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In this article, identification of heating source location and time-dependent
surface heat flux is investigated considering point temperature measurements
on a boundary of the studied three-dimensional geometry. Such Inverse Heat
Conduction Problems are ill-posed, since solution stability is not satisfied
when observations are noisy/disturbed. We propose a robust algorithm for a
simultaneous estimation of location and time-varying strength of a plane heat
source. This iterative regularization method based on the conjugate gradient
method is tested in several numerical configurations.

Keywords: inverse heat conduction problem; parametric identification;
conjugate gradient method; partial differential equations; 3-D thermal model

1. Introduction

Inverse problems resolution for parametric identification in thermal context is widely
investigated. In the specific framework of surface heat flux estimation, numerous studies
can be mentioned and among recent references, one can cite [1] for boundary estima-
tion in a falling film experiment using infrared radiometer (in a three-dimensional
domain) [2] for the identification of an unknown heat flux applied to the interior surface
of a cylinder using infrared camera (in a cylindrical geometry) or [3] devoted to
unknown time- and space-dependent frictional heat flux identification (a non-linear sys-
tem is considered in an axial-symmetric domain). Concurrently, determination of fixed
heat sources location, or moving heat sources trajectories is less investigated. In [4],
source locations are identified in a two-dimensional geometry, while heat sources num-
ber is unknown (and has also to be determined). The proposed method is extended in
[5] considering measurement errors, point sources and sensors (numerical applications
are shown in two- and three-dimensional domains). In [6], heat source locations identifi-
cation is performed in a parallelepiped (heat fluxes are applied on several discs on one
plate face while point measurements are obtained on the opposite face). Simultaneous
identification of heat flux and location induce a greater complexity. The study presented
in [7] is devoted to the estimation of the time-varying heat flux and the location of a
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single point source in a one-dimensional domain (temperatures are measured on both
boundaries). A finite difference scheme is implemented for numerical simulation and
measurement noise effect is analysed. In [8], the conjugate gradient method (CGM) is
implemented in order to estimate simultaneously the strength and the position of heating
source in a one-dimensional geometry. An experimental study is proposed in [9] for
simultaneous estimation of a source heating flux (strength and location) in two-dimen-
sional heat diffusion problem by implementing the boundary element method (BEM).
Heat flux and location of line heat sources are identified in steady state in [10] and
[11], while sources number is assumed to be known (a two-dimensional experimental
situation is proposed). Another approach has been proposed in [12], where both strength
and location of two moving sources are investigated considering measurement errors
and 32 sensors located on the boundary of a square domain. In [13], identification of
strength and location of heating in a two-dimensional geometry is successfully per-
formed. More recently, in [14], an approach based on the implementation of the CGM
is used for estimating a heating source (which this latter depends simultaneously on
time and space) in one-dimensional geometry. In addition, in [15], heat flux and loca-
tion of a single fixed source in a one-dimensional IHCP are estimated considering the
temperature measured at the final time by using the CGM. Various numerical examples
(with and without the presence of noisy data) have been presented to examine the
robustness and the accuracy of the proposed approach.

Let us briefly present the common methods for IHCP resolution. Among the most
common methods for ill-posed problem resolution in thermal context, classical minimi-
zation algorithm such as steepest descent method in [2] or BFGS (quasi-Newton) [16]
are quite relevant. A method based on a boundary integral formulation combined with
Green functions is presented in [8]. In [17], the mollification method is proposed for
the identification of source term in one-dimensional IHCP. An example of the well-
known Beck’s sequential function specification is presented in [18]. More recently,
modal methods (such as Branch Eigen-modes Reduction Method, in [19]) are developed
(see [20] for example). Minimization algorithms based on CGM are widely presented in
[1,3,6], [21–28]. For example, in a three-dimensional domain, such approach is used for
the identification of heat source locations in [6] and for time-varying strength identifica-
tion in [28].

