
This article was downloaded by: [Bibliotheque De L Universite], [Sara BEDDIAF]
On: 18 March 2014, At: 07:11
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Inverse Problems in Science and
Engineering
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/gipe20

Parametric identification of a heating
mobile source in a three-dimensional
geometry
Sara Beddiafa, Laetitia Perezb, Laurent Autriquea & Jean-Claude
Jollya

a Laboratoire d’Ingénierie des Systèmes Automatisés (LISA),
Université d’Angers, Angers, France
b Laboratoire de Thermocinétique de Nantes, Université de
Nantes, Nantes cedex, France
Published online: 14 Mar 2014.

To cite this article: Sara Beddiaf, Laetitia Perez, Laurent Autrique & Jean-Claude Jolly (2014):
Parametric identification of a heating mobile source in a three-dimensional geometry, Inverse
Problems in Science and Engineering, DOI: 10.1080/17415977.2014.890608

To link to this article:  http://dx.doi.org/10.1080/17415977.2014.890608

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

http://www.tandfonline.com/loi/gipe20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/17415977.2014.890608
http://dx.doi.org/10.1080/17415977.2014.890608


Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
th

eq
ue

 D
e 

L
 U

ni
ve

rs
ite

],
 [

Sa
ra

 B
E

D
D

IA
F]

 a
t 0

7:
11

 1
8 

M
ar

ch
 2

01
4 

http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Parametric identification of a heating mobile source in a
three-dimensional geometry

Sara Beddiaf a, Laetitia Perezb, Laurent Autriquea* and Jean-Claude Jollya

aLaboratoire d’Ingénierie des Systèmes Automatisés (LISA), Université d’Angers, Angers, France;
bLaboratoire de Thermocinétique de Nantes, Université de Nantes, Nantes cedex, France

(Received 23 March 2012; accepted 29 January 2014)

The resolution of an inverse problem of heat conduction in a three-dimensional
plate using an iterative regularization method based on Alifanov’s iterative
regularization method is investigated. Considering temperature observation on
the upper face centre of a small thin steel plate, the time dependent strength of a
plane heat source has to be identified. Two configurations are studied. For the
first one, the heat source is fixed on the lower face centre. For the second one,
the heat source is mobile and the trajectory is assumed to be known. For both
situations, robustness of the approach is stated considering noisy measurements.

Keywords: inverse heat conduction problem; mobile source identification;
conjugate gradient method

1. Introduction

For several decades, resolution of inverse problems in thermal sciences is a key-goal in
numerous engineering applications. Related literature is quite wide since applications
deal with different geometries and configurations for many identification purposes like
initial conditions [1], boundary exchange coefficient [2], thermal parameters[3] or heat
source characterization. In this last framework, several applications are investigated in
recent references: control of welding processes using nonintrusive observations [4,5];
prediction of the thermal effect of High Energy Laser (HEL) weapons, in order to pre-
dict the potential damage on a target [6] and estimation of temperature in human tissues
submitted to a laser occurrence.[7] During the two past decades, several studies have
been investigated from one-dimensional geometry [8] to two-dimensional geometries
(see [9–11]). It is well known that such inverse problems are ill-posed.[12,13] Several
approaches can be implemented to deal with parametric identification: singular value
decomposition [13], Tikhonov regularization [14] and function specification.[15] The
Alifanov’s iterative regularization method has been successfully implemented in [16].
However, three-dimensional configurations are scarcely investigated due to important
CPU time required for identification purposes (in [17–22] parametric identification in a
thermal context is investigated). Nowadays, heat flux identification still remains a lively
research topic (see recent references [23–26]).
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In the following, identification of timewise-varying strength of a fixed or mobile
heating source is investigated. The spatial distribution of the source is assumed to be a
disc which is moved on the lower surface of a plane-parallel sample. A sensor located
on the upper surface provides temperature observations for identification purposes. Two
configurations are studied: for the first one, the source is fixed; while for the second
one, its trajectory is circular.

