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Abstract

This paper deals with parameter estimation of nonlinear continuous-time models when the input

signals of the corresponding system are not measured. The contribution of the paper is to show that,

with simple priors about the unknown input signals and using derivatives of the output signals, one

can succeed the estimation procedure. As an illustration, we will consider situations where the simple

priors, e.g. independence or Gaussianity of the unknown inputs, is assumed.

I. INTRODUCTION

Consider the invertible models with a relative degree r,

u (t) = ψp

(
y (t) , ẏ (t) , . . . ,y(r−1) (t) ,y(r) (t)

)
, (1)

where t ∈ R is the time, u (t) ∈ Rm is the unknown (i.e. unobserved) input vector signal,

y(i) (t) ∈ Rm is the ith derivative of the observed output vector signal y (t), p ∈ Rn is the

unknown parameter vector and ψp is an analytical parametric function from (Rm)r+1 to Rm.

Since all flat models [11] should satisfy (1), the class of invertible models is rather large.

Example 1: Consider the car represented on Figure 1. This system has two inputs : the speed

v of the front wheels and the angle δ of the front wheels with respect the body of the car.

The outputs, denoted (x, y), are the coordinates of the middle of the back axle. The state space

equations of this system are given by




(i) ẋ = v cos δ cos θ

(ii) ẏ = v cos δ sin θ

(iii) θ̇ = v sin δ
L

.
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Fig. 1. Car representation in the plane.

where the parameter L represents the distance between the front and the back axles. From (i)

and (ii), we get θ = arctan
(

ẏ
ẋ

)
and after derivation, we get θ̇ = 1

( ẏ
ẋ)

2
+1

(
ÿẋ−ẍẏ

ẋ2

)
. Since

v cos δ = ẋ

cos arctan( ẏ
ẋ)

(see Eq (i))

v sin δ = L

(
1

( ẏ
ẋ)

2
+1

(
ÿẋ−ẍẏ

ẋ2

))
(see Eq (iii))

we get

v =

√(
L

(
1

( ẏ
ẋ)

2
+1

(
ÿẋ−ẍẏ

ẋ2

)))2

+

(
ẋ

cos arctan( ẏ
ẋ)

)2

δ = arctan




L

0
@ 1

( ẏ
ẋ)

2
+1

( ÿẋ−ẍẏ

ẋ2 )

1
A

ẋ

cos arctan( ẏ
ẋ)




The car is thus an invertible system. Other invertible models can be found in [17].

The parameter estimation problem [24] in a blind context consists in estimating the unknown

parameter vector p by only exploiting the observed signals y [1]. One only assumes weak

statistical assumptions on the unknown input signals, e.g. independency or Gaussianity, and the

model ψp is known (except its parameters).

For instance, consider Example 1 where only the outputs (x(t), y(t)) are measured (for instance

using a GPS localization system). If assuming that the unknown inputs (v(t), δ(t)) are Gaussian

(or independent) is realistic, then the parameter L could be obtained from the knowledge of the
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outputs without any other measurements.

For this king of borderline problem where priors knowledge is poor, our goal is to prove that

the estimation of p is possible.

A. Signal assumptions

We assume that the input vector signal u belongs to Sm, where S denotes the set of all stationary,

ergodic and smooth random signals i.e., whose the ith derivative with respect to t is defined for

any i ∈ N. As a consequence, u̇, ü,
...
u, . . . also belong to Sm. Remark that white noise is not a

suitable input since it is not differentiable [20].

Note that this assumption does not imply that y belongs to Sm. For instance, when the model

is unstable, y is not stationary and cannot belong to Sm.

We also assume that u satisfies a few statistical properties, that can be described by statistical

moments. A generalized moment µ (or moment for short) of u ∈ Sm, is a function from Sm to

R which can be written as µ(u) = E(u
(i1)
j1

u
(i2)
j2

. . . u
(is)
js

), where s ≥ 1, j1, . . . , js ∈ {1, . . . ,m}
is the input index and i1, . . . , is ∈ N is the derivative order. The set of all moments will be

denoted by M. The integer s is called the order of µ. For instance E (u̇3
1ü2) = E(u̇1u̇1u̇1ü2)

is a moment of S2 with order 4 (where j1, . . . , j3 = 1 and j4 = 2). To be consistent with the

literature, when s ≥ 3, µ will be said to be of higher (than 2) order.