In the present work, simultaneous estimation of both the unknown parameters
(time-varying strength of a heat flux and fixed heat source location) is investigated in a
three-dimensional domain. In the studied geometry, the temperature evolution is
described by a set of partial differential equations (parabolic equation in the domain
subject to adequate boundary and initial conditions). The paper is organized as follows:
in the next section, the thermal phenomenon is described by a set of partial differential
equations (PDEs) and presented as a direct problem. Numerical simulations are
performed using a finite element method (FEM) from the Comsol-MultiphysicsTM soft-
ware. In the third section, the inverse problem is formulated and the main steps of the
conjugate gradient algorithm are briefly exposed. In order to simultaneously identify the
time-varying strength of a heat flux and location of a source, the formulation of a sensi-
tivity problem and an adjoint problem and the admissible level of minimization value
are addressed in the following three sections. In the sixth section, numerical results are
provided and effects of disturbances on measurements are discussed through different
cases. Finally, several concluding remarks and different outlooks are proposed.

2 S. Beddiaf et al.
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2. Direct problem

Temperature evolution in the studied domain is described by a parabolic PDE with
initial and boundary conditions. In the following Equation (1), the space variable is
ðx; y; zÞ 2 X � R3 @X is the boundary of domain X, the time variable is t 2 T ¼ ½0; tf �
in seconds and the temperature is denoted by hðx; y; z; tÞ in ½K�:

C
@hðx; y; z; tÞ

@t
� kDhðx; y; z; tÞ ¼ 0 ðx; y; z; tÞ 2 X� T ;

hðx; y; z; 0Þ ¼ h0 ðx; y; zÞ 2 X;

�k@hðx; y; z; tÞ
@n

¼ hðhðx; y; z; tÞ � h0Þ � Uðx; y; z; tÞ ðx; y; z; tÞ 2 @X� T :

9>>>=
>>>;
ð1Þ

Main parameters are defined in Table 1. Vector n is the outward-pointing unit normal
vector to @X.

Let us consider in the following that the domain geometry is a parallelepipedic plate
with known thermal properties (titanium plate in the present study). Unknown input is
Uðx; y; z; tÞ in ½Wm�2� which depends on source location and time-varying strength.
For example, for a single fixed source (located on the lower plate face y ¼ 0), a uni-
form heat flux spatial distribution on a disc D (centre I ¼ ðX ; 0; ZÞ and radius r) is
described by:

Uðx; 0; z; tÞ ¼ 0 if ðx; zÞ R D;
/ðtÞ if ðx; zÞ 2 D:

�
ð2Þ

For numerical reasons, it is obvious that such discontinuous function is quite
difficult to deal with. Then, the following definition is considered:

Ulðx; 0; z; tÞ ¼ �/ðtÞp arctan l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� X Þ2 þ ðz� ZÞ2

q
� lr

� �
þ p

2

� �
: ð3Þ

Parameter l is used to describe the discontinuity in the neighbourhood of the disc
boundary. For example, for l! þ1 then Ulðx; 0; z; tÞ ! Uðx; 0; z; tÞ. Considering the
mesh used for FEM, l ¼ 104 is a correct approximation; numerical simulation are not
dramatically affected by this modelization of the spatial distribution of the heating flux.
A discrete formulation of /ðtÞ can be considered:

/ðtÞ ¼
XN
i¼1

/i siðtÞ ð4Þ

Table 1. Notations and parameters.

Initial and ambient temperature h0 Thermal conductivity, λ Final instant, tf

293K 21.9Wm�1 K�1 100 s
Volumic heat, C Natural convection coefficient h Disk radius r
2.35 106 Jm�3K�1 20Wm�2 K�1 2� 10�3m

Inverse Problems in Science and Engineering 3
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according to N time steps and the basis of hat function siðtÞ, see Figure 1. Thus, for
example, if N ¼ 6 and / ¼ ð/iÞi¼1;���;6 ¼ ð0; 15; 50; 50; 25; 15Þ kW m�2, boundary
heat flux /ðtÞ is drawn in Figure 2.

Considering the previous parameters, the direct problem described by the set of
Equations (1) can be numerically solved using Comsol-MultiphyisicsTM interfaced with
Matlab®. An example of temperature evolution and spatial distribution (at t ¼ 100 s)
obtained with a single heating source on a square plate ð0:05� 0:002� 0:05Þ m is
proposed. The fixed heat source location is ð0:005; 0; 0:005Þ m; sensors coordinates
are C1ð0; 0:002; 0:006Þ, C2ð�0:0052; 0:002; 0:003Þ and C3ð0:0052; 0:002; 0:003Þ

Figure 1. Basis functions si (t).
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Figure 2. Heat flux.