This communication is organized as follows. In the next section, the studied thermal
process is modelled and numerical resolutions of the direct problem (considering finite
element method implemented with Comsol MultiphysicsTM and Matlab® softwares) are
presented and analysed. In the third section, inverse problem is investigated: inverse
heat conduction problem is formulated and conjugate gradient algorithm is presented.
For these minimization methods, resolution of three well-posed problems is required:
direct problem (for quadratic cost function estimation), adjoint problem (for cost
function gradient computation) and sensitivity problem (for descent depth estimation).
In this section, the stop criterion is also discussed. Then numerical implementation is
performed and analysed in section four. Several configurations are studied in order to
estimate the identification efficiency: fixed and mobile source with or without noise on
measurements. In the last section, experimental results are analysed. Then, concluding
remarks and several outlooks are proposed in the last section.

2. Direct problem

In this section, the direct thermal problem is described and the studied partial
differential equation system is defined. When all the parameters (model inputs) are
given, numerical resolution of such problem leads to the determination of the tempera-
ture evolution at each point of the investigated domain.

Let us consider a square plate X (thickness is denoted by e and length is denoted
by L). The space variables are ðx; y; zÞ 2 X ¼� �L

2 ; L2 ½�� �e
2 ; e2 ½�� �L

2 ; L2 ½, while the time
variable is t 2 T ¼ ½0; tf �; boundary of X is denoted by @X and hðx; y; z ; tÞ is the
temperature in Kelvin. The studied three-dimensional sample is heated on its lower
face Cheated ¼ fðx; �e

2 ; zÞ 2 @Xg considering a mobile (or fixed) source assumed to be
uniform on a disc D: radius r ¼ 2 10�3 m, centre IðtÞ. Then, the heating flux
Uðx; y; z; tÞ is defined as follows:

Uðx; y; z ; tÞ ¼ /ðtÞ if x;� e

2
; z

� �
2 DðIðtÞ; rÞ

0 else

(

This heating f lux expression can also be written as follows:

Uðx; z ; tÞ � �/ðtÞ
p

atan l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� X ðtÞÞ2 þ ðz� ZðtÞÞ2

q
� lr

� �
� p

2

� �
where ðX ðtÞ; ZðtÞÞ are the centre source coordinates at time t and l[ 0 is a positive
constant arbitrarily chosen in order to describe the spatial discontinuity on disc bound-
ary. Let us consider a circular trajectory such that IðtÞ ¼ ðR cosðxtÞ; �e

2 ;R sinðxtÞÞ on
the lower surface where R is the trajectory radius in ðmÞ and x is the angular velocity
in ðrad/sÞ. Moreover, natural convection is considered on @X, convection coefficient is
h in ðWm�2 K�1Þ. The considered three-dimensional geometry is presented in Figure 1.

2 S. Beddiaf et al.
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Considering the initial uniform temperature h0 (equal to the ambient temperature)
and the set of the known parameters fk; qc; h;U; L; eg, the direct problem resolution
aims to find the temperature hðx; y; z;tÞ which satisfies:

k
@2hð:Þ
@x2

þ @2hð:Þ
@y2

þ @2hð:Þ
@z2

� �
¼ qc

@hð:Þ
@t

8ðx; y; z;tÞ 2 X� T

hðx; y; z ; 0Þ ¼ h0 8ðx; y; zÞ 2 X

�k
@hð:Þ
@ n! ¼ hðhð:Þ � h0Þ � Uðx; y; z;tÞ 8ðx; y; z;tÞ 2 @X� T

8>>>><
>>>>:

(1)

In order to highlight the three-dimensional heat transfer, a thermal insulating material is
chosen (a glass plate). All the input parameters are presented in the following table and
figure.

Heating flux /ðtÞ is /ðtÞ ¼ 105 exp � t�160
80

� �2� �
; see Figure 2.

Based on the previous Equation (1), the set of parameters (Table 1) and the heating
flux strength (Figure 2), the direct problem can be solved using finite element method
implemented with Comsol MultiphysicsTM solver and Matlab® software. Two numerical
examples are presented hereafter: the first one corresponds to a fixed source, while the
second one describes a mobile source (circular trajectory).

For a fixed source located on the centre of the lower face (corresponding to an
axisymmetric configuration), temperature evolution issued from the direct problem
resolution is presented in Figure 3 for the centre of both lower and upper faces.

