowed with feasible planning because now states
may take on any value, as opposed to being classified as inside or outside of X¢.

2.3.1 Optimal Fixed-Length Plans

Consider computing an optimal plan under Formulation 2.2. One could naively
generate all length- K sequences of actions and select the sequence that produces
the best cost, but this would require O(|U|¥) running time (imagine K nested
loops, one for each stage), which is clearly prohibitive. Luckily, the dynamic
programming principle helps. We first say in words what will appear later in
equations. The main observation is that portions of optimal plans are themselves
optimal. It would be absurd to be able to replace a portion of an optimal plan
with a portion that produces lower total cost; this contradicts the optimality of
the original plan.

The principle of optimality leads directly to an iterative algorithm, called value
iteration,® that can solve a vast collection of optimal planning problems, including
those that involve variable-length plans, stochastic uncertainties, imperfect state
measurements, and many other complications. The idea is to iteratively compute
optimal cost-to-go (or cost-to-come) functions over the state space. In some cases,
the approach can be reduced to Dijkstra’s algorithm; however, this only occurs
under some special conditions. The wvalue-iteration algorithm will be presented
next, and Section [2.3.3| discusses its connection to Dijkstra’s algorithm.

2.3.1.1 Backward value iteration

As for the search methods, there are both forward and backward versions of the
approach. The backward case will be covered first. Even though it may appear
superficially to be easier to progress from x, it turns out that progressing backward
from X is notationally simpler. The forward case will then be covered once some
additional notation is introduced.

The key to deriving long optimal plans from shorter ones lies in the construction
of optimal cost-to-go functions over X. For k from 1 to F, let G denote the cost
that accumulates from stage k to F' under the execution of the optimal plan:

Gi(zr) = min {Zl(mi,ui) + lp(xp)} . (2.5)

Ul UK

3The “value” here refers to the optimal cost-to-go or cost-to-come. Therefore, an alternative
name could be cost-to-go iteration.
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Inside of the min of (2.5) are the last F' — k terms of the cost functional, (2.4).
The optimal cost-to-go for the boundary condition of £ = F' reduces to

This makes intuitive sense: Since there are no stages in which an action can be
applied, the final stage cost is immediately received.

Now consider an algorithm that makes K passes over X, each time computing
G}, from Gy, as k ranges from F' down to 1. In the first iteration, G7% is copied
from lp without significant effort. In the second iteration, G is computed for
each zx € X as

Gy (k) :rilzi(n{l(xK,uK)%—lF(asF)}. (2.7)
Since lp = G} and xp = f(xk, uk), substitutions can be made into (2.7) to obtain
Cielese) = min { Ui, use) + Ci(f(ore, ure) | (28)

which is straightforward to compute for each xx € X. This computes the costs of
all optimal one-step plans from stage K to stage F'= K + 1.

It will be shown next that G}, can be computed similarly once Gy, is given.
Carefully study (2.5) and note that it can be written as

G (x) = min { minu[{ {l(xk, ug) + Z Iz, u;) + lp(a:p)}} (2.9)

i=k+1

by pulling the first term out of the sum and by separating the minimization over
ug from the rest, which range from g, to ugx. The second min does not affect
the [(xg, uy) term; thus, I(zy, uy) can be pulled outside to obtain

U415 UK .
” i=k+1

Gi(xy) = rrul}cn {l(xk,uk) + min { Z Iz, u;) + l(xF)}} : (2.10)

The inner min is exactly the definition of the optimal cost-to-go function Gj_;.
Upon substitution, this yields the recurrence

Gil) = min {I(re, ) + G (ran) (211)

in which z;,1 = f(zx,ux). Now that the right side of (2.11) depends only on
T, ug, and Gy, the computation of G}, easily proceeds in O(|X||U]|) time. This
computation is called a wvalue iteration. Note that in each value iteration, some
states receive an infinite value only because they are not reachable; a (K — k)-
step plan from z, to Xs does not exist. This means that there are no actions,
uy € U(zy), that bring xy to a state x5y € X from which a (K — k — 1)-step plan
exists that terminates in Xg.
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Figure 2.8: A five-state example. Each vertex represents a state, and each edge
represents an input that can be applied to the state transition equation to change
the state. The weights on the edges represent [(zy, ux) (xy is the originating vertex
of the edge).

| _laf[blcld]e]
Giloo|oo|oo| 0 | o0
Giyloo| 4|1 o000
G| 6|2 oo 2 |00
Gyl 416 |3 00|
Gyl 6| 4|5 4]

Figure 2.9: The optimal cost-to-go functions computed by backward value itera-
tion.

Summarizing, the value iterations proceed as follows:
Gr — Gy — Gx_, - Gy — G, -+ G5 — G (2.12)

until finally G7 is determined after O(K|X||U|) time. The resulting G} may be
applied to yield G7(x;), the optimal cost to go to the goal from z;. It also con-
veniently gives the optimal cost-to-go from any other initial state. This cost is
infinity for states from which X cannot be reached in K stages.

It seems convenient that the cost of the optimal plan can be computed so easily,
but how is the actual plan extracted? One possibility is to store the action that
satisfied the min in (2.11) from every state, and at every stage. Unfortunately,
this requires O(K|X|) storage, but it can be reduced to O(]| X|) using the tricks to
come in Section [2.3.2 for the more general case of variable-length plans.

Example 2.3 (A Five-State Optimal Planning Problem) Figure 2.8 shows
a graph representation of a planning problem in which X = {a,¢,b,d, e}. Suppose
that K = 4, 1 = a, and Xg = {d}. There will hence be four value iterations,
which construct G}, G3, G5, and G7, once the final-stage cost-to-go, G, is given.

The cost-to-go functions are shown in Figure 2.9. Figures 2.10 and 2.11] il-
lustrate the computations. For computing G, only b and c receive finite values
because only they can reach d in one stage. For computing G73, only the values
G5 (b) = 4 and G(c) = 1 are important. Only paths that reach b or ¢ can possibly
lead to d in stage k = 5. Note that the minimization in (2.11) always chooses the

action that produces the lowest total cost when arriving at a vertex in the next
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Figure 2.10: The possibilities for advancing forward one stage. This is obtained
by making two copies of the states from Figure 2.8, one copy for the current state
and one for the potential next state.

stage. [

2.3.1.2 Forward value iteration

The ideas from Section [2.3.1.1 may be recycled to yield a symmetrically equiva-
lent method that computes optimal cost-to-come functions from the initial stage.
Whereas backward value iterations were able to find optimal plans from all initial
states simultaneously, forward value iterations can be used to find optimal plans
to all states in X. In the backward case, X must be fixed, and in the forward
case, 7 must be fixed.

The issue of maintaining feasible solutions appears again. In the forward di-
rection, the role of [ is not important. It may be applied in the last iteration, or
it can be dropped altogether for problems that do not have a predetermined Xg.
However, one must force all plans considered by forward value iteration to origi-
nate from x;. We again have the choice of either making notation that imposes
constraints on the action spaces or simply adding a term that forces infeasible
plans to have infinite cost. Once again, the latter will be chosen here.

Let C} denote the optimal cost-to-come from stage 1 to stage k, optimized over
all (k — 1)-step plans. To preclude plans that do not start at x, the definition of
CY is given by

Ci(z1) = li(21), (2.13)

in which I is a new function that yields I;(x;) = 0, and I;(z) = oo for all = # x;.
Thus, any plans that try to start from a state other than z; will immediately
receive infinite cost.
For an intermediate stage, k € {2,..., K}, the following represents the optimal
cost-to-come:
k—1
C#(zx) = min {ll(xl) +> l(xi,ui)} . (2.14)
UL yeeny U1 P
Note that the sum refers to a sequence of states, x1,...,r,_1, which is the result
of applying the action sequence (uy,...,ux_2). The last state, xy, is not included
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Figure 2.11: By turning Figure [2.10 sideways and copying it K times, a graph
can be drawn that easily shows all of the ways to arrive at a final state from an
initial state by flowing from left to right. The computations automatically select
the optimal route.

because its cost term, [(xy,uy), requires the application of an action, uy, which
has not been chosen. If it is possible to write the cost additively, as [(xg, u) =
l1(zx)+1a(ug), then the Iy (z) part could be included in the cost-to-come definition,
if desired. This detail will not be considered further.

As in (2.5), it is assumed in (2.14) that u; € U(z;) for every i € {1,...,k—1}.
The resulting xj, obtained after applying us_1, must be the same x;, that is named
in the argument on the left side of (2.14). It might appear odd that z; appears
inside of the min above; however, this is not a problem. The state x; can be
completely determined once uq, ..., ur_1 and x; are given.

The final forward value iteration is the arrival at the final stage, F'. The cost-
to-come in this case is

Ci(rrp) = min {ll(xl) + Zl(%,ul)} : (2.15)

This equation looks the same as (2.8), but [; is used instead of [r. This has the
effect of filtering the plans that are considered to include only those that start at
xr. The forward value iterations find optimal plans to any reachable final state
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Figure 2.12: The optimal cost-to-come functions computed by forward value iter-
ation.

from x;. This behavior is complementary to that of backward value iteration. In
that case, X was fixed, and optimal plans from any initial state were found. For
forward value iteration, this is reversed.

To express the dynamic-programming recurrence, one further issue remains.
Suppose that C_; is known by induction, and we want to compute Cj(zy) for
a particular z,. This means that we must start at some state x,_; and arrive
in state z; by applying some action. Once again, the backward state transition
equation from Section is useful. Using the stage indices, it is written here as
The] = f_l(:z:k,u,;l).

The recurrence is

Cilw) = min  { () + i me) }, (216)

u=leU—1(xy)

in which 21 = f~'(zy,u;"') and uy_y € U(zp_y) is the input to which u;' €
U~!(xy,) corresponds. Using (2.16), the final cost-to-come is iteratively computed
in O(K|X||U]) time, as in the case of computing the first-stage cost-to-go in the
backward value-iteration method.

Example 2.4 (Forward Value Iteration) Example|2.3|is revisited for the case
of forward value iterations with a fixed plan length of K = 4. The cost-to-come
functions shown in Figure 2.12 are obtained by direct application of (2.16). It will
be helpful to refer to Figures 2.10 and[2.11 once again. The first row corresponds
to the immediate application of [;. In the second row, finite values are obtained
for a and b, which are reachable in one stage from z; = a. The iterations continue
until £ = 5, at which point that optimal cost-to-come is determined for every
state. |

2.3.2 Optimal Plans of Unspecified Lengths

The value-iteration method for fixed-length plans can be generalized nicely to the
case in which plans of different lengths are allowed. There will be no bound on
the maximal length of a plan; therefore, the current case is truly a generalization
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of Formulation 2.1 because arbitrarily long plans may be attempted in efforts to
reach X. The model for the general case does not require the specification of K
but instead introduces a special action, uy.

Formulation 2.3 (Discrete Optimal Planning)

1. All of the components from Formulation 2.1 are inherited directly: X, U(x),
f, xr, and Xg. Also, the notion of stages from Formulation 2.2 is used.

2. Let L denote a stage-additive cost functional, which may be applied to any
K-step plan, 7y, to yield

K
Lirg) = Y Uww ) + lp(wp). (2.17)
k=1

In comparison with L from Formulation 2.2, the present expression does not
consider K as a predetermined constant. It will now vary, depending on the

length of the plan. Thus, the domain of L is much larger.

3. Each U(x) contains the special termination action, ur. If ur is applied at xy,
then the action is repeatedly applied forever, the state remains unchanged,
and no more cost accumulates. Thus, for all « > k, u; = up, v; = xp, and
l(l‘i, UT) =0.

The termination action is the key to allowing plans of different lengths. It will
appear throughout this book. Suppose that value iterations are performed up to
K =5, and for the problem there exists a two-step solution plan, (uy,us), that ar-
rives in X¢ from z;. This plan is equivalent to the five-step plan (uy, ug, up, ur, ur)
because the termination action does not change the state, nor does it accumulate
cost. The resulting five-step plan reaches X and costs the same as (u1, ug). With
this simple extension, the forward and backward value iteration methods of Sec-
tion 2.3.1 may be applied for any fixed K to optimize over all plans of length K
or less (instead of fixing K).

The next step is to remove the dependency on K. Consider running backward
value iterations indefinitely. At some point, G7 will be computed, but there is
no reason why the process cannot be continued onward to Gf, G*,, and so on.
Recall that x; is not utilized in the backward value-iteration method; therefore,
there is no concern regarding the starting initial state of the plans. Suppose that
backward value iteration was applied for K = 16 and was executed down to G*.
This considers all plans of length 25 or less. Note that it is harmless to add 9 to
all stage indices to shift all of the cost-to-go functions. Instead of running from
G* ¢ to G7g, they can run from G7 to G55 without affecting their values. The index
shifting is allowed because none of the costs depend on the particular index that is
given to the stage. The only important aspect of the value iterations is that they
proceed backward and consecutively from stage to stage.
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Eventually, enough iterations will have been executed so that an optimal plan
is known from every state that can reach Xg. From that stage, say k, onward, the
cost-to-go values from one value iteration to the next will be stationary, meaning
that for all ¢ < k, GI_,(z) = G}(x) for all z € X. Once the stationary condition
is reached, the cost-to-go function no longer depends on a particular stage k. In
this case, the stage index may be dropped, and the recurrence becomes

G* () = min {l(x, w) + G (f(z, u))}. (2.18)

Are there any conditions under which backward value iterations could be exe-
cuted forever, with each iteration producing a cost-to-go function for which some
values are different from the previous iteration? If [(x,u) is nonnegative for all
x € X and u € U(x), then this could never happen. It could certainly be true that,
for any fixed K, longer plans will exist, but this cannot be said of optimal plans.
From every = € X, there either exists a plan that reaches X with finite cost or
there is no solution. For each state from which there exists a plan that reaches
X¢, consider the number of stages in the optimal plan. Consider the maximum
number of stages taken from all states that can reach X¢. This serves as an upper
bound on the number of value iterations before the cost-to-go becomes stationary.
Any further iterations will just consider solutions that are worse than the ones
already considered (some may be equivalent due to the termination action and
shifting of stages). Some trouble might occur if I(z,u) contains negative values.
If the state transition graph contains a cycle for which total cost is negative, then
it is preferable to execute a plan that travels around the cycle forever, thereby
reducing the total cost to —oo. Therefore, we will assume that the cost functional
is defined in a sensible way so that negative cycles do not exist. Otherwise, the
optimization model itself appears flawed. Some negative values for [(x,u), how-
ever, are allowed as long as there are no negative cycles. (It is straightforward to
detect and report negative cycles before running the value iterations.)

Since the particular stage index is unimportant, let £ = 0 be the index of the
final stage, which is the stage at which the backward value iterations begin. Hence,
G is the final stage cost, which is obtained directly from [p. Let —K denote the
stage index at which the cost-to-go values all become stationary. At this stage,
the optimal cost-to-go function, G* : X — R U {oc}, is expressed by assigning
G* = G* . In other words, the particular stage index no longer matters. The
value G*(z) gives the optimal cost to go from state z € X to the specific goal state
rq.

If the optimal actions are not stored during the value iterations, the optimal
cost-to-go, G*, can be used to efficiently recover them. Consider starting from
some x € X. What is the optimal next action? This is given by

u* = argmin {l(m,u) + G*(f(:v,u))}, (2.19)

uelU(x)

in which argmin denotes the argument that achieves the minimum value of the
expression. The action minimizes an expression that is very similar to (2.11). The
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only differences between (2.19) and (2.11) are that the stage indices are dropped
in (2.19) because the cost-to-go values no longer depend on them, and argmin is
used so that u* is selected. After applying u*, the state transition equation is
used to obtain 2’ = f(x,u*), and (2.19) may be applied again on z’. This process
continues until a state in X is reached. This procedure is based directly on the
dynamic programming recurrence; therefore, it recovers the optimal plan. The
function G* serves as a kind of guide that leads the system from any initial state
into the goal set optimally. This can be considered as a special case of a navigation
function, which will be covered in Section 8.2.2.

As in the case of fixed-length plans, the direction of the value iterations can
be reversed to obtain a forward value-iteration method for the variable-length
planning problem. In this case, the backward state transition equation, f~!, is
used once again. Also, the initial cost term I; is used instead of [, as in (2.14). The
forward value-iteration method starts at £ = 1, and then iterates until the cost-
to-come becomes stationary. Once again, the termination action, up, preserves
the cost of plans that arrived at a state in earlier iterations. Note that it is not
required to specify Xq. A counterpart to G* may be obtained, from which optimal
actions can be recovered. When the cost-to-come values become stationary, an
optimal cost-to-come function, C* : X — RU{oo}, may be expressed by assigning
C* = C}, in which F is the final stage reached when the algorithm terminates.
The value C*(x) gives the cost of an optimal plan that starts from x; and reaches
x. The optimal action sequence for any specified goal x¢ € X can be obtained
using

argmin {C*(f‘l(x, u) + 1 (,u Y, u')}, (2.20)
u—leU-1
which is the forward counterpart of (2.19). The v’ is the action in U(f~!(xz,u™"))
that yields x when the state transition function, f, is applied. The iterations
proceed backward from z¢ and terminate when x; is reached.

Example 2.5 (Value Iteration for Variable-Length Plans) Once again, Ex-
ample 2.3 is revisited; however, this time the plan length is not fixed due to the
termination action. Its effect is depicted in Figure [2.13 by the superposition of
new edges that have zero cost. It might appear at first that there is no incen-
tive to choose nontermination actions, but remember that any plan that does not
terminate in state xg = d will receive infinite cost.

See Figure 2.14. After a few backward value iterations, the cost-to-go values
become stationary. After this point, the termination action is being applied from
all reachable states and no further cost accumulates. The final cost-to-go function
is defined to be G*. Since d is not reachable from e, G*(e) = occ.

As an example of using (2.19) to recover optimal actions, consider starting
from state a. The action that leads to b is chosen next because the total cost
2 + G*(b) = 4 is better than 2 + G*(a) = 6 (the 2 comes from the action cost).
From state b, the optimal action leads to ¢, which produces total cost 1+G*(¢) = 1.
Similarly, the next action leads to d € X, which terminates the plan.
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Figure 2.13: Compare this figure to Figure 2.11, for which K was fixed at 4. The
effect of the termination action is depicted as dashed-line edges that yield 0 cost
when traversed. This enables plans of all finite lengths to be considered. Also, the
stages extend indefinitely to the left (for the case of backward value iteration).
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Figure 2.14: The optimal cost-to-go functions computed by backward value itera-
tion applied in the case of variable-length plans.
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Figure 2.15: The optimal cost-to-come functions computed by forward value iter-
ation applied in the case of variable-length plans.

Using forward value iteration, suppose that x; = b. The following cost-to-come
functions shown in Figure [2.15 are obtained. For any finite value that remains
constant from one iteration to the next, the termination action was applied. Note
that the last value iteration is useless in this example. Once C is computed, the
optimal cost-to-come to every possible state from z; is determined, and future
cost-to-come functions are identical. Therefore, the final cost-to-come is renamed
C*. [ |

2.3.3 Dijkstra Revisited

So far two different kinds of dynamic programming have been covered. The value-
iteration method of Section [2.3.2]involves repeated computations over the entire
state space. Dijkstra’s algorithm from Section 2.2.2/flows only once through the
state space, but with the additional overhead of maintaining which states are alive.

Dijkstra’s algorithm can be derived by focusing on the forward value iterations,
as in Example 2.5, and identifying exactly where the “interesting” changes occur.
Recall that for Dijkstra’s algorithm, it was assumed that all costs are nonnega-
tive. For any states that are not reachable, their values remain at infinity. They
are precisely the unvisited states. States for which the optimal cost-to-come has
already become stationary are dead. For the remaining states, an initial cost is
obtained, but this cost may be lowered one or more times until the optimal cost
is obtained. All states for which the cost is finite, but possibly not optimal, are in
the queue, Q.

After understanding value iteration, it is easier to understand why Dijkstra’s
form of dynamic programming correctly computes optimal solutions. It is clear
that the unvisited states will remain at infinity in both algorithms because no
plan has reached them. It is helpful to consider the forward value iterations in
Example 2.5 for comparison. In a sense, Dijkstra’s algorithm is very much like the
value iteration, except that it efficiently maintains the set of states within which
cost-to-go values can change. It correctly inserts any states that are reached for
the first time, changing their cost-to-come from infinity to a finite value. The
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FORWARD_LABEL_CORRECTING(z¢)
1 Set C(x) = oo for all x # zy, and set C(z7) =0

2 Q.Insert(xy)

3 while ) not empty do

4 x — Q.GetFirst()

5 forall v € U(x)

6 ' — f(x,u)

7 if C(z) + l(x,u) < min{C(z'), C(z¢)} then
8 C(z') «— C(z) + l(z,u)

9 if ' # x5 then

10 Q.Insert(z’)

Figure 2.16: A generalization of Dijkstra’s algorithm, which upon termination
produces an optimal plan (if one exists) for any prioritization of @), as long as X
is finite. Compare this to Figure 2.4.

values are changed in the same manner as in the value iterations. At the end of
both algorithms, the resulting values correspond to the stationary, optimal cost-
to-come, C*.

If Dijkstra’s algorithm seems so clever, then why have we spent time cover-
ing the value-iteration method? For some problems it may become too expensive
to maintain the sorted queue, and value iteration could provide a more efficient
alternative. A more important reason is that value iteration extends easily to a
much broader class of problems. Examples include optimal planning over contin-
uous state spaces (Sections [8.5.2 and [14.5), stochastic optimal planning (Section
10.2), and computing dynamic game equilibria (Section 10.5). In some cases, it
is still possible to obtain a Dijkstra-like algorithm by focusing the computation
on the “interesting” region; however, as the model becomes more complicated, it
may be inefficient or impossible in practice to maintain this region. Therefore, it
is important to have a good understanding of both algorithms to determine which
is most appropriate for a given problem.

Dijkstra’s algorithm belongs to a broader family of label-correcting algorithms,
which all produce optimal plans by making small modifications to the general
forward-search algorithm in Figure[2.4. Figure[2.16 shows the resulting algorithm.
The main difference is to allow states to become alive again if a better cost-to-come
is found. This enables other cost-to-come values to be improved accordingly. This
is not important for Dijkstra’s algorithm and A* search because they only need to
visit each state once. Thus, the algorithms in Figures|2.4 and 2.16 are essentially
the same in this case. However, the label-correcting algorithm produces optimal
solutions for any sorting of @, including FIFO (breadth first) and LIFO (depth
first), as long as X is finite. If X is not finite, then the issue of systematic search
dominates because one must guarantee that states are revisited sufficiently many
times to guarantee that optimal solutions will eventually be found.
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Another important difference between label-correcting algorithms and the stan-
dard forward-search model is that the label-correcting approach uses the cost at
the goal state to prune away many candidate paths; this is shown in line 7. Thus,
it is only formulated to work for a single goal state; it can be adapted to work
for multiple goal states, but performance degrades. The motivation for including
C(z¢) in line 7 is that there is no need to worry about improving costs at some
state, 2/, if its new cost-to-come would be higher than C(x¢); there is no way it
could be along a path that improves the cost to go to xg. Similarly, x4 is not
inserted in line 10 because there is no need to consider plans that have xs as an
intermediate state. To recover the plan, either pointers can be stored from x to z’
each time an update is made in line 7, or the final, optimal cost-to-come, C*, can
be used to recover the actions using (2.20).

2.4 Using Logic to Formulate Discrete Planning

For many discrete planning problems that we would like a computer to solve, the
state space is enormous (e.g., 1019 states). Therefore, substantial effort has been
invested in constructing implicit encodings of problems in hopes that the entire
state space does not have to be explored by the algorithm to solve the problem.
This will be a recurring theme throughout this book; therefore, it is important to
pay close attention to representations. Many planning problems can appear trivial
once everything has been explicitly given.

Logic-based representations have been popular for constructing such implicit
representations of discrete planning. One historical reason is that such represen-
tations were the basis of the majority of artificial intelligence research during the
1950s-1980s. Another reason is that they have been useful for representing cer-
tain kinds of planning problems very compactly. It may be helpful to think of
these representations as compression schemes. A string such as 010101010101...
may compress very nicely, but it is impossible to substantially compress a random
string of bits. Similar principles are true for discrete planning. Some problems
contain a kind of regularity that enables them to be expressed compactly, whereas
for others it may be impossible to find such representations. This is why there
has been a variety of representation logics proposed through decades of planning
research.

Another reason for using logic-based representations is that many discrete plan-
ning algorithms are implemented in large software systems. At some point, when
these systems solve a problem, they must provide the complete plan to a user, who
may not care about the internals of planning. Logic-based representations have
seemed convenient for producing output that logically explains the steps involved
to arrive at some goal. Other possibilities may exist, but logic has been a first
choice due to its historical popularity.

In spite of these advantages, one shortcoming with logic-based representations
is that they are difficult to generalize. It is important in many applications to
enable concepts such as continuous spaces, unpredictability, sensing uncertainty,
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and multiple decision makers to be incorporated into planning. This is the main
reason why the state-space representation has been used so far: It will be easy to
extend and adapt to the problems covered throughout this book. Nevertheless,
it is important to study logic-based representations to understand the relation-
ship between the vast majority of discrete planning research and other problems
considered in this book, such as motion planning and planning under differential
constraints. There are many recurring themes throughout these different kinds
of problems, even though historically they have been investigated by separate
research communities. Understanding these connections well provides powerful
insights into planning issues across all of these areas.

2.4.1 A STRIPS-Like Representation

STRIPS-like representations have been the most common logic-based representa-
tions for discrete planning problems. This refers to the STRIPS system, which
is considered one of the first planning algorithms and representations [339]; its
name is derived from the STanford Research Institute Problem Solver. The orig-
inal representation used first-order logic, which had great expressive power but
many technical difficulties. Therefore, the representation was later restricted to
only propositional logic use [745], which is similar to the form introduced in this
section. There are many variations of STRIPS-like representations. Here is one
formulation:

Formulation 2.4 (STRIPS-Like Planning)
1. A finite, nonempty set I of instances.

2. A finite, nonempty set P of predicates, which are binary-valued (partial)
functions of one of more instances. Each application of a predicate to a
specific set of instances is called a positive literal. A logically negated positive
literal is called a negative literal.

3. A finite, nonempty set O of operators, each of which has: 1) preconditions,
which are positive or negative literals that must hold for the operator to
apply, and 2) effects, which are positive or negative literals that are the
result of applying the operator.

4. An initial set S which is expressed as a set of positive literals. Negative
literals are implied. For any positive literal that does not appear in S, its
corresponding negative literal is assumed to hold initially.

5. A goal set G which is expressed as a set of both positive and negative literals.

Formulation|2.4.1lprovides a definition of discrete feasible planning expressed in
a STRIPS-like representation. The three most important components are the sets
of instances I, predicates P, and operators O. Informally, the instances characterize
the complete set of distinct things that exist in the world. They could, for example,
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be books, cars, trees, and so on. The predicates correspond to basic properties or
statements that can be formed regarding the instances. For example, a predicate
called Under might be used to indicate things like Under(Book, T'able) (the book
is under the table) or Under(Dirt, Rug). A predicate can be interpreted as a kind
of function that yields TRUE or FALSE values; however, it is important to note
that it is only a partial function because it might not be desirable to allow any
instance to be inserted as an argument to the predicate.

If a predicate is evaluated on an instance, for example, Under(Dirt, Rug), the
expression is called a positive literal. The set of all possible positive literals can be
formed by applying all possible instances to the domains over which the predicates
are defined. Every positive literal has a corresponding negative literal, which is
formed by negating the positive literal. For example, ~Under(Dirt, Rug) is the
negative literal that corresponds to the positive literal Under(Dirt, Rug), and —
denotes negation. Let a complementary pair refer to a positive literal together with
its counterpart negative literal. The various components of the planning problem
are expressed in terms of positive and negative literals.

The role of an operator is to change the world. To be applicable, a set of pre-
conditions must all be satisfied. Each element of this set is a positive or negative
literal that must hold TRUE for the operator to be applicable. Any complemen-
tary pairs that can be formed from the predicates, but are not mentioned in the
preconditions, may assume any value without affecting the applicability of the op-
erator. If the operator is applied, then the world is updated in a manner precisely
specified by the set of effects, which indicates positive and negative literals that
result from the application of the operator. It is assumed that the truth values of
all unmentioned complementary pairs are not affected.

Multiple operators are often defined in a single statement by using variables.
For example, Insert(i) may allow any instance ¢ € I to be inserted. In some cases,
this dramatically reduces the space required to express the problem.

The planning problem is expressed in terms of an initial set S of positive
literals and a goal set G of positive and negative literals. A state can be defined
by selecting either the positive or negative literal for every possible complementary
pair. The initial set S specifies such a state by giving the positive literals only.
For all possible positive literals that do not appear in S, it is assumed that their
negative counterparts hold in the initial state. The goal set G actually refers to
a set of states because, for any unmentioned complementary pair, the positive
or negative literal may be chosen, and the goal is still achieved. The task is to
find a sequence of operators that when applied in succession will transform the
world from the initial state into one in which all literals of G are TRUE. For each
operator, the preconditions must also be satisfied before it can be applied. The
following example illustrates Formulation 2.4.

Example 2.6 (Putting Batteries into a Flashlight) Imagine a planning prob-
lem that involves putting two batteries into a flashlight, as shown in Figure 2.17.
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Figure 2.17: An example that involves putting batteries into a flashlight.

The set of instances are
I = {Batteryl, Battery2, Cap, Flashlight}. (2.21)

Two different predicates will be defined, On and In, each of which is a partial
function on I. The predicate On may only be applied to evaluate whether the
Cap is On the Flashlight and is written as On(Cap, Flashlight). The pred-
icate In may be applied in the following two ways: In(Batteryl, Flashlight),
In(Battery2, Flashlight), to indicate whether either battery is in the flashlight.
Recall that predicates are only partial functions in general. For the predicate In, it
is not desirable to apply any instance to any argument. For example, it is meaning-
less to define In(Batteryl, Batteryl) and In(Flashlight, Battery2) (they could
be included in the model, always retaining a negative value, but it is inefficient).
The initial set is

S = {On(Cap, Flashlight)}. (2.22)

Based on S, both —In(Batteryl, Flashlight) and —In(Battery2, Flashlight) are
assumed to hold. Thus, S indicates that the cap is on the flashlight, but the
batteries are outside.

The goal state is

G = {On(Cap, Flashlight), In(Batteryl, Flashlight),

2.23
In(Battery2, Flashlight)}, (2.23)

which means that both batteries must be in the flashlight, and the cap must be
on.

The set O consists of the four operators, which are shown in Figure 2.18. Here
is a plan that reaches the goal state in the smallest number of steps:

(RemoveCap, Insert(Batteryl), Insert(Battery2), PlaceCap). (2.24)



2.4. USING LOGIC TO FORMULATE DISCRETE PLANNING 61

Name Preconditions Effects
PlaceCap {=On(Cap, Flashlight)} {On(Cap, Flashlight)}
RemoveCap {On(Cap, Flashlight)} {=On(Cap, Flashlight)}

Insert(i) {=On(Cap, Flashlight), ~In(i, Flashlight)} {In(i, Flashlight)}

Figure 2.18: Three operators for the flashlight problem. Note that an operator
can be expressed with variable argument(s) for which different instances could be
substituted.

In words, the plan simply says to take the cap off, put the batteries in, and place
the cap back on.

This example appears quite simple, and one would expect a planning algorithm
to easily find such a solution. It can be made more challenging by adding many
more instances to I, such as more batteries, more flashlights, and a bunch of
objects that are irrelevant to achieving the goal. Also, many other predicates and
operators can be added so that the different combinations of operators become
overwhelming. [

A large number of complexity results exist for planning expressed using logic.
The graph search problem is solved efficiently in polynomial time; however, a
state transition graph is not given as the input. An input that is expressed using
Formulation 2.4 may describe an enormous state transition graph using very few
instances, predicates, and operators. In a sense, the model is highly compressed
when using some logic-based formulations. This brings it closer to the Kolmogorov
complexity [250, 632] of the state transition graph, which is the shortest bit size
to which it can possibly be compressed and then fully recovered by a Turing
machine. This has the effect of making the planning problem appear more difficult.
Concise inputs may encode very challenging planning problems. Most of the known
hardness results are surveyed in Chapter 3 of [384]. Under most formulations,
logic-based planning is NP-hard. The particular level of hardness (NP, PSPACE,
EXPTIME, etc.) depends on the precise problem conditions. For example, the
complexity depends on whether the operators are fixed in advance or included
in the input. The latter case is much harder. Separate complexities are also
obtained based on whether negative literals are allowed in the operator effects and
also whether they are allowed in preconditions. The problem is generally harder
if both positive and negative literals are allowed in these cases.

2.4.2 Converting to the State-Space Representation

It is useful to characterize the relationship between Formulation 2.4 and the origi-
nal formulation of discrete feasible planning, Formulation 2.1. One benefit is that
it immediately shows how to adapt the search methods of Section 2.2 to work
for logic-based representations. It is also helpful to understand the relationships
between the algorithmic complexities of the two representations.
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Up to now, the notion of “state” has been only vaguely mentioned in the con-
text of the STRIPS-like representation. Now consider making this more concrete.
Suppose that every predicate has k£ arguments, and any instance could appear in
each argument. This means that there are |P||I|¥ complementary pairs, which
corresponds to all of the ways to substitute instances into all arguments of all
predicates. To express the state, a positive or negative literal must be selected
from every complementary pair. For convenience, this selection can be encoded
as a binary string by imposing a linear ordering on the instances and predicates.
Using Example (2.6, the state might be specified in order as

(On(Cap, Flashlight), —~In(Batteryl, Flashlightl), In(Battery2, Flashlight)).
(2.25)
Using a binary string, each element can be “0” to denote a negative literal or “1”
to denote positive literal. The encoded state is x = 101 for (2.25). If any instance
can appear in the argument of any predicate, then the length of the string is
|P| |I]¥. The total number of possible states of the world that could possibly be
distinguished corresponds to the set of all possible bit strings. This set has size

2P (2.26)

The implication is that with a very small number of instances and predicates,
an enormous state space can be generated. Even though the search algorithms
of Section 2.2 may appear efficient with respect to the size of the search graph
(or the number of states), the algorithms appear horribly inefficient with respect
to the sizes of P and I. This has motivated substantial efforts on the develop-
ment of techniques to help guide the search by exploiting the structure of specific
representations. This is the subject of Section 2.5.

The next step in converting to a state-space representation is to encode the
initial state x; as a string. The goal set, X, is the set of all strings that are
consistent with the positive and negative goal literals. This can be compressed by
extending the string alphabet to include a “don’t care” symbol, 4. A single string
that has a “0” for each negative literal, a “1” for each positive literal, and a “9”
for all others would suffice in representing any X that is expressed with positive
and negative literals.

Now convert the operators. For each state, z € X, the set U(x) represents
the set of operators with preconditions that are satisfied by z. To apply the
search techniques of Section 2.2] note that it is not necessary to determine U(x)
explicitly in advance for all z € X. Instead, U(z) can be computed whenever each
x is encountered for the first time in the search. The effects of the operator are
encoded by the state transition equation. From a given x € X, the next state,
f(z,u), is obtained by flipping the bits as prescribed by the effects part of the
operator.

All of the components of Formulation 2.1 have been derived from the com-
ponents of Formulation 2.4. Adapting the search techniques of Section [2.2| is
straightforward. It is also straightforward to extend Formulation 2.4 to represent
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optimal planning. A cost can be associated with each operator and set of literals
that capture the current state. This would express I(z,u) of the cost functional,
L, from Section 2.3| Thus, it is even possible to adapt the value-iteration method
to work under the logic-based representation, yielding optimal plans.

2.5 Logic-Based Planning Methods

A huge body of research has been developed over the last few decades for plan-
ning using logic-based representations [384, 841]. These methods usually exploit
some structure that is particular to the representation. Furthermore, numerous
heuristics for accelerating performance have been developed from implementation
studies. The main ideas behind some of the most influential approaches are de-
scribed in this section, but without presenting particular heuristics.

Rather than survey all logic-based planning methods, this section focuses on
some of the main approaches that exploit logic-based representations. Keep in
mind that the searching methods of Section [2.2 also apply. Once a problem is
given using Formulation the state transition graph is incrementally revealed
during the search. In practice, the search graph may be huge relative to the size
of the problem description. One early attempt to reduce the size of this graph was
the STRIPS planning algorithm [339, 745]; it dramatically reduced the branching
factor but unfortunately was not complete. The methods presented in this section
represent other attempts to reduce search complexity in practice while maintaining
completeness. For each method, there are some applications in which the method
may be more efficient, and others for which performance may be worse. Thus,
there is no clear choice of method that is independent of its particular use.

2.5.1 Searching in a Space of Partial Plans

One alternative to searching directly in X is to construct partial plans without
reference to particular states. By using the operator representation, partial plans
can be incrementally constructed. The idea is to iteratively achieve required sub-
goals in a partial plan while ensuring that no conflicts arise that could destroy the
solution developed so far.

A partial plan o is defined as

1. A set O, of operators that need to be applied. If the operators contain
variables, these may be filled in by specific values or left as variables. The
same operator may appear multiple times in O,, possibly with different
values for the variables.

2. A partial ordering relation <, on O,, which indicates for some pairs 01, 09 €
O, that one must appear before other: 0; <, 0s.

3. A set B, of binding constraints, in which each indicates that some variables
across operators must take on the same value.
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4. A set C, of causal links, in which each is of the form (01,[, 09) and indicates
that o, achieves the literal [ for the purpose of satisfying a precondition of
09.

Example 2.7 (A Partial Plan) Each partial plan encodes a set of possible plans.
Recall the model from Example[2.6. Suppose

O, = {RemoveCap, Insert(Batteryl)}. (2.27)
A sensible ordering constraint is that
RemoveCap <, Insert(Batteryl). (2.28)
A causal link,
(RemoveCap, ~On(Cap, Flashlight), Insert(Batteryl)), (2.29)

indicates that the RemoveCap operator achieves the literal =On(Cap, Flashlight),
which is a precondition of Insert(Batteryl). There are no binding constraints
for this example. The partial plan implicitly represents the set of all plans for
which RemoveCap appears before Insert(Batteryl), under the constraint that
the causal link is not violated. |

Several algorithms have been developed to search in the space of partial plans.
To obtain some intuition about the partial-plan approach, a planning algorithm
is described in Figure 2.19 A vertex in the partial-plan search graph is a partial
plan, and an edge is constructed by extending one partial plan to obtain another
partial plan that is closer to completion. Although the general template is simple,
the algorithm performance depends critically on the choice of initial plan and the
particular flaw that is resolved in each iteration. One straightforward generaliza-
tion is to develop multiple partial plans and decide which one to refine in each
iteration.

In early works, methods based on partial plans seemed to offer substantial
benefits; however, they are currently considered to be not “competitive enough”
in comparison to methods that search the state space [384]. One problem is that
it becomes more difficult to develop application-specific heuristics without explicit
references to states. Also, the vertices in the partial-plan search graph are costly
to maintain and manipulate in comparison to ordinary states.

2.5.2 Building a Planning Graph

Blum and Furst introduced the notion of a planning graph, which is a power-
ful data structure that encodes information about which states may be reachable
[119]. For the logic-based problem expressed in Formulation 2.4, consider perform-
ing reachability analysis. Breadth-first search can be used from the initial state
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PLAN-SPACE PLANNING
1. Start with any initial partial plan, o.

2. Find a flaw in o, which may be 1) an operator precondition that has not
achieved, or 2) an operator in O, that threatens a causal constraint in C,,.

3. If there is no flaw, then report that o is a complete solution and compute a
linear ordering of O, that satisfies all constraints.

4. If the flaw is an unachieved precondition, [/, for some operator 0s, then find an
operator, o1, that achieves it and record a new causal constraint, (01,1, 0s).

5. If the flaw is a threat on a causal link, then the threat must be removed by
updating <, to induce an appropriate operator ordering, or by updating B,
to bind the operators in a way that resolves the threat.

6. Return to Step 2.

Figure 2.19: Planning in the plan space is achieved by iteratively finding a flaw
in the plan and fixing it.

to expand the state transition graph. In terms of the input representation, the
resulting graph may be of exponential size in the number of stages. This gives
precise reachability information and is guaranteed to find the goal state.

The idea of Blum and Furst is to construct a graph that is much smaller than
the state transition graph and instead contains only partial information about
reachability. The resulting planning graph is polynomial in size and can be effi-
ciently constructed for some challenging problems. The trade-off is that the plan-
ning graph indicates states that can possibly be reached. The true reachable set
is overapproximated, by eliminating many impossible states from consideration.
This enables quick elimination of impossible alternatives in the search process.
Planning algorithms have been developed that extract a plan from the planning
graph. In the worst case, this may take exponential time, which is not surpris-
ing because the problem in Formulation 2.4 is NP-hard in general. Nevertheless,
dramatic performance improvements were obtained on some well-known planning
benchmarks. Another way to use the planning graph is as a source of information
for developing search heuristics for a particular problem.

Planning graph definition A layered graph is a graph that has its vertices
partitioned into a sequence of layers, and its edges are only permitted to connect
vertices between successive layers. The planning graph is a layered graph in which
the layers of vertices form an alternating sequence of literals and operators:

(L1,017L2,O27Lg,Og,...’Lk’Ok’Lk+1). (2.30)
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The edges are defined as follows. To each operator o, € O;, a directed edge is
made from each [; € L; that is a precondition of 0;. To each literal [; € L;, an edge
is made from each operator o;,_1 € O;_; that has [; as an effect.

One important requirement is that no variables are allowed in the operators.
Any operator from Formulation 2.4 that contains variables must be converted into
a set that contains a distinct copy of the operator for every possible substitution
of values for the variables.

Layer-by-layer construction The planning graph is constructed layer by layer,
starting from L;. In the first stage, L, represents the initial state. Every positive
literal in S is placed into L, along with the negation of every positive literal not
in S. Now consider stage 7. The set O; is the set of all operators for which their
preconditions are a subset of L;. The set L;,; is the union of the effects of all
operators in O;. The iterations continue until the planning graph stabilizes, which
means that O;,1 = O; and L;; = L;. This situation is very similar to the stabiliza-
tion of value iterations in Section 2.3.2. A trick similar to the termination action,
ur, is needed even here so that plans of various lengths are properly handled. In
Section [2.3.2, one job of the termination action was to prevent state transitions
from occurring. The same idea is needed here. For each possible literal, [, a trivial
operator is constructed for which [ is the only precondition and effect. The intro-
duction of trivial operators ensures that once a literal is reached, it is maintained
in the planning graph for every subsequent layer of literals. Thus, each O; may
contain some trivial operators, in addition to operators from the initially given
set O. These are required to ensure that the planning graph expansion reaches a
steady state, in which the planning graph is identical for all future expansions.

Mutex conditions During the construction of the planning graph, information
about the conflict between operators and literals within a layer is maintained. A
conflict is called a muter condition, which means that a pair of literals? or pair of
operators is mutually exclusive. Both cannot be chosen simultaneously without
leading to some kind of conflict. A pair in conflict is called mutezx. For each layer,
a mutex relation is defined that indicates which pairs satisfy the mutex condition.
A pair, 0,0 € O;, of operators is defined to be mutez if any of these conditions is
met:

1. Inconsistent effects: An effect of o is the negated literal of an effect of 0.
2. Interference: An effect of o is the negated literal of a precondition of o’.

3. Competing needs: A pair of preconditions, one from each of o and o', are
mutex in L;.

The last condition relies on the definition of mutex for literals, which is presented
next. Any pair, [,I’ € L;, of literals is defined to be mutex if at least one of the
two conditions is met:

4The pair of literals need not be a complementary pair, as defined in Section [2.4.1.
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-I(B2, F) ~I(B2, F) ~I(B2, F) —I(B2,F)

Ll 01 LQ 02 L3 OS L4

Figure 2.20: The planning graph for the flashlight example. The unlabeled oper-
ator vertices correspond to trivial operators. For clarity, the operator and literal
names are abbreviated.

1. Negated literals: [ and [’ form a complementary pair.

2. Inconsistent support: Every pair of operators, 0,0’ € O;_1, that achieve
[ and !’ is mutex. In this case, one operator must achieve [, and the other
must achieve I’. If there exists an operator that achieves both, then this
condition is false, regardless of the other pairs of operators.

The mutex definition depends on the layers; therefore, it is computed layer by
layer during the planning graph construction.