Figure 3. Source and sensors location.
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in m, see Figure 3. Numerical simulations are shown in Figures 4 and 5. Considering
that both disc location I ¼ ðX ; 0; ZÞ and heat flux / ¼ ð/iÞi¼1;���;N are unknown, an

iterative regularization method based on the CGM ([29,30]) is implemented for the
three-dimensional IHCP resolution. Such algorithm is implemented for the minimizarion
of a cost function describing the quadratic errors between the simulated temperature

and observed temperature ĥ. For the investigated configuration, three sensors Cm¼1;2;3
are located on the non-heated face (number of sensors is nC ¼ 3) and the temperature is
measured with a proper time sample. The ill-posed and inverse problem is solved
thanks to an iterative resolution of three well-posed problems: direct problem (for cost
function calculus), adjoint problem (issued from Lagrangian formulation in order to esti-
mate cost function gradient) and sensitivity problem (for descent depth determination).
The CGM will be implemented in order to identify the unknown time-varying heat flux
/ðtÞ and the unknown source location IðX ; 0; ZÞ.

3. Inverse Heat Conduction Problem (IHCP)

Simultaneous identification of unknown parameters �U ¼ ðX ; Z;/i¼1;���;N Þ is performed
considering the minimization of cost function J by an iterative descent method:
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Figure 5. Spatial temperature distribution at t= tf.
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Figure 4. Temperature evolution.
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Jð �/;X ; ZÞ ¼ 1

2

Z tf

0

XnC¼3
m¼1
ðhðCm; t; �/;X ; ZÞ � ĥmðtÞÞ2dt

� 1

2

Xnf
j¼1

XnC¼3
m¼1
ðhðCm; j; �/;X ;ZÞ � ĥmðjÞÞ2; ð5Þ

where ĥm is the temperature measured by sensor Cm and nf ¼ 100 is the number of
measurements provided by each sensor (sampling time is 1 s). A sequential approach is
proposed. In the following, heat flux identification is denoted by HF, while source
location identification is denoted by SL. The modified CGM is presented in the next
section.

3.1. Conjugate gradient method (CGM)

(1) Initialization: iteration number is k ¼ 0, intern counter is n ¼ 0 and arbitrary

initial flux �/k¼0 and initial source location Ik¼0 ¼ ðX k¼0; 0; Zk¼0Þ are fixed.
The first identification problem is, for example, heat flux identification
ðHF ¼ 1; SL ¼ 0Þ.

(2) Solve the direct problem and calculate Jð �/k ; IkÞ.

(a) If Jð �/k ; IkÞ 6 Jstop, then the iterative procedure is halted and the current

values of ð �/k ; IkÞ are considered as relevant estimators.
(b) Else, the iterative procedure is continued.

(3) Solve the adjoint problem.

(a) If ðHF ¼ 1; SL ¼ 0Þ, determine the cost function gradient rJ k ¼
ðrJ/k

i
Þi¼1;���;N , while rJ kI ¼ 0, rJ kX ¼ rJ kZ ¼ 0 and dI ¼ 0, dX ¼

dZ ¼ 0.
(b) If ðHF ¼ 0; SL ¼ 1Þ, determine the cost function gradient rJ k ¼ rJ kI ¼

ðrJ kX ;rJ kZ Þ, and ðrJ/k
i
Þi¼1;���;N ¼ 0 and d/ðtÞ ¼ 0.

(c) Calculate the descent direction dkþ1 ¼ rJ k þ bkdk where bk ¼ krJ kk2=
krJ k�1k2 (cf. [31]), except for bk¼0 ¼ 0,

(4) Solve the sensitivity problem in the descent direction

(a) Calculate the temperature variation dhðx; y; z; tÞ in the descent direction

dkþ1.
(b) Calculate the descent depth ckþ1 ¼ Argmin

c2R�
JðUk � cdkþ1Þ.