Figure 1. Three-dimensional geometry.
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Figure 2. Heating f lux /ðtÞ.
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For a mobile source (R ¼ 2� 10�2 m, x ¼ 2p
300 rad s�1), temperature evolution is

shown for several points Cj¼1;...;5 located on the upper face (see Figure 4).
In Figure 5, it is shown that the highest temperature, obtained at point C4 at

t ¼ 154 s is equal to hðC4; 154Þ ¼ 372:6K. Such result is obviously in adequacy with
the heating flux which is high at t ¼ 154 s (see Figure 3) and located near point C4.

In the following section, identification of the unknown heating flux considering
temperature observations is investigated (a single point located in the upper face centre is
considered). Then, for the fixed source thermogram presented in Figure 3, (continuous
line) is taken into account while for the mobile source temperature observed at point C1 is
considered (Figure 5). Temperature is assumed to be measured each second (then 300
observations are available for heat flux identification).

Table 1. Parameters for direct problem resolution.

Square length L in m Plate thickness e in m Initial temperature h0 in K Final time
tf in s

5� 10�2 2� 10�3 293 300

Thermal conductivity
k in Wm�1 K�1

Volumetric heat capacity
qc in Jm�3 K�1

Natural convection coefficient
h in Wm�2 K�1

1.2 2� 106 20

Figure 4. Sensors’ locations (upper face) and source trajectory (lower face).
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Figure 3. Temperature evolution for the fixed heating source (direct problem).
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3. Inverse problem

3.1. Alifanov’s iterative regularization method

Let us consider that the strength heating flux of the fixed or the mobile source is
unknown and denoted ð/�ðtÞÞ. In order to estimate this unknown parameter, a three-
dimensional inverse heat conduction problem (3D-IHCP) is formulated as a classical
optimization problem which consists in the minimization of a quadratic criterion
denoted by Jð/ðtÞ; hÞ. This criterion describes the quadratic difference between the sim-
ulated temperature (solution of direct problem (1)) and the measured temperature ĥðtÞ
obtained at sensor C1.

Thus, the identification problem can be formulated as an inverse one:
Find the unknown heating flux /�ðtÞ such that the following quadratic functional
Jð/Þ is minimal:

/�ðtÞ ¼ Argmin
/2L2ðTÞ

Jð/Þ ¼ Argmin
/2L2ðTÞ

1

2

Z tf

0
h 0;

e

2
; 0 ; t ;/

� �
� ĥðtÞ

� �2
dt (2)

with the constraint hðx; y; z ; t ;/Þ solution of the direct problem (1).
The functional space is defined as the space of quadratically integrable functions on

T : L2ðTÞ ¼ f/= RT /2ðtÞdt\þ1g. Usually, a parameterization of the functional /ðtÞ
is proposed and without lack of generalities let us consider continuous piecewise linear
function. Thus, in the following, heating flux is assumed to be defined 8t 2 T ¼ ½0300�
on Nt ¼ 10 time intervals In ¼ ½pn�1; pn� ¼ ½30ðn� 1Þ; 30n� with n ¼ 1; . . .; 10 and time
step duration s ¼ pn � pn�1 ¼ 30 s by /ðtÞ ¼P11

i¼1 /isiðtÞ ¼ �/. . .sðtÞtr where
�/ ¼ ð/1; � � � ;/11Þ 2 R

11, sðtÞ ¼ ðs1ðtÞ; � � � ; s11ðtÞÞ and tr is the transpose operator. The
basis functions siðtÞ are:

siðtÞ ¼

t � pi�2

s
if t 2 ½ pi�2; pi�1�

pi � t

s
if t 2 ½ pi�1; pi�

0 elsewhere

8>><
>>: :

In Figure 6, basis functions siðtÞ are drawn.
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Figure 5. Temperature evolution on the upper face (mobile source – direct problem).
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Discrete formulation of the inverse problem leads to determine the unknown heating
flux

