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1. Introduction

The purpose of this paper is to present a new method based on guar-
anteed numerical computation able to verify that a function f : A ⊂
Rn → Rp is injective, i.e. satisfies

∀a1 ∈ A, ∀a2 ∈ A, a1 6= a2 ⇒ f(a1) 6= f(a2). (1)

To our knowledge, it does not exist any numerical method able to
perform this injectivity test. Moreover, the complexity of the algebraic
manipulations involved often makes formal calculus in fault.

Note that the basic idea coming to mind which consists in verifying
that the Jacobian matrix of f is injectiveis not a sufficient condition
for injectivity as illustrated by the following example. Consider the
function f defined by

f :





[−π, 2π] → R2

x →
(

cosx
sinx

)
(2)

depicted on Figure (1). Its Jacobian matrix Df(x) is

Df(x) =
( − sinx

cosx

) (
6=

(
0
0

))
.

Although, Df(x) is full rank column (∀x ∈ [−π, 2π]), the function f is
not injective.
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Figure 1. Graph of function f .

Many problems could be formulated as the injectivity verification
of a specific function. For example, concerning the identification of
parametric models, the problem of proving structural identifiability of
parametric system amounts to checking the injectivity of the model
structure (E.Walter and Pronzato, 1990; Ollivier, 1990). Other exam-
ples can be cited as in blind source separation, where the separability
and the blind identifiability (Lagrange, 2005) consist in verifying the
injectivity of particular functions.

In the context on structural identifiability, Braems and his collabo-
rators presented in (Braems et al., 2001) an ε-approximation method
that verifies the injectivity, namely ε-injectivity. It consists in verifying
the following condition

∀a1 ∈ A, ∀a2 ∈ A, |a1 − a2| > ε ⇒ f(a1)− f(a2) 6= 0, (3)

which can be view as an approximation of the condition (1).
In this paper, we present a new algorithm, based on interval analysis,

able to check that a function is injective. The paper is organized as
follows. Section 2 presents interval analysis that will be used to check
the injectivity. In Section 3, a new definition of partial injectivity in
a domain makes possible to use interval analysis techniques to get
a guaranteed answer. Section 4 presents an algorithm able to test a
given function for injectivity. Finally, in order to show the efficiency of
the algorithm, two illustrative examples are provided. A solver called
ITVIA (Injectivity Test Via Interval Analysis) implemented in C++ is
made available at http://www.istia.univ-angers.fr/~lagrange/.
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2. Interval analysis

This section introduces some notions of interval analysis to be used in
this paper.

A vector interval or a box [x] of Rn is defined by

[x] = [x, x] = {x ∈ Rn | x ≤ x ≤ x}. (4)

where the partial order ≤ is understood componentwise and x and x
are two elements of Rn such that x ≤ x. The set of all bounded boxes
of Rn will be denoted by IRn. The enveloping box or hull box [A] of
a bounded subset A ∈ Rn is the smallest box of IRn that contains A.
Figure 2 presents the hull box of a subset of R2.

Figure 2. A hull box A of a subset A ∈ R2.

By extension, an interval matrix [M ] = [M, M ] is a set of matrices of
the form :

[M ] = {M ∈ Rn×m | M ≤ M ≤ M} (5)
and IRn×m denoted the set of all interval matrices of Rn×m. The proper-
ties of punctual matrices can naturally be extended to interval matrices.
For example, [M ] is full column rank if all the matrices M ∈ [M ] are
full column rank.

Interval arithmetic defined in (Moore, 1966) provides an effective
method to extend all concepts of vector arithmetic to boxes.
Let f : Rn → Rm be a vector function; the set-valued function [f ] :
IRn → IRm is a inclusion function of f if, for any box [x] of IRn, it
satisfies f([x]) ⊂ [f ]([x]) (see Figure 3). Note that f([x]) is usually not
a box contrary to [f ]([x]). Moreover, since [f([x])] is the hull box of
f([x]), one has

f([x]) ⊂ [f([x])] ⊂ [f ]([x]). (6)

REMARK 1. The computation of an inclusion function [f ] for any
analytical function f can be obtained by replacing each elementary op-
erator and function by its interval counterpart (Moore, 1966; Neumaier,
1990).
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Figure 3. Inclusion function [f ] of a function f .

EXAMPLE 2. An inclusion function for

f :
(

x1

x2

)
→

(
x2

1 + x2
2

cos(x1x2)

)
(7)

is

[f ] :
(

[x1]
[x2]

)
→

(
[x1]2 + [x2]2

cos([x1]× [x2])

)
. (8)

If, for instance, [x] =
(
[−1, 1], [0, π

2 ]
)T then the box [f ]([x]) is computed

as follows:

[f ]([x]) =
(

[−1, 1]2 + [0, π
2 ]2

cos
(
[−1, 1]× [0, π

2 ]
)

)
(9)

=

(
[0, 1] + [0, π2

4 ]
cos

(
[−π

2 , π
2 ]

)
)

(10)

=

(
[0, 1 + π2

4 ]
[0, 1]

)
. (11)

Note that the operators +,×, and functions cos and (.)2 in (8) are
interval counterparts of those in (7).
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3. Injectivity

This section presents some useful results concerning injective functions.
Some definitions and fundamental results, based of the injectivity test,
are introduced.

