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This talk will present the Scilab toolbox for Network Cal-
culus computation. It was developed thanks to the INRIA
ARC COINC project (COmputational Issue in Network Cal-
culus see http://perso.bretagne.ens-cachan.fr/~bouillar/
coinc/spip.php?rubrique1). This software library deals
with the computation of ultimate pseudo-periodic functions.
They are very useful to compute performance evaluation in
network (e.g. Network Calculus) or in embedded system
(Real Time Calculus).

Each functionf is is composed of segments characterized
by (x, y, y+, ρ) (see figure 1), arranged in two lists of serg-
ments denoted p and q and with a segment denoted r, it is
denoted f = p ⊕ qr∗. List p is composed of segments which
depict a transient behavior, list q is composed of segments
which represent a pattern repeated periodically, segment r
is a point representing the periodicity of function f (see fig-
ure 1). The formulation is inspired by the one of periodical
series in the idempotent semiring of formal series such as in-
troduced in [1], and which have is own Scilab toolbox called
Minmaxgd [5] based on algorithms proposed in [6] and in
[4], [7]. The COINC toolbox yields five operations handling
ultimately pseudo periodic function (uppf), namely

• the minmium of two uppf (the sum in the (min, +)
setting):

p ⊕ qr∗ = (p1 ⊕ q1r
∗

1) ⊕ (p2 ⊕ q2r
∗

2 ;

• the (min,+) convolution of two uppf (product of two
uppf):

p ⊕ qr∗ = (p1 ⊕ q1r
∗

1) ⊗ (p2 ⊕ q2r
∗

2);

• the (min,+) deconvolution of two uppf (residuation of
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two uppf):

p ⊕ qr∗ = (p1 ⊕ q1r
∗

1) ◦/(p2 ⊕ q2r
∗

2);

• the addition of two uppf (the Hadamard product of
uppf):

p ⊕ qr∗ = (p1 ⊕ q1r
∗

1) ⊙ (p2 ⊕ q2r
∗

2);

• the sub-additive closure (the Kleene-star of an uppf):

p ⊕ qr∗ = (p1 ⊕ q1r
∗

1)∗.

The software is based on algorithms given in [2], and also
in [6], [4] and [7], it is available as a Scilab contribution
and on the following url http:\\www.istia.univ-angers.
fr\~lagrange\COINC.

During the talk some illustrations about Network Calculus
(see [3, 8]) will be proposed. Let just recall that an arrival
curve is a monomial (0, σ, σ, ρ) with σ the burst and ρ the
arrival rate, and a service curve is represented by by a poly-
nomial with two monomials m1 ⊕ m2 with m1 = (0, 0, 0, 0)
and m2 = (τ, 0, 0, θ) with τ the delay and θ the service rate.
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p : transient part

q :periodic pattern

r : periodicity

Figure 1: A monomial ( a point (x, y) and an half-line starting in (x, y+) with a slope equal to ρ) and an uppf
function (f = p ⊕ qr∗).
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