Example 2.8 (The Planning Graph for the Flashlight) Figure 2.20 shows
the planning graph for Example 2.6. In the first layer, L; expresses the initial
state. The only applicable operator is RemoveCap. The operator layer O; con-
tains RemoveCap and three trivial operators, which are needed to maintain the
literals from L;. The appearance of =On(Cap, Flashlight) enables the battery-
insertion operator to apply. Since variables are not allowed in operator definitions
in a planning graph, two different operators (labeled as I'1 and 12) appear, one for
each battery. Notice the edges drawn to I1 and 12 from their preconditions. The
cap may also be replaced; hence, PlaceCap is included in O,. At the L3 layer, all
possible literals have been obtained. At Os, all possible operators, including the
trivial ones, are included. Finally, L, = L3, and O4 will be the same as O3. This
implies that the planning graph has stabilized. |
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Plan extraction Suppose that the planning graph has been constructed up to
L;. At this point, the planning graph can be searched for a solution. If no solution
is found and the planning graph has stabilized, then no solution exists to the
problem in general (this was shown in [119]; see also [384]). If the planning graph
has not stabilized, then it can be extended further by adding O; and L;,;. The
extended graph can then be searched for a solution plan. A planning algorithm
derived from the planning graph interleaves the graph extensions and the searches
for solutions. Either a solution is reported at some point or the algorithm correctly
reports that no solution exists after the planning graph stabilizes. The resulting
algorithm is complete. One of the key observations in establishing completeness
is that the literal and operator layers each increase monotonically as ¢ increases.
Furthermore, the sets of pairs that are mutex decrease monotonically, until all
possible conflicts are resolved.

Rather than obtaining a fully specified plan, the planning graph yields a layered
plan, which is a special form of partial plan. All of the necessary operators are
included, and the layered plan is specified as

(Ar, As, .., Ay, (2.31)

in which each A; is a set of operators. Within any A;, the operators are nonmutex
and may be applied in any order without altering the state obtained by the layered
plan. The only constraint is that for each 7 from 1 to k, every operator in A; must
be applied before any operators in A;,; can be applied. For the flashlight example,
a layered plan that would be constructed from the planning graph in Figure [2.20
is

({ RemoveCap}, {Insert(Batteryl), Insert(Battery2)}, { PlaceCap}). (2.32)

To obtain a fully specified plan, the layered plan needs to be linearized by specify-
ing a linear ordering for the operators that is consistent with the layer constraints.
For (2.32), this results in (2.24). The actual plan execution usually involves more
stages than the number in the planning graph. For complicated planning prob-
lems, this difference is expected to be huge. With a small number of stages, the
planning graph can consider very long plans because it can apply several nonmutex
operators in a single layer.

At each level, the search for a plan could be quite costly. The idea is to start
from L; and perform a backward and/or search. To even begin the search, the
goal literals G must be a subset of L;, and no pairs are allowed to be mutex;
otherwise, immediate failure is declared. From each literal [ € GG, an “or” part
of the search tries possible operators that produce [ as an effect. The “and”
part of the search must achieve all literals in the precondition of an operator
chosen at the previous “or” level. Each of these preconditions must be achieved,
which leads to another “or” level in the search. The idea is applied recursively
until the initial set L; of literals is obtained. During the and/or search, the
computed mutex relations provide information that immediately eliminates some
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branches. Frequently, triples and higher order tuples are checked for being mutex
together, even though they are not pairwise mutex. A hash table is constructed to
efficiently retrieve this information as it is considered multiple times in the search.
Although the plan extraction is quite costly, superior performance was shown in
[119] on several important benchmarks. In the worst case, the search could require
exponential time (otherwise, a polynomial-time algorithm would have been found
to an NP-hard problem).

2.5.3 Planning as Satisfiability

Another interesting approach is to convert the planning problem into an enormous
Boolean satisfiability problem. This means that the planning problem of Formu-
lation 2.4 can be solved by determining whether some assignment of variables is
possible for a Boolean expression that leads to a TRUE value. Generic methods
for determining satisfiability can be directly applied to the Boolean expression
that encodes the planning problem. The Davis-Putnam procedure is one of the
most widely known algorithms for satisfiability. It performs a depth-first search
by iteratively trying assignments for variables and backtracking when assignments
fail. During the search, large parts of the expression can be eliminated due to
the current assignments. The algorithm is complete and reasonably efficient. Its
use in solving planning problems is surveyed in [384]. In practice, stochastic local
search methods provide a reasonable alternative to the Davis-Putnam procedure
[461].

Suppose a planning problem has been given in terms of Formulation 2.4. All
literals and operators will be tagged with a stage index. For example, a literal that
appears in two different stages will be considered distinct. This kind of tagging
is similar to situation calculus [380]; however, in that case, variables are allowed
for the tags. To obtain a finite, Boolean expression the total number of stages
must be declared. Let K denote the number of stages at which operators can be
applied. As usual, the fist stage is k = 1 and the final stage is k = F = K + 1.
Setting a stage limit is a significant drawback of the approach because this is
usually not known before the problem is solved. A planning algorithm can assume
a small value for I’ and then gradually increase it each time the resulting Boolean
expression is not satisfied. If the problem is not solvable, however, this approach
iterates forever.

Let V denote logical OR, and let A denote logical AND. The Boolean expression
is written as a conjunctio of many terms, which arise from five different sources:

1. Initial state: A conjunction of all literals in S is formed, along with the
negation of all positive literals not in S. These are all tagged with 1, the
initial stage index.

2. Goal state: A conjunction of all literals in G, tagged with the final stage
index, F'= K + 1.

5Conjunction means logical AND.
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3. Operator encodings: Each operator must be copied over the stages. For
each o € O, let o, denote the operator applied at stage k. A conjunction is
formed over all operators at all stages. For each oy, the expression is

0V (Pr AP A ADpm ANerANea A+ ANey), (2.33)

in which pq, ..., p., are the preconditions of o, and ey, ..., e, are the effects
of O .

4. Frame axioms: The next part is to encode the implicit assumption that
every literal that is not an effect of the applied operator remains unchanged
in the next stage. This can alternatively be stated as follows: If a literal [
becomes negated to —l, then an operator that includes -l as an effect must
have been executed. (If [ was already a negative literal, then —[ is a positive
literal.) For each stage and literal, an expression is needed. Suppose that
lx and [, are the same literal but are tagged for different stages. The
expression is

(lk vV ﬁlk_H) V (0k71 vV Ok.2 VeV Ok,j), (2.34)

in which o1, ..., or; are the operators, tagged for stage k, that contain I,
as an effect. This ensures that if -l appears, followed by [, then some
operator must have caused the change.

5. Complete exclusion axiom: This indicates that only one operator applies
at every stage. For every stage k, and any pair of stage-tagged operators oy,
and o), the expression is

=0y V =0}, (2.35)

which is logically equivalent to —(ox A 0},) (meaning, “not both at the same

stage”).

It is shown in [514] that a solution plan exists if and only if the resulting Boolean
expression is satisfiable.
The following example illustrates the construction.

Example 2.9 (The Flashlight Problem as a Boolean Expression) A Boolean
expression will be constructed for Example 2.6. Each of the expressions given be-
low is joined into one large expression by connecting them with A’s.

The expression for the initial state is

O(C, F,1) A—=I(B1,F,1) A~I(B2,F,1), (2.36)

which uses the abbreviated names, and the stage tag has been added as an argu-
ment to the predicates. The expression for the goal state is

O(C,F,5) N 1(B1,F,5) A I(B2, F,5), (2.37)

which indicates that the goal must be achieved at stage & = 5. This value was
determined because we already know the solution plan from (2.24). The method
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will also work correctly for a larger value of k. The expressions for the operators
are

—PCyV (mO(C,F,k) NO(C,F,k + 1))
—RCy V (O(C,F, k) N=O(C,F,k + 1))
(
(

2.38
—I1, vV (=O(C, F, k) N—I(B1,F, k) NI(B1,F,k + 1)) ( )
—I2, vV (2O(C, F, k) N—I(B2,F, k) NI(B2,F,k+ 1))
for each k from 1 to 4.
The frame axioms yield the expressions
(O(C,F, k) vV -O(C,F,k+ 1))V (PCy)
(=O(C,F, k) VvV O(C,F,k+ 1))V (RCy)
Bl1,F k)v—-I(Bl,F.k+1))V
(BLFk)V ~I( (1) 039)

(1

(~I(B1,F,k)V I(Bl,F,k+1
(I(B2,F,k)V —I(B2,F,k+1
(—I(B2,F,k)V I(B2,F,k+1

)
)
)
)
)V (12)
)

)
)
)
)
)
),

for each k from 1 to 4. No operators remove batteries from the flashlight. Hence,
two of the expressions list no operators.
Finally, the complete exclusion axiom yields the expressions

~RCy,V ~PC, ~RC, V =01, SRC, V=02 (2.40)
-PC, VvV 01, -PC, VvV —02; =01, V —02,

for each k from 1 to 4. The full problem is encoded by combining all of the given
expressions into an enormous conjunction. The expression is satisfied by assign-
ing TRUE values to RCY, I Bl,, IB23, and PCy4. An alternative solution is RC',
I B2y, IB13, and PCy. The stage index tags indicate the order that the actions
are applied in the recovered plan. |

Further Reading

Most of the ideas and methods in this chapter have been known for decades. Most
of the search algorithms of Section 2.2 are covered in algorithms literature as graph
search [245, 406, 694, 859] and in AI literature as planning or search methods [553,
745, 746, 779, 841, 975]. Many historical references to search in AI appear in [841].
Bidirectional search was introduced in [799, 800] and is closely related to means-end
analysis [737]; more discussion of bidirectional search appears in [187, 186, 499, 571, 841].
The development of good search heuristics is critical to many applications of discrete
planning. For substantial material on this topic, see [384, 552, 779]. For the relationship
between planning and scheduling, see [268, 384, 897].

The dynamic programming principle forms the basis of optimal control theory and
many algorithms in computer science. The main ideas follow from Bellman’s principle
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Figure 2.21: Another five-state discrete planning problem.

of optimality [86, 87]. These classic works led directly to the value-iteration methods of
Section 2.3. For more recent material on this topic, see [97], which includes Dijkstra’s
algorithm and its generalization to label-correcting algorithms. An important special
version of Dijkstra’s algorithm is Dial’s algorithm [274] (see [946] and Section 8.2.3).
Throughout this book, there are close connections between planning methods and control
theory. One step in this direction was taken earlier in [269].

The foundations of logic-based planning emerged from early work of Nilsson [339,
745], which contains most of the concepts introduced in Section 2.4. Over the last few
decades, an enormous body of literature has been developed. Section[2.5 briefly surveyed
some of the highlights; however, several more chapters would be needed to do this
subject justice. For a comprehensive, recent treatment of logic-based planning, see [384];
topics beyond those covered here include constraint-satisfaction planning, scheduling,
and temporal logic. Other sources for logic-based planning include [380,/841, 963,984]. A
critique of benchmarks used for comparisons of logic-based planning algorithms appears
in [466].

Too add uncertainty or multiple decision makers to the problems covered in this
chapter, jump ahead to Chapter [10 (this may require some background from Chapter
9). To move from searching in discrete to continuous spaces, try Chapters|5 and[6 (some
background from Chapters (3 and 4!is required).

Exercises

1. Consider the planning problem shown in Figure[2.21. Let a be the initial state,
and let e be the goal state.

(a) Use backward value iteration to determine the stationary cost-to-go.

(b) Do the same but instead use forward value iteration.

2. Try to construct a worst-case example for best-first search that has properties
similar to that shown in Figure 2.5, but instead involves moving in a 2D world
with obstacles, as introduced in Example 2.1.

3. It turns out that value iteration can be generalized to a cost functional of the form

K
L(WK) = Zl(mk,uk, xk-i—l) + ZF(I'F), (2.41)
k=1

in which I(zg,uy) in (2.4) has been replaced by I(x, uk, Tx+1)-

(a) Show that the dynamic programming principle can be applied in this more
general setting to obtain forward and backward value iteration methods that
solve the fixed-length optimal planning problem.

(b) Do the same but for the more general problem of variable-length plans, which
uses termination conditions.
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4.

10.

11.

12.
13.

14.

15.
16.

The cost functional can be generalized to being stage-dependent, which means
that the cost might depend on the particular stage k£ in addition to the state, xy
and the action uy. Extend the forward and backward value iteration methods of
Section 2.3.1 to work for this case, and show that they give optimal solutions.
Each term of the more general cost functional should be denoted as I(zy, ug, k).

Recall from Section 2.3.2 the method of defining a termination action ur to make
the value iterations work correctly for variable-length planning. Instead of re-
quiring that one remains at the same state, it is also possible to formulate the
problem by creating a special state, called the terminal state, xr. Whenever ur
is applied, the state becomes x7. Describe in detail how to modify the cost func-
tional, state transition equation, and any other necessary components so that the
value iterations correctly compute shortest plans.

Dijkstra’s algorithm was presented as a kind of forward search in Section [2.2.1.

(a) Develop a backward version of Dijkstra’s algorithm that starts from the goal.
Show that it always yields optimal plans.

(b) Describe the relationship between the algorithm from part (a) and the back-
ward value iterations from Section [2.3.2.

(c¢) Derive a backward version of the A* algorithm and show that it yields optimal
plans.

Reformulate the general forward search algorithm of Section [2.2.1 so that it is
expressed in terms of the STRIPS-like representation. Carefully consider what
needs to be explicitly constructed by a planning algorithm and what is considered
only implicitly.

Rather than using bit strings, develop a set-based formulation of the logic-based
planning problem. A state in this case can be expressed as a set of positive literals.

Extend Formulation to allow disjunctive goal sets (there are alternative sets
of literals that must be satisfied). How does this affect the binary string represen-
tation?

Make a Remove operator for Example [2.17 that takes a battery away from the
flashlight. For this operator to apply, the battery must be in the flashlight and
must not be blocked by another battery. Extend the model to allow enough
information for the Remove operator to function properly.

Model the operation of the sliding-tile puzzle in Figure[1.1b using the STRIPS-like
representation. You may use variables in the operator definitions.

Find the complete set of plans that are implicitly encoded by Example[2.7.
Explain why, in Formulation 2.4, G needs to include both positive and negative
literals, whereas S only needs positive literals. As an alternative definition, could
S have contained only negative literals? Explain.

Using Formulation 2.4, model a problem in which a robot checks to determine
whether a room is dark, moves to a light switch, and flips on the light. Predicates
should indicate whether the robot is at the light switch and whether the light is
on. Operators that move the robot and flip the switch are needed.

Construct a planning graph for the model developed in Exercise [14.

Express the model in Exercise 14 as a Boolean satisfiability problem.
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In the worst case, how many terms are needed for the Boolean expression for
planning as satisfiability? Express your answer in terms of |I|, |P|, |O|, |S|, and

|Gl.

Implementations

18.

19.

20.

21.

22.

23.

24.

Using A* search, the performance degrades substantially when there are many
alternative solutions that are all optimal, or at least close to optimal. Implement
A* search and evaluate it on various grid-based problems, based on Example
Compare the performance for two different cases:

(a) Using |i' —i| + |5 — j| as the heuristic, as suggested in Section [2.2.2.
(b) Using /(7 —i)% + (j’ — 7)? as the heuristic.

Which heuristic seems superior? Explain your answer.

Implement A*, breadth-first, and best-first search for grid-based problems. For
each search algorithm, design and demonstrate examples for which one is clearly
better than the other two.

Experiment with bidirectional search for grid-based planning. Try to understand
and explain the trade-off between exploring the state space and the cost of con-
necting the trees.

Try to improve the method used to solve Exercise 18 by detecting when the search
might be caught in a local minimum and performing random walks to try to escape.
Try using best-first search instead of A*. There is great flexibility in possible
approaches. Can you obtain better performance on average for any particular
examples?

Implement backward value iteration and verify its correctness by reconstructing
the costs obtained in Example 2.5. Test the implementation on some complicated
examples.

For a planning problem under Formulation 2.3, implement both Dijkstra’s algo-
rithm and forward value iteration. Verify that these find the same plans. Comment
on their differences in performance.

Consider grid-based problems for which there are mostly large, open rooms. At-
tempt to develop a multi-resolution search algorithm that first attempts to take
larger steps, and only takes smaller steps as larger steps fail. Implement your
ideas, conduct experiments on examples, and refine your approach accordingly.
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Overview of Part II: Motion Planning

Planning in Continuous Spaces

Part II makes the transition from discrete to continuous state spaces. Two alter-
native titles are appropriate for this part: 1) motion planning, or 2) planning in
continuous state spaces. Chapters[3-8 are based on research from the field of mo-
tion planning, which has been building since the 1970s; therefore, the name motion
planning is widely known to refer to the collection of models and algorithms that
will be covered. On the other hand, it is convenient to also think of Part [II as
planning in continuous spaces because this is the primary distinction with respect
to most other forms of planning.

In addition, motion planning will frequently refer to motions of a robot in a
2D or 3D world that contains obstacles. The robot could model an actual robot,
or any other collection of moving bodies, such as humans or flexible molecules. A
motion plan involves determining what motions are appropriate for the robot so
that it reaches a goal state without colliding into obstacles. Recall the examples
from Section 1.2l

Many issues that arose in Chapter |2 appear once again in motion planning.
Two themes that may help to see the connection are as follows.

1. Implicit representations

A familiar theme from Chapter 2 is that planning algorithms must deal with im-
plicit representations of the state space. In motion planning, this will become even
more important because the state space is uncountably infinite. Furthermore, a
complicated transformation exists between the world in which the models are de-
fined and the space in which the planning occurs. Chapter 3/covers ways to model
motion planning problems, which includes defining 2D and 3D geometric models
and transforming them. Chapter |4 introduces the state space that arises for these
problems. Following motion planning literature [659, 590], we will refer to this
state space as the configuration space. The dimension of the configuration space
corresponds to the number of degrees of freedom of the robot. Using the configura-
tion space, motion planning will be viewed as a kind of search in a high-dimensional
configuration space that contains implicitly represented obstacles. One additional
complication is that configuration spaces have unusual topological structure that
must be correctly characterized to ensure correct operation of planning algorithms.
A motion plan will then be defined as a continuous path in the configuration space.

2. Continuous — discrete

A central theme throughout motion planning is to transform the continuous model
into a discrete one. Due to this transformation, many algorithms from Chapter
2 are embedded in motion planning algorithms. There are two alternatives to
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achieving this transformation, which are covered in Chapters 5/ and |6, respec-
tively. Chapter 6 covers combinatorial motion planning, which means that from
the input model the algorithms build a discrete representation that exactly rep-
resents the original problem. This leads to complete planning approaches, which
are guaranteed to find a solution when it exists, or correctly report failure if one
does not exist. Chapter |5 covers sampling-based motion planning, which refers to
algorithms that use collision detection methods to sample the configuration space
and conduct discrete searches that utilize these samples. In this case, complete-
ness is sacrificed, but it is often replaced with a weaker notion, such as resolution
completeness or probabilistic completeness. It is important to study both Chapters
5 and 6 because each methodology has its strengths and weaknesses. Combi-
natorial methods can solve virtually any motion planning problem, and in some
restricted cases, very elegant solutions may be efficiently constructed in practice.
However, for the majority of “industrial-grade” motion planning problems, the
running times and implementation difficulties of these algorithms make them un-
appealing. Sampling-based algorithms have fulfilled much of this need in recent
years by solving challenging problems in several settings, such as automobile as-
sembly, humanoid robot planning, and conformational analysis in drug design.
Although the completeness guarantees are weaker, the efficiency and ease of im-
plementation of these methods have bolstered interest in applying motion planning
algorithms to a wide variety of applications.

Two additional chapters appear in Part II. Chapter [7 covers several exten-
sions of the basic motion planning problem from the earlier chapters. These
extensions include avoiding moving obstacles, multiple robot coordination, ma-
nipulation planning, and planning with closed kinematic chains. Algorithms that
solve these problems build on the principles of earlier chapters, but each extension
involves new challenges.

Chapter 8 is a transitional chapter that involves many elements of motion
planning but is additionally concerned with gracefully recovering from unexpected
deviations during execution. Although uncertainty in predicting the future is not
explicitly modeled until Part TII, Chapter 8 redefines the notion of a plan to be a
function over state space, as opposed to being a path through it. The function gives
the appropriate actions to take during exection, regardless of what configuration
is entered. This allows the true configuration to drift away from the commanded
configuration. In Part I/ such uncertainties will be explicitly modeled, but this
comes at greater modeling and computational costs. It is worthwhile to develop
effective ways to avoid this.



Chapter 3

Geometric Representations and
Transformations

This chapter provides important background material that will be needed for Part
II. Formulating and solving motion planning problems require defining and manip-
ulating complicated geometric models of a system of bodies in space. Section 3.1
introduces geometric modeling, which focuses mainly on semi-algebraic modeling
because it is an important part of Chapter 6. If your interest is mainly in Chapter
5, then understanding semi-algebraic models is not critical. Sections 3.2 and 3.3
describe how to transform a single body and a chain of bodies, respectively. This
will enable the robot to “move.” These sections are essential for understanding
all of Part II and many sections beyond. It is expected that many readers will al-
ready have some or all of this background (especially Section (3.2, but it is included
for completeness). Section 3.4 extends the framework for transforming chains of
bodies to transforming trees of bodies, which allows modeling of complicated sys-
tems, such as humanoid robots and flexible organic molecules. Finally, Section (3.5
briefly covers transformations that do not assume each body is rigid.

3.1 Geometric Modeling

A wide variety of approaches and techniques for geometric modeling exist, and
the particular choice usually depends on the application and the difficulty of the
problem. In most cases, there are generally two alternatives: 1) a boundary repre-
sentation, and 2) a solid representation. Suppose we would like to define a model
of a planet. Using a boundary representation, we might write the equation of a
sphere that roughly coincides with the planet’s surface. Using a solid representa-
tion, we would describe the set of all points that are contained in the sphere. Both
alternatives will be considered in this section.

The first step is to define the world W for which there are two possible choices:
1) a 2D world, in which W = R? and 2) a 3D world, in which W = R3. These
choices should be sufficient for most problems; however, one might also want to
allow more complicated worlds, such as the surface of a sphere or even a higher
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dimensional space. Such generalities are avoided in this book because their current
applications are limited. Unless otherwise stated, the world generally contains two
kinds of entities:

1. Obstacles: Portions of the world that are “permanently” occupied, for
example, as in the walls of a building.

2. Robots: Bodies that are modeled geometrically and are controllable via a
motion plan.

Based on the terminology, one obvious application is to model a robot that moves
around in a building; however, many other possibilities exist. For example, the
robot could be a flexible molecule, and the obstacles could be a folded protein.
As another example, the robot could be a virtual human in a graphical simulation
that involves obstacles (imagine the family of Doom-like video games).

This section presents a method for systematically constructing representations
of obstacles and robots using a collection of primitives. Both obstacles and robots
will be considered as (closed) subsets of W. Let the obstacle region O denote the
set of all points in W that lie in one or more obstacles; hence, O C W. The
next step is to define a systematic way of representing O that has great expressive
power while being computationally efficient. Robots will be defined in a similar
way; however, this will be deferred until Section 3.2, where transformations of
geometric bodies are defined.

3.1.1 Polygonal and Polyhedral Models

In this and the next subsection, a solid representation of O will be developed in
terms of a combination of primitives. Each primitive H; represents a subset of W
that is easy to represent and manipulate in a computer. A complicated obstacle
region will be represented by taking finite, Boolean combinations of primitives.
Using set theory, this implies that O can also be defined in terms of a finite
number of unions, intersections, and set differences of primitives.

Convex polygons First consider O for the case in which the obstacle region is
a convex, polygonal subset of a 2D world, W = R2. A subset X C R" is called
conver if and only if, for any pair of points in X, all points along the line segment
that connects them are contained in X. More precisely, this means that for any
x1, 19 € X and A € [0, 1],

Axi 4 (1= N)ag € X. (3.1)

Thus, interpolation between x; and x5 always yields points in X. Intuitively, X
contains no pockets or indentations. A set that is not convex is called nonconvez
(as opposed to concave, which seems better suited for lenses).

A boundary representation of O is an m-sided polygon, which can be described
using two kinds of features: vertices and edges. Every wverter corresponds to a
“corner” of the polygon, and every edge corresponds to a line segment between a
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Figure 3.1: A convex polygonal region can be identified by the intersection of
half-planes.

pair of vertices. The polygon can be specified by a sequence, (z1,v1), (z2,¥2), - -,
(T, Ym), of m points in R?, given in counterclockwise order.

A solid representation of O can be expressed as the intersection of m half-
planes. Each half-plane corresponds to the set of all points that lie to one side
of a line that is common to a polygon edge. Figure 3.1 shows an example of an
octagon that is represented as the intersection of eight half-planes.

An edge of the polygon is specified by two points, such as (z1,y;) and (z2,y2).
Consider the equation of a line that passes through (z1,y;) and (z2,72). An
equation can be determined of the form ax + by + ¢ = 0, in which a,b,c € R
are constants that are determined from 'y, 4, =2, and y5. Let f : R? — R be
the function given by f(z,y) = ax + by + ¢. Note that f(z,y) < 0 on one side
of the line, and f(z,y) > 0 on the other. (In fact, f may be interpreted as a
signed Euclidean distance from (z,y) to the line.) The sign of f(x,y) indicates a
half-plane that is bounded by the line, as depicted in Figure 3.2. Without loss of
generality, assume that f(z,y) is defined so that f(z,y) < 0 for all points to the
left of the edge from (z1, ;) to (z2,y2) (if it is not, then multiply f(z,y) by —1).

Let fi(z,y) denote the f function derived from the line that corresponds to
the edge from (z;,y;) to (i1, yir1) for 1 < i < m. Let f,,(z,y) denote the line
equation that corresponds to the edge from (z,,,ym) to (z1,y1). Let a half-plane
H; for 1 <17 < m be defined as a subset of W:

H; ={(z,y) e W] fi(z,y) <0}. (3.2)

Above, H; is a primitive that describes the set of all points on one side of the
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Figure 3.2: The sign of the f(x,y) partitions R? into three regions: two half-planes
given by f(x,y) < 0 and f(x,y) > 0, and the line f(z,y) = 0.

line f;(x,y) = 0 (including the points on the line). A convex, m-sided, polygonal
obstacle region O is expressed as

O=H NHN---NHp,. (3.3)

Nonconvex polygons The assumption that O is convex is too limited for most
applications. Now suppose that O is a nonconvex, polygonal subset of WW. In this
case O can be expressed as

O=0,U0,U---UO,, (3.4)

in which each O; is a convex, polygonal set that is expressed in terms of half-
planes using (3.3). Note that O; and O; for ¢ # j need not be disjoint. Using this
representation, very complicated obstacle regions in W can be defined. Although
these regions may contain multiple components and holes, if O is bounded (i.e., O
will fit inside of a big enough rectangular box), its boundary will consist of linear
segments.

In general, more complicated representations of O can be defined in terms of
any finite combination of unions, intersections, and set differences of primitives;
however, it is always possible to simplify the representation into the form given
by (3.3) and (3.4). A set difference can be avoided by redefining the primitive.
Suppose the model requires removing a set defined by a primitive H; that contains®
fi(z,y) < 0. This is equivalent to keeping all points such that f;(x,y) > 0, which is
equivalent to —f;(z,y) < 0. This can be used to define a new primitive H/, which
when taken in union with other sets, is equivalent to the removal of H;. Given
a complicated combination of primitives, once set differences are removed, the
expression can be simplified into a finite union of finite intersections by applying
Boolean algebra laws.

In this section, we want the resulting set to include all of the points along the boundary.
Therefore, < is used to model a set for removal, as opposed to <.
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Note that the representation of a nonconvex polygon is not unique. There
are many ways to decompose O into convex components. The decomposition
should be carefully selected to optimize computational performance in whatever
algorithms that model will be used. In most cases, the components may even be
allowed to overlap. Ideally, it seems that it would be nice to represent O with the
minimum number of primitives, but automating such a decomposition may lead to
an NP-hard problem (see Section [6.5.1 for a brief overview of NP-hardness). One
efficient, practical way to decompose O is to apply the vertical cell decomposition
algorithm, which will be presented in Section 6.2.2

Defining a logical predicate What is the value of the previous representation?
As a simple example, we can define a logical predicate that serves as a collision
detector. Recall from Section |2.4.1 that a predicate is a Boolean-valued function.
Let ¢ be a predicate defined as ¢ : W — {TRUE, FALSE}, which returns TRUE for
a point in W that lies in O, and FALSE otherwise. For a line given by f(x,y) =
0, let e(x,y) denote a logical predicate that returns TRUE if f(z,y) < 0, and
FALSE otherwise.

A predicate that corresponds to a convex polygonal region is represented by a
logical conjunction,

alz,y) =e(z,y) Aea(z,y) A Aen(z,y). (3.5)

The predicate a(x,y) returns TRUE if the point (x,y) lies in the convex polygonal
region, and FALSE otherwise. An obstacle region that consists of n convex polygons
is represented by a logical disjunction of conjuncts,

(b(x,y) :Oél(l’,y)\/()ég(]?,y)\/"'\/Oén<$,y). (36)

Although more efficient methods exist, ¢ can check whether a point (z,y) lies
in O in time O(n), in which n is the number of primitives that appear in the
representation of O (each primitive is evaluated in constant time).

Note the convenient connection between a logical predicate representation and
a set-theoretic representation. Using the logical predicate, the unions and inter-
sections of the set-theoretic representation are replaced by logical ORs and ANDs.
It is well known from Boolean algebra that any complicated logical sentence can
be reduced to a logical disjunction of conjunctions (this is often called “sum of
products” in computer engineering). This is equivalent to our previous statement
that O can always be represented as a union of intersections of primitives.

Polyhedral models For a 3D world, W = R3, and the previous concepts can
be nicely generalized from the 2D case by replacing polygons with polyhedra and
replacing half-plane primitives with half-space primitives. A boundary represen-
tation can be defined in terms of three features: vertices, edges, and faces. Every
face is a “flat” polygon embedded in R3. Every edge forms a boundary between
two faces. Every vertex forms a boundary between three or more edges.
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Figure 3.3: (a) A polyhedron can be described in terms of faces, edges, and vertices.
(b) The edges of each face can be stored in a circular list that is traversed in
counterclockwise order with respect to the outward normal vector of the face.

Several data structures have been proposed that allow one to conveniently
“walk” around the polyhedral features. For example, the doubly connected edge
list [266] data structure contains three types of records: faces, half-edges, and
vertices. Intuitively, a half-edge is a directed edge. Each vertex record holds the
point coordinates and a pointer to an arbitrary half-edge that touches the vertex.
Each face record contains a pointer to an arbitrary half-edge on its boundary. Each
face is bounded by a circular list of half-edges. There is a pair of directed half-edge
records for each edge of the polyhedon. Each half-edge is shown as an arrow in
Figure [3.3b. Each half-edge record contains pointers to five other records: 1) the
vertex from which the half-edge originates; 2) the “twin” half-edge, which bounds
the neighboring face, and has the opposite direction; 3) the face that is bounded by
the half-edge; 4) the next element in the circular list of edges that bound the face;
and 5) the previous element in the circular list of edges that bound the face. Once
all of these records have been defined, one can conveniently traverse the structure
of the polyhedron.

Now consider a solid representation of a polyhedron. Suppose that O is a con-
vex polyhedron, as shown in Figure[3.3. A solid representation can be constructed
from the vertices. Each face of O has at least three vertices along its boundary.
Assuming these vertices are not collinear, an equation of the plane that passes
through them can be determined of the form

ax + by + cz+d =0, (3.7)

in which a, b, c,d € R are constants.
Once again, f can be constructed, except now f : R® — R and

f(z,y,2) =ar +by + cz +d. (3.8)
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Let m be the number of faces. For each face of O, a half-space H; is defined as a
subset of W:

It is important to choose f; so that it takes on negative values inside of the poly-
hedron. In the case of a polygonal model, it was possible to consistently define
fi by proceeding in counterclockwise order around the boundary. In the case of
a polyhedron, the half-edge data structure can be used to obtain for each face
the list of edges that form its boundary in counterclockwise order. Figure 3.3b
shows the edge ordering for each face. For every edge, the arrows point in opposite
directions, as required by the half-edge data structure. The equation for each face
can be consistently determined as follows. Choose three consecutive vertices, p1,
P2, ps (they must not be collinear) in counterclockwise order on the boundary of
the face. Let vi5 denote the vector from p; to po, and let ve3 denote the vector
from ps to p3. The cross product v = v15 X v93 always yields a vector that points
out of the polyhedron and is normal to the face. Recall that the vector [a b (]
is parallel to the normal to the plane. If its components are chosen as a = v[1],
b = v[2], and ¢ = v[3], then f(z,y,z) < 0 for all points in the half-space that
contains the polyhedron.

As in the case of a polygonal model, a convex polyhedron can be defined as
the intersection of a finite number of half-spaces, one for each face. A nonconvex
polyhedron can be defined as the union of a finite number of convex polyhedra.
The predicate ¢(x,y, z) can be defined in a similar manner, in this case yielding
TRUE if (x,y, z) € O, and FALSE otherwise.

3.1.2 Semi-Algebraic Models

In both the polygonal and polyhedral models, f was a linear function. In the
case of a semi-algebraic model for a 2D world, f can be any polynomial with real-
valued coefficients and variables x and y. For a 3D world, f is a polynomial with
variables x, y, and z. The class of semi-algebraic models includes both polygonal
and polyhedral models, which use first-degree polynomials. A point set determined
by a single polynomial primitive is called an algebraic set; a point set that can be
obtained by a finite number of unions and intersections of algebraic sets is called
a semi-algebraic set.

Consider the case of a 2D world. A solid representation can be defined using
algebraic primitives of the form

H = {(z,y) e W| f(z,y) <0} (3.10)

As an example, let f = 22 + y?> — 4. In this case, H represents a disc of radius
2 that is centered at the origin. This corresponds to the set of points (z,y) for
which f(z,y) <0, as depicted in Figure [3.4a.

Example 3.1 (Gingerbread Face) Consider constructing a model of the shaded
region shown in Figure 3.4b. Let the center of the outer circle have radius r; and
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Figure 3.4: (a) Once again, f is used to partition R? into two regions. In this case,
the algebraic primitive represents a disc-shaped region. (b) The shaded “face” can
be exactly modeled using only four algebraic primitives.

be centered at the origin. Suppose that the “eyes” have radius o and r3 and are
centered at (z2,y2) and (z3,ys), respectively. Let the “mouth” be an ellipse with
major axis ¢ and minor axis b and is centered at (0,y4). The functions are defined
as
fl 23724‘3/2_74%;
fo = —((33 —22)* + (y — 1) — T%)J
fa = —((I —3)* + (y —y3)* — Tg);
fo=—(2a%/a® + (y — ya)?/0* = 1).
For fs, f3, and f4, the familiar circle and ellipse equations were multiplied by —1 to

yield algebraic primitives for all points outside of the circle or ellipse. The shaded
region O is represented as

(3.11)

|

In the case of semi-algebraic models, the intersection of primitives does not
necessarily result in a convex subset of . In general, however, it might be
necessary to form O by taking unions and intersections of algebraic primitives.

A logical predicate, ¢(x,y), can once again be formed, and collision checking
is still performed in time that is linear in the number of primitives. Note that
it is still very efficient to evaluate every primitive; f is just a polynomial that is
evaluated on the point (z,v, 2).

The semi-algebraic formulation generalizes easily to the case of a 3D world.
This results in algebraic primitives of the form

H=A{(z,y,2) e W | f(z,y,2) <0}, (3.13)
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which can be used to define a solid representation of a 3D obstacle O and a logical
predicate ¢.

Equations (3.10) and (3.13) are sufficient to express any model of interest. One
may define many other primitives based on different relations, such as f(x,y, z) >
0, f(z,y,2) =0, f(z,y,2) <0, f(x,y,z) =0, and f(x,y,z) # 0; however, most
of them do not enhance the set of models that can be expressed. They might,
however, be more convenient in certain contexts. To see that some primitives do
not allow new models to be expressed, consider the primitive

H={(x,y,2) e W| f(z,y,2) > 0}. (3.14)

The right part may be alternatively represented as — f(x,y, z) < 0, and —f may
be considered as a new polynomial function of z, y, and z. For an example that
involves the = relation, consider the primitive

H ={(z,y,2) e W[ f(z,y,2) = 0}. (3.15)
It can instead be constructed as H = H; N Hy, in which
le{(l',y,Z) €W|f(l',y72) SO} (316)

and
Hy ={(z,y,2) e W| — f(z,y,2) <0} (3.17)

The relation < does add some expressive power if it is used to construct primitivesE
It is needed to construct models that do not include the outer boundary (for
example, the set of all points inside of a sphere, which does not include points on
the sphere). These are generally called open sets and are defined Chapter [4.

3.1.3 Other Models

The choice of a model often depends on the types of operations that will be per-
formed by the planning algorithm. For combinatorial motion planning methods,
to be covered in Chapter 6, the particular representation is critical. On the other
hand, for sampling-based planning methods, to be covered in Chapter 5, the par-
ticular representation is important only to the collision detection algorithm, which
is treated as a “black box” as far as planning is concerned. Therefore, the models
given in the remainder of this section are more likely to appear in sampling-based
approaches and may be invisible to the designer of a planning algorithm (although
it is never wise to forget completely about the representation).

2An alternative that yields the same expressive power is to still use <, but allow set comple-
ments, in addition to unions and intersections.
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Figure 3.5: A polygon with holes can be expressed by using different orientations:
counterclockwise for the outer boundary and clockwise for the hole boundaries.
Note that the shaded part is always to the left when following the arrows.

Nonconvex polygons and polyhedra The method in Section 3.1.1] required
nonconvex polygons to be represented as a union of convex polygons. Instead, a
boundary representation of a nonconvex polygon may be directly encoded by list-
ing vertices in a specific order; assume that counterclockwise order is used. Each
polygon of m vertices may be encoded by a list of the form (z1,v1), (x2,42), - .-,
(Tm, Ym). It is assumed that there is an edge between each (x;,y;) and (241, Yit1)
for each ¢ from 1 to m—1, and also an edge between (x,,, ) and (z1, ;). Ordinar-
ily, the vertices should be chosen in a way that makes the polygon simple, meaning
that no edges intersect. In this case, there is a well-defined interior of the polygon,
which is to the left of every edge, if the vertices are listed in counterclockwise
order.

What if a polygon has a hole in it? In this case, the boundary of the hole
can be expressed as a polygon, but with its vertices appearing in the clockwise
direction. To the left of each edge is the interior of the outer polygon, and to the
right is the hole, as shown in Figure 3.5

Although the data structures are a little more complicated for three dimen-
sions, boundary representations of nonconvex polyhedra may be expressed in a
similar manner. In this case, instead of an edge list, one must specify faces, edges,
and vertices, with pointers that indicate their incidence relations. Consistent ori-
entations must also be chosen, and holes may be modeled once again by selecting
opposite orientations.

3D triangles Suppose W = R3. One of the most convenient geometric models
to express is a set of triangles, each of which is specified by three points, (x1,y1, 21),
(22, Y2, 22), (23,3, 23). This model has been popular in computer graphics because
graphics acceleration hardware primarily uses triangle primitives. It is assumed
that the interior of the triangle is part of the model. Thus, two triangles are
considered as “colliding” if one pokes into the interior of another. This model offers
great flexibility because there are no constraints on the way in which triangles must
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Figure 3.6: Triangle strips and triangle fans can reduce the number of redundant
points.

be expressed; however, this is also one of the drawbacks. There is no coherency
that can be exploited to easily declare whether a point is “inside” or “outside” of
a 3D obstacle. If there is at least some coherency, then it is sometimes preferable
to reduce redundancy in the specification of triangle coordinates (many triangles
will share the same corners). Representations that remove this redundancy are
called a triangle strip, which is a sequence of triangles such that each adjacent
pair shares a common edge, and a triangle fan, which is a triangle strip in which
all triangles share a common vertex. See Figure 3.6.

Nonuniform rational B-splines (NURBS) These are used in many engi-
neering design systems to allow convenient design and adjustment of curved sur-
faces, in applications such as aircraft or automobile body design. In contrast to
semi-algebraic models, which are implicit equations, NURBS and other splines are
parametric equations. This makes computations such as rendering easier; however,
others, such as collision detection, become more difficult. These models may be
defined in any dimension. A brief 2D formulation is given here.
A curve can be expressed as

Z w; P;N; 1, (u)
Clu) = =2

=0

in which w; € R are weights and P; are control points. The N;; are normalized
basis functions of degree k, which can be expressed recursively as

, (3.18)

u—t bivkt1 — U

Nw(u) = (7>Ni,k_1(u) + <L)Ni+17k_1(u). (319)
livk — i Livkr1 — tit1

The basis of the recursion is N, o(u) = 1 if t; < u < t;41, and N, o(u) = 0 otherwise.

A knot wvector is a nondecreasing sequence of real values, {to,t1,...,t,}, that

controls the intervals over which certain basic functions take effect.

Bitmaps For either W = R? or W = R3, it is possible to discretize a bounded
portion of the world into rectangular cells that may or may not be occupied.
The resulting model looks very similar to Example [2.1L The resolution of this
discretization determines the number of cells per axis and the quality of the ap-
proximation. The representation may be considered as a binary image in which
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each “1” in the image corresponds to a rectangular region that contains at least
one point of O, and “0” represents those that do not contain any of @. Although
bitmaps do not have the elegance of the other models, they often arise in applica-
tions. One example is a digital map constructed by a mobile robot that explores
an environment with its sensors. One generalization of bitmaps is a gray-scale
map or occupancy grid. In this case, a numerical value may be assigned to each
cell, indicating quantities such as “the probability that an obstacle exists” or the
“expected difficulty of traversing the cell.” The latter interpretation is often used
in terrain maps for navigating planetary rovers.

Superquadrics Instead of using polynomials to define f;, many generalizations
can be constructed. One popular primitive is a superquadric, which generalizes
quadric surfaces. One example is a superellipsoid, which is given for W = R3 by

(Jz/al™ + |y/b"™ )™ 4 |2/em =1 <0, (3.20)

in which n; > 2 and ny > 2. If ny = ny = 2, an ellipse is generated. As n; and ny
increase, the superellipsoid becomes shaped like a box with rounded corners.

Generalized cylinders A generalized cylinder is a generalization of an ordinary
cylinder. Instead of being limited to a line, the center axis is a continuous spine
curve, (z(s),y(s), z(s)), for some parameter s € [0, 1]. Instead of a constant radius,
a radius function r(s) is defined along the spine. The value r(s) is the radius of
the circle obtained as the cross section of the generalized cylinder at the point
(2(s),y(s), 2(s)). The normal to the cross-section plane is the tangent to the spine
curve at s.

3.2 Rigid-Body Transformations

Any of the techniques from Section 3.1 can be used to define both the obstacle
region and the robot. Let O refer to the obstacle region, which is a subset of W.
Let A refer to the robot, which is a subset of R? or R, matching the dimension
of W. Although O remains fixed in the world, W, motion planning problems will
require “moving” the robot, A.

3.2.1 General Concepts

Before giving specific transformations, it will be helpful to define them in general to
avoid confusion in later parts when intuitive notions might fall apart. Suppose that
a rigid robot, A, is defined as a subset of R? or R3. A rigid-body transformation is
a function, h : A — W, that maps every point of A into W with two requirements:
1) The distance between any pair of points of A must be preserved, and 2) the
orientation of A must be preserved (no “mirror images”).
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Using standard function notation, h(a) for some a € A refers to the point in
W that is “occupied” by a. Let

h(A) = {h(a) eW |a € A, (3.21)

which is the image of h and indicates all points in W occupied by the transformed
robot.

Transforming the robot model Consider transforming a robot model. If A
is expressed by naming specific points in R?, as in a boundary representation of a
polygon, then each point is simply transformed from a to h(a) € W. In this case,
it is straightforward to transform the entire model using h. However, there is a
slight complication if the robot model is expressed using primitives, such as

H; = {a € R*| fi(a) < 0}. (3.22)

This differs slightly from (3.2) because the robot is defined in R? (which is not
necessarily W), and also a is used to denote a point (z,y) € A. Under a transfor-
mation A, the primitive is transformed as

h(H;) = {h(a) € W] fi(a) < 0}. (3.23)

To transform the primitive completely, however, it is better to directly name points
in w € W, as opposed to h(a) € W. Using the fact that @ = h~!(w), this becomes

h(H;) ={w e W] fi(h™ (w)) < 0}, (3.24)

in which the inverse of h appears in the right side because the original point a € A
needs to be recovered to evaluate f;. Therefore, it is important to be careful
because either h or h~! may be required to transform the model. This will be
observed in more specific contexts in some coming examples.

A parameterized family of transformations It will become important to
study families of transformations, in which some parameters are used to select
the particular transformation. Therefore, it makes sense to generalize h to accept
two variables: a parameter vector, ¢ € R" along with a € A. The resulting
transformed point a is denoted by h(q,a), and the entire robot is transformed to
h(g, A) C W.

The coming material will use the following shorthand notation, which requires
the specific h to be inferred from the context. Let h(q, a) be shortened to a(q), and
let h(q,.A) be shortened to A(q). This notation makes it appear that by adjusting
the parameter ¢, the robot A travels around in WV as different transformations are
selected from the predetermined family. This is slightly abusive notation, but it is
convenient. The expression A(q) can be considered as a set-valued function that
yields the set of points in W that are occupied by A when it is transformed by
q. Most of the time the notation does not cause trouble, but when it does, it is
helpful to remember the definitions from this section, especially when trying to
determine whether h or h~! is needed.
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Defining frames It was assumed so far that A is defined in R? or R3, but before
it is transformed, it is not considered to be a subset of W. The transformation h
places the robot in W. In the coming material, it will be convenient to indicate
this distinction using coordinate frames. The origin and coordinate basis vectors
of W will be referred to as the world fmmeﬁ Thus, any point w € W is expressed
in terms of the world frame.