B. Estimating functions

An estimating function [4] is a function from Sm to Rq, the components of which are functions

of generalized moments belonging to M. For instance, the function

h :





S2 → R

(u1, u2) → E(u1u2)− E(u1)E (u2)
(2)

is an estimating function. In this paper, these functions will be designed in order to vanish when

some statistical assumptions on the inputs are satisfied. For example, if the signals u1 and u2

are assumed to be decorrelated, the estimating function (2) could be used.

We are now able to formalize the blind parameter estimation problem to be considered in this

paper as follows. Given a parametric model u = ψp

(
y, ...,y(r)

)
, where y is measured whereas
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u, assumed to belong to Sm, is unknown, and an estimating function h, the blind parameter

estimation problem consists in characterizing the set

P =
{
p ∈ Rn | h (

ψp

(
y, ẏ, . . . ,y(r)

))
= 0

}
. (3)

Estimating P is then equivalent to solve a set of nonlinear equations in p.

C. Content of the paper

In this paper, we propose a new methodology for solving the blind estimation of nonlinear

parametric invertible models. However, defining the rigorous conditions, for which the method-

ology will succeed remains beyond the scope of this paper. Moreover, we shall assume that the

measured signals are noiseless and all derivatives y(i), i ≥ 0 of y are available1. In practice,

this is never the case, but, even in such an ideal context, there is no general method for blindly

estimating p.

Note that the estimation of p leads to the knowledge of u, via the relation (1). Thus, the Blind

Parameter Estimation (BPE) is very closed to Blind Source Separation (BSS) (or Independent

Components Analysis (ICA) when the input are assumed to be independent) which consists in

estimating the unknown input signals [15][7][6][2][5][12], using simple statistical priors. Indeed,

unlike BSS (or ICA) which recovered the inputs with some indeterminacies [8], BPE can be

viewed as ”perfect” ICA where no indeterminacies is allowed on the inputs.

This paper is organized as follows. Section 2 introduces definitions and properties of random

signals and of their derivatives. Section 3 shows how these properties can be used for solving

the blind estimation problem. A simple example is proposed in Section 4, before the conclusion.

II. SOME RESULTS RELATED TO DERIVATIVES OF RANDOM SIGNALS

In the blind parameter estimation problem, one only assumes that statistical features (such as

independence or Gaussianity) are satisfied by the unknown input signals u. These conditions

can be written into a set of equations involving generalized moments of u. In order to be able

to write these equations, we first introduce a few properties satisfied by generalized moments.

These properties will then be used to build suited estimation functions h in Section 3.

1The estimation of the derivatives y(i) from y is not addressed in this paper. The reader interested by this topic is referred

to [23][10][19][9]
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A. Statistical independence

This Subsection introduces some properties verified by the derivatives of independent random

signals [21]. First, let us present the definition of statistically independent signals.

Definition 2: Denote F the set of all functions defined from S to R. The random signals

u1, . . . , um of Sm are statistically independent if ∀f1, f2, . . . , fm ∈ F , the random variables

x1 = f1 (u1) , . . . , xm = fm (um) are statistically independent, i.e.,

px1,...,xm(.) =
m∏

i=1

pxi
(.), (4)

where pxi
(.) and px1,...,xm(.) denote the marginal and joint probability density functions of the

random variables xi and of the random vector (x1, . . . , xm)T respectively.

The following proposition gives relationship between independent signal and their derivatives

that will be exploited in next Section.

Proposition 3: Let u1, . . . , um and y be random signals of S . If u1, . . . , um are independent

then ∀ (k1, . . . , km) ∈ Nm, u
(k1)
1 , . . . , u

(km)
m ) are independent.

Proof: Suppose that the signals u1, . . . , um are independent. Take m functions f1, . . . , fm ∈
F and define

gi :




S → R

ui → fi(u
(ki)
i )

, i = 1, . . . ,m. (5)

From Definition 2, since u1, . . . , um are independent, the variables g1 (u1) , . . . , gm (um) are

independent, i.e. the random variables f1

(
u

(k1)
1

)
, ..., fm

(
u

(km)
m

)
are independent. Since no

assumption has been made on fi, we get, for all functions f1, . . . , fm ∈ F , independent variables

f1

(
u

(k1)
1

)
, . . . , fm

(
u

(km)
m

)
. Therefore, the signals u

(k1)
1 , . . . , u

(km)
m are independent.

B. Gaussianity

Let us introduced the definition of Gaussian random signals in order to establish properties

of their derivatives.

Definition 4: Denote by L the set of all linear forms defined from Sm to R. The random

vector signal u = (u1, . . . , um) is said to be Gaussian if for all f ∈ L, the random variable f(u)

is Gaussian.

