
Interval Analysis for Kidnapping Problem using Range Sensors

Rémy GUYONNEAU, Sébastien LAGRANGE
and Laurent HARDOUIN

Laboratoire d’Ingénierie des Systèmes
Automatisés (LISA),
Université d’Angers,

Angers, France.
{remy.guyonneau, sebastien.lagrange,

laurent.hardouin}@univ-angers.fr

Abstract— This paper presents a new method to deal with the
kidnapping problem of mobile robots. By using a range sensor
and a discrete map of the indoor environment, the robot has
to determine its pose (position and orientation). The idea is to
obtain the smallest set of feasible poses compatible with the
mesurements and the map. This method is a set membership
approach based on interval analysis and constraint propagation,
which allows to get results in a guaranteed way.

I. INTRODUCTION

Robot localization is an important issue of mobile robotics,
it is a key for many applications [1], [2]. The robotics
challenge called CAROTTE1 shows the matter of this prob-
lem. The objectives of that challenge is to build and to
control a robot that is able to navigate in an unknown indoor
environment and draw a map with semantic annotations (e.g.
detected objects). When the map is done, the robot is moved
somewhere in the environment (kidnapping) and has to find
the exit as fast as possible. This paper is focused on the
global localization problem.

The localization problem can be divided into two cate-
gories: the pose tracking and the global localization [3], [4].
In the pose tracking problem the robot has to find its new
pose using the knowledge of its previous pose. In the global
localization problem the robot does not have the knowledge
of its previous pose.

Most of the proposed solutions to localize a robot are
based on probabilistic estimation techniques [5]. The Ex-
tended Kalman Filter or one of its improvement is used
for pose tracking [6] and more precisely for the SLAM2

problem [7]. Particle filters [8] with for example the Monte
Carlo algorithm [9] and its spin-off [10] are used to deal
with global localization.

In this paper a set membership approach will be considered
as considered in [2], [11]. The objective is to find a domain
that includes the pose of the robot. We assumed that the
sensor yields measurements with bounded error. Hence, the
results are obtained in a guaranteed way.

The paper is organized as follows. First we present the
considered global localization problem in section II. In

1CArtographie par ROboT d’un TErritoire (Robot Land Mapping) orga-
nized by the french ANR (National Research Agency).

2Simultaneous Localization And Mapping

Fig. 1: The robot used in the CAROTTE challenge.

section III we present several tools that are used in that
paper. Section IV presents the grid map intersection and
contraction. Next, in section V we present the localization
algorithms. Section VI presents the results we had with a
simulator in order to show the efficiency of the proposed
method. Finally section VII concludes this paper.

II. THE GLOBAL LOCALIZATION PROBLEM

This section presents the context of that work and the
considered robot which moves in an environment (see II-B).
Finally subsection II-C presents the objectives of the works.

A. The Robot

We consider a mobile wheeled robot with a laser telemeter,
figure 1. The robot’s pose pr = (xr, yr, θr) is defined by its
location (xr, yr) and its orientation θr in the environment.
The telemeter provides a set of measurements D = {di}
with i = 1, · · · , n that correspond to the distances of the
closest obstacles in the direction γi, figure 2. As we are in
a bounded error context we assume an error measurement
εd and an angle error εγ due to the sensor accuracy, i.e. we
associate a guaranteed interval to each measurement [di] =
[di−εd; di+εd] and angle [γi] = [γi−εγ , γi+εγ]. Moreover,
we assumed that the telemeter has a maximal range denoted
dmax. We also consider that the robot can have an evaluation
of its moving using odometry or algorithms like ICP [12].

B. The Environment

The two dimensional environment E ⊂ R2 where the
robot is moving is supposed to be known, figure 3. If not it
can be the result of a SLAM process. This environment is
discretized with a resolution δx, δy and this lead to a grid

obstacle

robot

Fig. 2: Sensor measurements D = {d1, d2, d3, dn}.

(a) (b)

Fig. 3: The environment of the CAROTTE challenge.