(5) Calculate

(a) if ðHF ¼ 1; SL ¼ 0Þ the new heat flux: /kþ1ðtÞ ¼ /kðtÞ � ckþ1dkþ1/ .

(b) if ðHF ¼ 0; SL ¼ 1Þ the new source location: Ikþ1 ¼ Ik � ckþ1dkþ1I .

6 S. Beddiaf et al.
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(6) n nþ 1;

(a) If ðHF ¼ 1; SL ¼ 0Þ and n ¼ nHF: then ðHF ¼ 0; SL ¼ 1Þ; n ¼ 0;

bkþ1 ¼ 0.
(b) If ðHF ¼ 0; SL ¼ 1Þ and n ¼ nSL: then ðHF ¼ 1; SL ¼ 0Þ; n ¼ 0;

bkþ1 ¼ 0.

(7) k  k þ 1 and go to step (2).

Remarks In order to select nHF and nSL values (the maximum numbers of successive
iteration dedicated to each problem HF or SL), the approach presented in [32] is
adopted for restarting the descent direction procedures. In the proposed example, nHF is
equal to the dimension of vector �/ ðnHF ¼ 6Þ and nSL ¼ 2 is equal to the dimension of
vector source coordinates ðX ; ZÞ.

3.2. Sensitivity problem

This problem consists in the determination of temperature variation dhðx; y; z; tÞ induced
by a variation of the heating flux strength d/ðtÞ and the source location dIðdX ; 0; dZÞ.
Considering the partial differential equations system satisfied by the varied temperature
hðx; y; z; tÞ þ edhðx; y; z; tÞ (see direct problem given by Equation ð1Þ with a heating flux
/ðtÞ þ ed/ðtÞ and a source location dI ¼ I þ edI ¼ ðX þ edX ; Z þ edZÞ) then, while
e! 0, the sensitivity problem becomes:

C
@dhðx; y; z; tÞ

@t
� k �dhðx; y; z; tÞ ¼ 0 ðx; y; z; tÞ 2 X� T ;

dhðx; y; z; 0Þ ¼ 0 ðx; y; zÞ 2 X;

�k@dhðx; y; z; tÞ
@ n! ¼ hdhðx; y; z; tÞ � dUðx; y; z; tÞ ðx; y; z; tÞ 2 @X� T :

9>>>>>=
>>>>>;

ð6Þ

with d/ðx; y; z; tÞ is the heating flux variation induced by d/ðtÞ and dIðdX ; 0; dZÞ:

dUðx; y; z; tÞ ¼ �1
p

l/ðtÞððdX ÞðX � xÞ þ ðdZÞðZ � zÞÞ
nð1þ l2ðn� rÞ2Þ þ d/ðtÞ arctanðlðn� rÞÞ þ p

2

� � !
;

ð7Þ

where n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� X Þ2 þ ðz� ZÞ2

q
.

Then, the descent depth is calculated using the following definition at each iteration:

ckþ1 ¼ Argmin
c2R�

Jð�Uk � ckþ1dkþ1Þ

¼ Argmin
c2R�

1

2

Z tf

0

XnC¼3
m¼1
ðhðCm; t; �U

k � ckþ1dkþ1Þ � ĥmðtÞÞ2dt
 !

: ð8Þ

Inverse Problems in Science and Engineering 7
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After several developments (see examples in [7], [22]), the Equation (8) becomes:

ckþ1 ¼
R tf
0

PnC¼3
m¼1 ðh Cm; t; �U

k
� 	� ĥmðtÞÞ dh �dkþ1 Cm; t; �U

k
� 	

dtR tf
0

PnC¼3
m¼1 dh �dkþ1ðCm; t; �U

kÞ� 	2
dt

: ð9Þ

The descent depth ckþ1 is calculated at each iteration considering the sensitivity

problem solution dhðx; y; z; tÞ in the descent direction dkþ1 .