The following proposition shows that the differentiation preserves the Gaussianity.
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Proposition 5: If u ∈ Sm is a Gaussian random signal then its derivatives u(k) (∀k = 1, 2, . . . )

are Gaussian.

Proof: According to Definition 4, the signal u(k) is Gaussian if (and only if), for all f ∈ L,

the random vector f(u(k)) is Gaussian.

Now, since u is Gaussian, and since

g :




Sm → R

u → f(u(k))
(6)

is linear, g(u) is Gaussian, i.e. f(u(k)) is Gaussian. Thus, since no assumption has been made

on f , we get, for all f ∈ L, f(u(k)) is Gaussian. Therefore, u(k) is Gaussian.

III. ESTIMATING FUNCTIONS

This section points out how estimating functions h could be built when statistical assumptions

on the input random signals u are available. First, we shall consider the case where inputs are

assumed to be independent. Then, the case where a few inputs are assumed to be Gaussian will

be treated.

A. Case of independent inputs

Let us introduce some statistical properties of generalized moments of random vector signal

u =(u1, . . . , um) ∈ Sm.

Proposition 6: Define

m
(k)(`)
i,j (u) = E(u

(k)
i u

(`)
j )− E(u

(k)
i )E(u

(`)
j ), k ≥ 0, ` ≥ 0, i, j ∈ {1, . . . ,m}, (7)

where u =(u1, . . . , um) ∈ Sm, we have

(i) k + ` ≥ 1 ⇒ m
(k)(`)
i,j (u) = E(u

(k)
i u

(`)
j ), (8)

(ii) k1 + `1 = k2 + `2 ⇒ m
(k1)(`1)
i,j (u)= (−1)`1−`2 m

(k2)(`2)
i,j (u). (9)

(iii) m
(k)(`)
i,j (u) = (−1)k m

(k)(`)
j,i (u), (10)

Proof: The proof can be done considering that

E
(
u

(k)
i

)
= 0,∀k ≥ 1, (11a)

E
(
u

(k)
i (t) u

(`)
j (t− τ)

)
= (−1)` dk+`γuiuj

(τ)

dk+`τ
, (11b)
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where γuiuj
(τ) is the correlation function between ui and uj (see [20]).

Assume that Is (u1, . . . , um). Then, for all k ≥ 0 and l ≥ 0, we have

m
(k)(`)
i,j (u) = 0 if i 6= j. (12)

However, the Proposition 6 (ii) and (iii) points out relationships between moments. As a

consequence, in order to cancel the redundant terms, we can choose the following estimating

function:

h :




Sm → R

(m−1)m
2

(q+1)q
2

u →
(
m

(k)(`)
i,j (u)

)k=0,...,q ; `=k,...,q

i=1,...,m; j=i+1,...,m

(13)

where the integer number q is the maximum derivative order of the input signal. Practically, q

must be chosen so that the number of estimating equations is equal or larger to the unknown

number. For q large, one has a large number of estimating functions with respect to the unknown

number and one can hope to achieve a robust resolution, but with a higher computational cost.

Note that in the estimating functions (13), we only took second order moments. Of course,

higher order moments could also be used.

B. Case of Gaussian inputs

Assume now the inputs are Gaussian, the divergence to Gaussianity can be measured using

the Kurtosis, which is equal to zero for Gaussian random variables. Moreover, according to

Proposition 5 and Equality (11a), the input derivatives are centered and still Gaussian. As a

consequence, the following estimating function could be a good candidate for measuring the

(divergence to) Gaussianity of the signal u.

h :





Sm → Rq−1

u →




E
(
[u− E(u)]4

)− 3E
(
[u− E(u)]2

)2

E(u̇4)− 3E (u̇2)
2

...

E
([

u(q)
]4

)
− 3E

([
u(q)

]2
)2




.
(14)

As previously, the integer q (which is the maximum derivative order) must be chosen so that

the number n of estimating equations (components of h) is equal or greater than the unknown

number.
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Remark 7: If the invertible system is linear (i.e. u =
∑i=r

i=0 Aiy
(i)) and the inputs are known

to be Gaussian then, the outputs y are also Gaussian [20]. Thus, all matrices Ai should be

considered as feasible, since they lead to a Gaussian input signal u. All parameters (the entries

of Ai) should thus be considered as acceptable and the blind estimation is impossible without

priors. In fact, additional information, like non-stationarity [22] or temporal correlation [3] of

sources could be used in this context like in blind source separation.