G composed of n × m cells (i, j). At each cell (i, j) is
associated gi,j ∈ {0, 1}:

gi,j =

{
1 if there is an obstacle in the cell (i, j),

0 else.
A cell (i, j) represents the following set:

{(x, y) ∈ E|iδx ≤ x < (i+1)δx, jδy ≤ y < (j+1)δy}.
In the sequel gi,j could be abusively denoted gx,y if (x, y)
is in the cell (i, j), figure 4.

The figure 5 shows an example of a grid map.

C. The Objective

The aim of that work is to globally localize a robot in a
known indoor environment. It is assumed that the robot has
been kidnapped somewhere in the environment. Using its
telemeter sensor it has to find its pose. This paper proposes
a new guaranteed method based on interval analysis to find
the smallest ([xr], [yr], [θr]) compatible with the map and
sensor measurements.

Fig. 4: Illustration of G. The cells such that gi,j = 1 are
depicted in grey. Since the point (x1, y1) is in a grey cell we
abusively note gx1,y1 = 1.

Fig. 5: An example of occupancy grid. A white cell is for
a free space (gx,y = 0) and a grey cell means there is an
obstacle (gx,y = 1).

III. INTERVAL ANALYSIS AND CONSTRAINT
SATISFACTION PROBLEM

The global localization problem will be viewed as a
Constraint Satisfaction Problem (CSP) solved using interval
analysis [13], [14], hence in this section we introduce some
definitions about interval analysis and CSP.

A. Interval Analysis
An interval vector, or a box [p] is defined as a closed

subset of Rn:
[p] = ([x], [y], · · ·) = ([x, x], [y, y], · · ·) ⊂ Rn.

Any real number elementary operators such as +,−,×,÷
and functions such as exp, sin, sqr, sqrt, can be easily
extended to intervals. For instance:

[3, 4.1]×[0, 1]+[−2, 8] = [0, 4.1]+[−2, 8] = [−2, 12.1],
cos([−π3 ,

π
4]) = [12 ,

√
2
2].

We define the size of a box as size([p]) = (x − x) ×
(y − y) × · · · , i.e. let [p] = ([2, 5], [1, 8], [0, 5]) be a box,
size([p]) = 105.

B. Constraint Satisfaction Problem
A CSP is defined by three sets. A set of variables V , a set

of domains D for those variables and a set of constraints C
connecting the variables together:

CSP:

V = {x1, x2, · · · , xn}
D = {[x1], [x2], · · · , [xn]}
C = {c1, c2, · · · , cm}

 . (1)

This kind of problem can be solved using constraint
propagation. Constraint propagation consist in reducing the
variable domains by using contractors Cci associated to each
constraints ci.

To illustrate the propagation process, consider the follow-
ing CSP:

V = {x1, x2}
D = {[x1] = [−∞,∞], [x2] = [−∞,∞]}

C =

c1 : x2 = x1

2

c2 : x1x2 = 1

c3 : x2 = −2x1 + 1

. (2)

Then we contract the different domains using the constraint’s
contractors. For example the contractor Cc1 of the constraint
c1 is given by Algorithm 1. In this algorithm ∇ corresponds
to the stop criterion of the forward-backward process. It can
be for example a number of iterations, a contraction threshold
or a combination of several parameters. We will use this
notation for the other algorithms.

Algorithm 1 Cc1
Require: [x1], [x2]

1: while ∇ do
2: [x2] = [x2] ∩ [x1]2

3: [x1] = [x1] ∩
√
|[x2]|

4: end while
5: ([x∗1], [x∗2]) = ([x1], [x2])
6: return ([x∗1], [x∗2]).

Same kind of contractors can be done for constraints c2
and c3. And a solver can be obtained as follows.

Algorithm 2 Solver of CSP (2)

Require: [x1], [x2]
1: while ∇ do
2: ([x1], [x2]) = Cc1([x1], [x2])
3: ([x1], [x2]) = Cc2([x1], [x2])
4: ([x1], [x2]) = Cc3([x1], [x2])
5: end while
6: ([x∗1], [x∗2]) = ([x1], [x2])
7: return ([x∗1], [x∗2]).