The coordinates used to define A are initially expressed in the body frame,
which represents the origin and coordinate basis vectors of R? or R?. In the case
of A C R2?, it can be imagined that the body frame is painted on the robot.
Transforming the robot is equivalent to converting its model from the body frame
to the world frame. This has the effect of placing* A into VW at some position
and orientation. When multiple bodies are covered in Section 3.3, each body will
have its own body frame, and transformations require expressing all bodies with
respect to the world frame.

3.2.2 2D Transformations

Translation A rigid robot A C R? is translated by using two parameters, x,y; €
R. Using definitions from Section 3.2.1, ¢ = (4, y:), and h is defined as

ha,y) = (x4 2,y + 41). (3.25)

A boundary representation of A can be translated by transforming each vertex in
the sequence of polygon vertices using (3.25). Each point, (z;,;), in the sequence
is replaced by (z; + x¢, y; + ys).

Now consider a solid representation of A, defined in terms of primitives. Each
primitive of the form

H; = {(z,y) € R?| f(z,y) <0} (3.26)
is transformed to
h(H;) = {(z,y) e W | f(x — 2,y — y) < 0} (3.27)

Example 3.2 (Translating a Disc) For example, suppose the robot is a disc of
unit radius, centered at the origin. It is modeled by a single primitive,

Hy={(z,y) e R? | 2* +y* =1 < 0}. (3.28)

Suppose A = H; is translated x; units in the x direction and ¥, units in the y
direction. The transformed primitive is

h(H;) = {(z,y) e W | (x —x)* + (y — y:)> — 1 < 0}, (3.29)

3The world frame serves the same purpose as an inertial frame in Newtonian mechanics.
Intuitively, it is a frame that remains fixed and from which all measurements are taken. See
Section [13.3.1l

4Technically, this placement is a function called an orientation-preserving isometric embed-
ding.
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Figure 3.7: Every transformation has two interpretations.

which is the familiar equation for a disc centered at (z, ;). In this example, the
inverse, h™! is used, as described in Section 3.2.1. |

The translated robot is denoted as A(x, y;). Translation by (0,0) is the iden-
tity transformation, which results in A(0,0) = A, if it is assumed that A C W
(recall that A does not necessarily have to be initially embedded in W). It will be
convenient to use the term degrees of freedom to refer to the maximum number of
independent parameters that are needed to completely characterize the transfor-
mation applied to the robot. If the set of allowable values for z; and y; forms a
two-dimensional subset of R?, then the degrees of freedom is two.

Suppose that A is defined directly in VW with translation. As shown in Figure
3.7, there are two interpretations of a rigid-body transformation applied to A: 1)
The world frame remains fixed and the robot is transformed; 2) the robot remains
fixed and the world frame is translated. The first one characterizes the effect of
the transformation from a fixed world frame, and the second one indicates how
the transformation appears from the robot’s perspective. Unless stated otherwise,
the first interpretation will be used when we refer to motion planning problems
because it often models a robot moving in a physical world. Numerous books cover
coordinate transformations under the second interpretation. This has been known
to cause confusion because the transformations may sometimes appear “backward”
from what is desired in motion planning.

Rotation The robot, A, can be rotated counterclockwise by some angle 6 €
[0,27) by mapping every (z,y) € A as

(z,y) — (zcosh —ysinf, xsinf + ycosh). (3.30)
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Using a 2 x 2 rotation matrix,

R(0) = (COS 0 —sin 9) , (3.31)

sinf cos®

the transformation can be written as
rcosf —ysinf x
(:c sin 0 + y cos 9> = R(0) (y) ' (3.32)
Using the notation of Section 3.2.1, R(f) becomes h(q), for which ¢ = 6. For
linear transformations, such as the one defined by (3.32), recall that the column
vectors represent the basis vectors of the new coordinate frame. The column
vectors of R(#) are unit vectors, and their inner product (or dot product) is zero,
indicating that they are orthogonal. Suppose that the x and y coordinate axes,
which represent the body frame, are “painted” on A. The columns of R(f) can be
derived by considering the resulting directions of the x- and y-axes, respectively,
after performing a counterclockwise rotation by the angle 6. This interpretation
generalizes nicely for higher dimensional rotation matrices.
Note that the rotation is performed about the origin. Thus, when defining the
model of A, the origin should be placed at the intended axis of rotation. Using
the semi-algebraic model, the entire robot model can be rotated by transforming

each primitive, yielding A(f). The inverse rotation, R(—0), must be applied to
each primitive.

Combining translation and rotation Suppose a rotation by 6 is performed,
followed by a translation by x;,y;. This can be used to place the robot in any
desired position and orientation. Note that translations and rotations do not
commute! If the operations are applied successively, each (z,y) € A is transformed

to
xcosf —ysinf + x,
(xsin@+ycos€+yt) ' (3.33)

The following matrix multiplication yields the same result for the first two vector
components:

cosf —sinf x z xcosl —ysinb + x,
sinf  cosf® y| =|xsinf+ycosl+y |. (3.34)
0 0 1 1 1

This implies that the 3 x 3 matrix,

cosf —sinf x4
T=|sinf cost vy |, (3.35)
0 0 1

represents a rotation followed by a translation. The matrix 7" will be referred to
as a homogeneous transformation matriz. It is important to remember that T
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Figure 3.8: Any three-dimensional rotation can be described as a sequence of yaw,
pitch, and roll rotations.

represents a rotation followed by a translation (not the other way around). Each
primitive can be transformed using the inverse of T, resulting in a transformed
solid model of the robot. The transformed robot is denoted by A(zy,y:,0), and
in this case there are three degrees of freedom. The homogeneous transformation
matrix is a convenient representation of the combined transformations; therefore,
it is frequently used in robotics, mechanics, computer graphics, and elsewhere.
It is called homogeneous because over R? it is just a linear transformation with-
out any translation. The trick of increasing the dimension by one to absorb the
translational part is common in projective geometry [806].

3.2.3 3D Transformations

Rigid-body transformations for the 3D case are conceptually similar to the 2D case;
however, the 3D case appears more difficult because rotations are significantly more
complicated.

3D translation The robot, A, is translated by some x;, vy, z; € R using

(z,y,2) — (T + 20,y + Y, 2 + 20). (3.36)
A primitive of the form
H; ={(z,y,2) e W| fi(z,y,2) < 0} (3.37)
is transformed to
{(z.y,2) e W file — 2,y — yr, 2 — 2) < O} (3.38)

The translated robot is denoted as A(xy, ¥, 2¢)-
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Yaw, pitch, and roll rotations A 3D body can be rotated about three orthog-
onal axes, as shown in Figure|3.8. Borrowing aviation terminology, these rotations
will be referred to as yaw, pitch, and roll:

1. A yaw is a counterclockwise rotation of o about the z-axis. The rotation
matrix is given by

cosay —sina 0
R.(a) = | sinaw cosa O]. (3.39)
0 0 1

Note that the upper left entries of R,(«) form a 2D rotation applied to the
x and y coordinates, whereas the z coordinate remains constant.

2. A pitch is a counterclockwise rotation of § about the y-axis. The rotation
matrix is given by

cosf 0 sing
R,B=| 0o 1 0 |. (3.40)
—sinf 0 cosf

3. A roll is a counterclockwise rotation of v about the z-axis. The rotation
matrix is given by

1 0 0
R.(y)= |0 cosy —sinvy]. (3.41)
0 siny cosvy

Each rotation matrix is a simple extension of the 2D rotation matrix, (3.31). For
example, the yaw matrix, R,(«a), essentially performs a 2D rotation with respect
to the x and y coordinates while leaving the z coordinate unchanged. Thus, the
third row and third column of R,(«) look like part of the identity matrix, while
the upper right portion of R,(a) looks like the 2D rotation matrix.

The yaw, pitch, and roll rotations can be used to place a 3D body in any
orientation. A single rotation matrix can be formed by multiplying the yaw, pitch,
and roll rotation matrices to obtain

R(Oéaﬁa 7) = RZ(Oé> Ry(ﬂ) Rx(’y) =
cosacos 3 cosasinfFsiny —sinacosy cosasin /3 cosy + sinasinqy
sinacosf sinasin Gsiny + cosacosy sinasin §cosy — cos asin vy
—sin 3 cos (3 siny cos [ cosy
(3.42)

It is important to note that R(«, 3,7) performs the roll first, then the pitch, and
finally the yaw. If the order of these operations is changed, a different rotation
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matrix would result. Be careful when interpreting the rotations. Consider the
final rotation, a yaw by «a. Imagine sitting inside of a robot A that looks like
an aircraft. If 3 = v = 0, then the yaw turns the plane in a way that feels
like turning a car to the left. However, for arbitrary values of § and ~, the final
rotation axis will not be vertically aligned with the aircraft because the aircraft is
left in an unusual orientation before « is applied. The yaw rotation occurs about
the z-axis of the world frame, not the body frame of A. Each time a new rotation
matrix is introduced from the left, it has no concern for original body frame of
A. Tt simply rotates every point in R? in terms of the world frame. Note that 3D
rotations depend on three parameters, «, (3, and v, whereas 2D rotations depend
only on a single parameter, 6. The primitives of the model can be transformed
using R(a, 3,7), resulting in A(a, 3,7).

Determining yaw, pitch, and roll from a rotation matrix It is often con-
venient to determine the «, 3, and v parameters directly from a given rotation
matrix. Suppose an arbitrary rotation matrix

1 T2 T13
T21 To9 To3 (343)
31 T32 T33

is given. By setting each entry equal to its corresponding entry in (3.42), equations
are obtained that must be solved for a, 3, and . Note that 791 /r;; = tan« and

r32/r33 = tan~y. Also, r3; = —sin 8 and /73, + 133 = cos 3. Solving for each
angle yields

o= tan’l(rn/rm), (3.44)
5:tan_1 <\/T§2—|—7’§3/—7‘31>, (345)

and
v = tan_l(rgg/rgg). (3.46)

There is a choice of four quadrants for the inverse tangent functions. How can
the correct quadrant be determined? Each quadrant should be chosen by using
the signs of the numerator and denominator of the argument. The numerator sign
selects whether the direction will be to the left or right of the y-axis, and the
denominator selects whether the direction will be above or below the x-axis. This
is the same as the atan2 function in the C programming language, which nicely
expands the range of the arctangent to [0,27). This can be applied to express

(3.44), (3.45), and (3.46) as

a = atan2(ryy, ra1 ), (3.47)

[ = atan2 (wr?zﬁ + 13, —r31>, (3.48)
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and
v = atan2(rsa, 733). (3.49)

Note that this method assumes r9; # 0 and 733 # 0.

The homogeneous transformation matrix for 3D bodies As in the 2D
case, a homogeneous transformation matrix can be defined. For the 3D case, a
4 x 4 matrix is obtained that performs the rotation given by R(a, 3,7), followed
by a translation given by xy, 4, z;. The result is

cosacos cosasinfsiny —sinacosy cosasinfcosy +sinasiny xy
sinacos 8 sinasinGsiny + cosacosy sinasinFcosy —cosasiny

T —

—sin 3 cos B siny cos (3 cosy Zt
0 0 0 1
(3.50)

Once again, the order of operations is critical. The matrix 7" in (3.50) represents
the following sequence of transformations:

1. Roll by vy 3. Yaw by «
2. Pitch by 3 4. Translate by (x, yt, 2¢)-

The robot primitives can be transformed to yield A(zy, v, 21, o, 5,7). A 3D rigid
body that is capable of translation and rotation therefore has six degrees of free-
dom.

3.3 Transforming Kinematic Chains of Bodies

The transformations become more complicated for a chain of attached rigid bodies.
For convenience, each rigid body is referred to as a link. Let A;, Ao, ..., A,, denote
a set of m links. For each ¢ such that 1 < i < m, link A; is “attached” to link A;
in a way that allows 4,1 some constrained motion with respect to 4;. The motion
constraint must be explicitly given, and will be discussed shortly. As an example,
imagine a trailer that is attached to the back of a car by a hitch that allows the
trailer to rotate with respect to the car. In general, a set of attached bodies will
be referred to as a linkage. This section considers bodies that are attached in a
single chain. This leads to a particular linkage called a kinematic chain.

3.3.1 A 2D Kinematic Chain

Before considering a kinematic chain, suppose A; and A are unattached rigid
bodies, each of which is capable of translating and rotating in YW = R2. Since
each body has three degrees of freedom, there is a combined total of six degrees
of freedom; the independent parameters are x1, y1, 01, T2, y2, and 6s.
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Figure 3.9: Two types of 2D joints: a revolute joint allows one link to rotate with
respect to the other, and a prismatic joint allows one link to translate with respect
to the other.

Attaching bodies When bodies are attached in a kinematic chain, degrees of
freedom are removed. Figure 3.9 shows two different ways in which a pair of 2D
links can be attached. The place at which the links are attached is called a joint.
For a revolute joint, one link is capable only of rotation with respect to the other.
For a prismatic joint is shown, one link slides along the other. Each type of joint
removes two degrees of freedom from the pair of bodies. For example, consider a
revolute joint that connects A; to Ay. Assume that the point (0,0) in the body
frame of A, is permanently fixed to a point (x,,y,) in the body frame of A;.
This implies that the translation of A, is completely determined once x, and v,
are given. Note that x, and y, depend on x1, y;, and 6;. This implies that A;
and A, have a total of four degrees of freedom when attached. The independent
parameters are xq, y;, 01, and 65. The task in the remainder of this section is to
determine exactly how the models of Ay, As, ..., A, are transformed when they
are attached in a chain, and to give the expressions in terms of the independent
parameters.

Consider the case of a kinematic chain in which each pair of links is attached
by a revolute joint. The first task is to specify the geometric model for each link,
A;. Recall that for a single rigid body, the origin of the body frame determines the
axis of rotation. When defining the model for a link in a kinematic chain, excessive
complications can be avoided by carefully placing the body frame. Since rotation
occurs about a revolute joint, a natural choice for the origin is the joint between
A; and A;_; for each i > 1. For convenience that will soon become evident, the
x;-axis for the body frame of A; is defined as the line through the two joints that
lie in A;, as shown in Figure [3.10. For the last link, A,,, the x,,-axis can be
placed arbitrarily, assuming that the origin is placed at the joint that connects
A, to A,,,_1. The body frame for the first link, A;, can be placed using the same
considerations as for a single rigid body.

Homogeneous transformation matrices for 2D chains We are now pre-
pared to determine the location of each link. The location in W of a point in
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Figure 3.10: The body frame of each A;, for 1 < ¢ < m, is based on the joints that
connect A; to A; 1 and A;;1.

(z,y) € A; is determined by applying the 2D homogeneous transformation matrix
(3.35),

cost); —sinb; x,
T, = | sinf; cosb; ;| . (3.51)
0 0 1

As shown in Figure3.10, let a;_; be the distance between the joints in A;_;. The
orientation difference between A; and A;_; is denoted by the angle 6;. Let T;
represent a 3 X 3 homogeneous transformation matrix (3.35), specialized for link
A; for 1 <i<m,
cosf; —sinb; a;_;
T;=|sinf; cosh;, 0 |. (3.52)
0 0 1

This generates the following sequence of transformations:
1. Rotate counterclockwise by 6;.
2. Translate by a;_; along the z-axis.

The transformation T; expresses the difference between the body frame of A; and
the body frame of A;_;. The application of T; moves A; from its body frame to
the body frame of A;_;. The application of T;_;T; moves both A; and A;_; to the
body frame of A; 5. By following this procedure, the location in W of any point
(z,y) € A,, is determined by multiplying the transformation matrices to obtain

X
1

Example 3.3 (A 2D Chain of Three Links) To gain an intuitive understand-
ing of these transformations, consider determining the configuration for link As,
as shown in Figure 3.11. Figure 3.11a shows a three-link chain in which A; is at
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its initial configuration and the other links are each offset by 7/4 from the pre-
vious link. Figure [3.11b shows the frame in which the model for Ajs is initially
defined. The application of T3 causes a rotation of 63 and a translation by as.
As shown in Figure [3.11¢, this places A3 in its appropriate configuration. Note
that Ay can be placed in its initial configuration, and it will be attached cor-
rectly to As. The application of T5 to the previous result places both A3z and A,
in their proper configurations, and .4; can be placed in its initial configuration. W

For revolute joints, the a; parameters are constants, and the 6; parameters are

variables. The transformed mth link is represented as A,,(z¢, ys,01,...,0,). In
some cases, the first link might have a fixed location in the world. In this case,
the revolute joints account for all degrees of freedom, yielding A,, (01, ... ,0,,). For

prismatic joints, the a; parameters are variables, instead of the #; parameters. It
is straightforward to include both types of joints in the same kinematic chain.

3.3.2 A 3D Kinematic Chain

As for a single rigid body, the 3D case is significantly more complicated than the
2D case due to 3D rotations. Also, several more types of joints are possible, as
shown in Figure 3.12. Nevertheless, the main ideas from the transformations of
2D kinematic chains extend to the 3D case. The following steps from Section 3.3.1
will be recycled here:

1. The body frame must be carefully placed for each A;.
2. Based on joint relationships, several parameters are measured.
3. The parameters define a homogeneous transformation matrix, 7;.

4. The location in W of any point in A,, is given by applying the matrix
Ty T,,.

Consider a kinematic chain of m links in YW = R3, in which each A; for 1 <
i < m is attached to A;;1 by a revolute joint. Each link can be a complicated,
rigid body as shown in Figure 3.13| For the 2D problem, the coordinate frames
were based on the points of attachment. For the 3D problem, it is convenient to
use the axis of rotation of each revolute joint (this is equivalent to the point of
attachment for the 2D case). The axes of rotation will generally be skew lines in
R3, as shown in Figure3.14. Let the z;-axis be the axis of rotation for the revolute
joint that holds A; to A;_;. Between each pair of axes in succession, let the z;-axis
join the closest pair of points between the z;- and z;,i-axes, with the origin on the
z;~axis and the direction pointing towards the nearest point of the z;,;-axis. This
axis is uniquely defined if the z;- and z;,-axes are not parallel. The recommended
body frame for each A; will be given with respect to the z;- and x;-axes, which
are shown in Figure [3.14. Assuming a right-handed coordinate system, the y;-
axis points away from us in Figure [3.14. In the transformations that will appear
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(d) T2T5 puts As in A;’s body frame

(c) T3 puts Asz in As’s body frame

Figure 3.11: Applying the transformation 7573 to the model of As. If T} is the
identity matrix, then this yields the location in W of points in Aj3.
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Revolute Prismatic Screw
1 Degree of Freedom 1 Degree of Freedom 1 Degree of Freedom

"\ v’

Cylindrical Spherical Planar
2 Degrees of Freedom 3 Degrees of Freedom 3 Degrees of Freedom

Figure 3.12: Types of 3D joints arising from the 2D surface contact between two
bodies.

shortly, the coordinate frame given by x;, y;, and z; will be most convenient for
defining the model for A;. It might not always appear convenient because the
origin of the frame may even lie outside of A;, but the resulting transformation
matrices will be easy to understand.

In Section [3.3.1, each T; was defined in terms of two parameters, a;_; and 6;.
For the 3D case, four parameters will be defined: d;, 6;, a;_1, and «;_1. These
are referred to as Denavit-Hartenberg (DH) parameters [436]. The definition of
each parameter is indicated in Figure [3.15. Figure [3.15a shows the definition of
d;. Note that the x;_;- and x;-axes contact the z;-axis at two different places. Let
d; denote signed distance between these points of contact. If the z;-axis is above
the x;_;-axis along the z;-axis, then d; is positive; otherwise, d; is negative. The
parameter 6; is the angle between the z;- and x;_;-axes, which corresponds to the
rotation about the z;-axis that moves the x;_j-axis to coincide with the z;-axis.
The parameter a; is the distance between the z;- and z;_;-axes; recall these are
generally skew lines in R3. The parameter o;_; is the angle between the z;- and
Zi—1-aXes.
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Figure 3.13: The rotation axes for a generic link attached by revolute joints.

Two screws The homogeneous transformation matrix 7; will be constructed by
combining two simpler transformations. The transformation

cosf; —sinb;

0
R, = sinf; cosb, (1) (3.54)
0

0 0
0 0

— & oo

causes a rotation of 6; about the z;-axis, and a translation of d; along the z;-
axis. Notice that the rotation by 6; and translation by d; commute because both
operations occur with respect to the same axis, z;. The combined operation of a
translation and rotation with respect to the same axis is referred to as a screw (as
in the motion of a screw through a nut). The effect of R; can thus be considered
as a screw about the z;-axis. The second transformation is

1 0 0 ;1
|0 cosaj—y —sina;—1 0
Qi1 = 0 sino;_; cosoy_; 0 |’ (3.55)
0 0 0 1

which can be considered as a screw about the x;_;-axis. A rotation of a;,_; about
the z;_;-axis and a translation of a;_; are performed.

The homogeneous transformation matrix The transformation 7}, for each
¢ such that 1 <7 < m, is

cos b; —sin 6; 0 ai—1
sin#; cosa;_; cosb;cosa;_; —sina;_; —sina;_1d;
T =il = sinf;sino,;_, cosb;sincq;_; cosa,_q cos ovj_1d;
0 0 0 1

(3.56)
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Figure 3.14: The rotation axes of the generic links are skew lines in R3.

This can be considered as the 3D counterpart to the 2D transformation matrix,
(3.52). The following four operations are performed in succession:

1. Translate by d; along the z;-axis.

2. Rotate counterclockwise by 6; about the z;-axis.

3. Translate by a;_; along the x;_;-axis.

4. Rotate counterclockwise by «;_; about the x;_j-axis.

As in the 2D case, the first matrix, 77, is special. To represent any position
and orientation of A;, it could be defined as a general rigid-body homogeneous
transformation matrix, (3.50). If the first body is only capable of rotation via a
revolute joint, then a simple convention is usually followed. Let the ag, oy param-
eters of T} be assigned as ag = ag = 0 (there is no zg-axis). This implies that Q)
from (3.55) is the identity matrix, which makes 71 = R;.

The transformation T; for ¢ > 1 gives the relationship between the body frame
of A; and the body frame of A;_;. The position of a point (x,y, z) on A,, is given
by

TTy - Ty (3.57)

N e 8

For each revolute joint, 6; is treated as the only variable in T;. Prismatic joints
can be modeled by allowing a; to vary. More complicated joints can be modeled as
a sequence of degenerate joints. For example, a spherical joint can be considered
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Figure 3.15: Definitions of the four DH parameters: d;, 6;, a;_1, a;_1. The z;- and
x;_1-axes in (b) and (d), respectively, are pointing outward. Any parameter may
be positive, zero, or negative.

as a sequence of three zero-length revolute joints; the joints perform a roll, a
pitch, and a yaw. Another option for more complicated joints is to abandon the
DH representation and directly develop the homogeneous transformation matrix.
This might be needed to preserve topological properties that become important in

Chapter 4.

Example 3.4 (Puma 560) This example demonstrates the 3D chain kinematics
on a classic robot manipulator, the PUMA 560, shown in Figure 3.16l The cur-
rent parameterization here is based on [37, 557]. The procedure is to determine
appropriate body frames to represent each of the links. The first three links allow
the hand (called an end-effector) to make large movements in W, and the last
three enable the hand to achieve a desired orientation. There are six degrees of
freedom, each of which arises from a revolute joint. The body frames are shown in
Figure[3.16, and the corresponding DH parameters are given in Figure 3.17. Each
transformation matrix T; is a function of 6;; hence, it is written 7;(6;). The other
parameters are fixed for this example. Only 61, 6, ..., O are allowed to vary.

The parameters from Figure 3.17 may be substituted into the homogeneous
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Figure 3.16: The Puma 560 is shown along with the DH parameters and body
frames for each link in the chain. This figure is borrowed from [557] by courtesy
of the authors.

transformation matrices to obtain

cos)y —sin#; 0 O
sin @ cos 6 0 0
Tl(el) = HE] ' 0 ' 1 0] (358)
0 0 0 1
cosfly —sinfy 0 O
B 0 0 1 dy
Tya) = | _ sinfly —cosfy 0 0 |’ (3.59)
0 0 0 1
cosfl3 —sinfs 0 as
in 6 0 0 0
sy — [ s oot 00 360
0 0 0 1
cosfy —sinfy; 0 a3
0 0 -1 —d
Ty(0s) = ! (3.61)

sinf, cosf, 0 0 ’
0 0 0 1
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‘ Matrix ‘ (67N} ‘ ;1 ‘ 91 ‘ dz ‘

T.6,) | 0 0 [6,]0
T2(92) —7T/2 0 (92 d2
Tg(gg) 0 a9 93 d3
T4(94) 7T/2 as 94 d4
Ts(@5) | —=7/2] 0 |65] 0
To@s) | 7/2 | 0 [ 65| 0

Figure 3.17: The DH parameters are shown for substitution into each homogeneous
transformation matrix . Note that a3 and d3 are negative in this example
(they are signed displacements, not distances).

cosfls —sinfls 0 0O
0 0 10
Ts(s) = | _ sinf; —cosfs 0 0]’ (3.62)
0 0 01
and
cosfg —sinflg 0 O
0 0 -1 0
To(06) = sinfg  cosg 0 0 (3.63)
0 0 0 1
A point (x,y, z) in the body frame of the last link 44 appears in W as
T
Ty (61T (62) T3 (65) T4 (62)T5 (65T (6) | © (3.64)
1
n

Example 3.5 (Transforming Octane) Figure 3.18/shows a ball-and-stick model
of an octane molecule. Each “ball” is an atom, and each “stick” represents a bond

between a pair of atoms. There is a linear chain of eight carbon atoms, and a

bond exists between each consecutive pair of carbons in the chain. There are also

numerous hydrogen atoms, but we will ignore them. Each bond between a pair

of carbons is capable of twisting, as shown in Figure [3.19. Studying the configu-

rations (called conformations) of molecules is an important part of computational

biology. It is assumed that there are seven degrees of freedom, each of which arises

from twisting a bond. The techniques from this section can be applied to represent

these transformations.
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Figure 3.18: A hydrocarbon (octane) molecule with 8 carbon atoms and 18 hy-
drogen atoms (courtesy of the New York University MathMol Library).

Figure 3.19: Consider transforming the spine of octane by ignoring the hydrogen
atoms and allowing the bonds between carbons to rotate. This can be easily
constructed with balls and sticks (e.g., Tinkertoys). If the first link is held fixed,
then there are six degrees of freedom. The rotation of the last link is ignored.

Note that the bonds correspond exactly to the axes of rotation. This suggests
that the z; axes should be chosen to coincide with the bonds. Since consecutive
bonds meet at atoms, there is no distance between them. From Figure [3.15¢,
observe that this makes a; = 0 for all . From Figure/3.15a, it can be seen that each
d; corresponds to a bond length, the distance between consecutive carbon atoms.
See Figure 3.20. This leaves two angular parameters, 6; and «;. Since the only
possible motion of the links is via rotation of the z;-axes, the angle between two
consecutive axes, as shown in Figure [3.15d, must remain constant. In chemistry,
this is referred to as the bond angle and is represented in the DH parameterization
as «;. The remaining 6; parameters are the variables that represent the degrees of
freedom. However, looking at Figure|3.15b, observe that the example is degenerate
because each x;-axis has no frame of reference because each a; = 0. This does not,
however, cause any problems. For visualization purposes, it may be helpful to
replace x;_1 and z; by 2;_; and z;,1, respectively. This way it is easy to see that as
the bond for the z;-axis is twisted, the observed angle changes accordingly. Each
bond is interpreted as a link, A;. The origin of each A; must be chosen to coincide
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4
L Zig1

Figure 3.20: Each bond may be interpreted as a “link” of length d; that is aligned
with the z;-axis. Note that most of A; appears in the —z; direction.

with the intersection point of the z;- and z;,1-axes. Thus, most of the points in
A; will lie in the —z; direction; see Figure|3.20.

The next task is to write down the matrices. Attach a world frame to the first
bond, with the second atom at the origin and the bond aligned with the z-axis,
in the negative direction; see Figure 3.20. To define T}, recall that T} = R; from
(3.54) because Qg is dropped. The parameter d; represents the distance between
the intersection points of the xo- and zi-axes along the z; axis. Since there is no
xo-axis, there is freedom to choose dy; hence, let d; = 0 to obtain

cosf; —sinb,

0
Ty(01) = R(6y) = sinf; cosb, (1) (3.65)
0

0 0
0 0

_ o O O

The application of T} to points in A; causes them to rotate around the z;-axis,
which appears correct.
The matrices for the remaining six bonds are

cos 0; — sin 6; 0 0
Ti(0;) = sinf; cosa;_; cosb;cosa;_; —sinay;_1 —sinao;_1d; 7 (3.66)

sinf;sino;_1 cosf;sina,_1  cosa;_q cos a;_1d;
0 0 0 1
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Figure 3.21: General linkages: (a) Instead of a chain of rigid bodies, a “tree” of
rigid bodies can be considered. (b) If there are loops, then parameters must be
carefully assigned to ensure that the loops are closed.

for i € {2,...,7}. The position of any point, (z,y, z) € Az, is given by

T1(601)T5(02)T5(05)T4(04)T5(05)T6(06) 1% (07) (3.67)

N e 8

3.4 Transforming Kinematic Trees

Motivation For many interesting problems, the linkage is arranged in a “tree”
as shown in Figure 3.21a. Assume here that the links are not attached in ways
that form loops (i.e., Figure[3.21b); that case is deferred until Section(4.4, although
some comments are also made at the end of this section. The human body, with its
joints and limbs attached to the torso, is an example that can be modeled as a tree
of rigid links. Joints such as knees and elbows are considered as revolute joints.
A shoulder joint is an example of a spherical joint, although it cannot achieve any
orientation (without a visit to the emergency room!). As mentioned in Section
1.4, there is widespread interest in animating humans in virtual environments and
also in developing humanoid robots. Both of these cases rely on formulations of
kinematics that mimic the human body.
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Figure 3.22: Now it is possible for a link to have more than two joints, as in Ax.

Another problem that involves kinematic trees is the conformational analysis of
molecules. Example 3.5 involved a single chain; however, most organic molecules
are more complicated, as in the familiar drugs shown in Figure [1.14a (Section
1.2). The bonds may twist to give degrees of freedom to the molecule. Moving
through the space of conformations requires the formulation of a kinematic tree.
Studying these conformations is important because scientists need to determine
for some candidate drug whether the molecule can twist the right way so that it
docks nicely (i.e., requires low energy) with a protein cavity; this induces a phar-
macological effect, which hopefully is the desired one. Another important problem
is determining how complicated protein molecules fold into certain configurations.
These molecules are orders of magnitude larger (in terms of numbers of atoms
and degrees of freedom) than typical drug molecules. For more information, see

Section [7.5.

Common joints for YW = R? First consider the simplest case in which there is
a 2D tree of links for which every link has only two points at which revolute joints
may be attached. This corresponds to Figure[3.21a. A single link is designated as
the root, Ay, of the tree. To determine the transformation of a body, A;, in the
tree, the tools from Section[3.3.1 are directly applied to the chain of bodies that
connects A; to A; while ignoring all other bodies. Each link contributes a 6; to
the total degrees of freedom of the tree. This case seems quite straightforward;
unfortunately, it is not this easy in general.

Junctions with more than two rotation axes Now consider modeling a more
complicated collection of attached links. The main novelty is that one link may
have joints attached to it in more than two locations, as in A7 in Figure[3.22. A
link with more than two joints will be referred to as a junction.
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If there is only one junction, then most of the complications arising from junc-
tions can be avoided by choosing the junction as the root. For example, for a
simple humanoid model, the torso would be a junction. It would be sensible to
make this the root of the tree, as opposed to the right foot. The legs, arms, and
head could all be modeled as independent chains. In each chain, the only concern
is that the first link of each chain does not attach to the same point on the torso.
This can be solved by inserting a fixed, fictitious link that connects from the origin
of the torso to the attachment point of the limb.

N
\\ (\Xk
\
\
\
\
//{
g
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<>

Figure 3.23: The junction is assigned two different frames, depending on which
chain was followed. The solid axes were obtained from transforming Ag, and the
dashed axes were obtained from transforming A;3.

The situation is more interesting if there are multiple junctions. Suppose that
Figure [3.22 represents part of a 2D system of links for which the root, Aj, is
attached via a chain of links to As. To transform link Ajg, the tools from Section
3.3.1/may be directly applied to yield a sequence of transformations,

x
Ty TsTeT718To | y | (3.68)
1

for a point (z,y) € Ag. Likewise, to transform T}3, the sequence

x
Ty - T5T6T7Th2Ths | y (3.69)
1
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can be used by ignoring the chain formed by Ag and Ag. So far everything seems
to work well, but take a close look at A7. As shown in Figure|3.23, its body frame
was defined in two different ways, one for each chain. If both are forced to use
the same frame, then at least one must abandon the nice conventions of Section
3.3.1] for choosing frames. This situation becomes worse for 3D trees because
this would suggest abandoning the DH parameterization. The Khalil-Kleinfinger
parameterization is an elegant extension of the DH parameterization and solves
these frame assignment issues [526].

Constraining parameters Fortunately, it is fine to use different frames when
following different chains; however, one extra piece of information is needed. Imag-
ine transforming the whole tree. The variable 6; will appear twice, once from each
of the upper and lower chains. Let 67, and 67 denote these #’s. Can 6 really be
chosen two different ways? This would imply that the tree is instead as pictured
in Figure 3.24, in which there are two independently moving links, A7, and Az.
To fix this problem, a constraint must be imposed. Suppose that 6 is treated as

Figure 3.24: Choosing each 6; independently would result in a tree that ignores
that fact that A7 is rigid.

an independent variable. The parameter 6, must then be chosen as 67 + ¢, in
which ¢ is as shown in Figure[3.23.

Example 3.6 (A 2D Tree of Bodies) Figure 3.25 shows a 2D example that
involves six links. To transform (z,y) € Ag, the only relevant links are As, As,
and A;. The chain of transformations is

x
TIyT:Ts |y |, (3.70)
1
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(0,0) (1,0) (3,00 (4,0

(0.-1)
)
Ad
A
° As o]

Figure 3.25: A tree of bodies in which the joints are attached in different places.

in which
cost; —sinb; x; cost)y —sin6; 0
Ty = | sinf; cosf; 1y | = |sin6y cosf; 0], (3.71)
0 0 1 0 0 1
cosblyy —sinfy ay cosbly —sinb,
Top= | sinfy cosfy 0 | = | sinfy cos 92 (3.72)
0 0 1 0
cosfs —sinfs as cosfs —sinbs
Ts = | sinf5 cosfs O | = | sinfs cos 95 (3.73)
0 0 1 0
and
cosbg —sinbs as cosbg —sinbg 1
Ts = | sinfg cosly 0 | = |sinfg cosbs O0]. (3.74)
0 0 1 0 0 1

The matrix Ty in (3.72) denotes the fact that the lower chain was followed. The
transformation for points in A, is

T
VT, T4T5 | y
1

, (3.75)
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in which 7} is the same as in (3.71), and

cosfl; —sinfs; as cosf; —sinf; 2
T3 = [ sinf3 cosf#3 0 | = [sinfs cosf; 0 |, (3.76)
0 0 1 0 0 1
and
cosfy —sinfy ay cosfy —sinf, 0
T,=|sinfy cosfy 0| =|sinf; cosl, 0 (3.77)
0 0 1 0 0 1
The interesting case is
cosfy, —sinfy, a; cos(fy +m/4) —sin(fy +7/4) a;
Ty, = | sinfy, cosfy, 0 | =|sin(0y+7/4) cos(fy+7/4) 0 |,
0 0 1 0 0 1
(3.78)
in which the constraint 6y, = 09 + /4 is imposed to enforce the fact that A; is a
junction. [ |

For a 3D tree of bodies the same general principles may be followed. In some
cases, there will not be any complications that involve special considerations of
junctions and constraints. One example of this is the transformation of flexible
molecules because all consecutive rotation axes intersect, and junctions occur di-
rectly at these points of intersection. In general, however, the DH parameter
technique may be applied for each chain, and then the appropriate constraints
have to be determined and applied to represent the true degrees of freedom of the
tree. The Khalil-Kleinfinger parameterization conveniently captures the resulting
solution [526].

What if there are loops? The most general case includes links that are con-
nected in loops, as shown in Figure 3.26. These are generally referred to as closed
kinematic chains. This arises in many applications. For example, with humanoid
robotics or digital actors, a loop is formed when both feet touch the ground. As
another example, suppose that two robot manipulators, such as the Puma 560
from Example (3.4, cooperate together to carry an object. If each robot grasps the
same object with its hand, then a loop will be formed. A complicated example
of this was shown in Figure [1.5, in which mobile robots moved a piano. Outside
of robotics, a large fraction of organic molecules have flexible loops. Exploring
the space of their conformations requires careful consideration of the difficulties
imposed by these loops.

The main difficulty of working with closed kinematic chains is that it is hard
to determine which parameter values are within an acceptable range to ensure
closure. If these values are given, then the transformations are handled in the
same way as the case of trees. For example, the links in Figure [3.26 may be
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Figure 3.26: There are ten links and ten revolute joints arranged in a loop. This
is an example of a closed kinematic chain.

transformed by breaking the loop into two different chains. Suppose we forget
that the joint between As and Ag exists, as shown in Figure [3.27. Consider two
different kinematic chains that start at the joint on the extreme left. There is an
upper chain from A; to As and a lower chain from A;q to Ag. The transformations
for any of these bodies can be obtained directly from the techniques of Section
3.3.1L Thus, it is easy to transform the bodies, but how do we choose parameter
values that ensure As; and Ag are connected at their common joint? Using the
upper chain, the position of this joint may be expressed as

T1(01)T2(02)T5(05)T4(04)T5(05) C(L)5 , (3.79)
1

in which (as,0) € Aj is the location of the joint of A5 that is supposed to connect
to Ag. The position of this joint may also be expressed using the lower chain as

T10(610)To(09)Ts(0s)T7(07)T6(6s) %6 : (3.80)
1

with (ag,0) representing the position of the joint in the body frame of Ag. If
the loop does not have to be maintained, then any values for 64, ..., 619 may be
selected, resulting in ten degrees of freedom. However, if a loop must maintained,
then (3.79) and (3.80) must be equal,

T1(01)T5(02)T5(05)T4(04)T5(05) %5 = Th0(010)To(09)Ts(03)T7(07)T6(0s) %6 ;
1 1

(3.81)
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Figure 3.27: Loops may be opened to enable tree-based transformations to be
applied; however, a closure constraint must still be satisfied.

which is quite a mess of nonlinear, trigonometric equations that must be solved.
The set of solutions to (3.81) could be very complicated. For the example, the
true degrees of freedom is eight because two were removed by making the joint
common. Since the common joint allows the links to rotate, exactly two degrees of
freedom are lost. If A; and Ag had to be rigidly attached, then the total degrees
of freedom would be only seven. For most problems that involve loops, it will not
be possible to obtain a nice parameterization of the set of solutions. This a form
of the well-known inverse kinematics problem [254, 695, 777, 994].

In general, a complicated arrangement of links can be imagined in which there
are many loops. Each time a joint along a loop is “ignored,” as in the procedure
just described, then one less loop exists. This process can be repeated iteratively
until there are no more loops in the graph. The resulting arrangement of links
will be a tree for which the previous techniques of this section may be applied.
However, for each joint that was “ignored” an equation similar to (3.81) must be
introduced. All of these equations must be satisfied simultaneously to respect the
original loop constraints. Suppose that a set of value parameters is already given.
This could happen, for example, using motion capture technology to measure
the position and orientation of every part of a human body in contact with the
ground. From this the solution parameters could be computed, and all of the
transformations are easy to represent. However, as soon as the model moves, it
is difficult to ensure that the new transformations respect the closure constraints.
The foot of the digital actor may push through the floor, for example. Further
information on this problem appears in Section 4.4!
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Figure 3.28: Shearing transformations may be performed.

3.5 Nonrigid Transformations

One can easily imagine motion planning for nonrigid bodies. This falls outside
of the families of transformations studied so far in this chapter. Several kinds of
nonrigid transformations are briefly surveyed here.

Linear transformations A rotation is a special case of a linear transformation,
which is generally expressed by an n x n matrix, M, assuming the transformations
are performed over R™. Consider transforming a point (x,y) in a 2D robot, A, as

() (7). .

If M is a rotation matrix, then the size and shape of A will remain the same. In
some applications, however, it may be desirable to distort these. The robot can
be scaled by my, along the x-axis and mss along the y-axis by applying

<””6“ niZ) @) , (3.83)

for positive real values my; and mo. If one of them is negated, then a mirror
image of A is obtained. In addition to scaling, A can be sheared by applying

((1] m112> (";) (3.84)

for mq1s # 0. The case of miy = 1 is shown in Figure [3.28.

The scaling, shearing, and rotation matrices may be multiplied together to
yield a general transformation matrix that explicitly parameterizes each effect. It
is also possible to extend the M from n x n to (n+ 1) X (n + 1) to obtain a
homogeneous transformation matrix that includes translation. Also, the concepts
extend in a straightforward way to R® and beyond. This enables the additional
effects of scaling and shearing to be incorporated directly into the concepts from
Sections [3.2+3.4.

Flexible materials In some applications there is motivation to move beyond
linear transformations. Imagine trying to warp a flexible material, such as a mat-
tress, through a doorway. The mattress could be approximated by a 2D array of
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links; however, the complexity and degrees of freedom would be too cumbersome.
For another example, suppose that a snake-like robot is designed by connecting
100 revolute joints together in a chain. The tools from Section 3.3 may be used
to transform it with 100 rotation parameters, 01, ..., 6100, but this may become
unwieldy for use in a planning algorithm. An alternative is to approximate the
snake with a deformable curve or shape.

For problems such as these, it is desirable to use a parameterized family of
curves or surfaces. Spline models are often most appropriate because they are de-
signed to provide easy control over the shape of a curve through the adjustment of
a small number of parameters. Other possibilities include the generalized-cylinder
and superquadric models that were mentioned in Section |3.1.3.

One complication is that complicated constraints may be imposed on the space
of allowable parameters. For example, each joint of a snake-like robot could have a
small range of rotation. This would be easy to model using a kinematic chain; how-
ever, determining which splines from a spline family satisfy this extra constraint
may be difficult. Likewise, for manipulating flexible materials, there are usually
complicated constraints based on the elasticity of the material. Even determining
its correct shape under the application of some forces requires integration of an
elastic energy function over the material [579].

Further Reading

Section (3.1 barely scratches the surface of geometric modeling. Most literature focuses
on parametric curves and surfaces [378| 720, 790]. These models are not as popular
for motion planning because obtaining efficient collision detection is most important
in practice, and processing implicit algebraic surfaces is most important in theoretical
methods. A thorough coverage of solid and boundary representations, including semi-
algebraic models, can be found in [456]. Theoretical algorithm issues regarding semi-
algebraic models are covered in [706, 707]. For a comparison of the doubly connected
edge list to its variants, see [524].

The material of Section [3.2 appears in virtually any book on robotics, computer vi-
sion, or computer graphics. Consulting linear algebra texts may be helpful to gain more
insight into rotations. There are many ways to parameterize the set of all 3D rotation
matrices. The yaw-pitch-roll formulation was selected because it is the easiest to under-
stand. There are generally 12 different variants of the yaw-pitch-roll formulation (also
called Euler angles) based on different rotation orderings and axis selections. This for-
mulation, however, it not well suited for the development of motion planning algorithms.
It is easy (and safe) to use for making quick 3D animations of motion planning output,
but it incorrectly captures the structure of the state space for planning algorithms. Sec-
tion 4.2 introduces the quaternion parameterization, which correctly captures this state
space; however, it is harder to interpret when constructing examples. Therefore, it is
helpful to understand both. In addition to Euler angles and quaternions, there is still
motivation for using many other parameterizations of rotations, such as spherical coor-
dinates, Cayley-Rodrigues parameters, and stereographic projection. Chapter 5 of [212]
provides extensive coverage of 3D rotations and different parameterizations.

The coverage in Section[3.3 of transformations of chains of bodies was heavily influ-
enced by two classic robotics texts [254, 777]. The DH parameters were introduced in
[436] and later extended to trees and loops in [526]. An alternative to DH parameters is
exponential coordinates [727], which simplify some computations; however, determining
the parameters in the modeling stage may be less intuitive. A fascinating history of
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mechanisms appears in [437]. Other texts on kinematics include [29, 312, 533, 691].
The standard approach in many robotics books [368, 858, 908, 994] is to introduce the
kinematic chain formulations and DH parameters in the first couple of chapters, and
then move on to topics that are crucial for controlling robot manipulators, including dy-
namics modeling, singularities, manipulability, and control. Since this book is concerned
instead with planning algorithms, we depart at the point where dynamics would usually
be covered and move into a careful study of the configuration space in Chapter [4.

Exercises

1. Define a semi-algebraic model that removes a triangular “nose” from the region
shown in Figure 3.4l

2. For distinct values of yaw, pitch, and roll, it is possible to generate the same
rotation. In other words, R(a, 8,v) = R(a/, 3,7') for some cases in which at least
a#a, B# 3, or v # . Characterize the sets of angles for which this occurs.