3.3. Adjoint problem

The adjoint function wðx; y; z; tÞ is introduced in order to determine the gradient func-
tion rJ ¼ ð@J@X ; @J@Z; ð @J@/i

Þi¼1;���;N Þ. Let ‘ðh; �/; I ;wÞ be the Lagrangian associated to the

direct problem (see Equation ð1Þ) defined by:

‘ðh; �/; I ;wÞ ¼ Jð �/; IÞ þ
Z tf

0

Z
X

C
@hð:Þ
@t
� kDhð:Þ

� �
wð:Þ dt dX: ð10Þ

Considering: d‘ðh; �/; I ;wÞ ¼ @‘
@hdhþ

PN
i¼1

@‘
@/i

d/i þ @‘
@XdX þ @‘

@ZdZ þ @‘
@wdw,

• if h is a solution of the Equation (1), then: ‘ðh; �/; I ;wÞ ¼ Jð �/; IÞ and
d‘ðh; �/; I ;wÞ ¼ dJð �/; IÞ.

• if w is fixed, then @‘
@wdw ¼ 0 and d‘ðh; �/; I ;wÞ ¼ @‘

@hdhþ
PN

i¼1
@‘
@/i

d/iþ
@‘
@XdX þ @‘

@ZdZ.
• moreover, w is fixed in order to satisfy @‘

@hdh ¼ 0; 8dh.

The Lagrangian variation is:

d‘ðh; �/; I ;wÞ ¼
Z tf

0

Z
X

XnC¼3
m¼1
ððhðCm; tÞ � ĥmðtÞÞ dDð:;CmÞÞ dh dX dt

þ
Z tf

0

Z
X

C
@dh
@t
� kDdh

� �
w dt dX; ð11Þ

where dD is the Dirac distribution. Let EðhÞ be the error function defined by:

EðhÞ ¼PnC¼3
m¼1 ðhðCm; tÞ � ĥmðtÞÞ dDð:;CmÞ. Then, the previous equation of Lagrangian

(11) becomes:

d‘ðh; �/; I ;wÞ ¼
Z tf

0

Z
X
EðhÞ dhð:Þ dX dt

þ
Z tf

0

Z
X

C
@dhð:Þ
@t
� k Ddhð:Þ

� �
wð:Þ dt dX: ð12Þ

8 S. Beddiaf et al.
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Considering Green theorem and sensitivity equations, adjoint problem can be
formulated as:

C
@wðx; y; z; tÞ

@t
þ k Dwðx; y; z; tÞ ¼ EðhÞ ðx; y; z; tÞ 2 X� T ;

wðx; y; z; tf Þ ¼ 0 ðx; y; zÞ 2 X;

�k@wðx; y; z; tÞ
@�n

¼ h wðx; y; z; tÞ ðx; y; z; tÞ 2 @X� T :

9>>>=
>>>;

ð13Þ

Then, the Lagrangian variation expression given by (12) becomes:

d‘ðh; �/; I ;wÞ ¼ �
Z tf

0

Z
Cheated

dUð:Þ wð:Þ d@X dt ¼ dJðUð:Þ;wÞ: ð14Þ

This previous equation leads to the following equations for gradient estimation:

rJ/i
¼ @J

@/i

¼ 1
p

R tf
0

R
Cheated
ðarctanðlðn� rÞÞ þ p

2Þ wðx; y; z; tÞ siðtÞ d@X dt

rJX ¼ @J

@X
¼ �1

p

Z tf

0

Z
Cheated

/ðtÞðX � xÞ Aðx; zÞ wðx; y; z; tÞd@X dt

rJZ ¼ @J

@Z
¼ �1

p

Z tf

0

Z
Cheated

/ðtÞðZ � zÞ Aðx; zÞ wðx; y; z; tÞd@X dt

8>>>>>><
>>>>>>:

ð15Þ

with Aðx; zÞ ¼ l

nð1þ l2ðn� rÞ2Þ:

In the two previous sections, it has been shown how to calculate descent depth and
descent direction (which depends on cost function gradient).