And below we give an execution of this algorithm which
proves that the solution set of CSP 2 is empty.

Cc1([x1], [x2]) = ([−∞,∞], [0,∞])
Cc2([x1], [x2]) = ([0,∞], [0,∞])
Cc3([x1], [x2]) = ([0, 1/2], [0, 1])
Cc1([x1], [x2]) = ([0, 1/2], [0, 1/4])
Cc2([x1], [x2]) = ∅.

IV. MAP CONTRACTOR

This section is focused on the two following problems:
Let G be a discrete map and ([x], [y]) ⊂ G be a box :

• How to check that the box contains obstacles, i.e. to
check that inside ([x], [y]) it exists gx,y = 1.

• How to obtain the smallest box ([x∗], [y∗]) ⊂ ([x], [y])
such that ([x∗], [y∗]) contains the same number of
obstacles than ([x], [y]).

A. Intersection between a box and the grid map

During the localization process the robot will have to
check if it exists intersections between the grid map’s ob-
stacles and sensor’s measurements.

G ∩ ([x], [y]) =

true if ∃x ∈ [x], y ∈ [y]

such that gx,y = 1,

false else.

00

0
0

0
0

0
0
0
0

0 0 0

1
111
111

1
1
1
1
1
1

1

1
1

2

1

2

2

2

2

22
1 1

2 3
3

2

6

3 3
2 3 4 4

42
2
3
3

4
4

4
43

3 4
5
5

5

Fig. 6: Output of the pre-calculation algorithm. The black
cells represent obstacles (gx,y = 1). Integer ηx,y in each
cell represents the number of dark cells in the South-West
quarter.

1) Pre-Calculation: In order to allow fast intersection
tests we add into the map some pre-computation (see al-
gorithm 3).

The idea is to record the number of obstacles in the South-
West quarter of each cell (figure 6).

Algorithm 3 Grid Map’s Pre-Calculation

Require: G = {g0,0, · · · , gn,m}
1: η0,0 = g0,0
2: for i = 0 to n do
3: for j = 0 to m do
4: if i > 0 and j > 0 then
5: ηi,j = ηi,j−1 − ηi−1,j−1 + ηi−1,j + gi,j
6: else
7: if j = 0 and i > 0 then
8: ηi,j = ηi−1,j + gi,j
9: else

10: if i = 0 and j > 0 then
11: ηi,j = ηi,j−1 + gi,j
12: end if
13: end if
14: end if
15: end for
16: end for
17: return {ηi,j}

The output of algorithm 3 is the grid map G with ηi,j(i =
0, · · · , n and i = 0, · · · ,m) representing the number of
obstacles in the South-West quarter of the cell (i, j).

2) The Function Φ: Now the pre-calculated coefficient
ηi,j will be used to test intersection. The function Φ returns
the number of cells with gi,j = 1 that intersect an interval
vector ([x], [y]).

Φ([x], [y]) = ηx,y + ηx−δx,y−δy − ηx−δx,y − ηx,y−δy . (3)

Then we have

G ∩ ([x], [y]) =

{
true if Φ([x], [y]) > 0,

false else.
.

For instance, in the example figure 7:
G ∩ ([x], [y]) =true because Φ([x], [y]) = 2(> 0).

B. The Map Contractor
The second problem is the following: given an interval

domain ([x], [y]) and a grid G = {gi,j} we define the map
contractor CG such that:

00

0
0

0
0

0
0
0
0

0 0 0

1
111
111

1
1
1
1
1
1

1

1
1

2

1

2

2

2

2

22
1 1

2 3
3

2

6

3 3
2 3 4 4

42
2
3
3

4
4

4
43

3 4
5
5

5

ηx,y

ηx−δx ,y−δy

ηx−δx ,y

ηx,y−δy

Fig. 7: An example of intersection. The light grey interval
vector corresponds to ([x], [y]), the vector we want to test,
Φ([x], [y]) = 4 + 0− 0− 2 = 2.