3. Using rotation matrices, prove that 2D rotation is commutative but 3D rotation
is not.

4. An alternative to the yaw-pitch-roll formulation from Section [3.2.3 is considered
here. Consider the following Euler angle representation of rotation (there are many
other variants). The first rotation is R, (), which is just (3.39) with « replaced by
7. The next two rotations are identical to the yaw-pitch-roll formulation: R, (5)

is applied, followed by R.(«a). This yields Reyer(t, 3,7) = R.(o)Ry(B)R.(7).

(a) Determine the matrix Reyjer-
(b) ShOW that Reuler(aa ﬁa 7) = Reuler(a -, _57 Y= 7T).

(c) Suppose that a rotation matrix is given as shown in . Show that the
Euler angles are

a = atan2(ras, m13), (3.85)
B = atan2(y/1 — 135, r33), (3.86)

and
~v = atan2(rse, —r31). (3.87)

5. There are 12 different variants of yaw-pitch-roll (or Euler angles), depending on
which axes are used and the order of these axes. Determine all of the possibilities,
using only notation such as R, (a)Ry,(8)R.(vy) for each one. Give brief arguments
that support why or why not specific combinations of rotations are included in
your list of 12.

6. Let A be a unit disc, centered at the origin, and YW = R?. Assume that A is
represented by a single, algebraic primitive, H = {(z,y) | #°+y? < 1}. Show that
the transformed primitive is unchanged after any rotation is applied.

7. Consider the articulated chain of bodies shown in Figure [3.29. There are three
identical rectangular bars in the plane, called A1, As, A3. Each bar has width 2
and length 12. The distance between the two points of attachment is 10. The first
bar, A1, is attached to the origin. The second bar, As, is attached to A1, and Aj is
attached to As. Each bar is allowed to rotate about its point of attachment. The
configuration of the chain can be expressed with three angles, (01, 62,63). The first
angle, 01, represents the angle between the segment drawn between the two points
of attachment of A; and the z-axis. The second angle, 05, represents the angle
between Az and A; (2 = 0 when they are parallel). The third angle, 03, represents
the angle between A3 and Ay. Suppose the configuration is (w/4,7/2, —7/4).
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Figure 3.29: A chain of three bodies.

(0,0) (3,00 4,0

Figure 3.30: Another exercise involving a chain of bodies.

(a) Use the homogeneous transformation matrices to determine the locations of
points a, b, and c.

(b) Characterize the set of all configurations for which the final point of attach-
ment (near the end of Aj3) is at (0,0) (you should be able to figure this out
without using the matrices).

A three-link chain of bodies that moves in a 2D world is shown Figure [3.30. The
first link, A;, is attached at (0,0) but can rotate. Each remaining link is attached
to another link with a revolute joint. The second link, As, is a rigid ring, and the
other two links are rectangular bars.

Assume that the structure is shown in the zero configuration. Suppose that

the linkage is moved to the configuration (01,02,603) = (7,3, 7), in which 6; is
the angle of Ay, 05 is the angle of Ay with respect to Aj, and 3 is the angle of
Az with respect to As. Using homogeneous transformation matrices, compute the
position of the point at (4,0) in Figure[3.30, when the linkage is at configuration
(4, %, %) (the point is attached to Aj3).
Approximate a spherical joint as a chain of three short, perpendicular links that
are attached by revolute joints and give the sequence of transformation matrices.
Show that as the link lengths approach zero, the resulting sequence of transforma-
tion matrices converges to exactly representing the freedom of a spherical joint.
Compare this approach to directly using a full rotation matrix, (3.42), to represent
the joint in the homogeneous transformation matrix.

Figure 3.12 showed six different ways in which 2D surfaces can slide with respect
to each other to produce a joint.
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(a) Suppose that two bodies contact each other along a one-dimensional curve.
Characterize as many different kinds of “joints” as possible, and indicate the
degrees of freedom of each.

(b) Suppose that the two bodies contact each other at a point. Indicate the types
of rolling and sliding that are possible, and their corresponding degrees of
freedom.

Suppose that two bodies form a screw joint in which the axis of the central axis of
the screw aligns with the x-axis of the first body. Determine an appropriate homo-
geneous transformation matrix to use in place of the DH matrix. Define the matrix
with the screw radius, 7, and displacement-per-revolution, d, as parameters.

Recall Example[3.6l How should the transformations be modified so that the links
are in the positions shown in Figure(3.25 at the zero configuration (6; = 0 for every
revolute joint whose angle can be independently chosen)?

Generalize the shearing transformation of (3.84) to enable shearing of 3D models.

Implementations

14.

15.

16.

17.

18.

Develop and implement a kinematic model for 2D linkages. Enable the user to
display the arrangement of links in the plane.

Implement the kinematics of molecules that do not have loops and show them
graphically as a “ball and stick” model. The user should be able to input the
atomic radii, bond connections, bond lengths, and rotation ranges for each bond.

Design and implement a software system in which the user can interactively attach
various links to make linkages that resemble those possible from using Tinkertoys
(or another popular construction set that allows pieces to move). There are several
rods of various lengths, which fit into holes in the center and around the edge of
several coin-shaped pieces. Assume that all joints are revolute. The user should
be allowed to change parameters and see the resulting positions of all of the links.

Construct a model of the human body as a tree of links in a 3D world. For
simplicity, the geometric model may be limited to spheres and cylinders. Design
and implement a system that displays the virtual human and allows the user to
click on joints of the body to enable them to rotate.

%Velop a simulator with 3D graphics for the Puma 560 model shown in Figure
3.4.
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Chapter 4

The Configuration Space

Chapter 3l only covered how to model and transform a collection of bodies; how-
ever, for the purposes of planning it is important to define the state space. The
state space for motion planning is a set of possible transformations that could be
applied to the robot. This will be referred to as the configuration space, based on
Lagrangian mechanics and the seminal work of Lozano-Pérez [658, 662, 659], who
extensively utilized this notion in the context of planning (the idea was also used
in early collision avoidance work by Udupa [947]). The motion planning literature
was further unified around this concept by Latombe’s book [590]. Once the config-
uration space is clearly understood, many motion planning problems that appear
different in terms of geometry and kinematics can be solved by the same planning
algorithms. This level of abstraction is therefore very important.

This chapter provides important foundational material that will be very useful
in Chapters |5 to |8/ and other places where planning over continuous state spaces
occurs. Many concepts introduced in this chapter come directly from mathemat-
ics, particularly from topology. Therefore, Section 4.1 gives a basic overview of
topological concepts. Section 4.2/ uses the concepts from Chapter 3| to define the
configuration space. After reading this, you should be able to precisely character-
ize the configuration space of a robot and understand its structure. In Section 4.3,
obstacles in the world are transformed into obstacles in the configuration space,
but it is important to understand that this transformation may not be explicitly
constructed. The implicit representation of the state space is a recurring theme
throughout planning. Section 4.4 covers the important case of kinematic chains
that have loops, which was mentioned in Section [3.4. This case is so difficult that
even the space of transformations usually cannot be explicitly characterized (i.e.,
parameterized).

4.1 Basic Topological Concepts

This section introduces basic topological concepts that are helpful in understanding
configuration spaces. Topology is a challenging subject to understand in depth.
The brief treatment given here provides only a brief overview and is designed to
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stimulate further study (see the literature overview at the end of the chapter).
To advance further in this chapter, it is not necessary to understand all of the
material of this section; however, the more you understand, the deeper will be
your understanding of motion planning in general.

4.1.1 Topological Spaces

Recall the concepts of open and closed intervals in the set of real numbers R. The
open interval (0,1) includes all real numbers between 0 and 1, ezcept 0 and 1.
However, for either endpoint, an infinite sequence may be defined that converges
to it. For example, the sequence 1/2, 1/4, ..., 1/2° converges to 0 as ¢ tends to
infinity. This means that we can choose a point in (0, 1) within any small, positive
distance from 0 or 1, but we cannot pick one exactly on the boundary of the
interval. For a closed interval, such as [0, 1], the boundary points are included.

The notion of an open set lies at the heart of topology. The open set definition
that will appear here is a substantial generalization of the concept of an open
interval. The concept applies to a very general collection of subsets of some larger
space. It is general enough to easily include any kind of configuration space that
may be encountered in planning.

A set X is called a topological space if there is a collection of subsets of X called
open sets for which the following axioms hold:

1. The union of a countable number of open sets is an open set.
2. The intersection of a finite number of open sets is an open set.
3. Both X and () are open sets.

Note that in the first axiom, the union of an infinite number of open sets may be
taken, and the result must remain an open set. Intersecting an infinite number of
open sets, however, does not necessarily lead to an open set.

For the special case of X = R, the open sets include open intervals, as ex-
pected. Many sets that are not intervals are open sets because taking unions and
intersections of open intervals yields other open sets. For example, the set

U(32). (41

i=1

which is an infinite union of pairwise-disjoint intervals, is an open set.

Closed sets Open sets appear directly in the definition of a topological space.
It next seems that closed sets are needed. Suppose X is a topological space. A
subset C' C X is defined to be a closed set if and only if X'\ C'is an open set. Thus,
the complement of any open set is closed, and the complement of any closed set
is open. Any closed interval, such as [0, 1], is a closed set because its complement,
(—00,0) U (1,00), is an open set. For another example, (0,1) is an open set;
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U
1’1

Figure 4.1: An illustration of the boundary definition. Suppose X = R2, and U is
a subset as shown. Three kinds of points appear: 1) x; is a boundary point, 2) x5

is an interior point, and 3) z3 is an exterior point. Both z; and x5 are limit points
of U.

therefore, R\ (0,1) = (—o00,0] U [1,00) is a closed set. The use of “(” may seem
wrong in the last expression, but “[” cannot be used because —oco and 0o do not
belong to R. Thus, the use of “(” is just a notational quirk.

Are all subsets of X either closed or open? Although it appears that open
sets and closed sets are opposites in some sense, the answer is no. For X = R,
the interval [0, 27) is neither open nor closed (consider its complement: [27,00) is
closed, and (—o0,0) is open). Note that for any topological space, X and () are
both open and closed!

Special points From the definitions and examples so far, it should seem that
points on the “edge” or “border” of a set are important. There are several terms
that capture where points are relative to the border. Let X be a topological space,
and let U be any subset of X. Furthermore, let z be any point in X. The following
terms capture the position of point x relative to U (see Figure [4.1):

e If there exists an open set O; such that z € O; and O; C U, then x is called
an interior point of U. The set of all interior points in U is called the interior
of U and is denoted by int(U).

e If there exists an open set O such that z € Oy and Oy C X \ U, then x is
called an exterior point with respect to U.

e If x is neither an interior point nor an exterior point, then it is called a
boundary point of U. The set of all boundary points in X is called the
boundary of U and is denoted by OU.

e All points in x € X must be one of the three above; however, another
term is often used, even though it is redundant given the other three. If x is
either an interior point or a boundary point, then it is called a limit point (or
accumulation point) of U. The set of all limit points of U is a closed set called
the closure of U, and it is denoted by cl(U). Note that cl(U) = int(U) U9U.

For the case of X = R, the boundary points are the endpoints of intervals. For
example, 0 and 1 are boundary points of intervals, (0, 1), [0, 1], [0,0), and (0, 1].
Thus, U may or may not include its boundary points. All of the points in (0,1)
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are interior points, and all of the points in [0, 1] are limit points. The motivation
of the name “limit point” comes from the fact that such a point might be the limit
of an infinite sequence of points in U. For example, 0 is the limit point of the
sequence generated by 1/2¢ for each i € N, the natural numbers.

There are several convenient consequences of the definitions. A closed set C'
contains the limit point of any sequence that is a subset of C'. This implies that
it contains all of its boundary points. The closure, cl, always results in a closed
set because it adds all of the boundary points to the set. On the other hand, an
open set contains none of its boundary points. These interpretations will come in
handy when considering obstacles in the configuration space for motion planning.

Some examples The definition of a topological space is so general that an
incredible variety of topological spaces can be constructed.

Example 4.1 (The Topology of R™) We should expect that X = R" for any
integer n is a topological space. This requires characterizing the open sets. An
open ball B(x, p) is the set of points in the interior of a sphere of radius p, centered
at . Thus,

B(z,p) = {2/ € R" | o/ — 2| < o}, (4.2)

in which || - || denotes the Euclidean norm (or magnitude) of its argument. The
open balls are open sets in R™. Furthermore, all other open sets can be expressed
as a countable union of open balls.! For the case of R, this reduces to representing
any open set as a union of intervals, which was done so far.

Even though it is possible to express open sets of R™ as unions of balls, we pre-
fer to use other representations, with the understanding that one could revert to
open balls if necessary. The primitives of Section[3.1 can be used to generate many
interesting open and closed sets. For example, any algebraic primitive expressed
in the form H = {x € R" | f(z) < 0} produces a closed set. Taking finite unions
and intersections of these primitives will produce more closed sets. Therefore, all
of the models from Sections [3.1.1land 3.1.2 produce an obstacle region O that is
a closed set. As mentioned in Section 3.1.2, sets constructed only from primitives
that use the < relation are open. [ |

Example 4.2 (Subspace Topology) A new topological space can easily be con-
structed from a subset of a topological space. Let X be a topological space, and
let Y C X be a subset. The subspace topology on Y is obtained by defining the
open sets to be every subset of Y that can be represented as U NY for some open
set U C X. Thus, the open sets for Y are almost the same as for X, except
that the points that do not lie in Y are trimmed away. New subspaces can be
constructed by intersecting open sets of R™ with a complicated region defined by
semi-algebraic models. This leads to many interesting topological spaces, some of

ISuch a collection of balls is often referred to as a basis.
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which will appear later in this chapter. |

Example 4.3 (The Trivial Topology) For any set X, there is always one triv-
ial example of a topological space that can be constructed from it. Declare that
X and () are the only open sets. Note that all of the axioms are satisfied. [ |

Example 4.4 (A Strange Topology) It is important to keep in mind the al-
most absurd level of generality that is allowed by the definition of a topological
space. A topological space can be defined for any set, as long as the declared open
sets obey the axioms. Suppose a four-element set is defined as

X = {CAT, DOG, TREE, HOUSE}. (4.3)

In addition to () and X, suppose that {CAT} and {DOG} are open sets. Using the
axioms, {CAT,DOG} must also be an open set. Closed sets and boundary points
can be derived for this topology once the open sets are defined. [ |

After the last example, it seems that topological spaces are so general that not
much can be said about them. Most spaces that are considered in topology and
analysis satisfy more axioms. For R™ and any configuration spaces that arise in
this book, the following is satisfied:

Hausdorff axiom: For any distinct x1, x5 € X, there exist open sets O; and
O, such that z; € Oy, 5 € Oy, and O; N Oy = 0.

In other words, it is possible to separate x; and x5 into nonoverlapping open
sets. Think about how to do this for R™ by selecting small enough open balls. Any
topological space X that satisfies the Hausdorff axiom is referred to as a Hausdorff
space. Section|4.1.2 will introduce manifolds, which happen to be Hausdorff spaces
and are general enough to capture the vast majority of configuration spaces that
arise. We will have no need in this book to consider topological spaces that are
not Hausdorff spaces.

Continuous functions A very simple definition of continuity exists for topo-
logical spaces. It nicely generalizes the definition from standard calculus. Let
f + X — Y denote a function between topological spaces X and Y. For any set
B C Y, let the preimage of B be denoted and defined by

f(B)={re X | f(x) € B}. (4.4)

Note that this definition does not require f to have an inverse.

The function f is called continuous if f~(O) is an open set for every open set
O C Y. Analysis is greatly simplified by this definition of continuity. For example,
to show that any composition of continuous functions is continuous requires only a
one-line argument that the preimage of the preimage of any open set always yields
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an open set. Compare this to the cumbersome classical proof that requires a mess
of §’s and €’s. The notion is also so general that continuous functions can even be
defined on the absurd topological space from Example 4.4.

Homeomorphism: Making a donut into a coffee cup You might have
heard the expression that to a topologist, a donut and a coffee cup appear the
same. In many branches of mathematics, it is important to define when two
basic objects are equivalent. In graph theory (and group theory), this equivalence
relation is called an isomorphism. In topology, the most basic equivalence is a
homeomorphism, which allows spaces that appear quite different in most other
subjects to be declared equivalent in topology. The surfaces of a donut and a
coffee cup (with one handle) are considered equivalent because both have a single
hole. This notion needs to be made more precise!

Suppose f : X — Y is a bijective (one-to-one and onto) function between
topological spaces X and Y. Since f is bijective, the inverse f~! exists. If both
f and f~! are continuous, then f is called a homeomorphism. Two topological
spaces X and Y are said to be homeomorphic, denoted by X =2 Y, if there exists a
homeomorphism between them. This implies an equivalence relation on the set of
topological spaces (verify that the reflexive, symmetric, and transitive properties
are implied by the homeomorphism).

Example 4.5 (Interval Homeomorphisms) Any open interval of R is home-
omorphic to any other open interval. For example, (0, 1) can be mapped to (0, 5)
by the continuous mapping = +— 5zx. Note that (0,1) and (0,5) are each being
interpreted here as topological subspaces of R. This kind of homeomorphism can
be generalized substantially using linear algebra. If a subset, X C R", can be
mapped to another, Y C R”, via a nonsingular linear transformation, then X and
Y are homeomorphic. For example, the rigid-body transformations of the previ-
ous chapter were examples of homeomorphisms applied to the robot. Thus, the
topology of the robot does not change when it is translated or rotated. (In this
example, note that the robot itself is the topological space. This will not be the
case for the rest of the chapter.)

Be careful when mixing closed and open sets. The space [0, 1] is not homeomor-
phic to (0,1), and neither is homeomorphic to [0, 1). The endpoints cause trouble
when trying to make a bijective, continuous function. Surprisingly, a bounded and
unbounded set may be homeomorphic. A subset X of R" is called bounded if there
exists a ball B C R™ such that X C B. The mapping x — 1/x establishes that
(0,1) and (1,00) are homeomorphic. The mapping z +— tan~!(7z/2) establishes
that (—1,1) and all of R are homeomorphic! |

Example 4.6 (Topological Graphs) Let X be a topological space. The pre-
vious example can be extended nicely to make homeomorphisms look like graph
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S -

Figure 4.2: Even though the graphs are not isomorphic, the corresponding topo-
logical spaces may be homeomorphic due to useless vertices. The example graphs
map into R?, and are all homeomorphic to a circle.

~— S
X )

Figure 4.3: These topological graphs map into subsets of R? that are not homeo-
morphic to each other.

isomorphisms. Let a topological gmphﬂ be a graph for which every vertex cor-
responds to a point in X and every edge corresponds to a continuous, injective
(one-to-one) function, 7 : [0,1] — X. The image of 7 connects the points in X
that correspond to the endpoints (vertices) of the edge. The images of different
edge functions are not allowed to intersect, except at vertices. Recall from graph
theory that two graphs, G1(V1, F1) and Go(Va, Es), are called isomorphic if there
exists a bijective mapping, f : V; — V5 such that there is an edge between v; and
vy in Gy, if and only if there exists an edge between f(vy) and f(v]) in Gs.

The bijective mapping used in the graph isomorphism can be extended to
produce a homeomorphism. Each edge in F; is mapped continuously to its cor-
responding edge in F5. The mappings nicely coincide at the vertices. Now you
should see that two topological graphs are homeomorphic if they are isomorphic
under the standard definition from graph theory.3‘ What if the graphs are not
isomorphic? There is still a chance that the topological graphs may be homeo-
morphic, as shown in Figurel4.2. The problem is that there appear to be “useless”
vertices in the graph. By removing vertices of degree two that can be deleted
without affecting the connectivity of the graph, the problem is fixed. In this case,

2In topology this is called a 1-complex [441].
3Technically, the images of the topological graphs, as subspaces of X, are homeomorphic, not
the graphs themselves.
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graphs that are not isomorphic produce topological graphs that are not homeomor-
phic. This allows many distinct, interesting topological spaces to be constructed.
A few are shown in Figure 4.3! [ |

4.1.2 Manifolds

In motion planning, efforts are made to ensure that the resulting configuration
space has nice properties that reflect the true structure of the space of transforma-
tions. One important kind of topological space, which is general enough to include
most of the configuration spaces considered in Part [II, is called a manifold. Intu-
itively, a manifold can be considered as a “nice” topological space that behaves at
every point like our intuitive notion of a surface.

Manifold definition A topological space M C R™ is a mam’fold@ if for every
x € M, an open set O C M exists such that: 1) x € O, 2) O is homeomorphic to
R™, and 3) n is fixed for all x € M. The fixed n is referred to as the dimension
of the manifold, M. The second condition is the most important. It states that
in the vicinity of any point, x € M, the space behaves just like it would in the
vicinity of any point y € R"; intuitively, the set of directions that one can move
appears the same in either case. Several simple examples that may or may not be
manifolds are shown in Figure 4.4.

One natural consequence of the definitions is that m > n. According to Whit-
ney’s embedding theorem [451], m < 2n+1. In other words, R*"*! is “big enough”
to hold any n-dimensional manifold.d Technically, it is said that the n-dimensional
manifold M is embedded in R™, which means that an injective mapping exists from
M to R™ (if it is not injective, then the topology of M could change).

As it stands, it is impossible for a manifold to include its boundary points
because they are not contained in open sets. A manifold with boundary can be
defined requiring that the neighborhood of each boundary point of M is homeo-
morphic to a half-space of dimension n (which was defined for n = 2 and n = 3 in
Section [3.1) and that the interior points must be homeomorphic to R".

The presentation now turns to ways of constructing some manifolds that fre-
quently appear in motion planning. It is important to keep in mind that two

4Manifolds that are not subsets of R™ may also be defined. This requires that M is a Hausdorff
space and is second countable, which means that there is a countable number of open sets from
which any other open set can be constructed by taking a union of some of them. These conditions
are automatically satisfied when assuming M C R™; thus, it avoids these extra complications
and is still general enough for our purposes. Some authors use the term manifold to refer to a
smooth manifold. This requires the definition of a smooth structure, and the homeomorphism
is replaced by diffeomorphism. This extra structure is not needed here but will be introduced
when it is needed in Section [8.3.

5One variant of the theorem is that for smooth manifolds, R?" is sufficient. This bound is
tight because RP" (n-dimensional projective space, which will be introduced later in this section),
cannot be embedded in R?*~1.
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Figure 4.4: Some open subsets of R? that may or may not be manifolds. For the
three that are not, the point that prevents them from being manifolds is indicated.

manifolds will be considered equivalent if they are homeomorphic (recall the donut
and coffee cup).

Cartesian products There is a convenient way to construct new topological
spaces from existing ones. Suppose that X and Y are topological spaces. The
Cartesian product, X x Y, defines a new topological space as follows. Every x € X
and y € Y generates a point (z,y) in X x Y. Each open set in X x Y is formed by
taking the Cartesian product of one open set from X and one from Y. Exactly one
open set exists in X x Y for every pair of open sets that can be formed by taking
one from X and one from Y. No other open sets appear in X x Y'; therefore, its
open sets are automatically determined.

A familiar example of a Cartesian product is R x R, which is equivalent to R2.
In general, R" is equivalent to R x R"~!. The Cartesian product can be taken over
many spaces at once. For example, R Xx R x --- x R = R". In the coming text,
many important manifolds will be constructed via Cartesian products.

1D manifolds The set R of reals is the most obvious example of a 1D manifold
because R certainly looks like (via homeomorphism) R in the vicinity of every
point. The range can be restricted to the unit interval to yield the manifold (0, 1)
because they are homeomorphic (recall Example [4.5)).

Another 1D manifold, which is not homeomorphic to (0,1), is a circle, S'. In
this case R™ = R?, and let

S'={(z,y) eR*| 2" +y* =1} (4.5)

If you are thinking like a topologist, it should appear that this particular circle
is not important because there are numerous ways to define manifolds that are
homeomorphic to S!. For any manifold that is homeomorphic to S!, we will
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sometimes say that the manifold is S!, just represented in a different way. Also,
St will be called a circle, but this is meant only in the topological sense; it only
needs to be homeomorphic to the circle that we learned about in high school
geometry. Also, when referring to R, we might instead substitute (0,1) without
any trouble. The alternative representations of a manifold can be considered as
changing parameterizations, which are formally introduced in Section

Identifications A convenient way to represent S' is obtained by identification,
which is a general method of declaring that some points of a space are identical,
even though they originally were distinct.® For a topological space X, let X/ ~
denote that X has been redefined through some form of identification. The open
sets of X become redefined. Using identification, S* can be defined as [0, 1]/ ~,
in which the identification declares that 0 and 1 are equivalent, denoted as 0 ~ 1.
This has the effect of “gluing” the ends of the interval together, forming a closed
loop. To see the homeomorphism that makes this possible, use polar coordinates
to obtain 6 — (cos276,sin276). You should already be familiar with 0 and 27
leading to the same point in polar coordinates; here they are just normalized to
0 and 1. Letting 0 run from 0 up to 1, and then “wrapping around” to 0 is a
convenient way to represent S' because it does not need to be curved as in (4.5).

It might appear that identifications are cheating because the definition of a
manifold requires it to be a subset of R™. This is not a problem because Whitney’s
theorem, as mentioned previously, states that any n-dimensional manifold can be
embedded in R?"*!. The identifications just reduce the number of dimensions
needed for visualization. They are also convenient in the implementation of motion
planning algorithms.

2D manifolds Many important, 2D manifolds can be defined by applying the
Cartesian product to 1D manifolds. The 2D manifold R? is formed by R x R. The
product R x S' defines a manifold that is equivalent to an infinite cylinder. The
product S' x S! is a manifold that is equivalent to a torus (the surface of a donut).

Can any other 2D manifolds be defined? See Figure [4.5. The identification
idea can be applied to generate several new manifolds. Start with an open square
M = (0,1) x (0, 1), which is homeomorphic to R%. Let (x,y) denote a point in the
plane. A flat cylinder is obtained by making the identification (0,y) ~ (1,y) for
all y € (0,1) and adding all of these points to M. The result is depicted in Figure
4.5/ by drawing arrows where the identification occurs.

A Mébius band can be constructed by taking a strip of paper and connecting
the ends after making a 180-degree twist. This result is not homeomorphic to the
cylinder. The Mobius band can also be constructed by putting the twist into the
identification, as (0,y) ~ (1,1 — y) for all y € (0,1). In this case, the arrows are
drawn in opposite directions. The Mobius band has the famous properties that
it has only one side (trace along the paper strip with a pencil, and you will visit

6This is usually defined more formally and called a quotient topology.
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Plane, R? | | Cylinder, R x St
Mobius band » | Torus, T?
» Klein bottle « Projective plane, RP?
\//(:/ | Two-sphere, S? Double torus

Figure 4.5: Some 2D manifolds that can be obtained by identifying pairs of points
along the boundary of a square region.

both sides of the paper) and is nonorientable (if you try to draw it in the plane,
without using identification tricks, it will always have a twist).

For all of the cases so far, there has been a boundary to the set. The next few
manifolds will not even have a boundary, even though they may be bounded. If
you were to live in one of them, it means that you could walk forever along any
trajectory and never encounter the edge of your universe. It might seem like our
physical universe is unbounded, but it would only be an illusion. Furthermore,
there are several distinct possibilities for the universe that are not homeomorphic
to each other. In higher dimensions, such possibilities are the subject of cosmology,
which is a branch of astrophysics that uses topology to characterize the structure
of our universe.

A torus can be constructed by performing identifications of the form (0,y) ~
(1,y), which was done for the cylinder, and also (z,0) ~ (z,1), which identifies the
top and bottom. Note that the point (0,0) must be included and is identified with
three other points. Double arrows are used in Figure 4.5 to indicate the top and
bottom identification. All of the identification points must be added to M. Note
that there are no twists. A funny interpretation of the resulting flat torus is as the
universe appears for a spacecraft in some 1980s-style Asteroids-like video games.
The spaceship flies off of the screen in one direction and appears somewhere else,
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as prescribed by the identification.

Two interesting manifolds can be made by adding twists. Consider performing
all of the identifications that were made for the torus, except put a twist in the side
identification, as was done for the Mobius band. This yields a fascinating manifold
called the Klein bottle, which can be embedded in R* as a closed 2D surface in
which the inside and the outside are the same! (This is in a sense similar to that of
the M6bius band.) Now suppose there are twists in both the sides and the top and
bottom. This results in the most bizarre manifold yet: the real projective plane,
RP?. This space is equivalent to the set of all lines in R? that pass through the
origin. The 3D version, RPP?, happens to be one of the most important manifolds
for motion planning!

Let S? denote the unit sphere, which is defined as

S* = {(2,y,2) € R® | 2® + 4> + 2> = 1}. (4.6)

Another way to represent S? is by making the identifications shown in the last
row of Figure A dashed line is indicated where the equator might appear,
if we wanted to make a distorted wall map of the earth. The poles would be at
the upper left and lower right corners. The final example shown in Figure 4.5 is a
double torus, which is the surface of a two-holed donut.

Higher dimensional manifolds The construction techniques used for the 2D
manifolds generalize nicely to higher dimensions. Of course, R", is an n-dimensional
manifold. An n-dimensional torus, T", can be made by taking a Cartesian prod-
uct of n copies of S*. Note that S! x S! £ S2. Therefore, the notation T" is used
for (S')". Different kinds of n-dimensional cylinders can be made by forming a
Cartesian product R? x T for positive integers ¢ and j such that i + j = n. Higher
dimensional spheres are defined as

S"={z e R"™" | [|laf| = 1}, (4.7)

in which ||z|| denotes the Euclidean norm of z, and n is a positive integer. Many
interesting spaces can be made by identifying faces of the cube (0, 1)™ (or even faces
of a polyhedron or polytope), especially if different kinds of twists are allowed. An
n-dimensional projective space can be defined in this way, for example. Lens spaces
are a family of manifolds that can be constructed by identification of polyhedral
faces [836].

Due to its coming importance in motion planning, more details are given on
projective spaces. The standard definition of an n-dimensional real projective
space RP" is the set of all lines in R™*! that pass through the origin. Each line
is considered as a point in RP". Using the definition of S™ in (4.7), note that
each of these lines in R™"! intersects S” C R"™™! in exactly two places. These
intersection points are called antipodal, which means that they are as far from
each other as possible on S”. The pair is also unique for each line. If we identify
all pairs of antipodal points of S, a homeomorphism can be defined between each
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line through the origin of R"*! and each antipodal pair on the sphere. This means
that the resulting manifold, S"/ ~, is homeomorphic to RP".

Another way to interpret the identification is that RP" is just the upper half
of S™, but with every equatorial point identified with its antipodal point. Thus, if
you try to walk into the southern hemisphere, you will find yourself on the other
side of the world walking north. It is helpful to visualize the special case of RP?
and the upper half of S?. Imagine warping the picture of RP? from Figure 4.5
from a square into a circular disc, with opposite points identified. The result still
represents RP?. The center of the disc can now be lifted out of the plane to form
the upper half of S2.

4.1.3 Paths and Connectivity

Central to motion planning is determining whether one part of a space is reachable
from another. In Chapter 2, one state was reached from another by applying a
sequence of actions. For motion planning, the analog to this is connecting one point
in the configuration space to another by a continuous path. Graph connectivity is
important in the discrete planning case. An analog to this for topological spaces
is presented in this section.

Paths Let X be a topological space, which for our purposes will also be a man-
ifold. A path is a continuous function, 7 : [0,1] — X. Alternatively, R may be
used for the domain of 7. Keep in mind that a path is a function, not a set of
points. Each point along the path is given by 7(s) for some s € [0, 1]. This makes
it appear as a nice generalization to the sequence of states visited when a plan
from Chapter|2 is applied. Recall that there, a countable set of stages was defined,
and the states visited could be represented as xy, zo, .... In the current setting
7(s) is used, in which s replaces the stage index. To make the connection clearer,
we could use z instead of 7 to obtain z(s) for each s € [0, 1].

Connected vs. path connected A topological space X is said to be connected
if it cannot be represented as the union of two disjoint, nonempty, open sets. While
this definition is rather elegant and general, if X is connected, it does not imply
that a path exists between any pair of points in X thanks to crazy examples like
the topologist’s sine curve:

X ={(z,y) €R* |z =0or y=sin(1/x)}. (4.8)

Consider plotting X. The sin(1/z) part creates oscillations near the y-axis in
which the frequency tends to infinity. After union is taken with the y-axis, this
space is connected, but there is no path that reaches the y-axis from the sine curve.

How can we avoid such problems? The standard way to fix this is to use the
path definition directly in the definition of connectedness. A topological space X
is said to be path connected if for all x1, x5 € X, there exists a path 7 such that
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Figure 4.6: (a) Homotopy continuously warps one path into another. (b) The
image of the path cannot be continuously warped over a hole in R? because it
causes a discontinuity. In this case, the two paths are not homotopic.

7(0) = 21 and 7(1) = x9. It can be shown that if X is path connected, then it is
also connected in the sense defined previously.

Another way to fix it is to make restrictions on the kinds of topological spaces
that will be considered. This approach will be taken here by assuming that all topo-
logical spaces are manifolds. In this case, no strange things like (4.8) can happenﬁ
and the definitions of connected and path connected coincide [453]. Therefore, we
will just say a space is connected. However, it is important to remember that this
definition of connected is sometimes inadequate, and one should really say that X
is path connected.

Simply connected Now that the notion of connectedness has been established,
the next step is to express different kinds of connectivity. This may be done by
using the notion of homotopy, which can intuitively be considered as a way to
continuously “warp” or “morph” one path into another, as depicted in Figure
4.64.

Two paths 7, and 7, are called homotopic (with endpoints fixed) if there exists
a continuous function h : [0, 1] x [0, 1] — X for which the following four conditions
are met:

1. (Start with first path) h(s,0) = 7(s) for all s € [0,1] .
2. (End with second path) h(s,1) = 7»(s) for all s € [0,1] .
3. (Hold starting point fixed) h(0,t) = h(0,0) for all t € [0,1] .

4. (Hold ending point fixed) h(1,¢) = h(1,0) for all ¢t € [0,1] .

"The topologist’s sine curve is not a manifold because all open sets that contain the point
(0,0) contain some of the points from the sine curve. These open sets are not homeomorphic to
R.
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The parameter ¢ can be interpreted as a knob that is turned to gradually deform
the path from 71 into 7. The first two conditions indicate that ¢t = 0 yields 7, and
t = 1 yields 19, respectively. The remaining two conditions indicate that the path
endpoints are held fixed.

During the warping process, the path image cannot make a discontinuous jump.
In R2, this prevents it from moving over holes, such as the one shown in Figure 4.6b.
The key to preventing homotopy from jumping over some holes is that A must be
continuous. In higher dimensions, however, there are many different kinds of holes.
For the case of R3, for example, suppose the space is like a block of Swiss cheese
that contains air bubbles. Homotopy can go around the air bubbles, but it cannot
pass through a hole that is drilled through the entire block of cheese. Air bubbles
and other kinds of holes that appear in higher dimensions can be characterized by
generalizing homotopy to the warping of higher dimensional surfaces, as opposed
to paths [441].

It is straightforward to show that homotopy defines an equivalence relation on
the set of all paths from some x; € X to some x5 € X. The resulting notion
of “equivalent paths” appears frequently in motion planning, control theory, and
many other contexts. Suppose that X is path connected. If all paths fall into the
same equivalence class, then X is called simply connected; otherwise, X is called
multiply connected.

Groups The equivalence relation induced by homotopy starts to enter the realm
of algebraic topology, which is a branch of mathematics that characterizes the
structure of topological spaces in terms of algebraic objects, such as groups. These
resulting groups have important implications for motion planning. Therefore, we
give a brief overview. First, the notion of a group must be precisely defined. A
group is a set, (G, together with a binary operation, o, such that the following
group azxioms are satisfied:

1. (Closure) For any a,b € GG, the product aob € G.

2. (Associativity) For all a,b,c € G, (aob)oc = ao(boc). Hence, parentheses
are not needed, and the product may be written as aobo c.

3. (Identity) There is an element e € G, called the identity, such that for all
a€ G, eoa=aandaoe=a.

4. (Inverse) For every element a € G, there is an element o', called the
inverse of a, for which aoa ™' =eand a ' oa =e.

Here are some examples.

Example 4.7 (Simple Examples of Groups) The set of integers Z is a group
with respect to addition. The identity is 0, and the inverse of each 7 is —i. The set
@\ 0 of rational numbers with 0 removed is a group with respect to multiplication.
The identity is 1, and the inverse of every element, ¢, is 1/g (0 was removed to
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avoid division by zero). [

An important property, which only some groups possess, is commutativity:
aob=">boa for any a,b € GG. The group in this case is called commutative or
Abelian. We will encounter examples of both kinds of groups, both commutative
and noncommutative. An example of a commutative group is vector addition over
R™. The set of all 3D rotations is an example of a noncommutative group.

The fundamental group Now an interesting group will be constructed from
the space of paths and the equivalence relation obtained by homotopy. The funda-
mental group, m (X)) (or first homotopy group), is associated with any topological
space, X. Let a (continuous) path for which f(0) = f(1) be called a loop. Let
some x, € X be designated as a base point. For some arbitrary but fixed base
point, x;, consider the set of all loops such that f(0) = f(1) = x3. This can be
made into a group by defining the following binary operation. Let 7 : [0,1] — X
and 75 : [0,1] — X be two loop paths with the same base point. Their product
T = 71 0 Ty is defined as

(2t) itte0,1/2)
m(t) = { (2t —1) ifte[1/2,1]. (4.9)

This results in a continuous loop path because 7; terminates at xz;, and 75 begins
at x,. In a sense, the two paths are concatenated end-to-end.

Suppose now that the equivalence relation induced by homotopy is applied to
the set of all loop paths through a fixed point, x;. It will no longer be important
which particular path was chosen from a class; any representative may be used.
The equivalence relation also applies when the set of loops is interpreted as a
group. The group operation actually occurs over the set of equivalences of paths.

Consider what happens when two paths from different equivalence classes are
concatenated using o. Is the resulting path homotopic to either of the first two?
Is the resulting path homotopic if the original two are from the same homotopy
class? The answers in general are no and no, respectively. The fundamental group
describes how the equivalence classes of paths are related and characterizes the
connectivity of X. Since fundamental groups are based on paths, there is a nice
connection to motion planning.

Example 4.8 (A Simply Connected Space) Suppose that a topological space
X is simply connected. In this case, all loop paths from a base point x; are homo-
topic, resulting in one equivalence class. The result is 71(X) = 1g, which is the
group that consists of only the identity element. [ |

Example 4.9 (The Fundamental Group of S') Suppose X = S!. In this
case, there is an equivalence class of paths for each i € Z, the set of integers.
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Figure 4.7: An illustration of why 7 (RP?) = Z,. The integers 1 and 2 indicate
precisely where a path continues when it reaches the boundary. (a) Two paths are
shown that are not equivalent. (b) A path that winds around twice is shown. (c)
This is homotopic to a loop path that does not wind around at all. Eventually, the
part of the path that appears at the bottom is pulled through the top. It finally
shrinks into an arbitrarily small loop.

If i > 0, then it means that the path winds ¢ times around S* in the counterclock-
wise direction and then returns to x;. If i < 0, then the path winds around ¢ times
in the clockwise direction. If i = 0, then the path is equivalent to one that remains
at x,. The fundamental group is Z, with respect to the operation of addition. If
71 travels i times counterclockwise, and 7 travels i times counterclockwise, then
T = 71 0 Ty belongs to the class of loops that travel around ¢; + i5 times counter-
clockwise. Consider additive inverses. If a path travels seven times around S!, and
it is combined with a path that travels seven times in the opposite direction, the
result is homotopic to a path that remains at z;,. Thus, 7 (S') = Z. [ |

Example 4.10 (The Fundamental Group of T™) For the torus, 7 (T") = Z",
in which the ith component of Z" corresponds to the number of times a loop path
wraps around the 7th component of T". This makes intuitive sense because T" is
just the Cartesian product of n circles. The fundamental group Z" is obtained by
starting with a simply connected subset of the plane and drilling out n disjoint,
bounded holes. This situation arises frequently when a mobile robot must avoid
collision with n disjoint obstacles in the plane. |

By now it seems that the fundamental group simply keeps track of how many
times a path travels around holes. This next example yields some very bizarre
behavior that helps to illustrate some of the interesting structure that arises in
algebraic topology.
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Example 4.11 (The Fundamental Group of RP?) Suppose X = RP? the
projective plane. In this case, there are only two equivalence classes on the space of
loop paths. All paths that “wrap around” an even number of times are homotopic.
Likewise, all paths that wrap around an odd number of times are homotopic. This
strange behavior is illustrated in Figure 4.7. The resulting fundamental group
therefore has only two elements: 7 (RP?) = Z,, the cyclic group of order 2, which
corresponds to addition mod 2. This makes intuitive sense because the group
keeps track of whether a sum of integers is odd or even, which in this application
corresponds to the total number of traversals over the square representation of
RP?. The fundamental group is the same for RP?, which arises in Section [4.2.2
because it is homeomorphic to the set of 3D rotations. Thus, there are surprisingly
only two path classes for the set of 3D rotations. |

Unfortunately, two topological spaces may have the same fundamental group
even if the spaces are not homeomorphic. For example, Z is the fundamental
group of S!, the cylinder, R x S!, and the Mobius band. In the last case, the
fundamental group does not indicate that there is a “twist” in the space. Another
problem is that spaces with interesting connectivity may be declared as simply
connected. The fundamental group of the sphere S? is just 1g, the same as for
R2. Try envisioning loop paths on the sphere; it can be seen that they all fall into
one equivalence class. Hence, S? is simply connected. The fundamental group also
neglects bubbles in R? because the homotopy can warp paths around them. Some
of these troubles can be fixed by defining second-order homotopy groups. For
example, a continuous function, [0, 1] x [0,1] — X, of two variables can be used
instead of a path. The resulting homotopy generates a kind of sheet or surface
that can be warped through the space, to yield a homotopy group me(X) that
wraps around bubbles in R3. This idea can be extended beyond two dimensions
to detect many different kinds of holes in higher dimensional spaces. This leads to
the higher order homotopy groups. A stronger concept than simply connected for
a space is that its homotopy groups of all orders are equal to the identity group.
This prevents all kinds of holes from occurring and implies that a space, X, is
contractible, which means a kind of homotopy can be constructed that shrinks X
to a point [441]. In the plane, the notions of contractible and simply connected are
equivalent; however, in higher dimensional spaces, such as those arising in motion
planning, the term contractible should be used to indicate that the space has no
interior obstacles (holes).

An alternative to basing groups on homotopy is to derive them using homology,
which is based on the structure of cell complexes instead of homotopy mappings.
This subject is much more complicated to present, but it is more powerful for
proving theorems in topology. See the literature overview at the end of the chapter
for suggested further reading on algebraic topology.
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4.2 Defining the Configuration Space

This section defines the manifolds that arise from the transformations of Chapter
3. If the robot has n degrees of freedom, the set of transformations is usually a
manifold of dimension n. This manifold is called the configuration space of the
robot, and its name is often shortened to C-space. In this book, the C-space
may be considered as a special state space. To solve a motion planning problem,
algorithms must conduct a search in the C-space. The C-space provides a powerful
abstraction that converts the complicated models and transformations of Chapter
3 into the general problem of computing a path that traverses a manifold. By
developing algorithms directly for this purpose, they apply to a wide variety of
different kinds of robots and transformations. In Section 4.3 the problem will be
complicated by bringing obstacles into the configuration space, but in Section [4.2
there will be no obstacles.

4.2.1 2D Rigid Bodies: SE(2)

Section [3.2.2 expressed how to transform a rigid body in R? by a homogeneous
transformation matrix, 7', given by (3.35). The task in this chapter is to char-
acterize the set of all possible rigid-body transformations. Which manifold will
this be? Here is the answer and brief explanation. Since any xz;,7; € R can be
selected for translation, this alone yields a manifold M; = R?. Independently, any
rotation, 6 € [0,27), can be applied. Since 27 yields the same rotation as 0, they
can be identified, which makes the set of 2D rotations into a manifold, M, = S*.
To obtain the manifold that corresponds to all rigid-body motions, simply take
C = M, x My = R? x S'. The answer to the question is that the C-space is a kind
of cylinder.

Now we give a more detailed technical argument. The main purpose is that
such a simple, intuitive argument will not work for the 3D case. Our approach is
to introduce some of the technical machinery here for the 2D case, which is easier
to understand, and then extend it to the 3D case in Section 4.2.2.

Matrix groups The first step is to consider the set of transformations as a
group, in addition to a topological spacng We now derive several important groups
from sets of matrices, ultimately leading to SO(n), the group of n x n rotation
matrices, which is very important for motion planning. The set of all nonsingular
n x n real-valued matrices is called the general linear group, denoted by GL(n),
with respect to matrix multiplication. Each matrix A € GL(n) has an inverse
A~! € GL(n), which when multiplied yields the identity matrix, AA™! = I. The

8The groups considered in this section are actually Lie groups because they are smooth
manifolds [64]. We will not use that name here, however, because the notion of a smooth
structure has not yet been defined. Readers familiar with Lie groups, however, will recognize
most of the coming concepts. Some details on Lie groups appear later in Sections [15.4.3] and

15.5.1.
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matrices must be nonsingular for the same reason that 0 was removed from Q. The
analog of division by zero for matrix algebra is the inability to invert a singular
matrix.