3.1. Definition

Let us introduce the definition of partial injectivity of a function.

DEFINITION 1. Consider a function f : A → B and any set A1 ⊆ A.
The function f is said to be a partial injection of A1 over A, noted
(A1,A)-injective, if ∀a1 ∈ A1,∀a ∈ A,

a1 6= a ⇒ f (a1) 6= f (a) . (12)

f is said to be A-injective if it is (A,A)-injective.

EXAMPLE 3. Consider the three functions of Figure 4. The func-
tions f1 and f2 are ([x1] , [x])-injective (although f2 is not [x]-injective)
whereas f3 is not.

Figure 4. Graphs of functions f1,f2 and f3.

The following theorem motivates the implementation of the algo-
rithm presented in Section 4.

THEOREM 4. Consider a function f : A → B and A1, . . . ,Ap a
collection of subsets of A. We have

∀i, 1 ≤ i ≤ p, f is (Ai,A)− injective ⇔ f is (
p⋃

i=1

Ai,A)− injective.

(13)
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Proof. (⇒) One has ∀ai ∈ Ai,∀a ∈ A, ai 6= a ⇒ f (ai) 6= f (a). Hence
∀b ∈ (∪iAi) , ∀a ∈ A, b 6= a ⇒ f (b) 6= f (a).

(⇐) Direct consequence of Definition 1.

3.2. Partial Injectivity Condition

In this paragraph, a fundamental theorem which gives a sufficient con-
dition of partial injectivity, is proposed. First, let us introduce a gen-
eralization of the mean value theorem.

THEOREM 5 (Generalized Mean Value Theorem). Consider a contin-
uously differentiable function f : A ⊆ Rn → Rm. Let Df be its Jacobian
matrix and [x] ⊂ A. One has

∀a, b ∈ [x], ∃Jf ∈ [Df([x])] such that f(b)− f(a) = Jf · (b− a), (14)

where [Df([x])] denotes the hull box of Df([x]).

Proof. According to Mean-Value Theorem1 (Kaplan, 1991) applied on
each components fi : Rn → R of f (1 ≤ i ≤ m ) and since the segment
seg(a, b) belongs to [x], we have

∃ξi ∈ [x] such that fi(b)− fi(a) = Dfi(ξi) · (b− a). (15)

Taking Jfi
= Dfi(ξi), we get

∃Jfi ∈ Dfi([x]) such that fi(b)− fi(a) = Jfi · (b− a). (16)

Thus

∃Jf ∈




Df1 ([x])
...

Dfm ([x])


 such that f(b)− f(a) = Jf · (b− a). (17)

i.e., since (Df1 ([x]) , . . . , Dfm ([x]))T ⊂ [Df([x])] (see Equation (6)),

∃Jf ∈ [Df([x])] such that f(b)− f(a) = Jf · (b− a). (18)

EXAMPLE 6. Consider the function

f :

{
R → R2

x → (y1, y2)
T . (19)
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Figure 5. Graph of f : R→ R2.

depicted in Figure 5. Figure 6 represents the set Df([x]) of all deriva-
tives of f (drawn as vectors) and its hull box [Df([x])]. One can see that
the vector Jf defined in (14) belongs to [Df ([x])] (but Jf /∈ Df ([x]))
as forecasted by Theorem 5.

Figure 6. Illustration of the set [Df([x])].

Now, the following theorem introduces a sufficient condition of par-
tial injectivity. This condition will be exploited in next section in order
to design a suitable algorithm that test injectivity.

1 Let f : U ⊂ Rn → R be a differentiable function. If a and b belong to U such
that the segment between a and b, noted seg(a, b), is included in U . Then, there
exists ξ belonging to seg(a, b) such that

f(b)− f(a) = Df(ξ) · (b− a).
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THEOREM 7. Let f : A ⊂ Rn → Rm be a continuously differentiable
function and [x1] ⊂ [x] ⊂ A. Set [x̃] =

[
f−1 (f ([x1])) ∩ [x]

]
. If the in-

terval matrix [Df ([x̃])] is full column rank then f is ([x1] , [x])-injective.