00

0
0

0
0

0
0
0
0

0 0 0

1
111
111

1
1
1
1
1
1

1

1
1

2

1

2

2

2

2

22
1 1

2 3
3

2

6

3 3
2 3 4 4

42
2
3
3

4
4

4
43

3 4
5
5

5

Fig. 8: An example of contraction. The light grey inter-
val vector corresponds to ([x], [y]), the vector we want
to contract and the dark grey interval vector corresponds
to ([x∗], [y∗]) the result of the contraction: CG([x], [y]) =
([x∗], [y∗]).

CG([x], [y]) = ([x∗], [y∗]) is the smallest box that
contains the same number of obstacles as ([x], [y]) (i.e
Φ([x], [y]) = Φ([x∗], [y∗])).

Figure 8 shows an example of map contraction.
Algorithm 4 is the algorithm that contracts ([x], [y]) over

the grid. It performs a binary search in order to find the
upper and lower bounds x∗, x∗, y∗, y∗ that do not changed
the value of Φ([x], [y]). It has four identical steps but only
the y∗ step is detailed here.

V. THE LOCALIZATION ALGORITHM

In this section we present the global localization algorithm.
First we describe the different steps of the static localization
algorithm, then we detail each step more precisely. We finish
by presenting the complete localization algorithm.

A. The Static Localization Algorithm

Let [pr] = ([xr], [yr], [θr]) be an initial domain that
enclose the robot pose (xr, yr, θr) and di, γi(i = 1, · · · , n)
a set of n telemeter measurements.(

disin(γi)

dicos(γi)

)
represents a vector that point out an

obstacle (see figure 9).
Hence, the coordinates of an obstacle in the map

(wix , wiy) is defined by:

wix = dicos(θr)sin(γi) + disin(θr)cos(γi) + xr, (4)

wiy = −disin(θr)sin(γi) + dicos(θr)cos(γi) + yr. (5)

Algorithm 4 CG

Require: ([x], [y]) and G
1: if Φ([x], [y]) = 0 then
2: ([x∗], [y∗]) = ∅
3: else
4: //contraction of y
5: ymid = y, yinf = y, y∗ = y
6: while ymid − yinf > 2 do
7: ymid = d(ymid + yinf)/2e
8: if Φ([x], [y, ymid]) 6= Φ([x], [y]) then
9: yinf = ymid, ymid = y∗

10: else
11: y∗ = ymid

12: end if
13: end while
14: if Φ([x], [y, yinf]) = Φ([x], [y]) then
15: y∗ = yinf

16: else
17: if Φ([x], [y, yinf + δy]) = Φ([x], [y]) then
18: y∗ = yinf + δy
19: else
20: y∗ = ymid

21: end if
22: end if
23: //the same for y, x and x
24: end if
25: return ([x∗], [y∗]) = ([x∗, x∗], [y∗, y∗]

Robot

Obstacle

Fig. 9: The robot doing a measurement di.

Moreover, note that we have

d2i = (xr − wix)2 + (yr − wiy)2. (6)

Thus, the following CSP can be considered :

V = {xr, yr, θr, di, γi, wix , wiy},
D = {

[xr] = [−∞,+∞], [yr] = [−∞,+∞], [θr] =
[0, 2π],
[wix] = [−∞,+∞], [wiy] = [−∞,+∞],
[di] =obtained from the sensor,
[γi] =obtained from the sensor}.

C =

cwix

: di cos(θr) sin(γi) + di sin(θr) cos(γi) + xr

cwiy
: −di sin(θr) sin(γi) + di cos(θr) cos(γi) + yr

cdi : d2i = (xr − wix)2 + (yr − wiy)2

In order to deal with this CSP three contractors are con-
sidered : Cwix

Algorithm 5, Cwiy
Algorithm 6 and Cdi

Algorithm 7. Since variables occur only once in equation
6 the contraction process converges in one step [14] for Cdi .

Furthermore, as we have defined earlier, we have a map
contractor CG.