Many interesting groups can be formed from one group, GGy, by removing some
elements to obtain a subgroup, G5. To be a subgroup, GG, must be a subset of
GG; and satisfy the group axioms. We will arrive at the set of rotation matrices
by constructing subgroups. One important subgroup of GL(n) is the orthogonal
group, O(n), which is the set of all matrices A € GL(n) for which AAT = I,
in which A7 denotes the matrix transpose of A. These matrices have orthogonal
columns (the inner product of any pair is zero) and the determinant is always 1 or
—1. Thus, note that AAT takes the inner product of every pair of columns. If the
columns are different, the result must be 0; if they are the same, the result is 1
because AAT = I. The special orthogonal group, SO(n), is the subgroup of O(n)
in which every matrix has determinant 1. Another name for SO(n) is the group
of n-dimensional rotation matrices.

A chain of groups, SO(n) < O(n) < GL(n), has been described in which <
denotes “a subgroup of.” Each group can also be considered as a topological space.
The set of all n x n matrices (which is not a group with respect to multiplication)
with real-valued entries is homeomorphic to R™ because n? entries in the matrix
can be independently chosen. For GL(n), singular matrices are removed, but an
n?-dimensional manifold is nevertheless obtained. For O(n), the expression AAT =
I corresponds to n? algebraic equations that have to be satisfied. This should
substantially drop the dimension. Note, however, that many of the equations are
redundant (pick your favorite value for n, multiply the matrices, and see what
happens). There are only (§) ways (pairwise combinations) to take the inner
product of pairs of columns, and there are n equations that require the magnitude
of each column to be 1. This yields a total of n(n + 1)/2 independent equations.
Each independent equation drops the manifold dimension by one, and the resulting
dimension of O(n) is n* —n(n+1)/2 = n(n —1)/2, which is easily remembered as
(3). To obtain SO(n), the constraint det A = 1 is added, which eliminates exactly
half of the elements of O(n) but keeps the dimension the same.

Example 4.12 (Matrix Subgroups) It is helpful to illustrate the concepts for
n = 2. The set of all 2 x 2 matrices is

a b
e )
which is homeomorphic to R*. The group GL(2) is formed from the set of all
nonsingular 2 x 2 matrices, which introduces the constraint that ad — bc # 0. The
set of singular matrices forms a 3D manifold with boundary in R*, but all other
elements of R* are in GL(2); therefore, GL(2) is a 4D manifold.
Next, the constraint AAT = I is enforced to obtain O(2). This becomes

66

a,b,c,d e R} , (4.10)
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which directly yields four algebraic equations:

a+ b =1 (4.12)
ac+bd =0 (4.13)
ca+db=0 (4.14)
A4+d=1. (4.15)

Note that (4.14) is redundant. There are two kinds of equations. One equation,
given by (4.13), forces the inner product of the columns to be 0. There is only
one because (3) =1 for n = 2. Two other constraints, (4.12) and (4.15), force the
rows to be unit vectors. There are two because n = 2. The resulting dimension of
the manifold is (§) = 1 because we started with R* and lost three dimensions from
(4.12), (4.13), and (4.15). What does this manifold look like? Imagine that there
are two different two-dimensional unit vectors, (a,b) and (¢, d). Any value can be
chosen for (a,b) as long as a® + > = 1. This looks like S', but the inner product
of (a,b) and (¢, d) must also be 0. Therefore, for each value of (a,b), there are two
choices for c and d: 1) ¢ = b and d = —a, or 2) ¢ = —b and d = a. It appears
that there are two circles! The manifold is S' U'S!, in which LI denotes the union
of disjoint sets. Note that this manifold is not connected because no path exists
from one circle to the other.

The final step is to require that det A = ad — be = 1, to obtain SO(2), the set
of all 2D rotation matrices. Without this condition, there would be matrices that
produce a rotated mirror image of the rigid body. The constraint simply forces
the choice for ¢ and d to be ¢ = —b and a = d. This throws away one of the circles
from O(2), to obtain a single circle for SO(2). We have finally obtained what you
already knew: SO(2) is homeomorphic to S'. The circle can be parameterized
using polar coordinates to obtain the standard 2D rotation matrix, (3.31), given
in Section 3.2.2. [ |

Special Euclidean group Now that the group of rotations, SO(n), is charac-
terized, the next step is to allow both rotations and translations. This corresponds
to the set of all (n + 1) x (n + 1) transformation matrices of the form

{(g 11}) ‘ Re SO(n) and v € R”} . (4.16)

This should look like a generalization of (3.52) and (3.56), which were for n = 2
and n = 3, respectively. The R part of the matrix achieves rotation of an n-
dimensional body in R", and the v part achieves translation of the same body.
The result is a group, SE(n), which is called the special Fuclidean group. As a
topological space, SE(n) is homeomorphic to R" x SO(n), because the rotation
matrix and translation vectors may be chosen independently. In the case of n = 2,
this means SF(2) is homeomorphic to R? x S!, which verifies what was stated
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Figure 4.8: A planning algorithm may have to cross the identification boundary
to find a solution path.

at the beginning of this section. Thus, the C-space of a 2D rigid body that can
translate and rotate in the plane is

C=R?*x S (4.17)

~Y

To be more precise, = should be used in the place of = to indicate that C could
be any space homeomorphic to R? x S!; however, this notation will mostly be
avoided.

Interpreting the C-space It is important to consider the topological impli-
cations of C. Since S! is multiply connected, R x S! and R? x S! are multiply
connected. It is difficult to visualize C because it is a 3D manifold; however,
there is a nice interpretation using identification. Start with the open unit cube,
(0,1)3 € R3. Include the boundary points of the form (z,,0) and (z,y,1), and
make the identification (z,y,0) ~ (z,y,1) for all z,y € (0,1). This means that
when traveling in the x and y directions, there is a “frontier” to the C-space;
however, traveling in the z direction causes a wraparound.

It is very important for a motion planning algorithm to understand that this
wraparound exists. For example, consider R x S! because it is easier to visualize.
Imagine a path planning problem for which C = R x S', as depicted in Figure
4.8, Suppose the top and bottom are identified to make a cylinder, and there is
an obstacle across the middle. Suppose the task is to find a path from ¢; to gg. If
the top and bottom were not identified, then it would not be possible to connect
qr to qg; however, if the algorithm realizes it was given a cylinder, the task is
straightforward. In general, it is very important to understand the topology of C;
otherwise, potential solutions will be lost.

The next section addresses SE(n) for n = 3. The main difficulty is determining
the topology of SO(3). At least we do not have to consider n > 3 in this book.

4.2.2 3D Rigid Bodies: SE(3)

One might expect that defining C for a 3D rigid body is an obvious extension of the
2D case; however, 3D rotations are significantly more complicated. The resulting
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C-space will be a six-dimensional manifold, C = R? x RP*?. Three dimensions come
from translation and three more come from rotation.

The main quest in this section is to determine the topology of SO(3). In Section
3.2.3| yaw, pitch, and roll were used to generate rotation matrices. These angles
are convenient for visualization, performing transformations in software, and also
for deriving the DH parameters. However, these were concerned with applying
a single rotation, whereas the current problem is to characterize the set of all
rotations. It is possible to use «, (3, and v to parameterize the set of rotations,
but it causes serious troubles. There are some cases in which nonzero angles yield
the identity rotation matrix, which is equivalent to o = § = v = 0. There are
also cases in which a continuum of values for yaw, pitch, and roll angles yield the
same rotation matrix. These problems destroy the topology, which causes both
theoretical and practical difficulties in motion planning.

Consider applying the matrix group concepts from Section 4.2.1. The general
linear group GL(3) is homeomorphic to R?. The orthogonal group, O(3), is de-
termined by imposing the constraint AA” = I. There are (3) = 3 independent
equations that require distinct columns to be orthogonal, and three independent
equations that force the magnitude of each column to be 1. This means that O(3)
has three dimensions, which matches our intuition since there were three rotation
parameters in Section [3.2.3. To obtain SO(3), the last constraint, det A = 1,
is added. Recall from Example 4.12 that SO(2) consists of two circles, and the
constraint det A = 1 selects one of them. In the case of O(3), there are two
three-spheres, S? U'S?, and det A = 1 selects one of them. However, there is one
additional complication: Antipodal points on these spheres generate the same ro-
tation matrix. This will be seen shortly when quaternions are used to parameterize

SO(3).

Using complex numbers to represent SO(2) Before introducing quaternions
to parameterize 3D rotations, consider using complex numbers to parameterize 2D
rotations. Let the term unit complex number refer to any complex number, a + bi,
for which a? + b = 1.

The set of all unit complex numbers forms a group under multiplication. It will
be seen that it is “the same” group as SO(2). This idea needs to be made more
precise. Two groups, G and H, are considered “the same” if they are isomorphic,
which means that there exists a bijective function f : G — H such that for all
a,b € G, f(a)o f(b) = f(aob). This means that we can perform some calculations
in G, map the result to H, perform more calculations, and map back to G without
any trouble. The sets G and H are just two alternative ways to express the same
group.

The unit complex numbers and SO(2) are isomorphic. To see this clearly, recall
that complex numbers can be represented in polar form as re; a unit complex
number is simply e?. A bijective mapping can be made between 2D rotation
matrices and unit complex numbers by letting e? correspond to the rotation matrix

(3.31).
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If complex numbers are used to represent rotations, it is important that they
behave algebraically in the same way. If two rotations are combined, the matrices
are multiplied. The equivalent operation is multiplication of complex numbers.
Suppose that a 2D robot is rotated by 6, followed by 5. In polar form, the complex
numbers are multiplied to yield e?1e®2 = !®+%2) which clearly represents a
rotation of #; + 5. If the unit complex number is represented in Cartesian form,
then the rotations corresponding to a; + byt and as + byi are combined to obtain
(ayas —b1bg) + (a1bs + agby )i. Note that here we have not used complex numbers to
express the solution to a polynomial equation, which is their more popular use; we
simply borrowed their nice algebraic properties. At any time, a complex number
a + bi can be converted into the equivalent rotation matrix

a

Rla,b) = (Z _b> . (4.18)

Recall that only one independent parameter needs to be specified because a? +
b> = 1. Hence, it appears that the set of unit complex numbers is the same
manifold as SO(2), which is the circle S' (recall, that “same” means in the sense
of homeomorphism).

Quaternions The manner in which complex numbers were used to represent 2D
rotations will now be adapted to using quaternions to represent 3D rotations. Let
H represent the set of quaternions, in which each quaternion, h € H, is represented
as h = a+bi+cj+dk, and a,b,c,d € R. A quaternion can be considered as a four-
dimensional vector. The symbols 7, j, and k are used to denote three “imaginary”
components of the quaternion. The following relationships are defined: i? = j2 =
k? = ijk = —1, from which it follows that ij = k, jk = 4, and ki = j. Using
these, multiplication of two quaternions, h; = ay + bii + ¢1j + dik and hy =
as +bot + o + dok, can be derived to obtain h; - he = az+ bsi + c37 + dsk, in which

asz = ajaz — biby — c1co — dids

bg = a1b2 + CLle + Cldg — Cle (419)
C3 = a1C2 + agoCy + bgdl - b1d2

d3 = a1d2 + a2d1 + blCQ — bQCl.

Using this operation, it can be shown that H is a group with respect to quaternion
multiplication. Note, however, that the multiplication is not commutative! This
is also true of 3D rotations; there must be a good reason.

For convenience, quaternion multiplication can be expressed in terms of vector
multiplications, a dot product, and a cross product. Let v = [b ¢ d] be a three-
dimensional vector that represents the final three quaternion components. The
first component of hy - hs is ajas — vy - vo. The final three components are given
by the three-dimensional vector a,vy + asv; — vy X vs.

In the same way that unit complex numbers were needed for SO(2), unit quater-
nions are needed for SO(3), which means that H is restricted to quaternions for
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Figure 4.9: Any 3D rotation can be considered as a rotation by an angle # about
the axis given by the unit direction vector v = [v; vy w3).

2 — 0

Figure 4.10: There are two ways to encode the same rotation.

which a? + b? + ¢ + d? = 1. Note that this forms a subgroup because the multi-
plication of unit quaternions yields a unit quaternion, and the other group axioms
hold.

The next step is to describe a mapping from unit quaternions to SO(3). Let
the unit quaternion h = a + bi + ¢j + dk map to the matrix

2(a®* +0*)—1  2(bc — ad) 2(bd + ac)
R(h) = 2(bc+ad) 2(a*+c*) -1 2(cd—ab) |, (4.20)
2(bd — ac) 2(cd +ab)  2(a®*+d*) —1

which can be verified as orthogonal and det R(h) = 1. Therefore, it belongs to

SO(3). Tt is not shown here, but it conveniently turns out that h represents the
rotation shown in Figure 4.9, by making the assignment

6 AN AR 0
h = cos 3 + (vl sin 5) i+ (1)2 sin §> Jj+ (’Ug sin 5) k. (4.21)

Unfortunately, this representation is not unique. It can be verified in (4.20)
that R(h) = R(—h). A nice geometric interpretation is given in Figure 4.10.
The quaternions h and —h represent the same rotation because a rotation of 6
about the direction v is equivalent to a rotation of 2w — 6 about the direction —uv.
Consider the quaternion representation of the second expression of rotation with
respect to the first. The real part is

cos (%2_ 9) = cos (7r - g) — — cos <§) - —a. (4.22)

The 4, j, and k components are

—vsin (2”2_ 9) — —usin (w - g) — —usin (g) —[-b —c —d. (4.23)
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The quaternion —h has been constructed. Thus, h and —h represent the same
rotation. Luckily, this is the only problem, and the mapping given by (4.20) is
two-to-one from the set of unit quaternions to SO(3).

This can be fixed by the identification trick. Note that the set of unit quater-
nions is homeomorphic to S* because of the constraint a? + b 4 ¢ +d? = 1. The
algebraic properties of quaternions are not relevant at this point. Just imagine
each h as an element of R*, and the constraint a? + b* 4+ ¢ + d? = 1 forces the
points to lie on S*. Using identification, declare h ~ —h for all unit quaternions.
This means that the antipodal points of S? are identified. Recall from the end
of Section [4.1.2 that when antipodal points are identified, RP"™ = §"/ ~. Hence,
SO(3) = RP?, which can be considered as the set of all lines through the origin
of R?*, but this is hard to visualize. The representation of RP? in Figure 4.5 can
be extended to RP?. Start with (0,1)® C R? and make three different kinds
of identifications, one for each pair of opposite cube faces, and add all of the
points to the manifold. For each kind of identification a twist needs to be made
(without the twist, T would be obtained). For example, in the z direction, let
(2,9,0) ~ (1 — 2,1 —y, 1) for all z,y € [0,1].

One way to force uniqueness of rotations is to require staying in the “upper
half” of S®. For example, require that a > 0, as long as the boundary case of
a = 0 is handled properly because of antipodal points at the equator of S3. If
a = 0, then require that b > 0. However, if a = b = 0, then require that ¢ > 0
because points such as (0,0, —1,0) and (0,0, 1,0) are the same rotation. Finally,
if a=b=c=0, then only d = 1 is allowed. If such restrictions are made, it is
important, however, to remember the connectivity of RP?. If a path travels across
the equator of S3, it must be mapped to the appropriate place in the “northern
hemisphere.” At the instant it hits the equator, it must move to the antipodal
point. These concepts are much easier to visualize if you remove a dimension and
imagine them for S? C R?, as described at the end of Section 4.1.2.

Using quaternion multiplication The representation of rotations boiled down
to picking points on S* and respecting the fact that antipodal points give the same
element of SO(3). In a sense, this has nothing to do with the algebraic properties
of quaternions. It merely means that SO(3) can be parameterized by picking
points in S?, just like SO(2) was parameterized by picking points in S! (ignoring
the antipodal identification problem for SO(3)).

However, one important reason why the quaternion arithmetic was introduced
is that the group of unit quaternions is also isomorphic to SO(3). This means that
a sequence of rotations can be multiplied together using quaternion multiplication
instead of matrix multiplication. This is important because fewer operations are
required for quaternion multiplication in comparison to matrix multiplication. At
any point, (4.20) can be used to convert the result back into a matrix; however,
this is not even necessary. It turns out that a point in the world, (z,y, z) € R3, can
be transformed by directly using quaternion arithmetic. An analog to the complex
conjugate from complex numbers is needed. For any h = a + bi + ¢j + dk € H, let
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h* = a — bi — ¢j — dk be its conjugate. For any point (z,y,z) € R, let p € H be
the quaternion 0 + i + yj + zk. It can be shown (with a lot of algebra) that the
rotated point (x,y, z) is given by h-p-h*. The i, j, k components of the resulting
quaternion are new coordinates for the transformed point. It is equivalent to
having transformed (z,y, z) with the matrix R(h).

Finding quaternion parameters from a rotation matrix Recall from Sec-
tion [3.2.3 that given a rotation matrix (3.43), the yaw, pitch, and roll parameters
could be directly determined using the atan2 function. It turns out that the
quaternion representation can also be determined directly from the matrix. This
is the inverse of the function in (4.20).°

For a given rotation matrix (3.43), the quaternion parameters h = a+bi+cj+dk
can be computed as follows [212]. The first component is

a = %\/7’11 + rog + 33 + 1, (424)

and if a # 0, then

T32 — 1723
b= "= 4.25
=, (4:25)
3 — 731
== = 4.26
c= (4.26)
and
T21 — T12
d=——=. 4.27
” (4.27)

If a = 0, then the previously mentioned equator problem occurs. In this case,

13712
b= 2 .2 2 .2 2 .2’ (4'28)
\/7"127‘13 + T3 T 3T

12723
c= , (4.29)
\/7”2 r2. - r2r2 2.2
12713 12723 13723

and

13723
d= — — — (4.30)
\/T12T13 T ToTa3 T T13T53

This method fails if ri3 = r93 = 0 or 713 = 193 = 0 or r15 = r93 = 0. These
correspond precisely to the cases in which the rotation matrix is a yaw, (3.39),
pitch, (3.40), or roll, (3.41), which can be detected in advance.

9Since that function was two-to-one, it is technically not an inverse until the quaternions are
restricted to the upper hemisphere, as described previously.
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Special Euclidean group Now that the complicated part of representing SO(3)
has been handled, the representation of S E(3) is straightforward. The general form
of a matrix in SE(3) is given by (4.16), in which R € SO(3) and v € R3. Since
SO(3) = RP?, and translations can be chosen independently, the resulting C-space
for a rigid body that rotates and translates in R? is

C =R* x RP?, (4.31)

which is a six-dimensional manifold. As expected, the dimension of C is exactly
the number of degrees of freedom of a free-floating body in space.

4.2.3 Chains and Trees of Bodies

If there are multiple bodies that are allowed to move independently, then their
C-spaces can be combined using Cartesian products. Let C; denote the C-space of
Aj;. If there are n free-floating bodies in W = R? or W = R?, then

C=Cy xCyx-xC,. (4.32)

If the bodies are attached to form a kinematic chain or kinematic tree, then
each C-space must be considered on a case-by-case basis. There is no general rule
that simplifies the process. One thing to generally be careful about is that the full
range of motion might not be possible for typical joints. For example, a revolute
joint might not be able to swing all of the way around to enable any 6 € [0, 27).
If O cannot wind around S!, then the C-space for this joint is homeomorphic to R
instead of S'. A similar situation occurs for a spherical joint. A typical ball joint
cannot achieve any orientation in SO(3) due to mechanical obstructions. In this
case, the C-space is not RP* because part of SO(3) is missing.

Another complication is that the DH parameterization of Section 3.3.2 is de-
signed to facilitate the assignment of coordinate frames and computation of trans-
formations, but it neglects considerations of topology. For example, a common
approach to representing a spherical robot wrist is to make three zero-length links
that each behave as a revolute joint. If the range of motion is limited, this might
not cause problems, but in general the problems would be similar to using yaw,
pitch, and roll to represent SO(3). There may be multiple ways to express the
same arm configuration.

Several examples are given below to help in determining C-spaces for chains
and trees of bodies. Suppose W = R?, and there is a chain of n bodies that are
attached by revolute joints. Suppose that the first joint is capable of rotation only
about a fixed point (e.g., it spins around a nail). If each joint has the full range
of motion 6; € [0,27), the C-space is

C=S"xS"x...xS'=1T" (4.33)

However, if each joint is restricted to 0; € (—n/2,7/2), then C = R". If any
transformation in SFE(2) can be applied to A;, then an additional R? is needed.
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In the case of restricted joint motions, this yields R"*2. If the joints can achieve
any orientation, then C = R? x T™. If there are prismatic joints, then each joint
contributes R to the C-space.

Recall from Figure(3.12 that for W = R3 there are six different kinds of joints.
The cases of revolute and prismatic joints behave the same as for W = R2?. Each
screw joint contributes R. A cylindrical joint contributes R x S!, unless its ro-
tational motion is restricted. A planar joint contributes R? x S! because any
transformation in SE(2) is possible. If its rotational motions are restricted, then
it contributes R®. Finally, a spherical joint can theoretically contribute RP?. In
practice, however, this rarely occurs. It is more likely to contribute R? x S! or R?
after restrictions are imposed. Note that if the first joint is a free-floating body,
then it contributes R? x RP?.

Kinematic trees can be handled in the same way as kinematic chains. One
issue that has not been mentioned is that there might be collisions between the
links. This has been ignored up to this point, but obviously this imposes very
complicated restrictions. The concepts from Section [4.3 can be applied to handle
this case and the placement of additional obstacles in WW. Reasoning about these
kinds of restrictions and the path connectivity of the resulting space is indeed the
main point of motion planning.

4.3 Configuration Space Obstacles

Section 4.2 defined C, the manifold of robot transformations in the absence of any
collision constraints. The current section removes from C the configurations that
either cause the robot to collide with obstacles or cause some specified links of
the robot to collide with each other. The removed part of C is referred to as the
obstacle region. The leftover space is precisely what a solution path must traverse.
A motion planning algorithm must find a path in the leftover space from an initial
configuration to a goal configuration. Finally, after the models of Chapter 3 and
the previous sections of this chapter, the motion planning problem can be precisely
described.

4.3.1 Definition of the Basic Motion Planning Problem

Obstacle region for a rigid body Suppose that the world, W = R? or W =
R3, contains an obstacle region, @ C W. Assume here that a rigid robot, A C W,
is defined; the case of multiple links will be handled shortly. Assume that both
A and O are expressed as semi-algebraic models (which includes polygonal and
polyhedral models) from Section Let ¢ € C denote the configuration of A, in
which ¢ = (24, y;,0) for W = R? and ¢ = (24,9, 2, h) for W = R3 (h represents
the unit quaternion).
The obstacle region, Cops C C, is defined as

Cos ={q€C| A(q) N O # 0}, (4.34)
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which is the set of all configurations, ¢, at which A(g), the transformed robot,
intersects the obstacle region, O. Since O and A(q) are closed sets in W, the
obstacle region is a closed set in C.

The leftover configurations are called the free space, which is defined and de-
noted as Crree = C \ Cops. Since C is a topological space and Cups is closed, Cyree
must be an open set. This implies that the robot can come arbitrarily close to the
obstacles while remaining in Cy.. If A “touches” O,

int(O) Nint(A(q)) = 0 and O N A(q) # 0, (4.35)

then ¢ € Cps (recall that int means the interior). The condition above indicates
that only their boundaries intersect.

The idea of getting arbitrarily close may be nonsense in practical robotics, but
it makes a clean formulation of the motion planning problem. Since Cyy. is open,
it becomes impossible to formulate some optimization problems, such as finding
the shortest path. In this case, the closure, cl(Cyye.), should instead be used, as
described in Section 7.7.

Obstacle region for multiple bodies If the robot consists of multiple bodies,
the situation is more complicated. The definition in (4.34) only implies that the
robot does not collide with the obstacles; however, if the robot consists of multiple
bodies, then it might also be appropriate to avoid collisions between different links
of the robot. Let the robot be modeled as a collection, {A;, As, ..., A,}, of m
links, which may or may not be attached together by joints. A single configuration
vector ¢ is given for the entire collection of links. We will write .4;(q) for each link,
i, even though some of the parameters of ¢ may be irrelevant for moving link A;.
For example, in a kinematic chain, the configuration of the second body does not
depend on the angle between the ninth and tenth bodies.

Let P denote the set of collision pairs, in which each collision pair, (i, j) € P,
represents a pair of link indices 4,5 € {1,2,...,m}, such that ¢« # j. If (i,))
appears in P, it means that A; and A; are not allowed to be in a configuration,
q, for which A;(¢q) N A;(¢) # 0. Usually, P does not represent all pairs because
consecutive links are in contact all of the time due to the joint that connects them.
One common definition for P is that each link must avoid collisions with any links
to which it is not attached by a joint. For m bodies, P is generally of size O(m?);
however, in practice it is often possible to eliminate many pairs by some geometric
analysis of the linkage. Collisions between some pairs of links may be impossible
over all of C, in which case they do not need to appear in P.

Using P, the consideration of robot self-collisions is added to the definition of
Cops to obtain

Cops = (U{QEC|AZ‘(Q)HO7’£®}> U( U {eec] Aila)nA4(q) %@})-

[i,j]eP

(4.36)
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Figure 4.11: The basic motion planning problem is conceptually very simple using
C-space ideas. The task is to find a path from g7 to gz in Cfre.. The entire blob
represents C = Cyree U Cops-

Thus, a configuration ¢ € C is in C,;, if at least one link collides with O or a pair
of links indicated by P collide with each other.

Definition of basic motion planning Finally, enough tools have been intro-
duced to precisely define the motion planning problem. The problem is concep-
tually illustrated in Figure |4.11. The main difficulty is that it is neither straight-
forward nor efficient to construct an explicit boundary or solid representation of
either Cyree Or Cops. The components are as follows:

Formulation 4.1 (The Piano Mover’s Problem)
1. A world W in which either W = R? or W = R3.
2. A semi-algebraic obstacle region @ C W in the world.

3. A semi-algebraic robot is defined in W. It may be a rigid robot A or a
collection of m links, Ay, As, ..., A,.

4. The configuration space C determined by specifying the set of all possible
transformations that may be applied to the robot. From this, Cos and Cyree

are derived.

5. A configuration, q; € Cy.. designated as the initial configuration.



156 S. M. LaValle: Planning Algorithms

6. A configuration qg € Cyyee designated as the goal configuration. The initial
and goal configurations together are often called a query pair (or query) and
designated as (qr, qq)-

7. A complete algorithm must compute a (continuous) path, 7 : [0,1] — Cyyee,
such that 7(0) = ¢; and 7(1) = gg, or correctly report that such a path does
not exist.

It was shown by Reif [819] that this problem is PSPACE-hard, which implies
NP-hard. The main problem is that the dimension of C is unbounded.

4.3.2 Explicitly Modeling C,,;: The Translational Case

It is important to understand how to construct a representation of C,s. In some
algorithms, especially the combinatorial methods of Chapter 6, this represents an
important first step to solving the problem. In other algorithms, especially the
sampling-based planning algorithms of Chapter 5, it helps to understand why such
constructions are avoided due to their complexity.

The simplest case for characterizing C,,s is when C = R” for n = 1, 2, and
3, and the robot is a rigid body that is restricted to translation only. Under
these conditions, Cs can be expressed as a type of convolution. For any two sets
X, Y C R", let their Minkowski diﬁerencm be defined as

XoY={r—yeR"|zeXandyecY}, (4.37)

in which x —y is just vector subtraction on R"™. The Minkowski difference between
X and Y can also be considered as the Minkowski sum of X and —Y. The
Minkowski sum @ is obtained by simply adding elements of X and Y in (4.37), as
opposed to subtracting them. The set —Y is obtained by replacing each y € Y by
—y.

In terms of the Minkowski difference, C,ps = O & .A(0). To see this, it is helpful
to consider a one-dimensional example.

Example 4.13 (One-Dimensional C-Space Obstacle) In Figure [4.12, both
the robot A = [—1,2] and obstacle region O = [0,4] are intervals in a one-
dimensional world, W = R. The negation, —A, of the robot is shown as the
interval [—2,1]. Finally, by applying the Minkowski sum to @ and —.A, the C-
space obstacle, Cops = [—2, 5], is obtained. |

The Minkowski difference is often considered as a convolution. It can even be
defined to appear the same as studied in differential equations and system theory.

19Tn some contexts, which include mathematics and image processing, the Minkowski difference
or Minkowski subtraction is defined differently (instead, it is a kind of “erosion”). For this
reason, some authors prefer to define all operations in terms of the Minkowski sum, &, which is
consistently defined in all contexts. Following this convention, we would define X & (—Y"), which
is equivalent to X 0 Y.
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Figure 4.12: A one-dimensional C-space obstacle.

|

Figure 4.13: A triangular robot and a rectangular obstacle.

For a one-dimensional example, let f : R — {0, 1} be a function such that f(x) =
if and only if € O. Similarly, let g : R — {0, 1} be a function such that g(x) =
if and only if z € A. The convolution

)= [ 19t = i (4.33)
yields a function h, for which h(z) = 1 if z € Cus, and h(z) = 0 otherwise.

A polygonal C-space obstacle A simple algorithm for computing C,,s exists
in the case of a 2D world that contains a convex polygonal obstacle O and a
convex polygonal robot A [659]. This is often called the star algorithm. For this
problem, C; is also a convex polygon. Recall that nonconvex obstacles and robots
can be modeled as the union of convex parts. The concepts discussed below can
also be applied in the nonconvex case by considering C,,s as the union of convex
components, each of which corresponds to a convex component of A colliding with
a convex component of O.

The method is based on sorting normals to the edges of the polygons on the
basis of angles. The key observation is that every edge of Cus is a translated edge
from either A or O. In fact, every edge from O and A is used exactly once in
the construction of C,s. The only problem is to determine the ordering of these
edges of Cps. Let aq, s, ..., o, denote the angles of the inward edge normals
in counterclockwise order around A. Let (1, (s, ..., 8, denote the outward edge
normals to O. After sorting both sets of angles in circular order around S', Cus
can be constructed incrementally by using the edges that correspond to the sorted
normals, in the order in which they are encountered.

Example 4.14 (A Triangular Robot and Rectangular Obstacle) To gain an
understanding of the method, consider the case of a triangular robot and a rect-
angular obstacle, as shown in Figure|4.13. The black dot on A denotes the origin
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Cobs O

(a) (b)

Figure 4.14: (a) Slide the robot around the obstacle while keeping them both in
contact. (b) The edges traced out by the origin of A form Cps.

B2
} .
aq
Qe ., --— —— a2
i ;; O[EB 33 B 4, 8

#

Ba B
(a) (b)

Figure 4.15: (a) Take the inward edge normals of A and the outward edge normals
of 0. (b) Sort the edge normals around S*. This gives the order of edges in Cops.
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of its body frame. Consider sliding the robot around the obstacle in such a way
that they are always in contact, as shown in Figure|4.14a. This corresponds to the
traversal of all of the configurations in dC.s (the boundary of Cus). The origin of
A traces out the edges of Cups, as shown in Figure [4.14b. There are seven edges,
and each edge corresponds to either an edge of A or an edge of O. The directions
of the normals are defined as shown in Figure 4.15a. When sorted as shown in
Figure 4.15b, the edges of C.s can be incrementally constructed. |

The running time of the algorithm is O(n + m), in which n is the number of
edges defining A, and m is the number of edges defining O. Note that the angles
can be sorted in linear time because they already appear in counterclockwise order
around A and O; they only need to be merged. If two edges are collinear, then
they can be placed end-to-end as a single edge of Cps.

Computing the boundary of C,,; So far, the method quickly identifies each
edge that contributes to C,s. It can also construct a solid representation of C,ps
in terms of half-planes. This requires defining n + m linear equations (assuming
there are no collinear edges).

Type EV Type VE

Figure 4.16: Two different types of contact, each of which generates a different
kind of C,ps edge [282, 659].

There are two different ways in which an edge of C,s is generated, as shown
in Figure 4.16 [284, 659]. Type EV contact refers to the case in which an edge
of A is in contact with a vertex of O. Type EV contacts contribute to n edges
of Cups, once for each edge of A. Type VE contact refers to the case in which a
vertex of A is in contact with an edge of . This contributes to m edges of Cps.
The relationships between the edge normals are also shown in Figure 4.16. For
Type EV, the inward edge normal points between the outward edge normals of the
obstacle edges that share the contact vertex. Likewise for Type VE, the outward
edge normal of O points between the inward edge normals of A.

Using the ordering shown in Figure 4.15b, Type EV contacts occur precisely
when an edge normal of A is encountered, and Type VE contacts occur when an
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Figure 4.17: Contact occurs when n and v are perpendicular.

edge normal of O is encountered. The task is to determine the line equation for
each occurrence. Consider the case of a Type EV contact; the Type VE contact
can be handled in a similar manner. In addition to the constraint on the directions
of the edge normals, the contact vertex of ©@ must lie on the contact edge of A.
Recall that convex obstacles were constructed by the intersection of half-planes.
Each edge of C,,s can be defined in terms of a supporting half-plane; hence, it is
only necessary to determine whether the vertex of O lies on the line through the
contact edge of A. This condition occurs precisely as n and v are perpendicular,
as shown in Figure 4.17| and yields the constraint n - v = 0.

Note that the normal vector n does not depend on the configuration of A
because the robot cannot rotate. The vector v, however, depends on the translation
q = (x¢,y;) of the point p. Therefore, it is more appropriate to write the condition
as n-v(xy,y;) = 0. The transformation equations are linear for translation; hence,
n - v(xy,y:) = 0 is the equation of a line in C. For example, if the coordinates
of p are (1,2) for A(0,0), then the expression for p at configuration (x;,y;) is
(I1+ 2,24+ y;). Let fag,y) =n-v(wg,y). Let H={(xy,y;) € C| fla,y,) <0}
Observe that any configurations not in A must lie in C... The half-plane H
is used to define one edge of C,s. The obstacle region C,s can be completely
characterized by intersecting the resulting half-planes for each of the Type EV
and Type VE contacts. This yields a convex polygon in C that has n 4+ m sides,
as expected.

Figure 4.18: Consider constructing the obstacle region for this example.
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‘ Type ‘ Vitx. ‘ Edge ‘ n ] v ‘ Half-Plane ‘
VE | aj by-by | [1,0] | [z: — 2,y {¢elC |z, —2<0}
VE | aj bi-bs | [0,1] | [r:—2,y:—2] | {¢geC|y.—2<0}
EV | by as-ay | [1,-2] | [—24,2 — y4 {¢eC| —x1+ 2y, —4 <0}
VE ay bg—bg [—]_, 0] [2 + Tty Yt — ].] {q eC | — Xy — 2 S 0}
EV | b5 ar-ay | [L,1] | [-1—x,—y] |{¢geC| —z—y: —1 <0}
VE | as bg-by | [0,—1] | [zs+ 1,0 +2] | {¢geC| —y —2 <0}
EV | ag-as | [—2,1] | [2 — ¢, —yi] {¢eC |2z, —y,—4 <0}

Figure 4.19: The various contact conditions are shown in the order as the edge
normals appear around S! (using inward normals for A and outward normals for

).

Example 4.15 (The Boundary of C,;) Consider building a geometric model
of Cys for the robot and obstacle shown in Figure 4.18. Suppose that the orien-
tation of A is fixed as shown, and C = R?. In this case, Cps will be a convex
polygon with seven sides. The contact conditions that occur are shown in Figure
4.19. The ordering as the normals appear around S! (using inward edge normals
for A and outward edge normals for @). The C,s edges and their corresponding
contact types are shown in Figure [4.19. |

A polyhedral C-space obstacle Most of the previous ideas generalize nicely
for the case of a polyhedral robot that is capable of translation only in a 3D world
that contains polyhedral obstacles. If A and O are convex polyhedra, the resulting
Cobs 18 a convex polyhedron.

/ \ ~

Type FV Type VF Type EE

Figure 4.20: Three different types of contact, each of which generates a different
kind of C,, face.

There are three different kinds of contacts that each lead to half-spaces in C:

1. Type FV: A face of A and a vertex of O
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v Vs

Figure 4.21: An illustration to help in constructing C,,s when rotation is allowed.

2. Type VF: A vertex of A and a face of O
3. Type EE: An edge of A and an edge of O .

These are shown in Figure4.20. Each half-space defines a face of the polyhedron,
Cobs- The representation of Cps can be constructed in O(n+m+ k) time, in which
n is the number of faces of A, m is the number of faces of O, and k is the number
of faces of Cpps, which is at most nm [413].

4.3.3 Explicitly Modeling C,,;: The General Case

Unfortunately, the cases in which C, is polygonal or polyhedral are quite lim-
ited. Most problems yield extremely complicated C-space obstacles. One good
point is that C,s can be expressed using semi-algebraic models, for any robots
and obstacles defined using semi-algebraic models, even after applying any of the
transformations from Sections 3.2/ to[3.4. It might not be true, however, for other
kinds of transformations, such as warping a flexible material [32, 579].

Consider the case of a convex polygonal robot and a convex polygonal obstacle
in a 2D world. Assume that any transformation in SE(2) may be applied to A;
thus, C = R? x S' and ¢ = (x4, 5, 0). The task is to define a set of algebraic
primitives that can be combined to define C,s. Once again, it is important to
distinguish between Type EV and Type VE contacts. Consider how to construct
the algebraic primitives for the Type EV contacts; Type VE can be handled in a
similar manner.

For the translation-only case, we were able to determine all of the Type EV
contacts by sorting the edge normals. With rotation, the ordering of edge normals
depends on ¢. This implies that the applicability of a Type EV contact depends on
0, the robot orientation. Recall the constraint that the inward normal of A must
point between the outward normals of the edges of O that contain the vertex of
contact, as shown in Figurel4.21. This constraint can be expressed in terms of inner
products using the vectors v; and vy. The statement regarding the directions of the
normals can equivalently be formulated as the statement that the angle between n
and vy, and between n and vy, must each be less than 7/2. Using inner products,
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this implies that n-v; > 0 and n-vy > 0. As in the translation case, the condition
n-v = 0 is required for contact. Observe that n now depends on #. For any ¢ € C,
if n(#)-v1 >0, n(f)-ve >0, and n(f)-v(g) > 0, then q € Cypee. Let Hy denote the
set of configurations that satisfy these conditions. These conditions imply that a
point is in Cfpe.. Furthermore, any other Type EV and Type VE contacts could
imply that more points are in Cfye.. Ordinarily, Hf C C¢pee, which implies that the
complement, C \ Hy, is a superset of Cops (thus, Cops C C\ Hy). Let Hy =C \ Hy.
Using the primitives

Hy={qeC[n(f) v <0}, (4.39)
Hy = {q €C | n(0) - vz < 0}, (4.40)

and
Hy = {q € C | n(0) - v(q) < 0}, (4.41)

let HA = H1 UHQUHg

It is known that Cps € Hy4, but H4 may contain points in Cfpe.. The situ-
ation is similar to what was explained in Section 3.1.1 for building a model of a
convex polygon from half-planes. In the current setting, it is only known that any
configuration outside of H4 must be in Cy,e.. If H4 is intersected with all other cor-
responding sets for each possible Type EV and Type VE contact, then the result is
Cobs- Each contact has the opportunity to remove a portion of Cy,.. from considera-
tion. Eventually, enough pieces of C,.. are removed so that the only configurations
remaining must lie in Cps. For any Type EV contact, (Hy U Hs) \ H3 C Cpee. A
similar statement can be made for Type VE contacts. A logical predicate, similar
to that defined in Section|3.1.1, can be constructed to determine whether ¢ € Cops
in time that is linear in the number of C,,, primitives.

One important issue remains. The expression n(6) is not a polynomial because
of the cosf and sin 6 terms in the rotation matrix of SO(2). If polynomials could
be substituted for these expressions, then everything would be fixed because the
expression of the normal vector (not a unit normal) and the inner product are
both linear functions, thereby transforming polynomials into polynomials. Such
a substitution can be made using stereographic projection (see [590]); however,
a simpler approach is to use complex numbers to represent rotation. Recall that
when a + bi is used to represent rotation, each rotation matrix in SO(2) is rep-
resented as (4.18), and the 3 x 3 homogeneous transformation matrix becomes

a —b x
T(a,byxy,y)) = b a wy |- (4.42)
0 0 1

Using this matrix to transform a point [z y 1] results in the point coordinates
(ax — by + x4, bx + ay +y;). Thus, any transformed point on A is a linear function
of a, b, x;, and y;.

This was a simple trick to make a nice, linear function, but what was the cost?
The dependency is now on a and b instead of 6. This appears to increase the
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dimension of C from 3 to 4, and C = R*. However, an algebraic primitive must be
added that constrains a and b to lie on the unit circle.

By using complex numbers, primitives in R* are obtained for each Type EV
and Type VE contact. By defining C = R*, the following algebraic primitives are
obtained for a Type EV contact:

Hl = {<It7yt7a7 b) eC | n(xtayt7a7b) ‘v < 0}7 (443)
H2 - {(xtvytaaa b) S C | n(xtayfnaab) U2 S O}a (444)

and
HS = {(xtaytaaﬁ b) € C ‘ n(xbytaa? b) ’ U(xtvytaaa b) S O} (445)

This yields Hy = H; U H, U H3. To preserve the correct R? x S! topology of C,
the set
Hy = {(z¢,yp,0,b) €C | a® + 0> — 1 =0} (4.46)

is intersected with H4. The set H; remains fixed over all Type EV and Type VE
contacts; therefore, it only needs to be considered once.

Example 4.16 (A Nonlinear Boundary for C,s) Consider adding rotation to
the model described in Example[4.15. In this case, all possible contacts between
pairs of edges must be considered. For this example, there are 12 Type EV con-
tacts and 12 Type VE contacts. Each contact produces 3 algebraic primitives.
With the inclusion of H,, this simple example produces 73 primitives! Rather
than construct all of these, we derive the primitives for a single contact. Consider
the Type VE contact between as and b4-b;. The outward edge normal n remains
fixed at n = [1,0]. The vectors v; and v, are derived from the edges adjacent to
asz, which are az-as and as-a;. Note that each of a;, as, and a3 depend on the con-
figuration. Using the 2D homogeneous transformation (3.35), a; at configuration
(x4, yt, 0) is (cos O+ x4, sin 0+ y;). Using a+ bi to represent rotation, the expression
of a; becomes (a+x,b+1y;). The expressions of as and a3 are (—b+ x4, a+y;) and
(—a+b+x¢, —b—a+1y;), respectively. It follows that vy = ag — a3 = [a —2b, 2a+b]
and vy = a; — a3 = [2a — b,a + 2b]. Note that v; and vy depend only on the
orientation of A, as expected. Assume that v is drawn from b4 to az. This yields
v=a3—by=[-a+b+x;—1 —a—b+y + 1]. The inner products v; - n, vy - n,
and v - n can easily be computed to form H;, Hs, and Hj as algebraic primitives.
One interesting observation can be made here. The only nonlinear primitive is
a® + b* = 1. Therefore, Cyps can be considered as a linear polytope (like a polyhe-
dron, but one dimension higher) in R* that is intersected with a cylinder. |

3D rigid bodies For the case of a 3D rigid body to which any transformation
in SE(3) may be applied, the same general principles apply. The quaternion
parameterization once again becomes the right way to represent SO(3) because
using (4.20) avoids all trigonometric functions in the same way that (4.18) avoided
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them for SO(2). Unfortunately, (4.20) is not linear in the configuration variables,
as it was for (4.18), but it is at least polynomial. This enables semi-algebraic
models to be formed for C,ps. Type FV, VF, and EE contacts arise for the SFE(3)
case. From all of the contact conditions, polynomials that correspond to each
patch of C,s can be made. These patches are polynomials in seven variables: xy,
Yi, 2, a, b, ¢, and d. Once again, a special primitive must be intersected with
all others; here, it enforces the constraint that unit quaternions are used. This
reduces the dimension from 7 back down to 6. Also, constraints should be added to
throw away half of S*, which is redundant because of the identification of antipodal
points on S3.

Chains and trees of bodies For chains and trees of bodies, the ideas are con-
ceptually the same, but the algebra becomes more cumbersome. Recall that the
transformation for each link is obtained by a product of homogeneous transforma-
tion matrices, as given in (3.53) and (3.57) for the 2D and 3D cases, respectively.
If the rotation part is parameterized using complex numbers for SO(2) or quater-
nions for SO(3), then each matrix consists of polynomial entries. After the matrix
product is formed, polynomial expressions in terms of the configuration variables
are obtained. Therefore, a semi-algebraic model can be constructed. For each
link, all of the contact types need to be considered. Extrapolating from Exam-
ples [4.15 and 4.16, you can imagine that no human would ever want to do all
of that by hand, but it can at least be automated. The ability to construct this
representation automatically is also very important for the existence of theoretical
algorithms that solve the motion planning problem combinatorially; see Section
6.4.

