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Statistical Independence Results :

Notation: Two independent random signals s1(¢) and s2(t) will
bedenoted s1(t)Lsa(t).

Properties:  x1(t)Is(t) s(t)Ix1(t)

=
= (@1(t) + -+ 4 2n(t))Is(?)

I
x1(t)Is(t), ... xn(t)Is(t)
z1(t)Is(t) = Axi(t)Is(t)
Lemma: Let s1(t) and s(t) be differentiable signals, then
S1 (t)]lég (t)
s1()Is2(t) = < $1(t)Lsa(t)
$1(2)182(t)

Sketch of proof: 51 (t)]Is% gt) and s1(t)Is2(t + 7)

(t47) 8ot
Hence s (f)[22——22

Since s2(t) isdifferentiable, s1(t)L$2(t).
The other relations are proved similary.

Algorithm :

For two mixtures of two sources, an analytical solution of (1)
can be easily derived (see paper for details).

For larger mixtures, algorithm requires two steps :
- computation of variance-covariance matrices of
signals and their first derivatives,

- joint diagonalization (e.g. with JADE) of these two
matrices.
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Overview :

y1 (1) Experimental Result :

Observations

The Figure presents the separation
performance for Gaussian mixture (using

index E[norm(s — §)]) versus the sample
number.

Over 2600 samples, the analytical solution
provides good performance.
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Demonstration

A solver can be downloaded on my web page
http://www.istia.univ-angers.fr/~lagrange
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