Algorithm 5 Cwix

Require: [x], [θ], [wx], [di], [γi]
1: //Initialisation
2: [a] = cos([θ]), [b] = [di]sin[γi]× [a]
3: [c] = sin([θ]), [d] = [c]× [di]cos[γi]
4: [e] = [b] + [d], [f] = [e] + [x]
5: while ∇ do
6: //Forward
7: [a] = [a] ∩ [b]/([di]sin[γi])
8: [θ] = [θ] ∩ cos−1([a])
9: [c] = [c] ∩ [d]/([di]cos[γi])

10: [θ] = [θ] ∩ sin−1([c])
11: [f] = [f] ∩ [wx]
12: [e] = [e] ∩ [f]− [x]
13: [x] = [x] ∩ [f]− [e]
14: [b] = [b] ∩ [e]− [d]
15: [d] = [d] ∩ [e]− [b]
16: //Backward
17: [a] = [a] ∩ cos([θ])
18: [b] = [b] ∩ [di]sin[γi]× [a]
19: [c] = [c] ∩ sin([θ])
20: [d] = [d] ∩ [c]× [di]cos[γi]
21: [e] = [e] ∩ [b] + [d]
22: [f] = [f] ∩ [e] + [x]
23: [wx] = [wx] ∩ [f]
24: end while
25: ([x∗], [θ∗], [w∗

x]) = ([x], [θ], [wx])
26: return ([x∗], [θ∗], [w∗

x])

These contractors are called to solve the CSP as presented
in Algorithm 8 of which output is a set of boxes compatible
with the map and the measurements. In this algorithm ξ is the
stop criteron that corresponds to the precision of the boxes.

B. The Dynamic Algorithm

The static algorithm can be not sufficient to get an accurate
estimation of the robot’s pose due to the symmetries of the
environment (the output of ∆static is a set of poses). To
deal with this problem the robot has to move, to get more
information about the environment. In this point we assume
that the robot has a guaranteed knowledge of its moving.
Which means that if at the time t the robot has a estimation
of its pose [pt], at t+1 it can process [pt+1]. If (xr, yr, θr) 6∈
[pt+1] we consider that the robot has been kidnapped so it
has to start a new global localization.

Due to the lack of place, the algorithm is not given
but the general idea is the following. First the robot
has no knowledge of its pose i.e. [p] is initialized with
([−∞,+∞], [−∞,+∞], [0, 2π]). The robot gets measure-
ments and processes a first static localization. As a result,
it gets a set of feasible poses. Then, the robot moves, and
for each feasible poses it calculates (thanks to a bounded
odometry3) the new pose compatible with its moving. Then,
the robot gets new measurements and can process a static

3That means the odometry is known in a bounded way. For instance the
robot moves of m ∈ [m] meters in the direction θd ∈ [θd]. The interval
[m] and [θd] are obtained via odometry sensors.

Algorithm 6 Cwiy

Require: [y], [θ], [wy], [di], [γi]
1: (Initialisation)
2: [a] = sin([θ]), [b] = [di]sin[γi]× [a]
3: [c] = cos([θ]), [d] = [c]× [di]cos[γi]
4: [e] = −[b] + [d], [f] = [e] + [y]
5: while ∇ do
6: (Forward)
7: [θ] = [θ] ∩ sin−1([a])
8: [a] = [a] ∩ [b]/([di]sin[γi])
9: [c] = [c] ∩ [d]/([di]cos[γi])

10: [θ] = [θ] ∩ cos−1([c])
11: [e] = [e] ∩ [f]− [y]
12: [y] = [y] ∩ [f]− [e]
13: [b] = [b] ∩ −[e] + [d]
14: [d] = [d] ∩ [e] + [b]
15: [f] = [f] ∩ [wy]
16: (Backward)
17: [a] = [a] ∩ sin([θ])
18: [b] = [b] ∩ [di]sin[γi]× [a]
19: [c] = [c] ∩ cos([θ])
20: [d] = [d] ∩ [c]× [di]sin[γi]
21: [e] = [e] ∩ −[b] + [d]
22: [f] = [f] ∩ [e] + [y]
23: [wy] = [wy] ∩ [f]
24: end while
25: ([y∗], [θ∗], [w∗

y]) = ([y], [θ], [wy])
26: return ([y∗], [θ∗], [w∗

y])