C. Approximating the estimating function

The set P is defined by the following vector equations (see Equation (3)) :

g(p)
def
= h(ψp

(
y, ẏ, . . . ,y(r)

)
) = 0. (15)

In practice, it is not possible to get an analytical expression for g since only signal expectations

can be estimated. We shall now explain, on a simple example, how an empirical estimate of g

can be obtained. Take for instance the scalar model described by

u = ψp (y, ẏ) = ẏ + p sin y, (16)

and assume that the estimating function is chosen as h(u) = E(uu̇). Since u is stationary,

g(p) = h(ψp (y, ẏ))

= h(ẏ + p sin y)

= E ((ẏ + p sin y)(ÿ + pẏ cos y))

= E (ẏÿ + pẏ2 cos y + pÿ sin y + p2ẏ sin y cos y) .

On the other hand, define the empirical estimator Ê (x) for E(x) of a signal as

Ê(x)
def
=

1

N

N∑

k=0

x(kτ), (17)

where N is the number of available samples and τ is the sampling period. Thus g(p) can be

approximated by

ĝ(p) = Ê
(
ẏÿ + pẏ2 cos y + pÿ sin y + p2ẏ sin y cos y

)
(18)

= Ê (ẏÿ) + pÊ
(
ẏ2 cos y

)
+ pÊ (ÿ sin y) + p2Ê (ẏ sin y cos y) .

The function g(p) is thus approximated by the second degree polynomial ĝ(p), the coefficient

of which are computed from the knowledge of the signal y(t).
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Fig. 2. Signal y1(t) (90000 samples)
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Fig. 3. Signal y2 (t) (90000 samples)

IV. A SIMPLE EXAMPLE

In this section, we consider a simple example, where the input and observed signals are

related to an inverse model. We shall assume the statistical independence of the inputs and we

will design an estimating function in order to estimate the unknown parameters.

Consider two independent colored Gaussian signals u1 and u2 of S obtained as a filtering

of a white Gaussian noise (N samples). These two signals feed a parametric nonlinear model

described by the two following relations:




u1 = 1
p1

ẏ1 + p1

p2
cos y2 − y1

u2 = ẏ2 + p2
1p2 sin y1,

(19)

where the two parameters are p∗1 = −2 and p∗2 = −0.9. Since this model is unstable, y is not

stationary (see Figures 2 and 3) even if u is.

Assume that u1 and u2 are independent. No other assumption are taken into account: espe-

cially, the Gaussianity is not exploited. According to Subsection III-A, we choose the following

estimating function h:

h =


 E (u1u2)− E (u1) E (u2)

E (u̇1u2)


 (20)

which provides two equations (as many as the number of parameters); h(u1, u2) vanishes when

u1 and u2, and u̇1 and u2 become uncorrelated.
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The condition h(u) = 0 can be approximated by




Ê (u1u2)− Ê (u1) Ê (u2) = 0

Ê (u̇1u2) = 0
(21)

where the operator Ê (·) is defined by (17). From the model (19), and since

u̇1 =
1

p1

ÿ1 − p1

p2

ẏ2 sin y2 − ẏ1 (22)

we have

Ê (u1) = Ê
(

1
p1

ẏ1 + p1

p2
c2 − y1

)
= 1

p1
Ê (ẏ1) + p1

p2
Ê (c2)− Ê (y1)

Ê (u2) = Ê (ẏ2 + p2
1p2s1) = Ê (ẏ2) + p2

1p2Ê (s1)

Ê (u1u2) = 1
p1

Ê (ẏ1ẏ2) + p1p2Ê (ẏ1s1) + p1

p2
Ê (ẏ2c2)

+p3
1Ê (c2s1)− Ê (y1ẏ2)− p2

1p2Ê (y1s1)

Ê (u̇1u2) = 1
p1

Ê (ÿ1ẏ2) + p1p2Ê (ÿ1s1)− p1

p2
Ê (ẏ2

2s2)

−p3
1Ê (ẏ2s2s1)− Ê (ẏ1ẏ2)− p2

1p2Ê (ẏ1s1) .

(23)

where si = sin yi and ci = cos yi. The system (21) becomes:

ΣI(N) :





1
p1

Ê (ẏ1ẏ2) + p1p2Ê (ẏ1s1) + p1

p2
Ê (c2ẏ2) + p3

1Ê (c2s1)− Ê (y1ẏ2)

−p2
1p2Ê (y1s1)−

[
1
p1

Ê (ẏ1) + p1

p2
Ê (c2)− Ê (y1)

]
·
[
Ê (ẏ2) + p2

1p2Ê (s1)
]

= 0

1
p1

Ê (ÿ1ẏ2) + p1p2Ê (ÿ1s1)− p1

p2
Ê (ẏ2

2s2)

−p3
1Ê (ẏ2s2s1)− Ê (ẏ1ẏ2)− p2

1p2Ê (ẏ1s1) = 0

(24)

It consists of two nonlinear equations with two unknowns p1 and p2. The coefficients of this

systems (ẏ1ẏ2, ẏ1s1, c2ẏ2, . . . ) depend on N . We solved this system for different values of N

using an interval method (see [13], [18]). For each N , we have found only one solution vector

p̂(N). The table of Figure (4) represents the estimation square error estimation for different

values of N . One can check p̂(N) tends to p∗, the true parameter vector, as N tends to infinity.