�/
� ¼ ð/�

i Þi¼1;���;11 ¼ Argmin
�/2R11

Jð�/Þ ¼ Argmin
�/2R11

1

2

Z tf

0
h 0;

e

2
; 0 ; t ; �/

� �
� ĥðtÞ

� �2
dt (3)

with the constraint hðx; y; z; t ; �/Þ solution of the direct problem ð1Þ.
In order to solve the previous ill-posed problem, Alifanov’s iterative regularization

method is implemented. In this communication, a conjugate gradient method (see for
example [8,14,27]) is proposed with an adjoint equation that leads to the gradient. Such
algorithm leads to the iterative numerical resolution of three well-posed problems. At
each iteration k

� Resolution of the direct problem (1) and criterion computation Jð�/kÞ.
� Resolution of an adjoint problem in order to estimate cost function gradient

@J
@�/

k
i

� �
i¼1;���;11

and to determine the descent direction �d
k
.

� Resolution of the sensitivity problem (in the descent direction) in order to
estimate descent depth ck .

More details are given on such procedure in [9,10,19,28]. Direct problem resolution
using finite element solver has been presented in previous section. In the following,
sensitivity problem and adjoint problem are formulated.

3.2. Sensitivity problem

This problem consists in the determination of the temperature variation dhðx; y; z ; tÞ
induced by a variation of the unknown function d/ðtÞ ¼P11

i¼1ðd/iÞsiðtÞ (applications
of variational calculus are presented in [29]). Considering the partial differential equa-
tions system satisfied by the temperature hðx; y; z ; tÞ þ edhðx; y; z ; tÞ (see direct problem
(1) with an heating f lux /ðtÞ þ ed/ðtÞ) then while e ! 0, the sensitivity problem
[9,10] becomes:

k
@2dhð:Þ
@x2

þ @2dhð:Þ
@y2

þ @2dhð:Þ
@z2

� �
¼ qc

@dhð:Þ
@t

8ðx; y; z ; tÞ 2 X� T

dhðx; y; z ; 0Þ ¼ 0 8ðx; y; zÞ 2 X

�k
@dhð:Þ
@ n! ¼ hdhð:Þ � dUð:Þ 8ðx; y; z ; tÞ 2 @X� T

8>>>><
>>>>:

(4)

Figure 6. Basis functions siðtÞ.
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In the studied configuration, the heating flux variation dUðx; y; z ; tÞ is:

dUðx; y; z ; tÞ ¼ d/ðtÞ ¼P11
i¼1

ðd/iÞsiðtÞ ¼ d�/ � sðtÞtr if x;� e

2
; z

� �
2 DðIðtÞ; rÞ

0 else

8<
:

The analytical expression of the heat flux variation is:

dUðx; z ; tÞ ¼ � d/ðtÞ
p

atan l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� X ðtÞÞ2 þ ðz� ZðtÞÞ2

q
� lr

� �
� p

2

� �
Using the sensitivity problem formulation, the descent depth can be easily formulated.
At each iteration k, descent depth ck is a real value corresponding to the optimal depth
for the new value of the unknown heating flux �/

kþ1 ¼ �/
k � ck�d

k
. Thus, it is defined as:

ck ¼ Argmin
c2R�

Jð�/k � c�d
kÞ ¼ Argmin

c2R�

1

2

Z tf

0
ðhðC1 ; t ; �/

k � c�d
kÞ � ĥðtÞÞ2dt (5)

Then,

ck ¼

Z tf

0
ðhðC1 ; t ; �/

kÞ � ĥðtÞÞdh�dk ðC1 ; tÞdtZ tf

0
ðdh�dk ðC1 ; tÞÞ2dt

(6)

Then, at each iteration k, the sensitivity problem has to be solved in the descent
direction �d

k
to compute the descent depth ck . In order to compute the descent direction

�d
k
, an adjoint problem is formulated.

3.3. Adjoint problem

The aim of this problem is to introduce an adjoint function wðx; y; z ; tÞ in order to
determine the gradient rJ

	! ¼ grad Jð�/Þ						! ¼ @J
@/i

� �
i¼1;...;11

and then deduce the descent

direction �d
kþ1 ¼ rJ

	!k þ bk�d
k
(with: bk ¼ jjrJ

	!k jj2jjrJ
	!kþ1jj2, βk=0 = 0 and ||.|| is the

Euclidian norm). This step is essential for CGM implementation (cf. e.g. in
[9,10,18,19,28]). Let ‘ðh;/ðtÞ;wÞ be the Lagrangian associated to the direct problem
defined in (1):

‘ðh;/ðtÞ;wÞ ¼ Jðh;/Þ þ
Z tf

0

Z
X

qc
@hð:Þ
@t

� kDhð:Þ
� �

wð:Þdt dX (7)

Let us consider: d‘ðh;/ðtÞ;wÞ ¼ @‘

@h
dhþ @‘

@/
d/þ @‘

@w
dw.