If the kinematic chains were formulated for YW = R?® using the DH parameter-
ization, it may be inconvenient to convert to the quaternion representation. One
way to avoid this is to use complex numbers to represent each of the 6; and «; vari-
ables that appear as configuration variables. This can be accomplished because
only cos and sin functions appear in the transformation matrices. They can be
replaced by the real and imaginary parts, respectively, of a complex number. The
dimension will be increased, but this will be appropriately reduced after imposing
the constraints that all complex numbers must have unit magnitude.

4.4 Closed Kinematic Chains

This section continues the discussion from Section Suppose that a collection
of links is arranged in a way that forms loops. In this case, the C-space becomes
much more complicated because the joint angles must be chosen to ensure that
the loops remain closed. This leads to constraints such as that shown in (3.80)
and Figure 3.26, in which some links must maintain specified positions relative
to each other. Consider the set of all configurations that satisfy such constraints.
Is this a manifold? It turns out, unfortunately, that the answer is generally no.
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However, the C-space belongs to a nice family of spaces from algebraic geometry
called varieties. Algebraic geometry deals with characterizing the solution sets of
polynomials. As seen so far in this chapter, all of the kinematics can be expressed
as polynomials. Therefore, it may not be surprising that the resulting constraints
are a system of polynomials whose solution set represents the C-space for closed
kinematic linkages. Although the algebraic varieties considered here need not be
manifolds, they can be decomposed into a finite collection of manifolds that fit
together nicely

Unfortunately, a parameterization of the variety that arises from closed chains
is available in only a few simple cases. Even the topology of the variety is extremely
difficult to characterize. To make matters worse, it was proved in [491] that for
every closed, bounded real algebraic variety that can be embedded in R", there
exists a linkage whose C-space is homeomorphic to it. These troubles imply that
most of the time, motion planning algorithms need to work directly with implicit
polynomials. For the algebraic methods of Section 6.4.2 this does not pose any
conceptual difficulty because the methods already work directly with polynomials.
Sampling-based methods usually rely on the ability to efficiently sample configu-
rations, which cannot be easily adapted to a variety without a parameterization.
Section|7.4/covers recent methods that extend sampling-based planning algorithms
to work for varieties that arise from closed chains.

4.4.1 Mathematical Concepts

To understand varieties, it will be helpful to have definitions of polynomials and
their solutions that are more formal than the presentation in Chapter (3.

Fields Polynomials are usually defined over a field, which is another object from
algebra. A field is similar to a group, but it has more operations and axioms.
The definition is given below, and while reading it, keep in mind several familiar
examples of fields: the rationals, Q; the reals, R; and the complex plane, C. You
may verify that these fields satisfy the following six axioms.

A field is a set F that has two binary operations, - : F x F — F (called
multiplication) and + : F x F — F (called addition), for which the following
axioms are satisfied:

1. (Associativity) Forall a,b,c € F, (a+b)+c = a+(b+c) and (a-b)-c = a-(b-c).

2. (Commutativity) For all a,b e F,a+b=b+aand a-b=10-a.

3. (Distributivity) For all a,b,c € F, a-(b+c¢)=a-b+a-c.

4. (Identities) There exist 0,1 € F, such that a+0=a-1=a for all a € F.
5. (Additive Inverses) For every a € F, there exists some b € F such that

a+b=0.

"This is called a Whitney stratification [175, 968].
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6. (Multiplicative Inverses) For every a € F, except a = 0, there exists
some ¢ € [F such that a-c=1.

Compare these axioms to the group definition from Section [4.2.1. Note that a
field can be considered as two different kinds of groups, one with respect to mul-
tiplication and the other with respect to addition. Fields additionally require
commutativity; hence, we cannot, for example, build a field from quaternions.
The distributivity axiom appears because there is now an interaction between two
different operations, which was not possible with groups.

Polynomials Suppose there are n variables, x1, xo,...,z,. A monomial over a
field F is a product of the form

P oad e (4.47)
in which all of the exponents di, ds, ..., d, are positive integers. The total degree
of the monomial is dy + - - - + d,,.

A polynomial f in variables xq,...,x, with coefficients in F is a finite lin-

ear combination of monomials that have coefficients in F. A polynomial can be
expressed as

i=1

in which m; is a monomial as shown in (4.47), and ¢; € F is a coefficient. If ¢; # 0,
then each ¢;m; is called a term. Note that the exponents d; may be different
for every term of f. The total degree of f is the maximum total degree among
the monomials of the terms of f. The set of all polynomials in z4,...,z, with
coeflicients in F is denoted by Flxy, ..., x,].

Example 4.17 (Polynomials) The definitions correspond exactly to our intu-
itive notion of a polynomial. For example, suppose F = Q. An example of a
polynomial in Q[z1, xs, z3] is

T} — 31T27s + i) + 4. (4.49)
Note that 1 is a valid monomial; hence, any element of F may appear alone as a
term, such as the 4 € Q in the polynomial above. The total degree of (4.49) is

5 due to the second term. An equivalent polynomial may be written using nicer
variables. Using z, y, and z as variables yields

zt — %xyz3 + 2%y + 4, (4.50)

which belongs to Qlz, vy, z]. |
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The set Flxy, ..., z,]| of polynomials is actually a group with respect to addition;
however, it is not a field. Even though polynomials can be multiplied, some
polynomials do not have a multiplicative inverse. Therefore, the set Flzy,...,x,]
is often referred to as a commutative ring of polynomials. A commutative ring is
a set with two operations for which every axiom for fields is satisfied except the
last one, which would require a multiplicative inverse.

Varieties For a given field F and positive integer n, the n-dimensional affine
space over I is the set

F* ={(c1,...,¢n) | c1,y...,cn € F}. (4.51)

For our purposes in this section, an affine space can be considered as a vector
space (for an exact definition, see [440]). Thus, " is like a vector version of the
scalar field F. Familiar examples of this are Q", R", and C".

A polynomial in f € F[zy,...,x,] can be converted into a function,

f:F*"—>T, (4.52)

by substituting elements of IF for each variable and evaluating the expression using
the field operations. This can be written as f(ay,...,a,) € F, in which each a;
denotes an element of F that is substituted for the variable z;.

We now arrive at an interesting question. For a given f, what are the elements
of F™ such that f(aq,...,a,) = 0?7 We could also ask the question for some nonzero
element, but notice that this is not necessary because the polynomial may be
redefined to formulate the question using 0. For example, what are the elements
of R? such that 22 4+ y? = 1?7 This familiar equation for S! can be reformulated to
yield: What are the elements of R? such that 2% +¢% — 1 = 0?

Let F be a field and let {fi,..., fx} be a set of polynomials in F[z,...,x,].
The set

V(fi,. -, fx) ={(ar,...,an) € F| filas,...,a,) =0forall 1 <i <k} (4.53)

is called the (affine) variety defined by fi,..., fr. One interesting fact is that
unions and intersections of varieties are varieties. Therefore, they behave like the
semi-algebraic sets from Section|3.1.2, but for varieties only equality constraints are
allowed. Consider the varieties V(f1,..., fr) and V(g1,...,g). Their intersection
is given by

V(fla--'afk) ﬂv(gla"'>gl) = V(fl?"'a.fkagla--'agl)7 (454)

because each element of F" must produce a 0 value for each of the polynomials in

{fi o fogrs - ai)

To obtain unions, the polynomials simply need to be multiplied. For example,
consider the varieties V;, Vo C FF defined as

Vi={(ay,...,a,) € F| filas,...,a,) =0} (4.55)
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and
Vo ={(ay,...,a,) € F| folay,...,a,) =0} (4.56)

The set V3 UV, C F is obtained by forming the polynomial f = fifs. Note
that f(ay,...,a,) = 0if either fi(aq,...,a,) =0or fa(ai,...,a,) = 0. Therefore,
V1 UV5 is a variety. The varieties V; and V5 were defined using a single polynomial,
but the same idea applies to any variety. All pairs of the form f;g; must appear
in the argument of V(-) if there are multiple polynomials.

4.4.2 Kinematic Chains in R?

To illustrate the concepts it will be helpful to study a simple case in detail. Let
W = R?, and suppose there is a chain of links, A, ..., A,, as considered in
Example 3.3 for n = 3. Suppose that the first link is attached at the origin of
W by a revolute joint, and every other link, A; is attached to A;_; by a revolute
joint. This yields the C-space

C=S'xS'x---xS' =17, (4.57)

which is the n-dimensional torus.

Two links If there are two links, A; and A, then the C-space can be nicely
visualized as a square with opposite faces identified. Each coordinate, 6; and 6-,
ranges from 0 to 27, for which 0 ~ 27. Suppose that each link has length 1. This
yields a; = 1. A point (x,y) € A is transformed as

cosf)y —sinb; 0 cosfy —sinfy 1 T
sinf; cosf; O sinfly  cosfy O vyl . (4.58)
0 0 1 0 0 1 1

To obtain polynomials, the technique from Section 4.2.2 is applied to replace
the trigonometric functions using a; = cosf; and b; = sin6;, subject to the con-
straint a? + b? = 1. This results in

ap —b1 0 as —b2 1 T
b1 aq 0 bz a9 0 Yy s (459)
0 0 1 0 0 1 1

for which the constraints a? + b7 = 1 for ¢ = 1,2 must be satisfied. This preserves
the torus topology of C, but now the C-space is embedded in R*. The coordinates of
each point are (ay, b1, as, by) € R*; however, there are only two degrees of freedom
because each a;, b; pair must lie on a unit circle.

Multiplying the matrices in (4.59) yields the polynomials, f1, fo € Rlay, by, as, bs],

f1 =Tajay — y&le — l'blbz -+ yCLle “+ ay (460)
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U1

. T

Figure 4.22: Two configurations hold the point p at (1,1).

and
fo = —yaraz + xaiby 4+ wazby — ybiby + by, (4.61)
for the z and y coordinates, respectively. Note that the polynomial variables are

configuration parameters; x and y are not polynomial variables. For a given point
(z,y) € As, all coefficients are determined.

A zero-dimensional variety Now a kinematic closure constraint will be im-
posed. Fix the point (1,0) in the body frame of A, at (1,1) in W. This yields the
constraints

f1 = a1a9 — blbg +a; = 1 (462)

and
f2 = aiby + azby + by =1, (4.63)

by substituting + = 1 and y = 0 into (4.60) and (4.61). This yields the variety

V(a1a2 — blbg +a; — 1, albz —+ agbl —+ b1 — 1, a% —+ b% — 1, ag —+ bg — 1), (464)

which is a subset of R*. The polynomials are slightly modified because each
constraint must be written in the form f = 0.

Although (4.64) represents the constrained configuration space for the chain
of two links, it is not very explicit. Without an explicit characterization (i.e., a
parameterization), it complicates motion planning. From Figure [4.22 it can be
seen that there are only two solutions. These occur for #; = 0, 5 = 7/2 and
0, = w/2, 05 = —m/2. In terms of the polynomial variables, (aq,by,as,bs), the
two solutions are (1,0,0,1) and (0, 1,0, —1). These may be substituted into each
polynomial in (4.64) to verify that 0 is obtained. Thus, the variety represents two
points in R*. This can also be interpreted as two points on the torus, S* x S!.



4.4. CLOSED KINEMATIC CHAINS 171

It might not be surprising that the set of solutions has dimension zero because
there are four independent constraints, shown in (4.64), and four variables. De-
pending on the choices, the variety may be empty. For example, it is physically
impossible to bring the point (1,0) € A to (1000,0) € W.

A one-dimensional variety The most interesting and complicated situations
occur when there is a continuum of solutions. For example, if one of the constraints
is removed, then a one-dimensional set of solutions can be obtained. Suppose only
one variable is constrained for the example in Figure 4.22. Intuitively, this should
yield a one-dimensional variety. Set the x coordinate to 0, which yields

aiag — b1b2 +a; = O, (465)

and allow any possible value for . As shown in Figure|4.23a, the point p must fol-
low the y-axis. (This is equivalent to a three-bar linkage that can be constructed
by making a third joint that is prismatic and forced to stay along the y-axis.)
Figure 4.23b shows the resulting variety V (ajas — b1bs + aq) but plotted in 61 — 65
coordinates to reduce the dimension from 4 to 2 for visualization purposes. To cor-
rectly interpret the figures in Figure 4.23] recall that the topology is S' x S, which
means that the top and bottom are identified, and also the sides are identified.
The center of Figure 4.23b, which corresponds to (01,60y) = (m, ), prevents the
variety from being a manifold. The resulting space is actually homeomorphic to
two circles that touch at a point. Thus, even with such a simple example, the nice
manifold structure may disappear. Observe that at (7, 7) the links are completely
overlapped, and the point p of A, is placed at (0,0) in W. The horizontal line in
Figure [4.23b corresponds to keeping the two links overlapping and swinging them
around together by varying 6;. The diagonal lines correspond to moving along
configurations such as the one shown in Figure [4.23a. Note that the links and
the y-axis always form an isosceles triangle, which can be used to show that the
solution set is any pair of angles, 61, 6, for which 6, = m — #;. This is the reason
why the diagonal curves in Figure 4.23b are linear. Figures|4.23c and |4.23d show
the varieties for the constraints

(4.66)

ool

a1 — b1b2 + a1 =

and
a1 — blbg +a; = 1, (467)

respectively. In these cases, the point (0,1) in Ay must follow the x = 1/8 and
x = 1 axes, respectively. The varieties are manifolds, which are homeomorphic
to S!. The sequence from Figure 4.23b to 4.23d can be imagined as part of an
animation in which the variety shrinks into a small circle. Eventually, it shrinks
to a point for the case ajas — b1by + a; = 2, because the only solution is when
0, = 0y = 0. Beyond this, the variety is the empty set because there are no
solutions. Thus, by allowing one constraint to vary, four different topologies are
obtained: 1) two circles joined at a point, 2) a circle, 3) a point, and 4) the empty
set.
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Figure 4.23: A single constraint was added to the point p on A, as shown in (a).
The curves in (b), (c¢), and (d) depict the variety for the cases of f; =0, f; = 1/8,
and f; = 1, respectively.
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Three links Since visualization is still possible with one more dimension, sup-
pose there are three links, A;, Ay, and A3z. The C-space can be visualized as a
3D cube with opposite faces identified. Each coordinate 6; ranges from 0 to 2,
for which 0 ~ 27. Suppose that each link has length 1 to obtain a; = ay = 1. A
point (x,y) € Ajz is transformed as

cosf; —sinf; 0 cosfly —sinb, 10 cosfls —sinf; 10 T
sinfy cosf; O sinfly cosfy, O sinfls  cosf; O Y
0 0 1 0 0 1 0 0 1 1

To obtain polynomials, let a; = cos6; and b; = sin #;, which results in

ay —bl 0 s — b2 1 as —bg 1 i
bl aq 0 b2 ag 0 bg as 0 yl, (469)
0 0 1 0 0 1 0 0 1 1

for which the constraints a? + b? = 1 for 4 = 1,2,3 must also be satisfied. This
preserves the torus topology of C, but now it is embedded in RS. Multiplying the
matrices yields the polynomials fi, fo € Rlay, by, ag, bs, as, bs], defined as

fl = 2&1&2(13 — &1b2b3 + ajag9 — 2b1b2a3 — b1a2b3 + aq, (470)

and
fz = 2b1a2a3 — blebg -+ blag -+ 2&1[)2(13 —+ &1@2[)3, (471)

for the x and y coordinates, respectively.
Again, consider imposing a single constraint,

2@1&2&3 — (Ilebg + ajag — 261b2a3 — blagbg +a; = O, (472)

which constrains the point (1,0) € A3 to traverse the y-axis. The resulting variety
is an interesting manifold, depicted in Figure 4.24| (remember that the sides of the
cube are identified).

Increasing the required f; value for the constraint on the final point causes the
variety to shrink. Snapshots for f; = 7/8 and f; = 2 are shown in Figure 4.25] At
fi = 1, the variety is not a manifold, but it then changes to S?. Eventually, this
sphere is reduced to a point at f; = 3, and then for f; > 3 the variety is empty.

Instead of the constraint f; = 0, we could instead constrain the y coordinate of
p to obtain fo = 0. This yields another 2D variety. If both constraints are enforced
simultaneously, then the result is the intersection of the two original varieties. For
example, suppose f; = 1 and fo = 0. This is equivalent to a kind of four-bar
mechanism [312], in which the fourth link, Ay, is fixed along the x-axis from 0 to
1. The resulting variety,

V(2a1a2a3 — a1b2b3 + ajag — 2b162a3 — b1a2b3 +a; — 1,

(4.73)
2b1a2a3 — blbgbg -+ b]_a2 + 2a1b2a3 + alazbg),
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Figure 4.24: The variety for the three-link chain with f; = 0 is a 2D manifold.

is depicted in Figure 4.26. Using the 61, 05,03 coordinates, the solution may be
easily parameterized as a collection of line segments. For all ¢ € [0, 7|, there exist
solution points at (0,2t,7), (t,27r —t, 7 +t), 2m — t,t, 7 — t), 27 — t,m, 7 + 1),
and (t,m,m —t). Note that once again the variety is not a manifold. A family
of interesting varieties can be generated for the four-bar mechanism by selecting
different lengths for the links. The topologies of these mechanisms have been
determined for 2D and a 3D extension that uses spherical joints (see [700]).

4.4.3 Defining the Variety for General Linkages

We now describe a general methodology for defining the variety. Keeping the
previous examples in mind will help in understanding the formulation. In the
general case, each constraint can be thought of as a statement of the form:

The ith coordinate of a point p € A; needs to be held at the value x in
the body frame of Ay.

For the variety in Figure 4.23b, the first coordinate of a point p € A was held at
the value 0 in W in the body frame of A;. The general form must also allow a
point to be fixed with respect to the body frames of links other than A;; this did
not occur for the example in Section 4.4.2

Suppose that n links, A;,...,A,, move in W = R? or W = R3. One link, A,
for convenience, is designated as the root as defined in Section 3.4, Some links
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Figure 4.25: If f; > 0, then the variety shrinks. If 1 < p < 3, the variety is a
sphere. At f; = 0 it is a point, and for f; > 3 it completely vanishes.

are attached in pairs to form joints. A linkage graph, G(V, E), is constructed from
the links and joints. Each vertex of G represents a link in L. Each edge in G
represents a joint. This definition may seem somewhat backward, especially in
the plane because links often look like edges and joints look like vertices. This
alternative assignment is also possible, but it is not easy to generalize to the case
of a single link that has more than two joints. If more than two links are attached
at the same point, each generates an edge of G.

The steps to determine the polynomial constraints that express the variety are
as follows:

1. Define the linkage graph G with one vertex per link and one edge per joint.
If a joint connects more than two bodies, then one body must be designated
as a junction. See Figures|4.27 and |4.28a. In Figure [4.28| links 4, 13, and
23 are designated as junctions in this way.

2. Designate one link as the root, A;. This link may either be fixed in W, or
transformations may be applied. In the latter case, the set of transformations
could be SE(2) or SE(3), depending on the dimension of YW. This enables
the entire linkage to move independently of its internal motions.

3. Eliminate the loops by constructing a spanning tree 7' of the linkage graph,
G. This implies that every vertex (or link) is reachable by a path from
the root). Any spanning tree may be used. Figure|4.28b shows a resulting
spanning tree after deleting the edges shown with dashed lines.

4. Apply the techniques of Section 3.4 to assign body frames and transforma-
tions to the resulting tree of links.
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Figure 4.26: If two constraints, f; = 1 and f, = 0, are imposed, then the varieties
are intersected to obtain a 1D set of solutions. The example is equivalent to a
well-studied four-bar mechanism.

5. For each edge of G that does not appear in T, write a set of constraints

between the two corresponding links. In Figure 4.28b, it can be seen that
constraints are needed between four pairs of links: 14-15, 21-22, 23-24, and
19-23.

This is perhaps the trickiest part. For examples like the one shown in Fig-
ure[3.27, the constraint may be formulated as in (3.81). This is equivalent to
what was done to obtain the example in Figure 4.26, which means that there
are actually two constraints, one for each of the x and y coordinates. This
will also work for the example shown in Figure 4.27 if all joints are revolute.
Suppose instead that two bodies, A; and A, must be rigidly attached. This
requires adding one more constraint that prevents mutual rotation. This
could be achieved by selecting another point on 4; and ensuring that one
of its coordinates is in the correct position in the body frame of A. If four
equations are added, two from each point, then one of them would be redun-
dant because there are only three degrees of freedom possible for A; relative
to Ay (which comes from the dimension of SE(2)).

A similar but more complicated situation occurs for W = R3. Holding a
single point fixed produces three constraints. If a single point is held fixed,
then A; may achieve any rotation in SO(3) with respect to A;. This implies
that A; and Aj are attached by a spherical joint. If they are attached by a
revolute joint, then two more constraints are needed, which can be chosen
from the coordinates of a second point. If A; and A; are rigidly attached,
then one constraint from a third point is needed. In total, however, there can
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Figure 4.27: A complicated linkage that has 29 links, several loops, links with more
than two bodies, and bodies with more than two links. Each integer ¢ indicates

be no more than six independent constraints because this is the dimension
of SE(3).

6. Convert the trigonometric functions to polynomials. For any 2D transforma-
tion, the familiar substitution of complex numbers may be made. If the DH
parameterization is used for the 3D case, then each of the cos ;, sin 6; expres-
sions can be parameterized with one complex number, and each of the cos «;,
sin «y; expressions can be parameterized with another. If the rotation matrix
for SO(3) is directly used in the parameterization, then the quaternion pa-
rameterization should be used. In all of these cases, polynomial expressions
are obtained.

7. List the constraints as polynomial equations of the form f = 0. To write the
description of the variety, all of the polynomials must be set equal to zero,
as was done for the examples in Section 4.4.2.
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Figure 4.28: (a) One way to make the linkage graph that corresponds to the linkage
in Figure [4.27. (b) A spanning tree is indicated by showing the removed edges
with dashed lines.

Is it possible to determine the dimension of the variety from the number of
independent constraints? The answer is generally no, which can be easily seen from
the chains of links in Section 4.4.2; they produced varieties of various dimensions,
depending on the particular equations. Techniques for computing the dimension
exist but require much more machinery than is presented here (see the literature
overview at the end of the chapter). However, there is a way to provide a simple
upper bound on the number of degrees of freedom. Suppose the total degrees of
freedom of the linkage in spanning tree form is m. Each independent constraint can
remove at most one degree of freedom. Thus, if there are [ independent constraints,
then the variety can have no more than m — [ dimensions. One expression of this
for a general class of mechanisms is the Kutzbach criterion; the planar version of
this is called Griibler’s formula [312].

One final concern is the obstacle region, C,,,. Once the variety has been identi-
fied, the obstacle region and motion planning definitions in (4.34) and Formulation
4.1/do not need to be changed. The configuration space C must be redefined, how-
ever, to be the set of configurations that satisfy the closure constraints.

Further Reading

Section 4.1 introduced the basic definitions and concepts of topology. Further study
of this fascinating subject can provide a much deeper understanding of configuration
spaces. There are many books on topology, some of which may be intimidating, de-
pending on your level of math training. For a heavily illustrated, gentle introduction
to topology, see [537]. Another gentle introduction appears in [498]. An excellent text
at the graduate level is available on-line: [441]. Other sources include [38, 453]. To
understand the motivation for many technical definitions in topology, [912] is helpful.
The manifold coverage in Section [4.1.2 was simpler than that found in most sources
because most sources introduce smooth manifolds, which are complicated by differentia-
bility requirements (these were not needed in this chapter); see Section 8.3.2 for smooth
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manifolds. For the configuration spaces of points moving on a topological graph, see [5].

Section 4.2 provided basic C-space definitions. For further reading on matrix groups
and their topological properties, see [64], which provides a transition into more advanced
material on Lie group theory. For more about quaternions in engineering, see [212, 565].
The remainder of Section [4.2] and most of Section 4.3 were inspired by the coverage in
[590]. C-spaces are also covered in [222]. For further reading on computing represen-
tations of Cups, see [515, 738] for bitmaps, and Chapter 6/ and [867] for combinatorial
approaches.

Much of the presentation in Section|4.4|was inspired by the nice introduction to alge-
braic varieties in [252], which even includes robotics examples; methods for determining
the dimension of a variety are also covered. More algorithmic coverage appears in [706].
See [695] for detailed coverage of robots that are designed with closed kinematic chains.

Exercises

1. Consider the set X ={1,2,3,4,5}. Let X, 0, {1,3}, {1,2}, {2,3}, {1}, {2}, and
{3} be the collection of all subsets of X that are designated as open sets.

(a) Is X a topological space?

(b) Is it a topological space if {1,2,3} is added to the collection of open sets?
Explain.

(c) What are the closed sets (assuming {1,2,3} is included as an open set)?

(d) Are any subsets of X neither open nor closed?
2. Continuous functions for the strange topology:

(a) Give an example of a continuous function, f : X — X, for the strange
topology in Example 4.4.

(b) Characterize the set of all possible continuous functions.

3. For the letters of the Russian alphabet, A, G, B, I', I, E, E, K, 3, 1, U,
K: JI, M7 H7 O7 H, P; Ca Ta y; (I)a Xa H7 LL IH? HL r]_), LL ]-)7 87 }Oa
$1, determine which pairs are homeomorphic. Imagine each as a 1D subset of R?
and draw them accordingly before solving the problem.

4. Prove that homeomorphisms yield an equivalence relation on the collection of all
topological spaces.

5. What is the dimension of the C-space for a cylindrical rod that can translate and

rotate in R3? If the rod is rotated about its central axis, it is assumed that the
rod’s position and orientation are not changed in any detectable way. Express the

C-space of the rod in terms of a Cartesian product of simpler spaces (such as S!,
S2, R™, P2, etc.). What is your reasoning?

6. Let 71 : [0,1] — R? be a loop path that traverses the unit circle in the plane,
defined as 71(s) = (cos(27s),sin(27s)). Let 7o : [0,1] — R? be another loop
path: 7i(s) = (—2 + 3cos(27s), 3 sin(27s)). This path traverses an ellipse that
is centered at (—2,0). Show that 71 and 7 are homotopic (by constructing a
continuous function with an additional parameter that “morphs” 7 into 72).

7. Prove that homotopy yields an equivalence relation on the set of all paths from
some x1 € X to some x9 € X, in which x; and x2 may be chosen arbitrarily.
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11.

12.
13.

14.

15.

16.

17.

18.

19.
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Determine the C-space for a spacecraft that can translate and rotate in a 2D
Asteroids-style video game. The sides of the screen are identified. The top and
bottom are also identified. There are no “twists” in the identifications.

Repeat the derivation of H4 from Section |4.3.3, but instead consider Type VE
contacts.

Determine the C-space for a car that drives around on a huge sphere (such as
the earth with no mountains or oceans). Assume the sphere is big enough so
that its curvature may be neglected (e.g., the car rests flatly on the earth without
wobbling). [Hint: It is not S? x S!.]

Suppose that A and O are each defined as equilateral triangles, with coordinates

(0,0), (2,0), and (1,v/3). Determine the C-space obstacle. Specify the coordinates
of all of its vertices and indicate the corresponding contact type for each edge.

Show that (4.20) is a valid rotation matrix for all unit quaternions.

Show that F[xi,...,zy], the set of polynomials over a field F with variables
Z1,...,%p, is a group with respect to addition.
Quaternions:

(a) Define a unit quaternion h; that expresses a rotation of —7 around the axis
1 1

given by the vector [% % 75]
(b) Define a unit quaternion ho that expresses a rotation of 7 around the axis
given by the vector [0 1 0].

(c) Suppose the rotation represented by h; is performed, followed by the rotation
represented by ho. This combination of rotations can be represented as a
single rotation around an axis given by a vector. Find this axis and the angle
of rotation about this axis.

What topological space is contributed to the C-space by a spherical joint that
achieves any orientation except the identity?

Suppose five polyhedral bodies float freely in a 3D world. They are each capable
of rotating and translating. If these are treated as “one” composite robot, what
is the topology of the resulting C-space (assume that the bodies are not attached
to each other)? What is its dimension?

Suppose a goal region G C W is defined in the C-space by requiring that the
entire robot is contained in G. For example, a car may have to be parked entirely
within a space in a parking lot.

(a) Give a definition of Cgq that is similar to (4.34) but pertains to containment
of A inside of G.

(b) For the case in which A and G are convex and polygonal, develop an algo-
rithm for efficiently computing Cyoq-

Figure 4.29a shows the Mobius band defined by identification of sides of the unit
square. Imagine that scissors are used to cut the band along the two dashed lines.
Describe the resulting topological space. Is it a manifold? Explain.

Consider Figure [4.29b, which shows the set of points in R? that are remaining
after a closed disc of radius 1/4 with center (z,y) is removed for every value of
(x,y) such that z and y are both integers.
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Figure 4.29: (a) What topological space is obtained after slicing the Mébius band?
(b) Is a manifold obtained after tearing holes out of the plane?

20.

21.

22.

23.

24.

25.

(a) Is the remaining set of points a manifold? Explain.
(b) Now remove discs of radius 1 instead of 1/4. Is a manifold obtained?

(c) Finally, remove disks of radius 3/2. Is a manifold obtained?

Show that the solution curves shown in Figure[4.26 correctly illustrate the variety

given in (4.73)).

Find the number of faces of Cps for a cube and regular tetrahedron, assuming C
is SE(3). How many faces of each contact type are obtained?

Following the analysis matrix subgroups from Section [4.2, determine the dimen-
sion of SO(4), the group of 4 x 4 rotation matrices. Can you characterize this
topological space?

Suppose that a kinematic chain of spherical joints is given. Show how to use (4.20)
as the rotation part in each homogeneous transformation matrix, as opposed to
using the DH parameterization. Explain why using (4.20) would be preferable for
motion planning applications.

Suppose that the constraint that ¢ is held to position (10,10) is imposed on the
mechanism shown in Figure[3.29. Using complex numbers to represent rotation,
express this constraint using polynomial equations.

The Tangle toy is made of 18 pieces of macaroni-shaped joints that are attached
together to form a loop. Each attachment between joints forms a revolute joint.
Each link is a curved tube that extends around 1/4 of a circle. What is the
dimension of the variety that results from maintaining the loop? What is its
configuration space (accounting for internal degrees of freedom), assuming the toy

can be placed anywhere in R3?

Implementations

26.

Computing C-space obstacles:

(a) Implement the algorithm from Section[4.3.2 to construct a convex, polygonal
C-space obstacle.

(b) Now allow the robot to rotate in the plane. For any convex robot and obsta-
cle, compute the orientations at which the C-space obstacle fundamentally
changes due to different Type EV and Type VE contacts becoming active.
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(c) Animate the changing C-space obstacle by using the robot orientation as the
time axis in the animation.

27. Consider “straight-line” paths that start at the origin (lower left corner) of the
manifolds shown in Figure 4.5 and leave at a particular angle, which is input to
the program. The lines must respect identifications; thus, as the line hits the edge
of the square, it may continue onward. Study the conditions under which the lines
fill the entire space versus forming a finite pattern (i.e., a segment, stripes, or a
tiling).



Chapter 5

Sampling-Based Motion Planning

There are two main philosophies for addressing the motion planning problem, in
Formulation 4.1 from Section 4.3.1. This chapter presents one of the philosophies,
sampling-based motion planning, which is outlined in Figure|5.1. The main idea is
to avoid the explicit construction of C.s, as described in Section 4.3, and instead
conduct a search that probes the C-space with a sampling scheme. This probing
is enabled by a collision detection module, which the motion planning algorithm
considers as a “black box.” This enables the development of planning algorithms
that are independent of the particular geometric models. The collision detection
module handles concerns such as whether the models are semi-algebraic sets, 3D
triangles, nonconvex polyhedra, and so on. This general philosophy has been very
successful in recent years for solving problems from robotics, manufacturing, and
biological applications that involve thousands and even millions of geometric prim-
itives. Such problems would be practically impossible to solve using techniques
that explicitly represent C,ps.

Notions of completeness It is useful to define several notions of complete-
ness for sampling-based algorithms. These algorithms have the drawback that
they result in weaker guarantees that the problem will be solved. An algorithm
is considered complete if for any input it correctly reports whether there is a so-

Sampling-Based
Geometric _ | Collision = Motion Planning Algorithm
Models | Detection R S
Discrete | . C-Space
Searching | . Planning

Figure 5.1: The sampling-based planning philosophy uses collision detection as
a “black box” that separates the motion planning from the particular geometric
and kinematic models. C-space sampling and discrete planning (i.e., searching)
are performed.
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lution in a finite amount of time. If a solution exists, it must return one in finite
time. The combinatorial motion planning methods of Chapter |6 will achieve this.
Unfortunately, such completeness is not achieved with sampling-based planning.
Instead, weaker notions of completeness are tolerated. The notion of denseness
becomes important, which means that the samples come arbitrarily close to any
configuration as the number of iterations tends to infinity. A deterministic ap-
proach that samples densely will be called resolution complete. This means that
if a solution exists, the algorithm will find it in finite time; however, if a solution
does not exist, the algorithm may run forever. Many sampling-based approaches
are based on random sampling, which is dense with probability one. This leads
to algorithms that are probabilistically complete, which means that with enough
points, the probability that it finds an existing solution converges to one. The
most relevant information, however, is the rate of convergence, which is usually
very difficult to establish.

Section 5.1 presents metric and measure space concepts, which are fundamen-
tal to nearly all sampling-based planning algorithms. Section 5.2 presents general
sampling concepts and quality criteria that are effective for analyzing the perfor-
mance of sampling-based algorithms. Section 5.3 gives a brief overview of collision
detection algorithms, to gain an understanding of the information available to
a planning algorithm and the computation price that must be paid to obtain
it. Section [5.4 presents a framework that defines algorithms which solve motion
planning problems by integrating sampling and discrete planning (i.e., searching)
techniques. These approaches can be considered single query in the sense that a
single pair, (qr, ga), is given, and the algorithm must search until it finds a solution
(or it may report early failure). Section 5.5 focuses on rapidly exploring random
trees (RRTs) and rapidly exploring dense trees (RDTs), which are used to develop
efficient single-query planning algorithms. Section (5.6 covers multiple-query algo-
rithms, which invest substantial preprocessing effort to build a data structure that
is later used to obtain efficient solutions for many initial-goal pairs. In this case,
it is assumed that the obstacle region O remains the same for every query.

5.1 Distance and Volume in C-Space

Virtually all sampling-based planning algorithms require a function that measures
the distance between two points in C. In most cases, this results in a metric space,
which is introduced in Section|5.1.1. Useful examples for motion planning are given
in Section 5.1.2l It will also be important in many of these algorithms to define
the volume of a subset of C. This requires a measure space, which is introduced in
Section 5.1.3. Section [5.1.4 introduces invariant measures, which should be used
whenever possible.
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5.1.1 Metric Spaces

It is straightforward to define Euclidean distance in R™. To define a distance
function over any C, however, certain axioms will have to be satisfied so that it
coincides with our expectations based on Euclidean distance.

The following definition and axioms are used to create a function that converts
a topological space into a metric spaceﬁ A metric space (X, p) is a topological
space X equipped with a function p: X x X — R such that for any a,b,c € X:

1. Nonnegativity: p(a,b) > 0.

2. Reflexivity: p(a,b) = 0 if and only if a = b.

3. Symmetry: p(a,b) = p(b,a).

4. Triangle inequality: p(a,b) + p(b,c) > p(a,c).

The function p defines distances between points in the metric space, and each
of the four conditions on p agrees with our intuitions about distance. The final
condition implies that p is optimal in the sense that the distance from a to ¢ will
always be less than or equal to the total distance obtained by traveling through
an intermediate point b on the way from a to c.

L, metrics The most important family of metrics over R" is given for any p > 1

as
n 1/p
p(z,z') = (Z |z; — l‘“p) . (5.1)
i=1
For each value of p, (5.1) is called an L, metric (pronounced “el pee”). The three
most common cases are

1. Ly: The Fuclidean metric, which is the familiar Euclidean distance in R".

2. Li: The Manhattan metric, which is often nicknamed this way because in
R? it corresponds to the length of a path that is obtained by moving along
an axis-aligned grid. For example, the distance from (0,0) to (2,5) is 7 by
traveling “east two blocks” and then “north five blocks”.

3. Lot The L, metric must actually be defined by taking the limit of (5.1) as
p tends to infinity. The result is

Loo(r, 2') = masx {|; — ]}, (5.2)

which seems correct because the larger the value of p, the more the largest
term of the sum in (5.1) dominates.

!Some topological spaces are not metrizable, which means that no function exists that satisfies
the axioms. Many metrization theorems give sufficient conditions for a topological space to be
metrizable [453], and virtually any space that has arisen in motion planning will be metrizable.
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An L, metric can be derived from a norm on a vector space. An L, norm over R"

is defined as
n 1/p
lall, = (Z \xirp) . (5.3)
=1

The case of p = 2 is the familiar definition of the magnitude of a vector, which is
called the Fuclidean norm. For example, assume the vector space is R", and let
| - || be the standard Euclidean norm. The Ly metric is p(z,y) = ||z — y||. Any
L, metric can be written in terms of a vector subtraction, which is notationally
convenient.

Metric subspaces By verifying the axioms, it can be shown that any subspace
Y of a metric space (X, p) itself becomes a metric space by restricting the domain of
p to Y. This conveniently provides metrics on any of the manifolds and varieties
from Chapter [4 by simply using any L, metric on R™, the space in which the
manifold or variety is embedded.

Cartesian products of metric spaces Metrics extend nicely across Cartesian
products, which is very convenient because C-spaces are often constructed from
Cartesian products, especially in the case of multiple bodies. Let (X, p,) and
(Y, py) be two metric spaces. A metric space (Z,p,) can be constructed for the
Cartesian product Z = X x Y by defining the metric p, as

pz(za Z,) = pz(xa Y, xla y,) = Clpz(ZL‘, ,I/) + Cpr(ya y/)’ (54)

in which ¢; > 0 and ¢ > 0 are any positive real constants, and z,2’ € X and
v,y € Y. Each z € Z is represented as z = (z,y).
Other combinations lead to a metric for Z; for example,

PZ(Z, Z,) = <Cl [px(xv x,)}p + 2 [py(y, y/)}p> 1/p7 (55)

is a metric for any positive integer p. Once again, two positive constants must be
chosen. It is important to understand that many choices are possible, and there
may not necessarily be a “correct” one.

5.1.2 Important Metric Spaces for Motion Planning

This section presents some metric spaces that arise frequently in motion planning.

Example 5.1 (SO(2) Metric Using Complex Numbers) If SO(2) is repre-
sented by unit complex numbers, recall that the C-space is the subset of R? given
by {(a,b) € R* | a*> +b* = 1}. Any L, metric from R? may be applied. Using the
Fuclidean metric,

plai, by, az, by) = \/(Ch —ag)? + (b1 — b2)?, (5.6)
for any pair of points (a1, b1) and (as, by). |
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Example 5.2 (SO(2) Metric by Comparing Angles) You might have noticed
that the previous metric for SO(2) does not give the distance traveling along the
circle. It instead takes a shortcut by computing the length of the line segment in
R? that connects the two points. This distortion may be undesirable. An alterna-
tive metric is obtained by directly comparing angles, #; and 6. However, in this
case special care has to be given to the identification, because there are two ways
to reach 6, from #; by traveling along the circle. This causes a min to appear in
the metric definition:

p(«91,02) = min {‘91 - 92|,27T - |91 - 02|}, (57)

for which 6,6, € [0,27]/ ~. This may alternatively be expressed using the com-
plex number representation a + bi as an angle between two vectors:

p(al, bl, as, bg) = COSil(CLlCLQ + blbg), (58)

for two points (a, b;) and (as, by). ]

Example 5.3 (An SE(2) Metric) Again by using the subspace principle, a met-
ric can easily be obtained for SFE(2). Using the complex number representation of
SO(2), each element of SE(2) is a point (¢, y:, a,b) € R*. The Euclidean metric,
or any other L, metric on R?, can be immediately applied to obtain a metric. l

Example 5.4 (SO(3) Metrics Using Quaternions) As usual, the situation be-
comes more complicated for SO(3). The unit quaternions form a subset S* of R*.
Therefore, any L, metric may be used to define a metric on S?, but this will not be
a metric for SO(3) because antipodal points need to be identified. Let hy, hy € R*
represent two unit quaternions (which are being interpreted here as elements of
R* by ignoring the quaternion algebra). Taking the identifications into account,
the metric is

p(h1, he) = min { [ — hol, [|h1 + ha| }, (5.9)

in which the two arguments of the min correspond to the distances from hy to ho
and —hsy, respectively. The h; + hy appears because hy was negated to yield its
antipodal point, —hs.

As in the case of SO(2), the metric in may seem distorted because it
measures the length of line segments that cut through the interior of S?, as opposed
to traveling along the surface. This problem can be fixed to give a very natural
metric for SO(3), which is based on spherical linear interpolation. This takes
the line segment that connects the points and pushes it outward onto S?. It is
easier to visualize this by dropping a dimension. Imagine computing the distance
between two points on S%. If these points lie on the equator, then spherical linear
interpolation yields a distance proportional to that obtained by traveling along
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the equator, as opposed to cutting through the interior of S? (for points not on
the equator, use the great circle through the points).

It turns out that this metric can easily be defined in terms of the inner product
between the two quaternions. Recall that for unit vectors v, and vy in R", vy - vy =
cos 6, in which 6 is the angle between the vectors. This angle is precisely what is
needed to give the proper distance along S®. The resulting metric is a surprisingly
simple extension of (5.8). The distance along S* between two quaternions is

ps(hl, hQ) = COS_l(CLlaz + blbz + ci1c9 + d1d2), (510)

in which each h; = (a;,b;,¢;,d;). Taking identification into account yields the
metric

p(hi, hy) = min {ps(hl,hg),ps(hl,—hg)}‘ (5.11)
[ |

Example 5.5 (Another SE(2) Metric) For many C-spaces, the problem of re-
lating different kinds of quantities arises. For example, any metric defined on
SE(2) must compare both distance in the plane and an angular quantity. For
example, even if ¢; = ¢ = 1, the range for S! is [0, 27) using radians but [0, 360)
using degrees. If the same constant ¢y is used in either case, two very different

metrics are obtained. The units applied to R? and S! are completely incompatible.
|

Example 5.6 (Robot Displacement Metric) Sometimes this incompatibility
problem can be fixed by considering the robot displacement. For any two config-
urations q1, q2 € C, a robot displacement metric can be defined as

p(q1, q2) = fanéﬁ({”a(ch) - a(Qz)“}v (5.12)

in which a(g;) is the position of the point a in the world when the robot A is at
configuration ¢;. Intuitively, the robot displacement metric yields the maximum
amount in ¥V that any part of the robot is displaced when moving from configura-
tion ¢; to go. The difficulty and efficiency with which this metric can be computed
depend strongly on the particular robot geometric model and kinematics. For a
convex polyhedral robot that can translate and rotate, it is sufficient to check
only vertices. The metric may appear to be ideal, but efficient algorithms are not
known for most situations. |

Example 5.7 (T™ Metrics) Next consider making a metric over a torus T". The
Cartesian product rules such as (5.4) and (5.5) can be extended over every copy of
S! (one for each parameter 6;). This leads to n arbitrary coefficients ¢y, ¢, .. ., ¢,.
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Robot displacement could be used to determine the coefficients. For example, if
the robot is a chain of links, it might make sense to weight changes in the first link
more heavily because the entire chain moves in this case. When the last parameter
is changed, only the last link moves; in this case, it might make sense to give it
less weight. [ |

Example 5.8 (SE(3) Metrics) Metrics for SE(3) can be formed by applying
the Cartesian product rules to a metric for R® and a metric for SO(3), such as
that given in (5.11). Again, this unfortunately leaves coefficients to be specified.
These issues will arise again in Section [5.3.4, where more details appear on robot
displacement. [ |

Pseudometrics Many planning algorithms use functions that behave somewhat
like a distance function but may fail to satisfy all of the metric axioms. If such
distance functions are used, they will be referred to as pseudometrics. One general
principle that can be used to derive pseudometrics is to define the distance to be
the optimal cost-to-go for some criterion (recall discrete cost-to-go functions from
Section 2.3). This will become more important when differential constraints are
considered in Chapter [14.

In the continuous setting, the cost could correspond to the distance traveled
by a robot or even the amount of energy consumed. Sometimes, the resulting
pseudometric is not symmetric. For example, it requires less energy for a car to
travel downhill as opposed to uphill. Alternatively, suppose that a car is only
capable of driving forward. It might travel a short distance to go forward from
q1 to some ¢o, but it might have to travel a longer distance to reach ¢; from ¢
because it cannot drive in reverse. These issues arise for the Dubins car, which is
covered in Sections 13.1.2]and [15.3.1.

An important example of a pseudometric from robotics is a potential function,
which is an important part of the randomized potential field method, which is
discussed in Section 5.4.3. The idea is to make a scalar function that estimates
the distance to the goal; however, there may be additional terms that attempt
to repel the robot away from obstacles. This generally causes local minima to
appear in the distance function, which may cause potential functions to violate
the triangle inequality.