3.4. Admissible level of minimization Jstop

In the ideal case where model errors, measurement errors and numerical errors are neg-
ligible, the halt criterion Jstop can be chosen close to zero. In the investigated thermal
process context Jstop � 0:1 has been considered. However, in practical experimentations,
errors have to be taken into account and it is meaningless to obtain a cost function
close to zero. In this study, considering a Gaussian additive noise on the measured tem-

perature ĥðx; y; z; tÞ the usual threshold (cf. [33]) the Jstop ¼ 1
2 nC nf r2 can be proposed,

where nC is the number of sensors (nC ¼ 3 in the present study), nf is the number of
measurements provided by each sensor (nf ¼ 100 in the studied configuration, since
time interval is T ¼ ½0; tf � ¼ ½0; 100� seconds and time sampling is 1 s) and r is the
standard deviation (Gaussian noise).The proposed threshold Jstop arises from the
iterative regularization CGM. Thus, it avoids estimated parameters convergence toward
erroneous values taking into account noisy measurements.
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4. Results for numerical implementation

• Case 1: Let us consider that the unknown heat flux initial value is �/k¼0 ¼ 0 and
the source position Ik¼0 ¼ ðX k¼0; 0; Zk¼0Þ ¼ ð0; 0;�0:005Þ m, see Figure 3.
Resolution of inverse problem is performed considering CGM and theoretical
measured temperatures without noise, Figure 4. Cost-function evolution is shown
in Figure 6 and Table 2. The estimated time strength of the heat flux is presented
in Figure 7. Cost function values and source location versus iteration are
presented in the Tables 2 and 3. In Figure 7, it is shown that the strength of the
heat flux is accurately determined. Simultaneous identification is successful and
source location is determined ð0:005; 0; 0:005Þ m with a reasonable accuracy,
see Table 3.

0 10 20 30 40 50 60 70 80
10-2

100

102

104

106

Iterations k

J(
I,

φ (
t)

)

Figure 6. Cost function evolution, case 1.

Table 2. Criterion values vs. iteration, case 1.

Iteration k 0 1 … 3 … 7 8 9 … 39 … 83

J 16081.29 1522.68 … 737.23 … 482.49 44.86 9.32 … 0.95 … 0.009

0 20 40 60 80 100
-1
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1

2

3

4

5

x 10
4
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.m
-2 φ(t)
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Figure 7. Identified and exact heat flux, case 1.
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• Case 2: Let us consider the same configuration as in Case 1, but with a Gaussian
noise N ð0; 0:5Þ added to observed temperature, see Figure 8. The cost function
evolution is shown in Table 4. Considering the admissible level of minimization
given in section 3.4 (cf. [33]) and the noise standard deviation, Jstop is fixed at

37.5. The heat flux obtained after k ¼ 10 iterations is �/k¼10 ¼ ð�0:2; 17:4;
46:3; 47:9; 29:3; 6:2Þ kWm�2. In few iterations, source coordinates are obtained
(a small error due to noisy measurement is observed), see Table 5. Heat flux is
correctly determined. Therefore, the proposed approach is quite attractive even
with noisy observations.

• Case 3: In this case, the exact source location is fixed at I ¼ ðX ; 0; ZÞ ¼
ð0:01; 0; 0Þ m and the time-varying strength of the heat flux is presented in
Figure 9. The heat flux is modelled as a piecewise linear continuous function on

Table 3. Coordinates vs. iteration, case 1.

Iteration k 0 … 7 8 … 15 16 … 83

X 0 … 0.0029 0.0046 … 0.0046 0.0046 … 0.0047
Z �0.005 … �0.0027 0.0045 … 0.0046 0.0047 … 0.0047
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Figure 8. Evolution of the disturbed noisy temperature measurements, case 2.

Table 5. Coordinates vs. iteration, case 2.

Iteration k 0 … 7 8 … 10

X 0 … 0.0028 0.0046 … 0.0046
Z �0.005 … �0.0027 0.0045 … 0.0045

Table 4. Criterion values vs. iteration, case 2.

Iteration k 0 1 2 3 4 5 6 7 8 9 10

J 16060 1531 1212 780.5 725.3 699.4 697.7 526.5 67.8 40.1 35.6
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Figure 9. Strength heat flux, case 3.