� If h is solution of (1), then ‘ðh;/ðtÞ;wÞ ¼ Jðh;/ðtÞÞ and d‘ðh;/ðtÞ;wÞ
¼ dJðh;/ðtÞÞ,

� If w is fixed, then
@‘

@w
dw ¼ 0 and d‘ðh;/ðtÞ;wÞ ¼ @‘

@h
dhþ @‘

@/
d/.

Then, the choice of the fixed Lagrange multiplier w is performed in order to satisfy
the following equation:

@‘

@h
dh ¼ 0; 8dh (8)

Inverse Problems in Science and Engineering 7
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In order to determine a fixed wðx; y; z; tÞ which satisfy (8), let us formulate
d‘ðh;/ðtÞ;wÞ considering (7):

d‘ðh;/ðtÞ;wÞ ¼
Z tf

0

Z
X
ðhð:Þ � ĥð:ÞÞdhð:ÞdDiracðC1Þdt dX

þ
Z tf

0

Z
X

qc
@dhð:Þ
@t

� kDdhð:Þ
� �

wð:Þ dt dX (9)

where δDirac(C1) is the Dirac distribution considered on sensor position C1. Let
Eðx; y; z ; tÞ the error function expressed by:

Eðx; y; z ; tÞ ¼ ðhðx; y; z ; tÞ � ĥðtÞÞ dDiracðC1Þ:
Equation (9) becomes:

d‘ðh;/ðtÞ;wÞ ¼
Z tf

0

Z
X
Eð:Þdhð:Þ dt dXþ

Z tf

0

Z
X

qc
@dhð:Þ
@t

� kDdhð:Þ
� �

wð:Þ dt dX
(10)

Considering the integral by parts and using the Green theorem [29], the Lagrangian
variation is:

d‘ðh;/ðtÞ;wÞ ¼
Z tf

0

Z
X
Eð:Þdhð:Þ dt dXþ

Z
X
qcdhð: ; tf Þwð: ; tf ÞdX

�
Z
X
qcdhð: ; 0Þwð: ; 0Þ dX�

Z tf

0

Z
X
qc

@wð:Þ
@t

dhð:Þ dX dt

�
Z tf

0

Z
X
kdhð:Þ Dwð:Þ dX dt þ

Z tf

0

Z
@X

kdhð:Þ @wð:Þ
@n~

d@X dt

�
Z tf

0

Z
@Xkw

ð:Þ @dhð:Þ
@n~

d@X dt

Previous expression of δ‘(.) is simplified considering sensitivity Equation (4):

d‘ðh;/ðtÞ;wÞ ¼
Z tf

0

Z
X

Eð:Þ � qc
@wð:Þ
@t

� kDwð:Þ
� �

dhð:Þ dt dX

þ
Z
X
qcdhð: ; tf Þwð: ; tf Þ dXþ

Z tf

0

Z
@X

kdhð:Þ @wð:Þ
@n~

d@X dt

þ
Z tf

0

Z
@X

hdhð:Þwð:Þd@Xdt �
Z tf

0

Z
Cheated

dUð:Þwð:Þ d@X dt

(11)

In order to satisfy (8) and considering (9), let us introduce the adjoint problem satisfied
by wðx; y; z ; tÞ such as:

qc
@wð:Þ
@t

þ k
@2wð:Þ
@x2

þ @2wð:Þ
@y2

þ @2wð:Þ
@z2

� �
¼ Eð:Þ 8ðx; y; z ; tÞ 2 X� T

wðx; y; z ; tf Þ ¼ 0 8ðx; y; zÞ 2 X

�k
@wð:Þ
@n~

¼ hwð:Þ 8ðx; y; z ; tÞ 2 @X� T

8>>>><
>>>>:

(12)

If wðx; y; z ; tÞ is solution of adjoint problem (12) then (11) becomes:

8 S. Beddiaf et al.
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d‘ðh;/ðtÞ;wÞ ¼ �
Z tf

0

Z
Cheated

dUðx; z ; tÞwðx; y; z ; tÞd@Xdt

¼
Z tf

0

Z
Cheated

d/ðtÞ
p

atan l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� X ðtÞÞ2 þ ðz� ZðtÞÞ2

q
� lr

� �
� p

2

� �
wð:Þd@X dt

¼
X11
i¼1

d/i

Z tf

0

Z
Cheated

siðtÞ
p

atan l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� X ðtÞÞ2 þ ðz� ZðtÞÞ2

q
� lr

� �
� p

2

� �
wð:Þd@X dt

� �
(13)

Moreover, d‘ðh;/ðtÞ;wÞ ¼ dJðh;/ðtÞÞ ¼P11
i¼1 d/i

@J
@/i

. Then, criterion gradient is:

@J

@/i
¼
X11
i¼1

Z tf

0

Z
Cheated

siðtÞ
p

atan l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� X ðtÞÞ2 þ ðz� ZðtÞÞ2

q
� lr

� �
� p

2

� �
wð:Þd@X dt

(14)

3.4. Admissible level of minimization

In order to implement the conjugate gradient algorithm, a threshold Jstop has to be
defined in order to stop the iterative minimization. If perturbations are neglected and if
the model is in perfect adequacy with experimentation and if the numerical resolution
(based on finite element method) of the three well-posed problems is achieved with a
great accuracy, then Jstop can be ideally fixed close to zero.

As measurements errors occur in experimentations, the stopping criterion has to take
into account such uncertainties. For example, based on the discrepancy principle (see
e.g. [8,30] if the standard deviation of the measurement errors is denoted by r, then
Jstop ¼ 1

2 r
2 tf (in the case of a unique sensor).

In the specific situation where algorithm robustness is tested (with a given heating
flux which has to be identified, see Figure 2), a tracking error is also quite informative.

Then, let us consider:

Err ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX11
i¼1

ð/i � /�
i Þ2

vuut where /�
i ¼ 105 exp � pi�1 � 160

80

� �2
 !

4. Numerical implementation

In the following, inverse problems for both situations (fixed and mobile heating source)
are solved using the CGM algorithm (based on an iterative resolution of three
well-posed problems: direct, adjoint and sensitivity problems). Several configurations
are investigated for the heating flux /ðtÞ identification. Numerical results are obtained
with Comsol-MultiphysicsTM (Matlab® interface). Moreover, it is important to notice
that the restart descent direction procedure proposed in [31] is taken into consideration
in the present numerical algorithm implementation.

4.1. Fixed heating source

Case 1
Let the initial value of the flux be defined by �/

k¼0ðtÞ ¼ 0. Resolution of inverse
problem is performed considering CGM and measured temperature (see continuous line
in Figure 3). In Figure 7, tracking error evolution is shown.
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According to this minimization, heating flux is accurately identified (see Figure 8
for the identified flux at iteration 19 while cost function is Jð/k¼19Þ � 0:69).

At iteration 19, measured temperature ĥðtÞ and simulated temperature hðC1; tÞ are
quite similar:

max
t2T

jĥðtÞ � hðC1; tÞj � 0:78K ; max
t2T

ĥðtÞ � hðC1; tÞ
ĥðtÞ












 � 0:19% ;

The obtained results confirm the CGM algorithm performance in order to identify the
strength heating flux /ðtÞ. The robustness of this method is highlighted in the following
case considering disturbed measurements.
Case 2
Let us consider the same fixed source as in Case 1 but measurements at sensor C1 are
disturbed by a Gaussian noise N ð0; 1Þ. Then, admissible level of minimization is equal
to Jstop ¼ 150 considering the definition proposed in paragraph 3.4. In the following
table, both cost function and tracking errors evolutions versus iteration are presented.