Proof. The proof is by contradiction.
Assume that f is not ([x1],[x])-injective then

∃b ∈ [x1] ,∃a ∈ [x] such that b 6= a and f (b) = f (a) . (20)

Now, since f(a) = f(b), one has a ∈ f−1 (f ([x1])) ∩ [x] and triv-
ially b ∈ f−1 (f ([x1])) ∩ [x]. Therefore, since f−1 (f ([x1])) ∩ [x] ⊂[
f−1 (f ([x1])) ∩ [x]

]
= [x̃] (see Equation (6)), one has a, b ∈ [x̃].

Hence, (20) implies

∃a,∃b ∈ [x̃] , such that b 6= a and f (b) = f (a) . (21)

To conclude, according to Theorem 5, ∃a, ∃b ∈ [x̃],
∃Jf ∈ [Df ([x̃])] such that

b 6= a and 0 = f(b)− f(a) = Jf · (b− a), (22)

i.e. ∃Jf ∈ [Df ([x̃])] such that Jf is not full column rank and therefore
the (interval) matrix [Df ([x̃])] is not full column rank.

4. ITVIA Algorithm

In this section, we present the Injectivity Test’s Via Interval Analysis
algorithm designed from Theorems 4 and 7. This algorithm test the
injectivity of a given continuously differentiable function f : Rn → Rm

(f ∈ C1) over a given box [x] .
ITVIA can be decomposed into two distinct algorithms :

- Algorithm 1 checks if the interval matrix
[
Df

([
f−1 (f ([x1])) ∩ [x]

])]

is full column rank. In the positive case, according to Theorem 7,
the function f is ([x1], [x])-injective. Therefore, Algorithm 1 can be
viewed as a test for partial injectivity.

- Algorithm 2 divides the initial box [x] into a paving2 {[xi]}i such
that, for all i, the function f is ([xi], [x])-injective. Then, since [x] =
(∪i[xi]) and according to Theorem 4, f is [x]-injective.

In Algorithm 1 a set inversion technique (Goldsztejn, 2005; Jaulin
et al., 2001) is first exploited to characterize a box [x̃] that contain

2 A paving of [x] is a finite set of non-overlapping boxes {[xi]}i such that [x] =⋃
i
[xi]
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Algorithm 1 Partial Injection
Require: f a C1 function, [x] the initial box and [x1] a box included

in [x].
Ensure: A boolean :

- true : f is ([x1], [x])-injective,
- false : f may or not be partially injective.

1: Initialization : Lstack := {[x]}, [x̃] := ∅.
2: while Lstack 6= ∅ do
3: Pop Lstack into [w].
4: if [f ] ([w]) ∩ [f ] ([x1]) 6= ∅ then
5: if width([w]) > width([x1]) then
6: Bisect [w] into [w1] and [w2].
7: Stack [w1] and [w2] in Lstack.
8: else
9: [x̃] = [[x̃] ∪ [w]].

10: end if
11: end if
12: end while
13: if [Df ]([x̃]) is full column rank then
14: Return true \\ ”f is ([x1], [x])-injective”
15: else
16: Return False \\ ”Failure”
17: end if

[f−1(f([x1])) ∩ [x]]. The purpose of the condition in Step 5 is to avoid
useless splitting of [w] ad infinitum. Secondly, an interval arithmetic
evaluation of Df over [x̃] is performed in order to test the full ranking
of the resulting matrix [Df ]([x̃]). Thus, since [Df([x̃])] ⊂ [Df ]([x̃]) (see
Equation (6)) and according to Theorem 7, if [Df ]([x̃]) is full column
rank, then f is ([x1], [x])-injective.

There exists different sufficient conditions able to verify that a given
matrix [A] is full rank (Step 13). As usual, using interval analysis, one
can basically use standard methods. For example, if [A] is a square
matrix, one can compute the (interval) determinant of [A] or use the
Interval Gauss Algorithm (Neumaier, 1990). In practice, those methods
are seldom able to decide either or not a given matrix is full rank due
to well known effect of multioccurences.
To check a matrix is full rank, one can use the following theorem :
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THEOREM 8. Let [A] be a n × m interval matrix and A be a n ×
m matrix with n ≤ m. If [Ĩ] = [A](AT A)−1AT is strictly diagonally
dominant then [A] is full rank.

Proof. The matrix [Ĩ] is of dimension n × n and strictly diagonally
dominant. Therefore, [Ĩ] is invertible and of rank n. In general, one has
for all matrices B1 and B2, rank(B1B2) ≤ min(rank(B1), rank(B2)).
Hence,

n = rank([Ĩ]) ≤ min(rank([A]), rank((AT A)−1AT )) ≤ rank([A]) ≤ n.

Then [A] is full rank.

REMARK 9. Note that (AT A)−1AT is the pseudoinverse of A. In
practice (to apply Theorem 8) A is chosen to be the center of [A].
As a consequence, [Ĩ] is often close to I that is to say, [Ĩ] is diagonal
dominant.

