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Abstract
Within heterogeneous materials like fibre reinforced composites, heat
transfer is a complex phenomenon that depends on thermal properties of
both fibre and matrix materials and often thermal contact resistance between
them. In addition, the fibre axial and radial thermal behaviour is different
and both characteristics have to be investigated. In the present work, a
photo-thermal microanalysis method has been used to measure the fibre
thermal diffusivity when inserted inside a matrix. The experimental device
is based on a photo-thermal method in which periodic excitation is localized
on a micrometre-scale spot. Estimations of local properties are deduced
from the temperature evolution in a micrometre-scale zone and measured at
a given distance. In the case of fibre characterization, the composite sample
is cut along a plane perpendicular to the fibre axis for measuring the radial
diffusivity or containing the fibre axis for measuring the axial diffusivity.
With small diameter fibres, the thermally excited volume is larger than the
fibre itself and heat exchange with the matrix has to be taken into account.
In this case, the direct problem cannot be solved by an analytical approach; a
finite element method has been used. Numerical and experimental results
are compared.

Keywords: parametric identification, photo-thermal method, composite
materials, micro-scale characterization, phase lag analysis, finite element
method

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The development of new methods capable of characterizing
the micro-scale thermal behaviour of heterogeneous complex
materials is a crucial step for elaboration optimization. In
such a way, an identification problem has to be investigated.
In [11], a direct problem is assumed that is a well-posed
problem of mathematical physics. In other words, if we
know completely a ‘physical device’, we have a classical
mathematical description of this device including uniqueness,
stability and existence of a solution of the corresponding

mathematical problem. But if one of the (functional)
parameters describing this device is to be found (from
additional boundary/experimental) data, then we arrive at
an inverse problem. Considering the previous definition,
parametric identification performed by inverse problem
resolution requires three main steps:

Step 1: formulation of a mathematical model describing
the direct problem. In most cases, numerical methods are
developed for system state prediction. Moreover, considering
sensitivity analysis derived from the direct problem, optimal
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design is often achieved. Thus, reliable observations can be
obtained.
Step 2: conception and validation of an experimental device
in order to measure material behaviour when submitted to an
excitation.
Step 3: minimization of the difference between predicted
values (step 1) and measured values (step 2). In most cases, an
iterative algorithm is implemented and unknown parameters
are adjusted at every iteration.

The experimental device presented in this paper is based
upon a periodic method dedicated to microscopic study. The
sample is heated by a modulated laser beam on its surface
and a temperature-dependent coefficient (optical reflectivity)
is measured near the heating source. The distance to which
heat has propagated during a period is called thermal diffusion
length [19]. When modulation frequencies are higher than
10 kHz, the thermally excited volume does not exceed some
µm3. In this volume, the temperature wave is characterized by
amplitude and phase lag—compared to the heating reference—
of its periodic component. Since time-dependent solutions
are numerically difficult to estimate (for high-frequency
excitation), a complex temperature is considered which leads
to the determination of both phase lag and modulus in the
stationary state. The temperature evolution (induced by the
periodic heating input) is the sum of a continuous component
and a periodic one characterized by its amplitude and phase
lag versus thermal excitation. With the optical reflectivity
being temperature dependent, the phase lag between optical
reflectivity variations and heating input depends on the thermal
properties of the heated volume. Thus, it leads to the
identification of the thermal diffusivity of the studied material
in a microscopic area (�20 µm). This experimental device
has been developed in order to study at a microscopic scale:

• thermal characteristics of materials (thermal property
distribution, anisotropy, etc),

• thermal interfaces between multi-component materials,
• thermal discontinuities (cracks etc).