Identified and desired (real) heating fluxes are shown in Figure 9.
Errors between measured and simulated temperatures (for identified flux at iteration 6)

are:

max
t2T

jĥðC1; tÞ � hðC1; tÞj � 5K ; max
t2T

ĥðC1; tÞ � hðC1; tÞ
ĥðC1; tÞ












 � 1:2% ;

Considering the previous results, it is shown that convergence of the iterative algorithm
is achieved in six iterations and that Jstop previously defined is a reliable threshold.

Agreement between measured and predicted temperature (according to the heating
flux identified at iteration 6) is shown in Figure 10.

Average error is about −0.49 K. It is important to notice that standard deviation
between measured and simulated temperature is 1.13 K of the same order of magnitude
as Gaussian measurement noise N ð0; 1Þ. Thus, even with noisy measurements,
identification can be achieved with CGM implementation.
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Figure 7. Tracking error evolution (Case 1).
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Figure 8. Identified heating flux (Case 1).
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Figure 9. Identified heating flux (Case 2).
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Figure 10. Residual temperature error (Case 2).
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4.2. Mobile heating source

Case 3
Considering the initial heating flux value defined by �/

k¼0ðtÞ ¼ 0, resolution of the
inverse problem is performed considering CGM and measured temperature (see temper-
ature evolution for sensor C1 in Figure 5). In Figure 11, tracking error evolution is
shown.

Identified heating flux is shown in Figure 12. Average relative error is about 0.53%.
Measured temperature ĥðC1; tÞ and simulated temperature hðC1; tÞ are quite similar:

max
t2T

jĥðC1; tÞ � hðC1; tÞj � 0:11K ; max
t2T

ĥðC1; tÞ � hðC1; tÞ
ĥðC1; tÞ












 � 0:038% ;

The obtained convergence confirms the efficiency of the conjugate gradient method for
the identification of a mobile source strength considering temperature measurements
given by a single sensor located on the centre of the upper face (circular trajectory of
the heating source is performed on the lower face). In order to validate the robustness
of the proposed method, the same objective with a noisy disturbed thermogram is
investigated in the following case.
Case 4
For this final case, let us consider an observed temperature disturbed according to an
additive Gaussian noise N ð0; 1Þ (see Figure 13). Such noise is more important
considering temperature evolution (Figure 13) than in previous case 2 where maximum
temperature is greater than 416 K on the upper plate face (Figure 3).

Iterative procedure is halted on Jstop ¼ 150 (see paragraph 3.4.) and cost function
evolution versus iteration is presented in Table 3.

The previous numerical results illustrate the role of the admissible level of minimi-
zation. Iterative procedure is stopped at k ¼ 2 (considering Table 3) in order to prevent
the convergence of the simulated temperature values (based on the heating flux value)
towards the disturbed measured temperature. If iterative procedure is not stopped,
heating flux is not well identified (tracking error increases; see Table 3).

Desired and identified heating fluxes are drawn in Figure 14.
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Figure 11. Tracking error evolution (Case 3).
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Figure 12. Identified heating flux (Case 3).
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Figure 13. Disturbed measurements at C1 (Case 4).
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Figure 14. Heating flux identification (Case 4).
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Errors values between simulated and measured temperatures are:

max
t2T

jĥðC1; tÞ � hðC1; tÞj ¼ 3:1K ; max
t2T

ĥðC1; tÞ � hðC1; tÞ
ĥðC1; tÞ












 � 1%:

Considering the previous values, it is shown that convergence of the iterative algorithm
in case 4 is achieved in one iteration. In previous case 2, Jstop ¼ 150 has been obtained
at iteration 6. This faster convergence in case 4 is due to the lower level of observed
temperature inducing lower values of cost function J (see Tables 2 and 3 for compari-
son). Agreement between measured and predicted temperature (according to the heating
flux identified at iteration 3) is shown in Figure 15.

Average residual error of temperature is about 0.24 K. Moreover, standard deviation
between measured and simulated temperature is 0.95 K and of the same order of magni-
tude as Gaussian measurement noise N ð0; 1Þ. Thus, even with noisy measurements,
identification can be achieved thanks to the CGM implementation.

It is quite important to notice that even if minimization algorithm is stopped after
one iteration, identification of unknown heating flux (11 parameters) is performed (see

Table 2. Cost function values for several iterations (fixed source).