Algorithm 2 Injectivity Test Via Interval Analysis
Require: f a C1 function and [x] the initial box.
1: Initialization : L := {[x]}.
2: while L 6= ∅ do
3: Pull [w] in L.
4: if Partial Injection(f, [x] , [w]) = False then
5: Bisect [w] into [w1] and [w2].
6: Push [w1] and [w2] in L.
7: end if
8: end while
9: Return ”f is injective over [x]”.

Algorithm 2 creates a paving of the initial box [x] such that, for
all i, the function f is ([xi] , [x])-injective. Therefore, if the algorithm
terminates, then f is proved to be injective over [x]. Otherwise, the
algorithm can be stopped (manually or with a ε condition on the width
of boxes [xi] which remain to be tested). In this case, two domains are
obtained : An undeterminate domain composed of all the boxes in L
not proved partially injective and a partial injective domain anywhere
else in [x].

By combination of those algorithms, we can prove that a function is
injective over a box [x]. A solver, called ITVIA, developed in C++ is
made available and tests the injectivity of a given function f : R2 → R2

(or f : R→ R2) over a given box [x].
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5. Examples

In this section, two examples are provided in order to illustrate the
efficiency of the solver ITVIA presented in previous section. We check
the injectivity of two functions f : R2 → R2 over a given box [x].

5.1. M function

Consider the function f , depicted in Figure 7, defined by

f :





R2 → R2
(

x1

x2

)
→

(
y1

y2

)
=

(
x1 − x2(x1 cos(x1) + sin(x1))

x1 sin(x1) + x2

)
(23)

and test its injectivity over the box [x] =
(
[−4, 4], [0, 2

10 ]
)T

.

Figure 7. The image of the function f defined in (23) is depicted in dash for
x1 ∈ [−4, 4] and x2 = 0 and in black for x1 ∈ [−4, 4] and x2 = 2

10
.

After less than 0.1 sec on a Pentium 1.7GHz, ITVIA proved that
f is injective over [x]. The initial box [x] has been cut out in a set of
sub-boxes where f is partially injective. Figure 8 shows the successive
bisections of [x] made by ITVIA.

5.2. Ribbon function

Consider the ribbon function f (depicted in Figure 9) defined by

f :





R2 → R2
(

x1

x2

)
→

(
y1

y2

)
=

( x1
2 + (1− x2) cos (x1)

(1− x2) sin (x1)

)
(24)
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Figure 8. Bisection of [x] obtained by ITVIA for the function f defined in (23). In
gray, the partial injectivity domain and, in white, the indeterminate domain (empty
in this example).

and get interest with its injectivity over the box [x] = ([−1, 4] ,
[
0, 1

10

]
)T .

Since the ribbon overlappes (see Figure 9), one can see that f is not
injective over [x].

Figure 9. The function f defined in (24) is depicted in dash for x1 ∈ [−1, 4] and
x2 = 0 and in black for x1 ∈ [−1, 4] and x2 = 1

10
.

After 3 seconds, the solver ITVIA is stopped (before going to end).
It returns the solution presented in Figure 10. The function f has been
proved to be a partial injection on the gray domain over [x], whereas the
white domain corresponds to the undeterminate domain where ITVIA
was not able to prove the partial injectivity. Indeed, the indeterminate
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domain corresponds to the non injective zone of f where all points are
mapped in the overlapping zone of the ribbon.

Figure 10. Partition of the box [x] obtained by ITVIA for the function f defined in
(24). In gray, the partial injectivity domain and in white the indeterminate domain.

6. Conclusion

In this paper, we have presented a new algorithm able to test functions
for injectivity generalizing the work presented in (Braems et al., 2001)
restricted to ε-injectivity. Since interval analysis technics are used, the
injectivity test is guaranteed.
In case of functions f : R → R2 and f : R2 → R2, the solver ITVIA
developed in C++ is available. From a given function f and a given
box [x], the solver partitiones [x] into two domains : Partially injective
domain and indeterminate domain (where the function may or not
be injective). Of course, when the indetermined domain is empty, the
function is injective over [x].

In order to fill out this work, different perspectives appear. First
of all, it will be interesting to improve the efficiency of the algorithm
ITVIA by the additional use of constraint propagation. Secondly, we
showed that the initial domain can be divided into two subsets where
the function has only one preimage (i.e. where f is a partial injection)
and where the function have more than one preimages. It will be attrac-
tive to pursue this work in order to divided initial domain in subsets
where the function has a fixed number of preimages.
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thesis, University of Joseph Fourier, Grenoble.
Moore, R.: 1966, Interval Analysis. Prentice-Hall, Englewood Cliffs.
Neumaier, A.: 1990, Interval Methods for Systems of Equations. Cambridge Univ.

Press.
Ollivier, F.: 1990, ‘Le problème de l’identifiabilité structurelle globale : approche

théorique, méthodes effectives et bornes de complexité’. Ph.D. thesis, Ecole
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