Algorithm 7 Cdi
Require: [xr], [yr], [wx], [wy], [di]

1: (Initialisation)
2: [a] = [xr]− [wx], [b] = [yr]− [wy]
3: [dia] = [di]

2 − [b]2

4: [dib] = [di]
2 − [a]2

5: (Contraction in one step)
6: [a∗] = [a] ∩ |

√
[dia]|

7: [b∗] = [b] ∩ |
√

[dib]|
8: [wy

∗] = [wy] ∩ [yr]− [b∗]
9: [yr

∗] = [yr] ∩ [b∗] + [wy
∗]

10: [wx
∗] = [wx] ∩ [xr]− [a∗]

11: [xr
∗] = [xr] ∩ [a∗] + [wx

∗]
12: return [xr

∗], [yr
∗], [wx

∗], [wy
∗]

localization on each poses using the new data. The robot
moves again and so on until it is considered localized or
kidnapped.

VI. RESULTS

In this section we will present the simulation and the
results obtained.

In order to test this approach, a C++ simulator has been de-
veloped. This simulator is available at http://www.istia.univ-
angers.fr/∼lagrange/ as well as a video. The considered map
is an occupancy grid with 1000× 1000 cells corresponding
to a 10 × 10 meters environment which corresponds to the
size of the CAROTTE challenge environment, figure ??. The
precision of the grid is 1 × 1 centimetre. The sensor of
the robot does 32 measurements. Each measurements has
a bounded error ε = 10 centimetres, which corresponds
to a combination of εd and εγ . The maximal distance of

Algorithm 8 ∆static, The Static Algorithm

Require: G, [xr], [yr], [θr], [di], [γi](i = 1, · · · , n)
1: L.push[([xr], [yr], [θr])]
2: while L is not empty do
3: ([x], [y], [θ]) = L.pop()
4: while ∇ do
5: for i = 1 to n do
6: ([x], [θ], [wix]) = Cwix

([x], [θ], [wix], [di], [γi])
7: ([y], [θ], [wiy]) = Cwiy

([y], [θ], [wiy], [di], [γi])
8: ([wix], [wiy]) = CG([wix], [wiy])
9: ([x], [y], [wix], [wiy]) = Cdi([x], [y], [wix], [wiy])

10: end for
11: end while
12: if size([x], [y], [θ]) > ξ then
13: bissect([x], [y], [θ]) in two boxes:
14: ([x1], [y1], [θ1]) and ([x2], [y2], [θ2])
15: L.push[([x1], [y1], [θ1])]
16: L.push[([x2], [y2], [θ2])]
17: else
18: O.push[([x], [y], [θ])]
19: end if
20: end while
21: return O

the sensor is dmax = 1 meter, . The error of the moving
estimation (rotation and translation) of the robot is 10% of
the moving. To process the static contraction the robot does
not uses the measurements that are superior to the maximal
range of the sensor (no obstacle on the sensor’s ray). We
also consider 2 outliers in the data set of the sensor. An
outlier is defined as a measure di < dmax even if there is
no corresponding obstacle in the map. To deal with these
values, we use the q-relaxed intersection [15].

Figure 10 shows the environment and the simulated posi-
tion of the robot and the blue boxes show the set of possible
locations of the robot in the map after the first contraction.
After two moves the robot location is given with only one
box with the following size 27cm for xr, 23cm for the yr and
7◦ for θr. The computational time of the global localization
is less than two minutes.

Fig. 10: The environment of the simulation, the red rays rep-
resent the sensor’s measurements. The blue boxes represent
the location obtained after the first call of ∆static algorithm,
i.e. the set of compatible boxes. The computational time is
50 seconds.