5.1.3 Basic Measure Theory Definitions

This section briefly indicates how to define volume in a metric space. This provides
a basis for defining concepts such as integrals or probability densities. Measure
theory is an advanced mathematical topic that is well beyond the scope of this
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book; however, it is worthwhile to briefly introduce some of the basic definitions
because they sometimes arise in sampling-based planning.

Measure can be considered as a function that produces real values for subsets
of a metric space, (X, p). Ideally, we would like to produce a nonnegative value,
p(A) € [0,00], for any subset A C X. Unfortunately, due to the Banach-Tarski
paradox, if X = R", there are some subsets for which trying to assign volume
leads to a contradiction. If X is finite, this cannot happen. Therefore, it is hard
to visualize the problem; see [838] for a construction of the bizarre nonmeasurable
sets. Due to this problem, a workaround was developed by defining a collection of
subsets that avoids the paradoxical sets. A collection B of subsets of X is called
a sigma algebra if the following axioms are satisfied:

1. The empty set is in B.
2. If B € B, then X \ B € B.

3. For any collection of a countable number of sets in B, their union must also
be in B.

Note that the last two conditions together imply that the intersection of a count-
able number of sets in B is also in B. The sets in B are called the measurable
sets.

A nice sigma algebra, called the Borel sets, can be formed from any metric
space (X, p) as follows. Start with the set of all open balls in X. These are the
sets of the form

B(z,r) ={a" € X | p(x,2") < r} (5.13)

for any x € X and any r € (0,00). From the open balls, the Borel sets B are
the sets that can be constructed from these open balls by using the sigma algebra
axioms. For example, an open square in R? is in B because it can be constructed
as the union of a countable number of balls (infinitely many are needed because
the curved balls must converge to covering the straight square edges). By using
Borel sets, the nastiness of nonmeasurable sets is safely avoided.

Example 5.9 (Borel Sets) A simple example of B can be constructed for R.
The open balls are just the set of all open intervals, (z1,x2) C R, for any z1, 25 € R
such that x; < xs. [ |

Using B, a measure p is now defined as a function p : B — [0, 00] such that
the measure arioms are satisfied:

1. For the empty set, u(0) = 0.

2. For any collection, Ey, Es, Ej, ..., of a countable (possibly finite) number of
pairwise disjoint, measurable sets, let E denote their union. The measure u
must satisfy

p(E) = ZM(Ei)’ (5.14)
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in which 7 counts over the whole collection.

Example 5.10 (Lebesgue Measure) The most common and important mea-
sure is the Lebesgue measure, which becomes the standard notions of length in R,
area in R?, and volume in R” for n > 3. One important concept with Lebesgue
measure is the existence of sets of measure zero. For any countable set A, the
Lebesgue measure yields p(A) = 0. For example, what is the total length of the
point {1} C R? The length of any single point must be zero. To satisfy the mea-
sure axioms, sets such as {1,3,4,5} must also have measure zero. Even infinite
subsets such as Z and Q have measure zero in R. If the dimension of a set A C R"
is m for some integer m < n, then u(A) = 0, according to the Lebesgue measure
on R™. For example, the set S? C R? has measure zero because the sphere has
no volume. However, if the measure space is restricted to S? and then the surface
area is defined, then nonzero measure is obtained. [ |

Example 5.11 (The Counting Measure) If (X, p) is finite, then the counting
measure can be defined. In this case, the measure can be defined over the entire
power set of X. For any A C X, the counting measure yields u(A) = |A], the
number of elements in A. Verify that this satisfies the measure axioms. |

Example 5.12 (Probability Measure) Measure theory even unifies discrete and
continuous probability theory. The measure p can be defined to yield probability
mass. The probability axioms (see Section 9.1.2) are consistent with the measure
axioms, which therefore yield a measure space. The integrals and sums needed to
define expectations of random variables for continuous and discrete cases, respec-
tively, unify into a single measure-theoretic integral. [

Measure theory can be used to define very general notions of integration that
are much more powerful than the Riemann integral that is learned in classical
calculus. One of the most important concepts is the Lebesgue integral. Instead
of being limited to partitioning the domain of integration into intervals, virtually
any partition into measurable sets can be used. Its definition requires the notion
of a measurable function to ensure that the function domain is partitioned into
measurable sets. For further study, see [348, 548, 838].

5.1.4 Using the Correct Measure

Since many metrics and measures are possible, it may sometimes seem that there is
no “correct” choice. This can be frustrating because the performance of sampling-
based planning algorithms can depend strongly on these. Conveniently, there is a
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natural measure, called the Haar measure, for some transformation groups, includ-
ing SO(N). Good metrics also follow from the Haar measure, but unfortunately,
there are still arbitrary alternatives.

The basic requirement is that the measure does not vary when the sets are
transformed using the group elements. More formally, let G represent a matrix
group with real-valued entries, and let 1 denote a measure on G. If for any
measurable subset A C G, and any element g € G, u(A) = u(gA) = p(Ag), then
i is called the Haar measuré® for G. The notation gA represents the set of all
matrices obtained by the product ga, for any a € A. Similarly, Ag represents all
products of the form ag.

Example 5.13 (Haar Measure for SO(2)) The Haar measure for SO(2) can
be obtained by parameterizing the rotations as [0,1]/ ~ with 0 and 1 identified,
and letting p be the Lebesgue measure on the unit interval. To see the invariance
property, consider the interval [1/4,1/2], which produces a set A C SO(2) of
rotation matrices. This corresponds to the set of all rotations from 6 = 7/2 to
0 = 7. The measure yields p(A) = 1/4. Now consider multiplying every matrix
a € A by a rotation matrix, g € SO(2), to yield Ag. Suppose g is the rotation
matrix for § = w. The set Ag is the set of all rotation matrices from 6 = 37/2
up to = 2r = 0. The measure u(Ag) = 1/4 remains unchanged. Invariance
for gA may be checked similarly. The transformation ¢ translates the intervals
in [0,1]/ ~. Since the measure is based on interval lengths, it is invariant with
respect to translation. Note that p can be multiplied by a fixed constant (such as
27) without affecting the invariance property.

An invariant metric can be defined from the Haar measure on SO(2). For any
points 1,22 € [0,1], let p = u([z1,22]), in which [z1, 2] is the shortest length
(smallest measure) interval that contains x; and x5 as endpoints. This metric was
already given in Example 5.2!

To obtain examples that are not the Haar measure, let p represent probability
mass over [0, 1] and define any nonuniform probability density function (the uni-
form density yields the Haar measure). Any shifting of intervals will change the
probability mass, resulting in a different measure.

Failing to use the Haar measure weights some parts of SO(2) more heavily
than others. Sometimes imposing a bias may be desirable, but it is at least as
important to know how to eliminate bias. These ideas may appear obvious, but in
the case of SO(3) and many other groups it is more challenging to eliminate this
bias and obtain the Haar measure. ]

Example 5.14 (Haar Measure for SO(3)) For SO(3) it turns out once again
that quaternions come to the rescue. If unit quaternions are used, recall that
SO(3) becomes parameterized in terms of S?, but opposite points are identified.

2Such a measure is unique up to scale and exists for any locally compact topological group
[348,838].
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It can be shown that the surface area on S? is the Haar measure. (Since S? is a 3D
manifold, it may more appropriately be considered as a surface “volume.”) It will
be seen in Section 5.2.2 that uniform random sampling over SO(3) must be done
with a uniform probability density over S3. This corresponds exactly to the Haar
measure. If instead SO(3) is parameterized with Euler angles, the Haar measure
will not be obtained. An unintentional bias will be introduced; some rotations in
SO(3) will have more weight than others for no particularly good reason. ]

5.2 Sampling Theory

5.2.1 Motivation and Basic Concepts

The state space for motion planning, C, is uncountably infinite, yet a sampling-
based planning algorithm can consider at most a countable number of samples.
If the algorithm runs forever, this may be countably infinite, but in practice we
expect it to terminate early after only considering a finite number of samples.
This mismatch between the cardinality of C and the set that can be probed by
an algorithm motivates careful consideration of sampling techniques. Once the
sampling component has been defined, discrete planning methods from Chapter
2 may be adapted to the current setting. Their performance, however, hinges on
the way the C-space is sampled.

Since sampling-based planning algorithms are often terminated early, the par-
ticular order in which samples are chosen becomes critical. Therefore, a distinction
is made between a sample set and a sample sequence. A unique sample set can
always be constructed from a sample sequence, but many alternative sequences
can be constructed from one sample set.

Denseness Consider constructing an infinite sample sequence over C. What
would be some desirable properties for this sequence? It would be nice if the
sequence eventually reached every point in C, but this is impossible because C is
uncountably infinite. Strangely, it is still possible for a sequence to get arbitrarily
close to every element of C (assuming C C R™). In topology, this is the notion of
denseness. Let U and V' be any subsets of a topological space. The set U is said
to be dense in V if cl(U) =V (recall the closure of a set from Section [4.1.1). This
means adding the boundary points to U produces V. A simple example is that
(0,1) C R is dense in [0,1] C R. A more interesting example is that the set Q of
rational numbers is both countable and dense in R. Think about why. For any
real number, such as m € R, there exists a sequence of fractions that converges to
it. This sequence of fractions must be a subset of Q. A sequence (as opposed to a
set) is called dense if its underlying set is dense. The bare minimum for sampling
methods is that they produce a dense sequence. Stronger requirements, such as
uniformity and regularity, will be explained shortly.
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A random sequence is probably dense Suppose that C = [0,1]. One of
the simplest ways conceptually to obtain a dense sequence is to pick points at
random. Suppose I C [0,1] is an interval of length e. If k samples are chosen
independently at randomﬁ the probability that none of them falls into I is (1 —e)*.
As k approaches infinity, this probability converges to zero. This means that the
probability that any nonzero-length interval in [0, 1] contains no points converges
to zero. Ome small technicality exists. The infinite sequence of independently,
randomly chosen points is only dense with probability one, which is not the same as
being guaranteed. This is one of the strange outcomes of dealing with uncountably
infinite sets in probability theory. For example, if a number between [0, 1] is
chosen at random, the probably that 7/4 is chosen is zero; however, it is still
possible. (The probability is just the Lebesgue measure, which is zero for a set of
measure zero.) For motion planning purposes, this technicality has no practical
implications; however, if k is not very large, then it might be frustrating to obtain
only probabilistic assurances, as opposed to absolute guarantees of coverage. The
next sequence is guaranteed to be dense because it is deterministic.

The van der Corput sequence A beautiful yet underutilized sequence was
published in 1935 by van der Corput, a Dutch mathematician [952]. It exhibits
many ideal qualities for applications. At the same time, it is based on a simple
idea. Unfortunately, it is only defined for the unit interval. The quest to extend
many of its qualities to higher dimensional spaces motivates the formal quality
measures and sampling techniques in the remainder of this section.

To explain the van der Corput sequence, let C = [0,1]/ ~, in which 0 ~ 1,
which can be interpreted as SO(2). Suppose that we want to place 16 samples in
C. An ideal choice is the set S = {i/16 | 0 < i < 16}, which evenly spaces the
points at intervals of length 1/16. This means that no point in C is further than
1/32 from the nearest sample. What if we want to make S into a sequence? What
is the best ordering? What if we are not even sure that 16 points are sufficient?
Maybe 16 is too few or even too many.

The first two columns of Figure [5.2 show a naive attempt at making S into
a sequence by sorting the points by increasing value. The problem is that after
1 = 8, half of C has been neglected. It would be preferable to have a nice covering
of C for any 7. Van der Corput’s clever idea was to reverse the order of the bits,
when the sequence is represented with binary decimals. In the original sequence,
the most significant bit toggles only once, whereas the least significant bit toggles
in every step. By reversing the bits, the most significant bit toggles in every step,
which means that the sequence alternates between the lower and upper halves of C.
The third and fourth columns of Figure 5.2 show the original and reversed-order
binary representations. The resulting sequence dances around [0, 1]/ ~ in a nice
way, as shown in the last two columns of Figure[5.2. Let v (i) denote the ith point
of the van der Corput sequence.

3See Section [9.1.2 for a review of probability theory.
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Naive Reverse Van der

i Sequence Binary Binary Corput Points in [0, 1]/ ~

1 0 .0000  .0000 0 ® ®
2 1/16 .0001 .1000 1/2 o ® O
3 1/8 .0010  .0100 1/4 o ® O O
4 3/16 .0011 .1100 3/4 o O O ® O
5 1/4 .0100  .0010 1/8 O0—e——0 O O O
6 5/16 .0101 1010 5/8 o—-~O0—O0—"0Ce0——=0
7 3/8 0110  .0110 3/8 o0—O0—-O0000—™0
8 7/16 0111 1110 7/8 0—0—0—0—0—0—0—e—0
9 1/2 1000 .0001 1/16 0e0—O0—O0—0000°0
10 9/16 1001 .1001 9/16 000—0—0—000—0—0——0
11 5/8 1010 .0101 5/16 000—0e0—000—0—0—0
12 11/16 1011 1101 13/16 O0O00—000—000—0e0—0
13 3/4 1100 .0011 3/16 0008000—000—000—0
14 13/16 1101 1011 11/16 (0,0,0,0,0,0,0.,0,0,0, ,0,0,0.0)
15 7/8 1110 0111 7/16 00000OO0e0000000—0
16 15/16 111 111 15/16 (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0/

Figure 5.2: The van der Corput sequence is obtained by reversing the bits in the
binary decimal representation of the naive sequence.

In contrast to the naive sequence, each v(i) lies far away from v(i + 1). Fur-
thermore, the first ¢ points of the sequence, for any ¢, provide reasonably uniform
coverage of C. When i is a power of 2, the points are perfectly spaced. For other
i, the coverage is still good in the sense that the number of points that appear in
any interval of length [ is roughly ¢/. For example, when ¢ = 10, every interval of
length 1/2 contains roughly 5 points.

The length, 16, of the naive sequence is actually not important. If instead
8 is used, the same v(1), ..., v(8) are obtained. Observe in the reverse binary
column of Figure 5.2 that this amounts to removing the last zero from each binary
decimal representation, which does not alter their values. If 32 is used for the naive
sequence, then the same v(1), ..., ¥(16) are obtained, and the sequence continues
nicely from v(17) to v(32). To obtain the van der Corput sequence from v(33) to
v(64), six-bit sequences are reversed (corresponding to the case in which the naive
sequence has 64 points). The process repeats to produce an infinite sequence that
does not require a fixed number of points to be specified a priori. In addition to
the nice uniformity properties for every i, the infinite van der Corput sequence is
also dense in [0, 1]/ ~. This implies that every open subset must contain at least
one sample.

You have now seen ways to generate nice samples in a unit interval both ran-
domly and deterministically. Sections 5.2.245.2.4] explain how to generate dense
samples with nice properties in the complicated spaces that arise in motion plan-
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5.2.2 Random Sampling

Now imagine moving beyond [0, 1] and generating a dense sample sequence for any
bounded C-space, C C R™. In this section the goal is to generate uniform random
samples. This means that the probability density function p(q) over C is uniform.
Wherever relevant, it also will mean that the probability density is also consistent
with the Haar measure. We will not allow any artificial bias to be introduced by
selecting a poor parameterization. For example, picking uniform random Euler
angles does not lead to uniform random samples over SO(3). However, picking
uniform random unit quaternions works perfectly because quaternions use the
same parameterization as the Haar measure; both choose points on S3.

Random sampling is the easiest of all sampling methods to apply to C-spaces.
One of the main reasons is that C-spaces are formed from Cartesian products, and
independent random samples extend easily across these products. If X = X x X5,
and uniform random samples x; and x5 are taken from X; and X, respectively,
then (z1,x9) is a uniform random sample for X. This is very convenient in im-
plementations. For example, suppose the motion planning problem involves 15
robots that each translate for any (z,3;) € [0,1]% this yields C = [0,1]*°. In
this case, 30 points can be chosen uniformly at random from [0, 1] and combined
into a 30-dimensional vector. Samples generated this way are uniformly randomly
distributed over C. Combining samples over Cartesian products is much more
difficult for nonrandom (deterministic) methods, which are presented in Sections
5.2.3land 5.2 4.

Generating a random element of SO(3) One has to be very careful about
sampling uniformly over the space of rotations. The probability density must
correspond to the Haar measure, which means that a random rotation should be
obtained by picking a point at random on S? and forming the unit quaternion. An
extremely clever way to sample SO(3) uniformly at random is given in [46] and is
reproduced here. Choose three points uy, ug, uz € [0, 1] uniformly at random. A
uniform, random quaternion is given by the simple expression

h = (V1 —uysin2mug, /1 — uy cos 2mug, /uy sin 2wug, /uj cos 2mus).  (5.15)

A full explanation of the method is given in [46], and a brief intuition is given here.
First drop down a dimension and pick u;,us € [0,1] to generate points on S2. Let
uy represent the value for the third coordinate, (0,0, u;) € R3. The slice of points
on S? for which u, is fixed for 0 < u; < 1 yields a circle on S? that corresponds
to some line of latitude on S?. The second parameter selects the longitude, 2mus.
Unfortunately, the points are not uniformly distributed over S2. Why? Imagine
S? as the crust on a spherical loaf of bread that is run through a bread slicer. The
slices are cut in a direction parallel to the equator and are of equal thickness. The
crusts of each slice do not have equal area; therefore, the points are not uniformly
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distributed. However, for S?, the 3D crusts happen to have the same area (or
measure); this can be shown by evaluating surface integrals. This implies that a
(infinitesimal) slice can be selected uniformly at random with u;, and a point on
the crust is selected uniformly at random by s and us. For S* and beyond, the
measure of the crusts vary, which means this elegant scheme only works for S3. To
respect the antipodal identification for rotations, any quaternion h found in the
lower hemisphere (i.e., a < 0) can be negated to yield —h. This does not distort
the uniform random distribution of the samples.

Generating random directions Some sampling-based algorithms require choos-
ing motion directions at random.? From a configuration ¢, the possible directions
of motion can be imagined as being distributed around a sphere. In an (n + 1)-
dimensional C-space, this corresponds to sampling on S™. For example, choosing
a direction in R? amounts to picking an element of S'; this can be parameter-
ized as 6 € [0,27]/ ~. If n = 4, then the previously mentioned trick for SO(3)
should be used. If n = 3 or n > 4, then samples can be generated using a slightly
more expensive method that exploits spherical symmetries of the multidimensional
Gaussian density function [343]. The method is explained for R"'; boundaries
and identifications must be taken into account for other spaces. For each of the
n + 1 coordinates, generate a sample u; from a zero-mean Gaussian distribution
with the same variance for each coordinate. Following from the Central Limit
Theorem, u; can be approximately obtained by generating k samples at random
over [—1, 1] and adding them (k > 12 is usually sufficient in practice). The vector
(ug,Ug, ..., Upiq) gives a random direction in R™™! because each u; was obtained
independently, and the level sets of the resulting probability density function are
spheres. We did not use uniform random samples for each u; because this would
bias the directions toward the corners of a cube; instead, the Gaussian yields
spherical symmetry. The final step is to normalize the vector by taking u;/||u|| for
each coordinate.

Pseudorandom number generation Although there are advantages to uni-
form random sampling, there are also several disadvantages. This motivates the
consideration of deterministic alternatives. Since there are trade-offs, it is impor-
tant to understand how to use both kinds of sampling in motion planning. One
of the first issues is that computer-generated numbers are not random.? A pseu-
dorandom number generator is usually employed, which is a deterministic method
that simulates the behavior of randomness. Since the samples are not truly ran-
dom, the advantage of extending the samples over Cartesian products does not
necessarily hold. Sometimes problems are caused by unforeseen deterministic de-
pendencies. One of the best pseudorandom number generators for avoiding such

4The directions will be formalized in Section |8.3.2/ when smooth manifolds are introduced. In
that case, the directions correspond to the set of possible velocities that have unit magnitude.
Presently, the notion of a direction is only given informally.

SThere are exceptions, which use physical phenomena as a random source [810].
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troubles is the Mersenne twister [686], for which implementations can be found on
the Internet.

To help see the general difficulties, the classical linear congruential pseudo-
random number generator is briefly explained [621, 740]. The method uses three
integer parameters, M, a, and ¢, which are chosen by the user. The first two, M
and a, must be relatively prime, meaning that ged(M,a) = 1. The third parame-
ter, ¢, must be chosen to satisfy 0 < ¢ < M. Using modular arithmetic, a sequence
can be generated as

Yir1 = ay; + ¢ mod M, (5.16)

by starting with some arbitrary seed 1 < yo < M. Pseudorandom numbers in
[0, 1] are generated by the sequence

x; =y;/M. (5.17)

The sequence is periodic; therefore, M is typically very large (e.g., M = 231 —1).
Due to periodicity, there are potential problems of regularity appearing in the
samples, especially when applied across a Cartesian product to generate points in
R™. Particular values must be chosen for the parameters, and statistical tests are
used to evaluate the samples either experimentally or theoretically [740].

Testing for randomness Thus, it is important to realize that even the “ran-
dom” samples are deterministic. They are designed to optimize performance on
statistical tests. Many sophisticated statistical tests of uniform randomness are
used. One of the simplest, the chi-square test, is described here. This test measures
how far computed statistics are from their expected value. As a simple example,
suppose C = [0,1]? and is partitioned into a 10 by 10 array of 100 square boxes. If
a set P of k samples is chosen at random, then intuitively each box should receive
roughly k/100 of the samples. An error function can be defined to measure how
far from true this intuition is:

100

e(P) =Y (b; — k/100)*, (5.18)

=1

in which b; is the number of samples that fall into box 4. It is shown [523] that
e(P) follows a chi-squared distribution. A surprising fact is that the goal is not
to minimize e(P). If the error is too small, we would declare that the samples are
too uniform to be random! Imagine k£ = 1,000,000 and exactly 10,000 samples
appear in each of the 100 boxes. This yields e(P) = 0, but how likely is this to ever
occur? The error must generally be larger (it appears in many statistical tables)
to account for the irregularity due to randomness.

This irregularity can be observed in terms of Voronoi diagrams, as shown in
Figure 5.3. The Voronoi diagram partitions R? into regions based on the samples.
Each sample z has an associated Voronoi region Vor(x). For any point y € Vor(x),
x is the closest sample to y using Fuclidean distance. The different sizes and shapes
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(a) 196 pseudorandom samples (b) 196 pseudorandom samples

Figure 5.3: Irregularity in a collection of (pseudo)random samples can be nicely
observed with Voronoi diagrams.

of these regions give some indication of the required irregularity of random sam-
pling. This irregularity may be undesirable for sampling-based motion planning
and is somewhat repaired by the deterministic sampling methods of Sections[5.2.3
and [5.2.4] (however, these methods also have drawbacks).

5.2.3 Low-Dispersion Sampling

This section describes an alternative to random sampling. Here, the goal is to
optimize a criterion called dispersion [740]. Intuitively, the idea is to place samples
in a way that makes the largest uncovered area be as small as possible. This
generalizes of the idea of grid resolution. For a grid, the resolution may be selected
by defining the step size for each axis. As the step size is decreased, the resolution
increases. If a grid-based motion planning algorithm can increase the resolution
arbitrarily, it becomes resolution complete. Using the concepts in this section,
it may instead reduce its dispersion arbitrarily to obtain a resolution complete
algorithm. Thus, dispersion can be considered as a powerful generalization of the
notion of “resolution.”

Dispersion definition The dispersiorﬁ of a set P of samples in a metric space
(X.p) is

0(P) = sup { min { p(z, . 5.19

(P) = sup {min {p(e.1) }} (519

6The definition is unfortunately backward from intuition. Lower dispersion means that the
points are nicely dispersed. Thus, more dispersion is bad, which is counterintuitive.

"The sup represents the supremum, which is the least upper bound. If X is closed, then the
sup becomes a max. See Section[9.1.1 for more details.
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(a) Lo dispersion (b) L, dispersion

Figure 5.4: Reducing the dispersion means reducing the radius of the largest empty
ball.

(a) 196-point Sukharev grid (b) 196 lattice points
Figure 5.5: The Sukharev grid and a nongrid lattice.

Figure [5.4 gives an interpretation of the definition for two different metrics.
An alternative way to consider dispersion is as the radius of the largest empty
ball (for the L., metric, the balls are actually cubes). Note that at the boundary
of X (if it exists), the empty ball becomes truncated because it cannot exceed
the boundary. There is also a nice interpretation in terms of Voronoi diagrams.
Figure 5.3 can be used to help explain L, dispersion in R?. The Voronoi vertices
are the points at which three or more Voronoi regions meet. These are points in
C for which the nearest sample is far. An open, empty disc can be placed at any
Voronoi vertex, with a radius equal to the distance to the three (or more) closest
samples. The radius of the largest disc among those placed at all Voronoi vertices
is the dispersion. This interpretation also extends nicely to higher dimensions.
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Making good grids Optimizing dispersion forces the points to be distributed
more uniformly over C. This causes them to fail statistical tests, but the point
distribution is often better for motion planning purposes. Consider the best way to
reduce dispersion if p is the L., metric and X = [0, 1]”. Suppose that the number
of samples, k, is given. Optimal dispersion is obtained by partitioning [0, 1] into
a grid of cubes and placing a point at the center of each cube, as shown for n = 2
and k£ = 96 in Figure[5.5a. The number of cubes per axis must be Uﬁj, in which
-] denotes the floor. If k= is not an integer, then there are leftover points that
may be placed anywhere without affecting the dispersion. Notice that fow just
gives the number of points per axis for a grid of k£ points in n dimensions. The
resulting grid will be referred to as a Sukharev grid [923].

The dispersion obtained by the Sukharev grid is the best possible. Therefore,
a useful lower bound can be given for any set P of k samples [923]:

1
2|Ni|

5(P) > (5.20)

This implies that keeping the dispersion fixed requires exponentially many points
in the dimension, d.

At this point you might wonder why L., was used instead of L, which seems
more natural. This is because the Ly case is extremely difficult to optimize (except
in R?, where a tiling of equilateral triangles can be made, with a point in the center
of each one). Even the simple problem of determining the best way to distribute
a fixed number of points in [0,1]* is unsolved for most values of k. See [243] for
extensive treatment of this problem.

Suppose now that other topologies are considered instead of [0,1]". Let X =
[0,1]/ ~, in which the identification produces a torus. The situation is quite
different because X no longer has a boundary. The Sukharev grid still produces
optimal dispersion, but it can also be shifted without increasing the dispersion. In
this case, a standard grid may also be used, which has the same number of points
as the Sukharev grid but is translated to the origin. Thus, the first grid point
is (0,0), which is actually the same as 2" — 1 other points by identification. If
X represents a cylinder and the number of points, k, is given, then it is best to
just use the Sukharev grid. It is possible, however, to shift each coordinate that
behaves like S!. If X is rectangular but not a square, a good grid can still be made
by tiling the space with cubes. In some cases this will produce optimal dispersion.
For complicated spaces such as SO(3), no grid exists in the sense defined so far.
It is possible, however, to generate grids on the faces of an inscribed Platonic solid
[253] and lift the samples to S™ with relatively little distortion [987]. For example,
to sample S?, Sukharev grids can be placed on each face of a cube. These are lifted
to obtain the warped grid shown in Figure[5.6a.

Example 5.15 (Sukharev Grid) Suppose that n =2and k= 9. If X = [0, 1]?,
then the Sukharev grid yields points for the nine cases in which either coordinate
may be 1/6,1/2, or 5/6. The L, dispersion is 1/6. The spacing between the points
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Figure 5.6: (a) A distorted grid can even be placed over spheres and SO(3) by
putting grids on the faces of an inscribed cube and lifting them to the surface
[987]. (b) A lattice can be considered as a grid in which the generators are not
necessarily orthogonal.

along each axis is 1/3, which is twice the dispersion. If instead X = [0, 1]/ ~,
which represents a torus, then the nine points may be shifted to yield the stan-
dard grid. In this case each coordinate may be 0, 1/3, or 2/3. The dispersion and
spacing between the points remain unchanged. |

One nice property of grids is that they have a lattice structure. This means that
neighboring points can be obtained very easily be adding or subtracting vectors.
Let g; be an n-dimensional vector called a generator. A point on a lattice can be
expressed as

v =Y kg (5.21)
j=1

for n independent generators, as depicted in Figure [5.6b. In a 2D grid, the gen-
erators represent “up” and “right.” If X = [0,100]? and a standard grid with
integer spacing is used, then the neighbors of the point (50,50) are obtained by
adding (0, 1), (0,—1), (=1,0), or (1,0). In a general lattice, the generators need
not be orthogonal. An example is shown in Figure 5.5b. In Section 5.4.2, lattice
structure will become important and convenient for defining the search graph.

Infinite grid sequences Now suppose that the number, k, of samples is not
given. The task is to define an infinite sequence that has the nice properties of
the van der Corput sequence but works for any dimension. This will become the
notion of a multi-resolution grid. The resolution can be iteratively doubled. For a
multi-resolution standard grid in R", the sequence will first place one point at the
origin. After 2" points have been placed, there will be a grid with two points per
axis. After 4" points, there will be four points per axis. Thus, after 2™ points for
any positive integer i, a grid with 2¢ points per axis will be represented. If only
complete grids are allowed, then it becomes clear why they appear inappropriate



5.2. SAMPLING THEORY 203

for high-dimensional problems. For example, if n = 10, then full grids appear
after 1, 219, 229 230 and so on, samples. Each doubling in resolution multiplies
the number of points by 2". Thus, to use grids in high dimensions, one must be
willing to accept partial grids and define an infinite sequence that places points in
a nice way.

The van der Corput sequence can be extended in a straightforward way as
follows. Suppose X = T? = [0,1]?/ ~. The original van der Corput sequence
started by counting in binary. The least significant bit was used to select which
half of [0, 1] was sampled. In the current setting, the two least significant bits can
be used to select the quadrant of [0,1]?. The next two bits can be used to select
the quadrant within the quadrant. This procedure continues recursively to obtain
a complete grid after & = 2% points, for any positive integer i. For any k, however,
there is only a partial grid. The points are distributed with optimal L, dispersion.
This same idea can be applied in dimension n by using n bits at a time from
the binary sequence to select the orthant (n-dimensional quadrant). Many other
orderings produce L..-optimal dispersion. Selecting orderings that additionally
optimize other criteria, such as discrepancy or Lo dispersion, are covered in [641,
646]. Unfortunately, it is more difficult to make a multi-resolution Sukharev grid.
The base becomes 3 instead of 2; after every 3™ points a complete grid is obtained.
For example, in one dimension, the first point appears at 1/2. The next two points
appear at 1/6 and 5/6. The next complete one-dimensional grid appears after there
are 9 points.

Dispersion bounds Since the sample sequence is infinite, it is interesting to
consider asymptotic bounds on dispersion. It is known that for X = [0, 1]" and
any L, metric, the best possible asymptotic dispersion is O(k~1/") for k points
and n dimensions [740]. In this expression, k is the variable in the limit and n
is treated as a constant. Therefore, any function of n may appear as a constant
(ie., O(f(n)k='/") = O(k=Y/") for any positive f(n)). An important practical
consideration is the size of f(n) in the asymptotic analysis. For example, for the
van der Corput sequence from Section 5.2.1, the dispersion is bounded by 1/k,
which means that f(n) = 1. This does not seem good because for values of k
that are powers of two, the dispersion is 1/2k. Using a multi-resolution Sukharev
grid, the constant becomes 3/2 because it takes a longer time before a full grid is
obtained. Nongrid, low-dispersion infinite sequences exist that have f(n) =1/1n4
[740]; these are not even uniformly distributed, which is rather surprising.

5.2.4 Low-Discrepancy Sampling

In some applications, selecting points that align with the coordinate axis may be
undesirable. Therefore, extensive sampling theory has been developed to deter-
mine methods that avoid alignments while distributing the points uniformly. In
sampling-based motion planning, grids sometimes yield unexpected behavior be-
cause a row of points may align nicely with a corridor in Cge.. In some cases, a
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Figure 5.7: Discrepancy measures whether the right number of points fall into
boxes. It is related to the chi-square test but optimizes over all possible boxes.

solution is obtained with surprisingly few samples, and in others, too many sam-
ples are necessary. These alignment problems, when they exist, generally drive the
variance higher in computation times because it is difficult to predict when they
will help or hurt. This provides motivation for developing sampling techniques
that try to reduce this sensitivity.

Discrepancy theory and its corresponding sampling methods were developed to
avoid these problems for numerical integration [740]. Let X be a measure space,
such as [0, 1]". Let R be a collection of subsets of X that is called a range space.
In most cases, R is chosen as the set of all axis-aligned rectangular subsets; hence,
this will be assumed from this point onward. With respect to a particular point
set, P, and range space, R, the discrepancy [965] for k samples is defined as (see

Figure|5.7) ) I
R =[5 Sl 622

in which |P N R| denotes the number of points in P N R. Each term in the
supremum considers how well P can be used to estimate the volume of R. For
example, if p(R) is 1/5, then we would hope that about 1/5 of the points in P fall
into R. The discrepancy measures the largest volume estimation error that can be
obtained over all sets in R.

Asymptotic bounds There are many different asymptotic bounds for discrep-
ancy, depending on the particular range space and measure space [684]. The most
widely referenced bounds are based on the standard range space of axis-aligned
rectangular boxes in [0, 1]”. There are two different bounds, depending on whether
the number of points, k, is given. The best possible asymptotic discrepancy for a
single sequence is O(k~1log" k). This implies that & is not specified. If, however,
for every k a new set of points can be chosen, then the best possible discrepancy
is O(k~'1log" ' k). This bound is lower because it considers the best that can be
achieved by a sequence of points sets, in which every point set may be completely
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different. In a single sequence, the next set must be extended from the current set
by adding a single sample.

Relating dispersion and discrepancy Since balls have positive volume, there
is a close relationship between discrepancy, which is measure-based, and dispersion,
which is metric-based. For example, for any P C [0, 1]",

§(P, L) < D(P,R)Y4, (5.23)

which means low-discrepancy implies low-dispersion. Note that the converse is
not true. An axis-aligned grid yields high discrepancy because of alignments with
the boundaries of sets in R, but the dispersion is very low. Even though low-
discrepancy implies low-dispersion, lower dispersion can usually be obtained by
ignoring discrepancy (this is one less constraint to worry about). Thus, a trade-off
must be carefully considered in applications.

Low-discrepancy sampling methods Due to the fundamental importance of
numerical integration and the intricate link between discrepancy and integration
error, most sampling literature has led to low-discrepancy sequences and point sets
[740, 894, 937]. Although motion planning is quite different from integration, it
is worth evaluating these carefully constructed and well-analyzed samples. Their
potential use in motion planning is no less reasonable than using pseudorandom
sequences, which were also designed with a different intention in mind (satisfying
statistical tests of randomness).

Low-discrepancy sampling methods can be divided into three categories: 1)
Halton/Hammersley sampling; 2) (t,s)-sequences and (t,m,s)-nets; and 3) lattices.
The first category represents one of the earliest methods, and is based on extending
the van der Corput sequence. The Halton sequence is an n-dimensional generaliza-
tion of the van der Corput sequence, but instead of using binary representations,
a different basis is used for each coordinate [432]. The result is a reasonable de-
terministic replacement for random samples in many applications. The resulting
discrepancy (and dispersion) is lower than that for random samples (with high
probability). Figure[5.8a shows the first 196 Halton points in R2.

Choose n relatively prime integers pq,pa,...,p, (usually the first n primes,
p1 =2, p2 =3, ..., are chosen). To construct the ith sample, consider the base-p
representation for i, which takes the form i = ag + pa; + p*as + p®as + .... The
following point in [0, 1] is obtained by reversing the order of the bits and moving
the decimal point (as was done in Figure 5.2):

. Qo a1 45 as
T(Z’p>:?+1¥+2¥+1¥+“.' (524)

For p = 2, this yields the ith point in the van der Corput sequence. Starting from
1 = 0, the ¢th sample in the Halton sequence is

(T(i,pl), T(i,pg), CIE 7T(iapn))- (525)
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Suppose instead that k, the required number of points, is known. In this case,
a better distribution of samples can be obtained. The Hammersley point set [433]
is an adaptation of the Halton sequence. Using only d — 1 distinct primes and
starting at ¢ = 0, the ith sample in a Hammersley point set with k elements is

(i/k, r(i,p1), - .. ,r(i,pn,l)). (5.26)

Figure [5.8b shows the Hammersley set for n = 2 and k& = 196.

The construction of Halton/Hammersley samples is simple and efficient, which
has led to widespread application. They both achieve asymptotically optimal
discrepancy; however, the constant in their asymptotic analysis increases more
than exponentially with dimension [740]. The constant for the dispersion also
increases exponentially, which is much worse than for the methods of Section
5.2.3

ammersley points

T L

(a) 196 Halton points (b) 196

Figure 5.8: The Halton and Hammersley points are easy to construct and provide
a nice alternative to random sampling that achieves more regularity. Compare the
Voronoi regions to those in Figure 5.3. Beware that although these sequences pro-
duce asymptotically optimal discrepancy, their performance degrades substantially
in higher dimensions (e.g., beyond 10).

Improved constants are obtained for sequences and finite points by using (t,s)-
sequences, and (t,m,s)-nets, respectively [740]. The key idea is to enforce zero
discrepancy over particular subsets of R known as canonical rectangles, and all
remaining ranges in R will contribute small amounts to discrepancy. The most
famous and widely used (t,s)-sequences are Sobol’ and Faure (see [740]). The
Niederreiter-Xing (t,s)-sequence has the best-known asymptotic constant, (a/n)",
in which a is a small positive constant [741].

The third category is lattices, which can be considered as a generalization of
grids that allows nonorthogonal axes [684, 894, 959]. As an example, consider
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Figure|5.5b, which shows 196 lattice points generated by the following technique.
Let a be a positive irrational number. For a fixed k, generate the ith point ac-
cording to (i/k,{ia}), in which {-} denotes the fractional part of the real value
(modulo-one arithmetic). In Figure 5.5b, a = (v/5 + 1)/2, the golden ratio. This
procedure can be generalized to n dimensions by picking n — 1 distinct irrational
numbers. A technique for choosing the o parameters by using the roots of irre-
ducible polynomials is discussed in [684]. The ith sample in the lattice is

(% ian}, ... {mn_l}) | (5.27)

Recent analysis shows that some lattice sets achieve asymptotic discrepancy
that is very close to that of the best-known nonlattice sample sets [447, 938|.
Thus, restricting the points to lie on a lattice seems to entail little or no loss in
performance, but has the added benefit of a regular neighborhood structure that
is useful for path planning. Historically, lattices have required the specification
of k in advance; however, there has been increasing interest in extensible lattices,
which are infinite sequences [448, 938].

5.3 Collision Detection

Once it has been decided where the samples will be placed, the next problem is to
determine whether the configuration is in collision. Thus, collision detection is a
critical component of sampling-based planning. Even though it is often treated as
a black box, it is important to study its inner workings to understand the informa-
tion it provides and its associated computational cost. In most motion planning
applications, the majority of computation time is spent on collision checking.

A variety of collision detection algorithms exist, ranging from theoretical algo-
rithms that have excellent computational complexity to heuristic, practical algo-
rithms whose performance is tailored to a particular application. The techniques
from Section|4.3 can be used to develop a collision detection algorithm by defining
a logical predicate using the geometric model of C,,,. For the case of a 2D world
with a convex robot and obstacle, this leads to an linear-time collision detection
algorithm. In general, however, it can be determined whether a configuration is
in collision more efficiently by avoiding the full construction of C,s.

5.3.1 Basic Concepts

As in Section [3.1.1, collision detection may be viewed as a logical predicate. In
the current setting it appears as ¢ : C — {TRUE, FALSE}, in which the domain is
C instead of W. If ¢ € Cys, then ¢(q) = TRUE; otherwise, ¢(q) = FALSE.

Distance between two sets For the Boolean-valued function ¢, there is no
information about how far the robot is from hitting the obstacles. Such informa-
tion is very important in planning algorithms. A distance function provides this
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information and is defined as d : C — [0, 00), in which the real value in the range
of f indicates the distance in the world, YW, between the closest pair of points over
all pairs from A(q) and O. In general, for two closed, bounded subsets, £ and F,
of R™, the distance is defined as

B, F) = min { min {Jle = /11 }}. 5.28
p(E, F) = min | min  fle — f]] (5.28)
in which || - || is the Euclidean norm. Clearly, if ENF # (), then p(E, F) = 0. The
methods described in this section may be used to either compute distance or only
determine whether ¢ € C,s. In the latter case, the computation is often much
faster because less information is required.

Two-phase collision detection Suppose that the robot is a collection of m
attached links, Ay, As, ..., A,,, and that O has k connected components. For this
complicated situation, collision detection can be viewed as a two-phase process.

1. Broad Phase: In the broad phase, the task is to avoid performing expensive
computations for bodies that are far away from each other. Simple bounding
boxes can be placed around each of the bodies, and simple tests can be per-
formed to avoid costly collision checking unless the boxes overlap. Hashing
schemes can be employed in some cases to greatly reduce the number of pairs
of boxes that have to be tested for overlap [705]. For a robot that consists
of multiple bodies, the pairs of bodies that should be considered for collision
must be specified in advance, as described in Section 4.3.1.

2. Narrow Phase: In the narrow phase, individual pairs of bodies are each
checked carefully for collision. Approaches to this phase are described in
Sections [5.3.2/ and [5.3.3.

5.3.2 Hierarchical Methods

In this section, suppose that two complicated, nonconvex bodies, I/ and F', are
to be checked for collision. Each body could be part of either the robot or the
obstacle region. They are subsets of R? or R?, defined using any kind of geometric
primitives, such as triangles in R3. Hierarchical methods generally decompose
each body into a tree. Each vertex in the tree represents a bounding region that
contains some subset of the body. The bounding region of the root vertex contains
the whole body.

There are generally two opposing criteria that guide the selection of the type
of bounding region:

1. The region should fit the intended body points as tightly as possible.

2. The intersection test for two regions should be as efficient as possible.
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(a) (b) (c) (d)

Figure 5.9: Four different kinds of bounding regions: (a) sphere, (b) axis-aligned
bounding box (AABB), (c) oriented bounding box (OBB), and (d) convex hull.
Each usually provides a tighter approximation than the previous one but is more
expensive to test for overlapping pairs.

Figure 5.10: The large circle shows the bounding region for a vertex that covers an
L-shaped body. After performing a split along the dashed line, two smaller circles
are used to cover the two halves of the body. Each circle corresponds to a child
vertex.

Several popular choices are shown in Figure 5.9 for an L-shaped body.

The tree is constructed for a body, E (or alternatively, F') recursively as fol-
lows. For each vertex, consider the set X of all points in F that are contained in
the bounding region. Two child vertices are constructed by defining two smaller
bounding regions whose union covers X. The split is made so that the portion cov-
ered by each child is of similar size. If the geometric model consists of primitives
such as triangles, then a split could be made to separate the triangles into two
sets of roughly the same number of triangles. A bounding region is then computed
for each of the children. Figure 5.10 shows an example of a split for the case of
an L-shaped body. Children are generated recursively by making splits until very
simple sets are obtained. For example, in the case of triangles in space, a split is
made unless the vertex represents a single triangle. In this case, it is easy to test
for the intersection of two triangles.

Consider the problem of determining whether bodies E and F' are in collision.
Suppose that the trees T, and Tt have been constructed for £ and F', respectively.
If the bounding regions of the root vertices of T, and Ty do not intersect, then it
is known that 7. and 7T are not in collision without performing any additional
computation. If the bounding regions do intersect, then the bounding regions of
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the children of 7, are compared to the bounding region of T%. If either of these
intersect, then the bounding region of 7% is replaced with the bounding regions
of its children, and the process continues recursively. As long as the bounding
regions overlap, lower levels of the trees are traversed, until eventually the leaves
are reached. If triangle primitives are used for the geometric models, then at the
leaves the algorithm tests the individual triangles for collision, instead of bounding
regions. Note that as the trees are traversed, if a bounding region from the vertex
vy of T, does not intersect the bounding region from a vertex, vs, of T, then no
children of v; have to be compared to children of v;. Usually, this dramatically
reduces the number of comparisons, relative in a naive approach that tests all pairs
of triangles for intersection.

It is possible to extend the hierarchical collision detection scheme to also com-
pute distance. The closest pair of points found so far serves as an upper bound
that prunes aways some future pairs from consideration. If a pair of bounding
regions has a distance greater than the smallest distance computed so far, then
their children do not have to be considered [640]. In this case, an additional re-
quirement usually must be imposed. Every bounding region must be a proper
subset of its parent bounding region [809]. If distance information is not needed,
then this requirement can be dropped.

5.3.3 Incremental Methods

This section focuses on a particular approach called incremental distance com-
putation, which assumes that between successive calls to the collision detection
algorithm, the bodies move only a small amount. Under this assumption the
algorithm achieves “almost constant time” performance for the case of convex
polyhedral bodies [638, 704]. Nonconvex bodies can be decomposed into convex
components.

These collision detection algorithms seem to offer wonderful performance, but
this comes at a price. The models must be coherent, which means that all of the
primitives must fit together nicely. For example, if a 2D model uses line segments,
all of the line segments must fit together perfectly to form polygons. There can be
no isolated segments or chains of segments. In three dimensions, polyhedral models
are required to have all faces come together perfectly to form the boundaries of
3D shapes. The model cannot be an arbitrary collection of 3D triangles.