N 100 600 1000 6000 10000 16000

Ê
(
[p̂1(N)− p∗1]

2) 4, 8.10−2 1, 1.10−2 1, 1.10−2 10−4 2, 5.10−5 10−5

Ê
(
[p̂2(N)− p∗2]

2) 7, 8.10−2 3, 5.10−2 1, 4.10−2 10−3 9.10−5 3.10−6

Fig. 4. Parametric square error for blind estimation based on independence prior.
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Note that, in the presence of noise, the proposed method is ill-suited since differentiation leads

to noise amplification. In this context, our approach fails to give any reliable results without a

serious adaptation. However there exists practical situations where the number of outputs is larger

than that of outputs and/or where more statistical properties of the inputs signal are available.

For such cases, where noise is involved, our approach can also be used as an effective method

for estimating the parameters of a system [16][14].

Remark 8: If the inputs are not assumed to be independent anymore and if the only first input

u1 is assumed to be Gaussian, then experiments have shown that our approach is able to identify

the parameter vector in a unique way, using estimation functions implementing Gaussianity of

u1, u̇1 etc.

V. CONCLUSION

In this paper, a new blind parameter estimation approach based on statistical assumptions on

the unknown input signals has been proposed. We have shown that for a large class of parametric

models, the knowledge of a few statistical cross-moments of outputs can be used for estimating

the unknown parameters. Although no proof of parameter uniqueness is given, the proposed

method returns the set of compatible parameters (with the estimating function).

As we explained, our goal is not to provide a robust estimation method, but simply to prove

that borderline problems, basically considered as unsolvable, can be solved using weak statistical

priors on the input signals. Moreover, this paper points out the interest of using statistics of the

derivatives of signals.

This approach seems related to second-order blind source separation (BSS) method [3] based

on delayed variance-covariance matrices, in which delays instead of derivatives are used. Of

course, when observations are noisy, when the number of samples is not large enough or when

the model is not perfectly known (e.g. the order r is unknown), the method proposed in this

paper does not lead to reliable estimations. Further investigations include the existence condition

and the uniqueness issues, the relationships with BSS method using delayed variance-covariance

matrices, and robust algorithms especially for noisy observations or small size samples.

REFERENCES

[1] A. Akhenak, M. Cahldi, D. Maquin, and J. Ragot. Sliding mode multiple observer for fault detection and isolation. In

42nd IEEE Conf. on Decision and Control, volume 1, pages 953–958, Hawaii, USA, december 2003.

April 25, 2006 DRAFT



12

[2] T. Bell and T. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. In Neural

Computation, volume 7, pages 1004–1034, 1995.

[3] A. Belouchrani, K. Abed Meraim, J.F. Cardoso, and E. Moulines. A blind source separation technique using second order

statistics. IEEE Transactions on Signal Processing, 45:210–220, 1997.

[4] J. F. Cardoso. Infomax and maximum likelihood for blind source separation. IEEE Signal Processing Letters, 4(4), 1997.

[5] J. F. Cardoso and B. Laheld. Equivariant adaptive source separation. IEEE Transactions on Signal Processing, 44(12):3017–

3030, December 1996.

[6] A. Cichocki and S. Amari. Adaptative Blind Signal and Image Processing : Learning algoritms and applications. John

Wiley, 2002.

[7] P. Comon. Independent component analysis. In International Signal Proceedings Workshop on High-Order Statistics,

pages 29–38, 1991.

[8] P. Comon. Independent component analysis, a new concept? Signal Processing, 36(3):287–314, April 1994.

[9] S. Diop, J. W. Grizzle, P.E. Moraal, and A. Stephanopoulou. Interpolation and numerical differentiation for observer

design. In Proceedings of the American Control Conference, pages 1329–1333, Baltimore, June 1994.

[10] S. Diop, J.W. Grizzle, and F. Chaplais. On numerical differentiation. algorithms for nonlinear estimation. In Proceedings

of the 2000 IEEE Conference on Decision and Control, volume 2, pages 1133–1138, Sydney Australia, 2000.
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