VII. CONCLUSION

In this paper we have shown that interval analysis could
be used to solve the kidnapping problem. This method uses a
discrete map so the time processing depends of the size of the
grid. But in fact this size influence only the pre-computation
process. The time processing of the localization algorithm
depends mainly of the number of measurements and of the
accuracy of the range sensor.

Instead of a probabilistic approach, interval analysis yields
a robust estimations and allows to deal with non linear
estimation.

The simulation results are promising and this method can
be efficient in a real context as it will be tested during the
next edition of the CAROTTE challenge (June 2011) http:
//www.defi-carotte.fr/index.php.

REFERENCES

[1] D. Caltabiano, G. Muscato, and F. Russo, “Localization and self-
calibration of a robot for volcano exploration,” in Robotics and
Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International
Conference on, 2004.

[2] L. Jaulin, “A nonlinear set-membership approach for the localiza-
tion and map building of underwater robots,” IEEE Transactions on
Robotics, vol. 25, pp. 88–98, 2009.

[3] M. Tomono, “Robust robot localization and map building using a
global scan matching method,” in International Conference on Intel-
ligent Robots and Systems (IROS), 2004.

[4] X. Zezhong, L. Ronghua, and L. Jilin, “Global localization based
on corner point,” in Proceedings on the International Computational
Intelligence in Robotics and Automation (ICRA), vol. 2, 2003, pp.
843–847.

[5] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics, ser. Intelli-
gent robotics and autonomous agents. MIT Press, 2005.

[6] J. Leonard and H. Durrant-Whyte, “Mobile robot localization by
tracking geometric beacons,” IEEE Transactions on Robotics and
Automation, vol. 7, no. 3, pp. 376 –382, 1991.

[7] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “Fastslam:
A factored solution to the simultaneous localization and mapping
problem,” in In Proceedings of the National Conference on Artificial
Intelligence (AAAI), 2002, pp. 593–598.

[8] G. Cen, N. Matsuhira, J. Hirokawa, H. Ogawa, and I. Hagiwara, “Mo-
bile robot global localization using particle filters,” in International
Conference on Control, Automation and Systems (ICCAS), 2008, pp.
710–713.

[9] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo localiza-
tion for mobile robots,” Proceedings 1999 IEEE International Confer-
ence on Robotics and Automation (ICRA), vol. 128, no. February, pp.
1322–1328, 1999.

[10] L. Zhang, R. Zapata, and P. Lépinay, “Self-adaptive Monte Carlo
localization for mobile robots using range sensors,” in Proceedings of
the International Conference on Intelligent robots and systems (IROS),
2009, pp. 1541–1546.

[11] L. Jaulin, M. Kieffer, E. Walter, and D. Meizel, “Guaranteed robust
nonlinear estimation with application to robot localization,” IEEE
Transactions on systems, man and cybernetics; Part C Applications
and Reviews, vol. 32, no. 4, pp. 374–382, 2002.

[12] C. Lara, L. Romero, and F. Calderón, “A robust iterative closest
point algorithm with augmented features,” in Proceedings of the 7th
Mexican International Conference on Artificial Intelligence: Advances
in Artificial Intelligence, ser. MICAI ’08. Springer-Verlag, 2008, pp.
605–614.

[13] R. E. Moore, Interval analysis. Prentice-Hall, 1966.
[14] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval

Analysis, 1st ed. Springer, Sept. 2001.
[15] L. Jaulin, “Robust set membership state estimation ; application to

underwater robotics,” Automatica, 2008.

http://www.defi-carotte.fr/index.php
http://www.defi-carotte.fr/index.php

	INTRODUCTION
	The Global Localization Problem
	The Robot
	The Environment
	The Objective

	Interval Analysis And Constraint Satisfaction Problem
	Interval Analysis
	Constraint Satisfaction Problem

	Map Contractor
	Intersection between a box and the grid map
	Pre-Calculation
	The Function

	The Map Contractor

	The Localization Algorithm
	The Static Localization Algorithm
	The Dynamic Algorithm

	Results
	Conclusion
	References