The method will be explained for the case of 2D convex polygons, which are
interpreted as convex subsets of R2. Voronoi regions for a convex polygon will be
defined in terms of features. The feature set is the set of all vertices and edges of a
convex polygon. Thus, a polygon with n edges has 2n features. Any point outside
of the polygon has a closest feature in terms of Euclidean distance. For a given
feature, F, the set of all points in R? from which F is the closest feature is called
the Voronoi region of F' and is denoted Vor(F'). Figure[5.11 shows all ten Voronoi
regions for a pentagon. Each feature is considered as a point set in the discussion
below.
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Figure 5.11: The Voronoi regions alternate between being edge-based and vertex-
based. The Voronoi regions of vertices are labeled with a “V” and the Voronoi
regions of edges are labeled with an “E.”

For any two convex polygons that do not intersect, the closest point is deter-
mined by a pair of points, one on each polygon (the points are unique, except in
the case of parallel edges). Consider the feature for each point in the closest pair.
There are only three possible combinations:

e Vertex-Vertex Each point of the closest pair is a vertex of a polygon.

e Edge-Vertex One point of the closest pair lies on an edge, and the other
lies on a vertex.

e Edge-Edge Each point of the closest pair lies on an edge. In this case, the
edges must be parallel.

Let P, and P, be two convex polygons, and let F} and F5, represent any feature
pair, one from each polygon. Let (z1,y1) € F; and (x2,92) € F» denote the closest
pair of points, among all pairs of points in F and F3, respectively. The following
condition implies that the distance between (z1,y;) and (z3,y2) is the distance
between P; and Ps:

(x1,y1) € Vor(Fy) and (x2,ys) € Vor(F}). (5.29)

If (5.29) is satisfied for a given feature pair, then the distance between P; and P,
equals the distance between F; and F,. This implies that the distance between P;
and P, can be determined in constant time. The assumption that P; moves only
a small amount relative to P» is made to increase the likelihood that the closest
feature pair remains the same. This is why the phrase “almost constant time” is
used to describe the performance of the algorithm. Of course, it is possible that
the closest feature pair will change. In this case, neighboring features are tested
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using the condition above until the new closest pair of features is found. In this
worst case, this search could be costly, but this violates the assumption that the
bodies do not move far between successive collision detection calls.

The 2D ideas extend to 3D convex polyhedra [249, 638, 704]. The primary
difference is that three kinds of features are considered: faces, edges, and vertices.
The cases become more complicated, but the idea is the same. Once again, the
condition regarding mutual Voronoi regions holds, and the resulting incremental
collision detection algorithm has “almost constant time” performance.

5.3.4 Checking a Path Segment

Collision detection algorithms determine whether a configuration lies in C e, but
motion planning algorithms require that an entire path maps into Cgpee. The
interface between the planner and collision detection usually involves validation
of a path segment (i.e., a path, but often a short one). This cannot be checked
point-by-point because it would require an uncountably infinite number of calls to
the collision detection algorithm.

Suppose that a path, 7 : [0,1] — C, needs to be checked to determine whether
7([0,1]) C Cfree- A common approach is to sample the interval [0, 1] and call the
collision checker only on the samples. What resolution of sampling is required?
How can one ever guarantee that the places where the path is not sampled are
collision-free? There are both practical and theoretical answers to these questions.
In practice, a fixed Ag > 0 is often chosen as the C-space step size. Points ¢, ty €
[0, 1] are then chosen close enough together to ensure that p(7(t1),7(t2)) < Ag, in
which p is the metric on C. The value of Agq is often determined experimentally. If
Aq is too small, then considerable time is wasted on collision checking. If Agq is too
large, then there is a chance that the robot could jump through a thin obstacle.

Setting Aq empirically might not seem satisfying. Fortunately, there are sound
algorithmic ways to verify that a path is collision-free. In some applications the
methods are still not used because they are trickier to implement and they often
yield worse performance. Therefore, both methods are presented here, and you can
decide which is appropriate, depending on the context and your personal tastes.

Ensuring that 7([0,1]) C Cpee requires the use of both distance information
and bounds on the distance that points on A can travel in R. Such bounds can
be obtained by using the robot displacement metric from Example 5.6. Before ex-
pressing the general case, first we will explain the concept in terms of a rigid robot
that translates and rotates in W = R2. Let x4, y; € R? and 6 € [0, 27]/ ~. Suppose
that a collision detection algorithm indicates that A(g) is at least d units away
from collision with obstacles in V. This information can be used to determine
a region in Cye that contains ¢. Suppose that the next candidate configuration
to be checked along 7 is ¢/. If no point on A travels more than distance d when
moving from ¢ to ¢ along 7, then ¢’ and all configurations between ¢ and ¢’ must
be collision-free. This assumes that on the path from ¢ to ¢, every visited config-
uration must lie between ¢; and ¢, for the ith coordinate and any ¢ from 1 to n.
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Figure 5.12: The furthest point on 4 from the origin travels the fastest when A
is rotated. At most it can be displaced by 27r, if z; and y; are fixed.

If the robot can instead take any path between ¢ and ¢’, then no such guarantee
can be made).

When A undergoes a translation, all points move the same distance. For
rotation, however, the distance traveled depends on how far the point on A is
from the rotation center, (0,0). Let a, = (z,,y,) denote the point on A that
has the largest magnitude, r = (/22 +y2. Figure [5.12 shows an example. A
transformed point a € A may be denoted by a(x,y;,0). The following bound is
obtained for any a € A, if the robot is rotated from orientation 6 to 6"

Ha(l‘taym@) - a’(xtaytvel)n S HaT(xt?ytae) - G’T(‘rt?yta@/)” < T|0 - 9/’7 (530)

assuming that a path in C is followed that interpolates between 6 and 0’ (using the
shortest path in S! between 6 and ¢). Thus, if A(q) is at least d away from the
obstacles, then the orientation may be changed without causing collision as long
as 1|0 — @'| < d. Note that this is a loose upper bound because a, travels along a
circular arc and can be displaced by no more than 27r.

Similarly, z; and y, may individually vary up to d, yielding |z, — z}| < d and
lyr — y;| < d. If all three parameters vary simultaneously, then a region in Cyy..
can be defined as

{(zh,9;,0") € C [ |z — i + lye — i + 7|0 — 0] < d}. (5.31)

Such bounds can generally be used to set a step size, Aq, for collision checking
that guarantees the intermediate points lie in C,... The particular value used may
vary depending on d and the direction® of the path.

For the case of SO(3), once again the displacement of the point on A that
has the largest magnitude can be bounded. It is best in this case to express the
bounds in terms of quaternion differences, ||h—h/||. Euler angles may also be used

8To formally talk about directions, it would be better to define a differentiable structure on
C. This will be deferred to Section 15.4] where it seems unavoidable.
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to obtain a straightforward generalization of (5.31) that has six terms, three for
translation and three for rotation. For each of the three rotation parts, a point
with the largest magnitude in the plane perpendicular to the rotation axis must
be chosen.

If there are multiple links, it becomes much more complicated to determine the
step size. Fach point a € A; is transformed by some nonlinear function based on
the kinematic expressions from Sections (3.3 and Let a : C — W denote this
transformation. In some cases, it might be possible to derive a Lipschitz condition
of the form

la(q) — a(qg")|| < cllg —4'll, (5.32)

in which ¢ € (0,00) is a fixed constant, a is any point on A;, and the expression
holds for any ¢,q¢" € C. The goal is to make the Lipschitz constant, ¢, as small as
possible; this enables larger variations in q.

A better method is to individually bound the link displacement with respect
to each parameter,

||a(q17 s Qi—1,40 Qi1 - - - 7qn) - a<q1’ s 7Qi—17qz/'7 Git1y .- 7q7’b)|| < C’L|ql - q'Z|7
(5.33)
to obtain the Lipschitz constants c¢q, ..., ¢,. The bound on robot displacement

becomes
n

la(q) = a(g)]l < D eila — il (5.34)
i=1

The benefit of using individual parameter bounds can be seen by considering a long
chain. Consider a 50-link chain of line segments in R?, and each link has length 10.
The C-space is T?°, which can be parameterized as [0, 27]°°/ ~. Suppose that the
chain is in a straight-line configuration (¢; = 0 for all 1 < i < 50), which means
that the last point is at (500,0) € W. Changes in 6, the orientation of the first
link, dramatically move Asy,. However, changes in 05, move Asy a smaller amount.
Therefore, it is advantageous to pick a different Ag; for each 1 < ¢ < 50. In this
example, a smaller value should be used for Af; in comparison to Afs.

Unfortunately, there are more complications. Suppose the 50-link chain is in
a configuration that folds all of the links on top of each other (; = 7 for each
1 < i < n). In this case, A5y does not move as fast when 6; is perturbed,
in comparison to the straight-line configuration. A larger step size for 6; could
be used for this configuration, relative to other parts of C. The implication is
that, although Lipschitz constants can be made to hold over all of C, it might be
preferable to determine a better bound in a local region around ¢ € C. A linear
method could be obtained by analyzing the Jacobian of the transformations, such
as (3.53) and (3.57).

Another important concern when checking a path is the order in which the
samples are checked. For simplicity, suppose that Ag is constant and that the
path is a constant-speed parameterization. Should the collision checker step along
from 0 up to 17 Experimental evidence indicates that it is best to use a recursive
binary strategy [381]. This makes no difference if the path is collision-free, but
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it often saves time if the path is in collision. This is a kind of sampling problem
over [0, 1], which is addressed nicely by the van der Corput sequence, v. The last
column in Figure 5.2 indicates precisely where to check along the path in each
step. Initially, 7(1) is checked. Following this, points from the van der Corput
sequence are checked in order: 7(0), 7(1/2), 7(1/4), 7(3/4), 7(1/8), .... The
process terminates if a collision is found or when the dispersion falls below Ag.
If Agq is not constant, then it is possible to skip over some points of v in regions
where the allowable variation in ¢ is larger.

5.4 Incremental Sampling and Searching

5.4.1 The General Framework

The algorithms of Sections 5.4/ and (5.5 follow the single-query model, which means
(qr, qc) is given only once per robot and obstacle set. This means that there are no
advantages to precomputation, and the sampling-based motion planning problem
can be considered as a kind of search. The multiple-query model, which favors
precomputation, is covered in Section 5.6.

The sampling-based planning algorithms presented in the present section are
strikingly similar to the family of search algorithms summarized in Section [2.2.4.
The main difference lies in step 3 below, in which applying an action, u, is replaced
by generating a path segment, 7,. Another difference is that the search graph, G,
is undirected, with edges that represent paths, as opposed to a directed graph in
which edges represent actions. It is possible to make these look similar by defining
an action space for motion planning that consists of a collection of paths, but this
is avoided here. In the case of motion planning with differential constraints, this
will actually be required; see Chapter [14.

Most single-query, sampling-based planning algorithms follow this template:

1. Initialization: Let G(V, F) represent an undirected search graph, for which
V' contains at least one vertex and E contains no edges. Typically, V contains
qr, ga, or both. In general, other points in C¢,.. may be included.

2. Vertex Selection Method (VSM): Choose a vertex ., € V for expan-
sion.

3. Local Planning Method (LPM): For some gy € Cjree that may or may
not be represented by a vertex in V', attempt to construct a path 7, : [0,1] —
Cfree such that 7(0) = geur and 7(1) = @uew. Using the methods of Section
5.3.4, 7, must be checked to ensure that it does not cause a collision. If this
step fails to produce a collision-free path segment, then go to step 2.

4. Insert an Edge in the Graph: Insert 74 into F, as an edge from ¢, to
Gnew- If Gnew 18 not already in V', then it is inserted.
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5. Check for a Solution: Determine whether G encodes a solution path.
As in the discrete case, if there is a single search tree, then this is trivial,
otherwise, it can become complicated and expensive.

6. Return to Step 2: Iterate unless a solution has been found or some ter-
mination condition is satisfied, in which case the algorithm reports failure.

In the present context, G is a topological graph, as defined in Example|4.6. Each
vertex is a configuration and each edge is a path that connects two configurations.
In this chapter, it will be simply referred to as a graph when there is no chance of
confusion. Some authors refer to such a graph as a roadmap; however, we reserve
the term roadmap for a graph that contains enough paths to make any motion
planning query easily solvable. This case is covered in Section and throughout
Chapter [6.

A large family of sampling-based algorithms can be described by varying the
implementations of steps 2 and 3. Implementations of the other steps may also
vary, but this is less important and will be described where appropriate. For
convenience, step 2 will be called the vertex selection method (VSM) and step 3
will be called the local planning method (LPM). The role of the VSM is similar to
that of the priority queue, ), in Section 2.2.1. The role of the LPM is to compute
a collision-free path segment that can be added to the graph. It is called local
because the path segment is usually simple (e.g., the shortest path) and travels a
short distance. It is not global in the sense that the LPM does not try to solve the
entire planning problem; it is expected that the LPM may often fail to construct
path segments.

It will be formalized shortly, but imagine for the time being that any of the
search algorithms from Section 2.2 may be applied to motion planning by ap-
proximating C with a high-resolution grid. The resulting problem looks like a
multi-dimensional extension of Example 2.1] (the “labyrinth” walls are formed by
Cobs). For a high-resolution grid in a high-dimensional space, most classical dis-
crete searching algorithms have trouble getting trapped in a local minimum. There
could be an astronomical number of configurations that fall within a concavity in
Cops that must be escaped to solve the problem, as shown in Figure|5.13a. Imagine
a problem in which the C-space obstacle is a giant “bowl” that can trap the config-
uration. This figure is drawn in two dimensions, but imagine that the C has many
dimensions, such as six for SE(3) or perhaps dozens for a linkage. If the discrete
planning algorithms from Section 2.2 are applied to a high-resolution grid approx-
imation of C, then they will all waste their time filling up the bowl before being
able to escape to gg. The number of grid points in this bowl would typically be on
the order of 100™ for an n-dimensional C-space. Therefore, sampling-based motion
planning algorithms combine sampling and searching in a way that attempts to
overcome this difficulty.

As in the case of discrete search algorithms, there are several classes of algo-
rithms based on the number of search trees.
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Figure 5.13: All of these depict high-dimensional obstacle regions in C-space. (a)
The search must involve some sort of multi-resolution aspect, otherwise, that al-
gorithm may explore too many points within a cavity. (b) Sometimes the problem
is like a bug trap, in which case bidirectional search can help. (c¢) For a double bug
trap, multi-directional search may be needed. (d) This example is hard to solve
even for multi-directional search.

Unidirectional (single-tree) methods: In this case, the planning ap-
pears very similar to discrete forward search, which was given in Figure 2.4.
The main difference between algorithms in this category is how they imple-
ment the VSM and LPM. Figure 5.13b shows a bug tmpq example for which
forward-search algorithms would have great trouble; however, the problem
might not be difficult for backward search, if the planner incorporates some
kind of greedy, best-first behavior. This example, again in high dimensions,
can be considered as a kind of “bug trap.” To leave the trap, a path must
be found from g¢; into the narrow opening. Imagine a fly buzzing around
through the high-dimensional trap. The escape opening might not look too
difficult in two dimensions, but if it has a small range with respect to each
configuration parameter, it is nearly impossible to find the opening. The tip
of the “volcano” would be astronomically small compared to the rest of the
bug trap. Examples such as this provide some motivation for bidirectional

9This principle is actually used in real life to trap flying bugs. This analogy was suggested
by James O’Brien in a discussion with James Kuffner.
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algorithms. It might be easier for a search tree that starts in gg to arrive in
the bug trap.

Bidirectional (two-tree) methods: Since it is not known whether ¢; or
gc might lie in a bug trap (or another challenging region), a bidirectional
approach is often preferable. This follows from an intuition that two prop-
agating wavefronts, one centered on ¢; and the other on ¢g, will meet after
covering less area in comparison to a single wavefront centered at q; that
must arrive at ¢g. A bidirectional search is achieved by defining the VSM to
alternate between trees when selecting vertices. The LPM sometimes gen-
erates paths that explore new parts of Cy., and at other times it tries to
generate a path that connects the two trees.

Multi-directional (more than two trees) methods: If the problem
is so bad that a double bug trap exists, as shown in Figure 5.13c, then it
might make sense to grow trees from other places in the hopes that there are
better chances to enter the traps in the other direction. This complicates the
problem of connecting trees, however. Which pairs of trees should be selected
in each iteration for possible connection? How often should the same pair be
selected? Which vertex pairs should be selected? Many heuristic parameters
may arise in practice to answer these questions.

Of course, one can play the devil’s advocate and construct the example in Figure
5.13d, for which virtually all sampling-based planning algorithms are doomed.
Even harder versions can be made in which a sequence of several narrow corridors
must be located and traversed. We must accept the fact that some problems are
hopeless to solve using sampling-based planning methods, unless there is some
problem-specific structure that can be additionally exploited.

5.4.2 Adapting Discrete Search Algorithms

One of the most convenient and straightforward ways to make sampling-based
planning algorithms is to define a grid over C and conduct a discrete search using
the algorithms of Section 2.2. The resulting planning problem actually looks very
similar to Example[2.1. Each edge now corresponds to a path in Cy,e.. Some edges
may not exist because of collisions, but this will have to be revealed incrementally
during the search because an explicit representation of C,s is too expensive to
construct (recall Section [4.3).

Assume that an n-dimensional C-space is represented as a unit cube, C =
[0,1)"/ ~, in which ~ indicates that identifications of the sides of the cube are
made to reflect the C-space topology. Representing C as a unit cube usually
requires a reparameterization. For example, an angle 6 € [0, 27) would be replaced
with 6/27 to make the range lie within [0, 1]. If quaternions are used for SO(3),
then the upper half of S* must be deformed into [0,1]3/ ~.
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Discretization Assume that C is discretized by using the resolutions ky, ks,. . .,
and k,, in which each k; is a positive integer. This allows the resolution to be
different for each C-space coordinate. Either a standard grid or a Sukharev grid
can be used. Let

Ag=1[0 - 01/k 0 --- 0], (5.35)

in which the first ¢ — 1 components and the last n — ¢ components are 0. A grid
point is a configuration g € C that can be expressed in the form1°

> iilg;, (5.36)
i=1

in which each j; € {0,1,...,k;}. The integers ji, ..., j, can be imagined as array
indices for the grid. Let the term boundary grid point refer to a grid point for
which j7; = 0 or j; = k; for some 2. Due to identifications, boundary grid points
might have more than one representation using (5.36)).

Neighborhoods For each grid point ¢ we need to define the set of nearby grid
points for which an edge may be constructed. Special care must be given to
defining the neighborhood of a boundary grid point to ensure that identifications
and the C-space boundary (if it exists) are respected. If ¢ is not a boundary grid
point, then the I-neighborhood is defined as

Ni(q) ={q+Aq, .. ,q+Agm,q—Aq1,...,q = Agn}. (5.37)

For an n-dimensional C-space there at most 2n 1-neighbors. In two dimensions,
this yields at most four 1-neighbors, which can be thought of as “up,” “down,”
“left,” and “right.” There are at most four because some directions may be blocked
by the obstacle region.

A 2-neighborhood is defined as

No(q) ={g £ AqEAq; | 1<4,5<n, i#j}UN(q). (5.38)

Similarly, a k-neighborhood can be defined for any positive integer k£ < n. For
an n-neighborhood, there are at most 3™ — 1 neighbors; there may be fewer due
to boundaries or collisions. The definitions can be easily extended to handle the
boundary points.

Obtaining a discrete planning problem Once the grid and neighborhoods
have been defined, a discrete planning problem is obtained. Figure [5.14 depicts
the process for a problem in which there are nine Sukharev grid points in [0, 1]2.
Using 1-neighborhoods, the potential edges in the search graph, G(V, E), appear
in Figure 5.14a. Note that G is a topological graph, as defined in Example 4.6,
because each vertex is a configuration and each edge is a path. If ¢; and gg do not

10 Alternatively, the general lattice definition in (5.21) could be used.
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Figure 5.14: A topological graph can be constructed during the search and can
successfully solve a motion planning problem using very few samples.

coincide with grid points, they need to be connected to some nearby grid points,
as shown in Figure [5.14b. What grid points should ¢; and gg be connected to?
As a general rule, if k-neighbors are used, then one should try connecting ¢q; and
qc to any grid points that are at least as close as the furthest k-neighbor from a
typical grid point.

Usually, all of the vertices and edges shown in Figure|5.14b do not appear in G
because some intersect with C,ps. Figure 5.14c shows a more typical situation, in
which some of the potential vertices and edges are removed because of collisions.
This representation could be computed in advance by checking all potential vertices
and edges for collision. This would lead to a roadmap, which is suited for multiple
queries and is covered in Section [5.6. In this section, it is assumed that G is
revealed “on the fly” during the search. This is the same situation that occurs
for the discrete planning methods from Section [2.2. In the current setting, the
potential edges of G are validated during the search. The candidate edges to
evaluate are given by the definition of the k-neighborhoods. During the search,
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any edge or vertex that has been checked for collision explicitly appears in a data
structure so that it does not need to be checked again. At the end of the search,
a path is found, as depicted in Figure 5.14d.

Grid resolution issues The method explained so far will nicely find the solution
to many problems when provided with the correct resolution. If the number of
points per axis is too high, then the search may be too slow. This motivates
selecting fewer points per axis, but then solutions might be missed. This trade-off
is fundamental to sampling-based motion planning. In a more general setting, if
other forms of sampling and neighborhoods are used, then enough samples have
to be generated to yield a sufficiently small dispersion.

There are two general ways to avoid having to select this resolution (or more
generally, dispersion):

1. Iteratively refine the resolution until a solution is found. In this case, sam-
pling and searching become interleaved. One important variable is how
frequently to alternate between the two processes. This will be presented
shortly.

2. An alternative is to abandon the adaptation of discrete search algorithms
and develop algorithms directly for the continuous problem. This forms the
basis of the methods in Sections|[5.4.3,/5.4.4, and 5.5

The most straightforward approach is to iteratively improve the grid resolution.
Suppose that initially a standard grid with 2" points total and 2 points per axis
is searched using one of the discrete search algorithms, such as best-first or A*. If
the search fails, what should be done? One possibility is to double the resolution,
which yields a grid with 4™ points. Many of the edges can be reused from the
first grid; however, the savings diminish rapidly in higher dimensions. Once the
resolution is doubled, the search can be applied again. If it fails again, then the
resolution can be doubled again to yield 8" points. In general, there would be a
full grid for 2™ points, for each 7. The problem is that if n is large, then the rate
of growth is too large. For example, if n = 10, then there would initially be 1024
points; however, when this fails, the search is not performed again until there are
over one million points! If this also fails, then it might take a very long time to
reach the next level of resolution, which has 23Y points.

A method similar to iterative deepening from Section 2.2.2 would be preferable.
Simply discard the efforts of the previous resolution and make grids that have "
points per axis for each iteration ¢. This yields grids of sizes 2", 3", 4", and so on,
which is much better. The amount of effort involved in searching a larger grid is
insignificant compared to the time wasted on lower resolution grids. Therefore, it
seems harmless to discard previous work.

A better solution is not to require that a complete grid exists before it can
be searched. For example, the resolution can be increased for one axis at a time
before attempting to search again. Even better yet may be to tightly interleave
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searching and sampling. For example, imagine that the samples appear as an
infinite, dense sequence a. The graph can be searched after every 100 points are
added, assuming that neighborhoods can be defined or constructed even though
the grid is only partially completed. If the search is performed too frequently, then
searching would dominate the running time. An easy way make this efficient is
to apply the union-find algorithm [245, 825] to iteratively keep track of connected
components in G instead of performing explicit searching. If ¢; and g5 become part
of the same connected component, then a solution path has been found. Every
time a new point in the sequence « is added, the “search” is performed in nearly!!
constant time by the union-find algorithm. This is the tightest interleaving of
the sampling and searching, and results in a nice sampling-based algorithm that
requires no resolution parameter. It is perhaps best to select a sequence « that
contains some lattice structure to facilitate the determination of neighborhoods in
each iteration.

What if we simply declare the resolution to be outrageously high at the outset?
Imagine there are 100™ points in the grid. This places all of the burden on the
search algorithm. If the search algorithm itself is good at avoiding local minima
and has built-in multi-resolution qualities, then it may perform well without the
iterative refinement of the sampling. The method of Section |5.4.3| is based on
this idea by performing best-first search on a high-resolution grid, combined with
random walks to avoid local minima. The algorithms of Section 5.5/ go one step
further and search in a multi-resolution way without requiring resolutions and
neighborhoods to be explicitly determined. This can be considered as the limiting
case as the number of points per axis approaches infinity.

Although this section has focused on grids, it is also possible to use other forms
of sampling from Section This requires defining the neighborhoods in a suit-
able way that generalizes the k-neighborhoods of this section. In every case, an
infinite, dense sample sequence must be defined to obtain resolution completeness
by reducing the dispersion to zero in the limit. Methods for obtaining neighbor-
hoods for irregular sample sets have been developed in the context of sampling-
based roadmaps; see Section [5.6. The notion of improving resolution becomes
generalized to adding samples that improve dispersion (or even discrepancy).

5.4.3 Randomized Potential Fields

Adapting the discrete algorithms from Section 2.2 works well if the problem can
be solved with a small number of points. The number of points per axis must be
small or the dimension must be low, to ensure that the number of points, k£™, for
k points per axis and n dimensions is small enough so that every vertex in g can
be reached in a reasonable amount of time. If, for example, the problem requires
50 points per axis and the dimension is 10, then it is impossible to search all of

Tt is not constant because the running time is proportional to the inverse Ackerman function,
which grows very, very slowly. For all practical purposes, the algorithm operates in constant time.
See Section [6.5.2.
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Figure 5.15: The randomized potential field method can be modeled as a three-
state machine.

the 50! samples. Planners that exploit best-first heuristics might find the answer
without searching most of them; however, for a simple problem such as that shown
in Figure!5.13a, the planner will take too long exploring the vertices in the bowl.'?

The randomized potential field [71, 73, 590] approach uses random walks to
attempt to escape local minima when best-first search becomes stuck. It was
one of the first sampling-based planners that developed specialized techniques
beyond classical discrete search, in an attempt to better solve challenging motion
planning problems. In many cases, remarkable results were obtained. In its time,
the approach was able to solve problems up to 31 degrees of freedom, which was
well beyond what had been previously possible. The main drawback, however,
was that the method involved many heuristic parameters that had to be adjusted
for each problem. This frustration eventually led to the development of better
approaches, which are covered in Sections 5.5, and 5.6. Nevertheless, it is
worthwhile to study the clever heuristics involved in this earlier method because
they illustrate many interesting issues, and the method was very influential in the
development of other sampling-based planning algorithms.‘lg’

The most complicated part of the algorithm is the definition of a potential
function, which can be considered as a pseudometric that tries to estimate the
distance from any configuration to the goal. In most formulations, there is an
attractive term, which is a metric on C that yields the distance to the goal, and
a repulsive term, which penalizes configurations that come too close to obstacles.
The construction of potential functions involves many heuristics and is covered
in great detail in [590]. One of the most effective methods involves constructing
cost-to-go functions over W and lifting them to C [72]. In this section, it will be
sufficient to assume that some potential function, g(q), is defined, which is the
same notation (and notion) as a cost-to-go function in Section 2.2.2. In this case,
however, there is no requirement that g(q) is optimal or even an underestimate of
the true cost to go.

When the search becomes stuck and a random walk is needed, it is executed for
some number of iterations. Using the discretization procedures of Section 5.4.2, a

120f course, that problem does not appear to need so many points per axis; fewer may be used
instead, if the algorithm can adapt the sampling resolution or dispersion.

3The exciting results obtained by the method even helped inspire me many years ago to work
on motion planning.
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high-resolution grid (e.g., 50 points per axis) is initially defined. In each iteration,
the current configuration is modified as follows. Each coordinate, ¢;, is increased
or decreased by Ag; (the grid step size) based on the outcome of a fair coin toss.
Topological identifications must be respected, of course. After each iteration, the
new configuration is checked for collision, or whether it exceeds the boundary of
C (if it has a boundary). If so, then it is discarded, and another attempt is made
from the previous configuration. The failures can repeat indefinitely until a new
configuration in Cy,¢. is obtained.

The resulting planner can be described in terms of a three-state machine, which
is shown in Figure 5.15. Each state is called a mode to avoid confusion with earlier
state-space concepts. The VSM and LPM are defined in terms of the mode.
Initially, the planner is in the BEST FIRST mode and uses q; to start a gradient
descent. While in the BEST FIRST mode, the VSM selects the newest vertex,
v € V. In the first iteration, this is ¢;. The LPM creates a new vertex, v,, in a
neighborhood of v, in a direction that minimizes g. The direction sampling may
be performed using randomly selected or deterministic samples. Using random
samples, the sphere sampling method from Section 5.2.2/ can be applied. After
some number of tries (another parameter), if the LPM is unsuccessful at reducing
g, then the mode is changed to RANDOM WALK because the best-first search is
stuck in a local minimum of g.

In the RANDOM WALK mode, a random walk is executed from the newest ver-
tex. The random walk terminates if either g is lowered or a specified limit of
iterations is reached. The limit is actually sampled from a predetermined ran-
dom variable (which contains parameters that also must be selected). When the
RANDOM WALK mode terminates, the mode is changed back to BEST FIRST. A
counter is incremented to keep track of the number of times that the random walk
was attempted. A parameter K determines the maximum number of attempted
random walks (a reasonable value is K = 20 [72]). If BEST FIRST fails after K
random walks have been attempted, then the BACKTRACK mode is entered. The
BACKTRACK mode selects a vertex at random from among the vertices in V' that
were obtained during a random walk. Following this, the counter is reset, and the
mode is changed back to BEST FIRST.

Due to the random walks, the resulting paths are often too complicated to be
useful in applications. Fortunately, it is straightforward to transform a computed
path into a simpler one that is still collision-free. A common approach is to
iteratively pick pairs of points at random along the domain of the path and attempt
to replace the path segment with a straight-line path (in general, the shortest path
in C). For example, suppose t1,ty € [0, 1] are chosen at random, and 7 : [0,1] —
Cfree is the computed solution path. This path is transformed into a new path,

7(t) ifo<t<t
T/<t) = G,T(tl) —+ (1 — G)T(tz) if tl S t S tQ (539)
7(t) ifty <t <1,

in which a € [0,1] represents the fraction of the way from t; to to. Explicitly,
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a = (ty —t)/(ta — t1). The new path must be checked for collision. If it passes,
then it replaces the old path; otherwise, it is discarded and a new pair tq, to, is
chosen.

The randomized potential field approach can escape high-dimensional local
minima, which allow interesting solutions to be found for many challenging high-
dimensional problems. Unfortunately, the heavy amount of parameter tuning
caused most people to abandon the method in recent times, in favor of newer
methods.

5.4.4 Other Methods

Several influential sampling-based methods are given here. Each of them appears
to offer advantages over the randomized potential field method. All of them use
randomization, which was perhaps inspired by the potential field method.

Ariadne’s Clew algorithm This approach grows a search tree that is biased
to explore as much new territory as possible in each iteration [690, 689]. There are
two modes, SEARCH and EXPLORE, which alternate over successive iterations. In
the EXPLORE mode, the VSM selects a vertex, v,, at random, and the LPM finds
a new configuration that can be easily connected to v, and is as far as possible
from the other vertices in G. A global optimization function that aggregates the
distances to other vertices is optimized using a genetic algorithm. In the SEARCH
mode, an attempt is made to extend the vertex added in the EXPLORE mode to
the goal configuration. The key idea from this approach, which influenced both
the next approach and the methods in Section[5.5, is that some of the time must
be spent exploring the space, as opposed to focusing on finding the solution. The
greedy behavior of the randomized potential field led to some efficiency but was
also its downfall for some problems because it was all based on escaping local
minima with respect to the goal instead of investing time on global exploration.
One disadvantage of Ariadne’s Clew algorithm is that it is very difficult to solve
the optimization problem for placing a new vertex in the EXPLORE mode. Genetic
algorithms were used in [689], which are generally avoided for motion planning
because of the required problem-specific parameter tuning.

Expansive-space planner This method [469, 846| generates samples in a way
that attempts to explore new parts of the space. In this sense, it is similar to
the explore mode of the Ariadne’s Clew algorithm. Furthermore, the planner is
made more efficient by borrowing the bidirectional search idea from discrete search
algorithms, as covered in Section 2.2.3. The VSM selects a vertex, v,, from G with
a probability that is inversely proportional to the number of other vertices of G
that lie within a predetermined neighborhood of v.. Thus, “isolated” vertices
are more likely to be chosen. The LPM generates a new vertex v, at random
within a predetermined neighborhood of v.. It will decide to insert v, into G
with a probability that is inversely proportional to the number of other vertices
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of G that lie within a predetermined neighborhood of v,. For a fixed number
of iterations, the VSM repeatedly chooses the same vertex, until moving on to
another vertex. The resulting planner is able to solve many interesting problems
by using a surprisingly simple criterion for the placement of points. The main
drawbacks are that the planner requires substantial parameter tuning, which is
problem-specific (or at least specific to a similar family of problems), and the
performance tends to degrade if the query requires systematically searching a long
labyrinth. Choosing the radius of the predetermined neighborhoods essentially
amounts to determining the appropriate resolution.

Random-walk planner A surprisingly simple and efficient algorithm can be
made entirely from random walks [181]. To avoid parameter tuning, the algorithm
adjusts its distribution of directions and magnitude in each iteration, based on the
success of the past k iterations (perhaps k is the only parameter). In each iteration,
the VSM just selects the vertex that was most recently added to G. The LPM
generates a direction and magnitude by generating samples from a multivariate
Gaussian distribution whose covariance parameters are adaptively tuned. The
main drawback of the method is similar to that of the previous method. Both
have difficulty traveling through long, winding corridors. It is possible to combine
adaptive random walks with other search algorithms, such as the potential field
planner [180].

5.5 Rapidly Exploring Dense Trees

This section introduces an incremental sampling and searching approach that
yields good performance in practice without any parameter tuning!'* The idea
is to incrementally construct a search tree that gradually improves the resolution
but does not need to explicitly set any resolution parameters. In the limit, the
tree densely covers the space. Thus, it has properties similar to space filling curves
[844], but instead of one long path, there are shorter paths that are organized into
a tree. A dense sequence of samples is used as a guide in the incremental con-
struction of the tree. If this sequence is random, the resulting tree is called a
rapidly exploring random tree (RRT). In general, this family of trees, whether
the sequence is random or deterministic, will be referred to as rapidly exploring
dense trees (RDTs) to indicate that a dense covering of the space is obtained. This
method was originally developed for motion planning under differential constraints
[610, 613]; that case is covered in Section 14.4.3.

14The original RRT [600] was introduced with a step size parameter, but this is eliminated in
the current presentation. For implementation purposes, one might still want to revert to this
older way of formulating the algorithm because the implementation is a little easier. This will
be discussed shortly.
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SIMPLE_RDT(qo)
1 G.init(qo);
2 fori=1tokdo
3 G.add_vertex(a(1));
4 ¢n < NEAREST(S(G), a(i));
5 G.add_edge(qy, a(i));

Figure 5.16: The basic algorithm for constructing RDTs (which includes RRTs
as a special case) when there are no obstacles. It requires the availability of a
dense sequence, «, and iteratively connects from «(i) to the nearest point among
all those reached by G.

dn
a(i)
qo qo

(a) (b)

Figure 5.17: (a) Suppose inductively that this tree has been constructed so far
using the algorithm in Figure [5.16. (b) A new edge is added that connects from
the sample «(i) to the nearest point in S, which is the vertex g,.

5.5.1 The Exploration Algorithm

Before explaining how to use these trees to solve a planning query, imagine that
the goal is to get as close as possible to every configuration, starting from an
initial configuration. The method works for any dense sequence. Once again, let «
denote an infinite, dense sequence of samples in C. The ith sample is denoted by
a(7). This may possibly include a uniform, random sequence, which is only dense
with probability one. Random sequences that induce a nonuniform bias are also
acceptable, as long as they are dense with probability one.

An RDT is a topological graph, G(V, E). Let S C Cyy. indicate the set of all
points reached by G. Since each e € E is a path, this can be expressed as the
swath, S, of the graph, which is defined as

S =Je(0,1)). (5.40)

ecE

In (5.40), e([0,1]) C Cfyee is the image of the path e.

The exploration algorithm is first explained in Figure [5.16 without any obsta-
cles or boundary obstructions. It is assumed that C is a metric space. Initially,
a vertex is made at go. For k iterations, a tree is iteratively grown by connecting



228 S. M. LaValle: Planning Algorithms

Figure 5.18: If the nearest point in S lies in an edge, then the edge is split into
two, and a new vertex is inserted into G.

45 iterations 2345 iterations

Figure 5.19: In the early iterations, the RRT quickly reaches the unexplored parts.
However, the RRT is dense in the limit (with probability one), which means that
it gets arbitrarily to any point in the space.
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4n

qo

Figure 5.20: If there is an obstacle, the edge travels up to the obstacle boundary,
as far as allowed by the collision detection algorithm.

a(i) to its nearest point in the swath, S. The connection is usually made along
the shortest possible path. In every iteration, a(i) becomes a vertex. Therefore,
the resulting tree is dense. Figures[5.1745.18] illustrate an iteration graphically.
Suppose the tree has three edges and four vertices, as shown in Figure 5.17a. If
the nearest point, ¢, € S, to a(i) is a vertex, as shown in Figure [5.17b, then an
edge is made from ¢, to a(z). However, if the nearest point lies in the interior of an
edge, as shown in Figure then the existing edge is split so that g, appears as
a new vertex, and an edge is made from ¢, to «(i). The edge splitting, if required,
is assumed to be handled in line 4 by the method that adds edges. Note that the
total number of edges may increase by one or two in each iteration.

The method as described here does not fit precisely under the general frame-
work from Section [5.4.1; however, with the modifications suggested in Section
5.5.2 it can be adapted to fit. In the RDT formulation, the NEAREST function
serves the purpose of the VSM, but in the RDT, a point may be selected from
anywhere in the swath of the graph. The VSM can be generalized to a swath-point
selection method, SSM. This generalization will be used in Section 14.3.4. The
LPM tries to connect (i) to g, along the shortest path possible in C.

Figure [5.19 shows an execution of the algorithm in Figure [5.16 for the case
in which C = [0,1]? and qo = (1/2,1/2). It exhibits a kind of fractal behavior.'®
Several main branches are first constructed as it rapidly reaches the far corners of
the space. Gradually, more and more area is filled in by smaller branches. From
the pictures, it is clear that in the limit, the tree densely fills the space. Thus, it
can be seen that the tree gradually improves the resolution (or dispersion) as the
iterations continue. This behavior turns out to be ideal for sampling-based motion
planning.

Recall that in sampling-based motion planning, the obstacle region C, is not
explicitly represented. Therefore, it must be taken into account in the construction
of the tree. Figurel5.20 indicates how to modify the algorithm in Figure 5.16/so that
collision checking is taken into account. The modified algorithm appears in Figure
5.21. The procedure STOPPING-CONFIGURATION Yyields the nearest configuration
possible to the boundary of Cgye., along the direction toward a(i). The nearest

15Tf v is uniform, random, then a stochastic fractal [588] is obtained. Deterministic fractals
can be constructed using sequences that have appropriate symmetries.
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RDT(qo)
1 G.init(qp);
2 fori=1tokdo
3 ¢n < NEAREST(S, a(1));
¢s < STOPPING-CONFIGURATION(qy,a(1));
if ¢, # ¢, then
G.add_vertex(gs);
G.add edge(qn, ¢s);

~ O Ut =~

Figure 5.21: The RDT with obstacles.

point g, € S is defined to be same (obstacles are ignored); however, the new edge
might not reach to «(i). In this case, an edge is made from g, to ¢s, the last point
possible before hitting the obstacle. How close can the edge come to the obstacle
boundary? This depends on the method used to check for collision, as explained
in Section [5.3.4. It is sometimes possible that g, is already as close as possible to
the boundary of Cy,. in the direction of a(¢). In this case, no new edge or vertex
is added that for that iteration.

5.5.2 Efficiently Finding Nearest Points

There are several interesting alternatives for implementing the NEAREST function
in line 3 of the algorithm in Figure [5.16. There are generally two families of
methods: exact or approrimate. First consider the exact case.

Exact solutions Suppose that all edges in G are line segments in R™ for some
dimension m > n. An edge that is generated early in the construction process will
be split many times in later iterations. For the purposes of finding the nearest
point in S, however, it is best to handle this as a single segment. For example, see
the three large branches that extend from the root in Figure[5.19. As the number
of points increases, the benefit of agglomerating the segments increases. Let each
of these agglomerated segments be referred to as a supersegment. To implement
NEAREST, a primitive is needed that computes the distance between a point and a
line segment. This can be performed in constant time with simple vector calculus.
Using this primitive, NEAREST is implemented by iterating over all supersegments
and taking the point with minimum distance among all of them. It may be possible
to improve performance by building hierarchical data structures that can eliminate
large sets of supersegments, but this remains to be seen experimentally.

In some cases, the edges of G may not be line segments. For example, the
shortest paths between two points in SO(3) are actually circular arcs along S®. One
possible solution is to maintain a separate parameterization of C for the purposes
of computing the NEAREST function. For example, SO(3) can be represented
as [0,1]?/ ~, by making the appropriate identifications to obtain RP®. Straight-
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an

do (i)

Figure 5.22: For implementation ease, intermediate vertices can be inserted to
avoid checking for close points along line segments. The trade-off is that the
number of vertices is increased dramatically.

line segments can then be used. The problem is that the resulting metric is not
consistent with the Haar measure, which means that an accidental bias would
result. Another option is to tightly enclose S? in a 4D cube. Every point on S?
can be mapped outward onto a cube face. Due to antipodal identification, only
four of the eight cube faces need to be used to obtain a bijection between the set
of all rotation and the cube surface. Linear interpolation can be used along the
cube faces, as long as both points remain on the same face. If the points are on
different faces, then two line segments can be used by bending the shortest path
around the corner between the two faces. This scheme will result in less distortion
than mapping SO(3) to [0,1]3/ ~; however, some distortion will still exist.

Another approach is to avoid distortion altogether and implement primitives
that can compute the distance between a point and a curve. In the case of SO(3),
a primitive is needed that can find the distance between a circular arc in R™
and a point in R™. This might not be too difficult, but if the curves are more
complicated, then an exact implementation of the NEAREST function may be too
expensive computationally.

Approximate solutions Approximate solutions are much easier to construct,
however, a resolution parameter is introduced. Each path segment can be approx-
imated by inserting intermediate vertices along long segments, as shown in Figure
5.22. The intermediate vertices should be added each time a new sample, «(7),
is inserted into G. A parameter Aqg can be defined, and intermediate samples are
inserted to ensure that no two consecutive vertices in G are ever further than Aq
from each other. Using intermediate vertices, the interiors of the edges in G are
ignored when finding the nearest point in S. The approximate computation of
NEAREST is performed by finding the closest vertex to a(7) in G. This approach
is by far the simplest to implement. It also fits precisely under the incremental
sampling and searching framework from Section [5.4.1.

When using intermediate vertices, the trade-offs are clear. The computation
time for each evaluation of NEAREST is linear in the number of vertices. Increasing
the number of vertices improves the quality of the approximation, but it also
dramatically increases the running time. One way to recover some of this cost is
to insert the vertices into an efficient data structure for nearest-neighbor searching.
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Figure 5.23: A Kd-tree can be used for efficient nearest-neighbor computations.

One of the most practical and widely used data structures is the Kd-tree [266, 367,
760]. A depiction is shown in Figure [5.23 for 14 points in R%. The Kd-tree can
be considered as a multi-dimensional generalization of a binary search tree. The
Kd-tree is constructed for points, P, in R? as follows. Initially, sort the points
with respect to the x coordinate. Take the median point, p € P, and divide P
into two sets, depending on which side of a vertical line through p the other points
fall. For each of the two sides, sort the points by the y coordinate and find their
medians. Points are divided at this level based on whether they are above or
below horizontal lines. At the next level of recursion, vertical lines are used again,
followed by horizontal again, and so on. The same idea can be applied in R™ by
cycling through the n coordinates, instead of alternating between x and y, to form
the divisions. In [53], the Kd-tree is extended to topological spaces that arise in
motion planning and is shown to yield good performance for RRTs and sampling-
based roadmaps. The Kd-tree can be constructed in O(nlgk) time. Topological
identifications must be carefully considered when traversing the tree. To find the
nearest point in the tree to some given point, the query algorithm descends to a
leaf vertex whose associated region contains the query point, finds all distances
from the data points in this leaf to the query point, and picks the closest one.
Next, it recursively visits those surrounding leaf vertices that are further from the
query point than the closest point found so far [48, 53]. The nearest point can be
found in time logarithmic in k.

Unfortunately, these bounds hide a constant that increases exponentially with
the dimension, n. In practice, the Kd-tree is useful in motion planning for problems
of up to about 20 dimensions. After this, the performance usually degrades too
much. As an empirical rule, if there are more than 2™ points, then the Kd-tree
should be more efficient than naive nearest neighbors. In general, the trade-offs
must be carefully considered in a pa