Iteration k 0 1 2 3 4 5 6
Jð/kÞ 827,622 10,709 646 489 360 184 149
Err 182,812 26,066 8530 5974 4180 2322 2440

Table 3. Cost function values at each iteration (Case 4).

Iteration k 0 1 2 3
Jð/kÞ 625 170 143.8 131.9
Err 3:34 1010 8:97 109 8.71 × 108 9:99 108
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Figure 15. Residual temperature error (Case 4).

14 S. Beddiaf et al.

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
th

eq
ue

 D
e 

L
 U

ni
ve

rs
ite

],
 [

Sa
ra

 B
E

D
D

IA
F]

 a
t 0

7:
11

 1
8 

M
ar

ch
 2

01
4 



Figure 14). Important noises (see Figure 13 for disturbed observations) lead to an
average relative error on identified heating flux equal to 71.3%.

5. Experimental results

The experimental device developed in our research institute is made up three main ele-
ments:

� heating source: halogen lamp associated with an optical Kohler device in order to
provide a uniform circular heat flux on the lower surface of a metallic plate,

� a micrometric device used to move the heating disc in XZ plane,
� infrared observations on the upper surface of the sample in order to obtain rela-

tive temperature measurements for several points.

In the following, sample is a square black coated titanium sample (length is 10 cm,
thickness is 5 mm). Plate surface centres coordinates are ð0; 2:5� 10�3; 0Þ m and
ð0;�2:5� 10�3; 0Þ m. Sensors on the upper face are located at: ð4:2; 2:5; 5:7Þ�
10�3 m; ð�6:3; 2:5;�5:9Þ � 10�3 m and ð7:1; 2:5;�4:8Þ � 10�3 m. Heating source
radius is 3 mm and mobile trajectory on the lower surface is described by a piecewise
continuous linear function defined in the Table 4 and Figure 16.

Measured temperatures obtained during 300s are presented Figure 17 (square).
Considering the experimental observations presented in Figure 17, the previous identifi-
cation method has been implemented in order to identify the unknown heating flux
every 10 s (31 unknown values have to be determined). Cost function evolution is
shown in the following table:

Identified flux at iteration 36 is presented Figure 18.
It is shown that the flux is quasi-constant (average value is about 57 kWm�2). Such

result is in adequacy with the experimentation. Moreover, considering residual
temperatures (issued from Figure 17) drawn in Figure 19, it is shown that heat flux
identification has been accurately performed (see Table 6).

Table 4. Mobile source trajectory.

Time (s) 0 100 200 300

X in m −0.01 −0.02 0.02 0.02
Z in m 0.02 −0.01 −0.01 −0.005

Table 5. Cost function values for several iterations (experimentation).

Iteration k 0 1 2 3 4 5 … 15 … 29 30 … 36
Jð/kÞ 8694 190 45 41 34 33 … 30 … 29.8 29.7 … 29.6
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Figure 17. Measured (square) and calculated temperature.
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Figure 18. Identified experimental heating flux.
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Figure 16. Sensors positions (upper face) and heating source trajectory (lower face).
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6. Conclusion

In this communication, the identification of the time dependent heating flux generated
by a fixed or a mobile source has been investigated in a three-dimensional geometry.
The Alifanov’s iterative regularization method has been successfully implemented for
such an ill-posed problem (conjugate gradient method with an adjoint equation in order
to compute the gradient). At each iteration, conjugate descent directions are computed
considering an adjoint problem (issued from Lagrangian formulation) while descent
depth is obtained from sensitivity problem resolution (derived from variational calcu-
lus). Considering noisy measurements, iterative regularization is reliable and it is shown
that minimization algorithm is quite robust. Moreover, convergence is quickly achieved.

Several outlooks can be considered for further works. The simultaneous identifica-
tion of both trajectory and heat strength of the mobile source can be investigated con-
sidering sliding time intervals. Moreover, in many thermal processes, thermal properties
of the studied materials are temperature dependent and such nonlinearities have to be
carefully taken into account. The last but not the least, an experimental apparatus is
actually developed in the LISA research institute in order to test numerous situations
with a set of mobile sensors for mobile source tracking.
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