0 20 40 60 80 100
290

295

300

305

310

315

320

325

Time in seconds

T
em

pe
ra

tu
re

  θ
d in

 K θ
d
(C

1
;t) θ

d
(C

2
;t) θ

d
(C

3
;t)

Figure 10. Temperature evolution, case 3.
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Figure 11. Cost function evolution, case 3.
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Figure 13. Residual temperature error, case 3.
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Figure 14. Residual Heat flux error, case 3.
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Figure 12. Identified and exact heat flux, case 3.
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four time intervals (25 s each). Then, five basis functions are considered
ðnHF ¼ 5Þ and �/ 2 R5. Temperatures provided by the set of sensors after solving
the direct problem are shown in Figure 10. The initial strength heat flux is similar

to the previous cases �/k¼0 ¼ 0, and the initial source position is Ik¼0 ¼ ðX k¼0;
0; Zk¼0Þ ¼ ð�0:01; 0; 0Þ m. The obtained results are shown in the Figures 11–14
and Tables 6 and 7. Average values of the temperatures residuals issued by each
sensor C1;C2 and C3 are, respectively, equal to �0.002K, 0.009K and
�0.011K. The obtained results confirm the robustness of the CGM for identify-
ing simultaneously the source position and the time-varying strength of the heat
flux.

• Case 4: This last case is devoted to solve the same IHCP as Case 3, but with an
additive Gaussian noise N ð0; 0:5Þ disturbing the observed temperature, see
Figure 15. As previously mentioned, the stopping criterion (admissible level
of minimization) is Jstop ¼ 37:5. The obtained results are presented in Figures
16–17 and Tables 8 and 9. The average values of the temperature residues

Table 6. Criterion values vs. iteration, case 3.

Iteration k 0 1 … 49 50 51 52 … 100 … 192 …
J 39039.8 4112.8 … 1324.6 186.3 123.4 97.6 … 10.7 … 4.85 …

Iteration k … 260 … 418 419 … 968
J … 2.98 … 1.02 0.99 … 0.09

Table 7. Coordinates vs. iteration, case 3.

Iteration k 0 … 48 … 192 … 273 … … 318
X �0.01 … 0.006 … 0.0077 … 0.00825 … … 0.00848
Z 0 … �0.002 … 0.00005 … 0.00008 … … 0.00007

Iteration k 511 … 705 … 850 … 900 … … 968
X 0.0092 … 0.00952 … 0.00964 … 0.00968 … … 0.00969
Z 0.00005 … 0.00003 … 0.00002 … 0.00002 … … 0.00001
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Figure 15. Evolution of the disturbed noisy temperature measurements, case 4.
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obtained for each sensor (C1;C2 and C3) are, respectively, about �0.06K, 0.11K
and �0.05K. It is important to notice that standard deviation between measured
and simulated temperature for each temperature sensor has the same order of the
Gaussian measurement noise magnitude N ð0; 0:5Þ.

Considering the previous results with and without noisy measurements, it is shown
that the CGM algorithm is robust and efficient in order to simultaneously estimate the
source location IðX ; 0; ZÞ, and the time-varying strength /ðtÞ of the heat flux.
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Figure 16. Residual temperature error, case 4.
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Figure 17. Residual heat flux error, case 4.

Table 8. Criterion evolution vs. iteration, case 4.

Iteration k 0 1 … 8 … 40 41 … 43 44 45 …
J 39045 4200 … 2709 … 2156 954 … 137 95 90 …

Iteration k … 60 … 80 … 120 … 150 … 154 155
J … 52.9 … 45.5 … 39.8 … 37.8 … 37.5 37.4
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5. Conclusions

Considering temperature measurements at only three sensors, a three-dimensional
inverse heat conduction problem (3-D IHCP) is solved by minimizing a quadratic crite-
rion. It is shown that the CGM can be successfully adapted in order to identify both
location and time-varying strength of the heat flux with the same data-set (see Cases 1
and 3). Effect of noise is also investigated through Cases 2 and 4 in order to assess the
stability of the identification methodology.

Several outlooks can be considered for further works: the simultaneous identification
of several sources (location and time-varying strength of the heat fluxes) and even their
number. Last but not least, we are also interested in the identification of both heat flux
and trajectory of heating mobile source using the CGM.
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