An inverse problem has to be solved in order to identify
the thermal diffusivity of the studied material. Minimization
of the difference between observed phase lag and simulated
phase lag is performed. Simulated values are deduced
from a mathematical model describing the heat transfer
induced by periodic excitation. Semi-analytical solutions
are proposed in [9, 18] for homogeneous samples and in
[6, 15, 19] for several types of discontinuities. In [6], the
partial differential equation system is solved considering the
analogy between the Helmholtz equation and the Laplace
transform of the heat diffusion equation in order to obtain
the Laplace transform of the solution. Then, using the
inverse Laplace transform the time evolution of the surface
temperature heated by a short light pulse is found. In
other specific configurations (axis symmetry etc), using a
space Fourier transform, calculation of the inverse Fourier
transform is carried out numerically and gives the temperature
amplitude and phase lag values compared to the incident
modulated heat flux. Bessel functions and Hankel transforms
are also usual tools for semi-analytical solution determination.
However, the validity of the semi-analytical solution sharply
depends on a strong hypothesis which can be quite difficult

Table 1. Diffusion length estimation.

Frequency (Hz) Diffusivity (m2 s−1) Diffusion length (µm)

f = 104 a = 10−5 δ ≈ 20
f = 106 a = 10−6 δ ≈ 0.5

to verify for heterogeneous materials. In fact, the distance
which the heat has propagated during a period is called
thermal diffusion length δ = √

a/πf , where a is the thermal
diffusivity and f is the modulation frequency [19]. In the
studied configuration, the thermally excited volume does not
exceed some µm3. When spatial heterogeneities dimension
approaches the thermal diffusion length (see table 1),
the semi-analytical solution is not valid.

For example, identification of thermal diffusivity in
micrometric fibres, the diameter of which is less than 10 µm,
is difficult to perform using an inverse Fourier transform. In
such a framework, a numerical solution based on the finite
element method (FEM) is proposed [2].

2. Modelling in the frequency domain

Thermal waves produced by periodic heat generation in
homogeneous and inhomogeneous solids are examined from
the theoretical point of view in [10]. Application to thermal
diffusivity measurement is proposed, for example, in [6, 14,
17–19]. Let us consider the following notation: �i ∈ R

3

is the space domain corresponding to the component i;
X = (x, y, z) ∈ ∪�i is the space variable; t ∈ T is the
time variable. In [15], the periodic heat flux focused on the
surface � at point I is expressed in the form

φ (rX, t) = φ0 e−r2
X/r2

0 ejωt (1)

where φ0 is the heat flux amplitude (W m−2), rX is the
distance XI (in m), r0 is characteristic of the heat flux spatial
distribution (m), ω is the pulsation (rad s−1). The evolution
of temperature θ(X, t) in ∪�i is described by the following
equations,

∀ (X, t) ∈ ∪�i × T �θ(X, t) − 1

αi

∂θ(X, t)

∂t
= 0 (2)

where αi is the unknown diffusivity,

∀ (X, t) ∈ � × T

− λi

∂θ(X, t)

∂�n = Re(φ(rX, t)) − hθ(X, t) (3)

where λi is the thermal conductivity, �n is the normal vector
exterior to � and h is the convective exchange coefficient,

∀X ∈ ∪�i θ(X, 0) = 0. (4)

Since the heat flux is periodic on �, temperature variations
in ∪�i will be periodic as well. When the steady state is
established, a continuous component and a periodic one are
considered:

θ(X, t) = θc(X) + θω(X) ejωt . (5)

In the following, the study is devoted to the periodic
component, i.e. computation of its amplitude and phase lag
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with respect to the incident flux. From (2)–(4), we obtain

∀X ∈ ∪�i �θω(X) − jω

αi

θω(X) = 0 (6)

∀X ∈ � −λi

∂θω(X)

∂�n = φ(rX) − hθω(X) (7)

where

φ(rX) = φ0 exp

(
− r2

X

r2
0

)
.

In specific configurations such as homogeneous solid, semi-
infinite geometries, temperature-independent parameters,
particular multi-component configurations (for which thermal
interfaces are well identified), calculation of the inverse
Fourier transform (or Laplace inverse transform) leads
to a semi-analytical solution; see theoretical aspects and
applications in [5–7, 9, 14, 15, 17–19]. From the experimental
point of view, for heterogeneous materials which do not
verify previous assumptions, thermal diffusivity identification
according to semi-analytical solution can lead to an erroneous
estimation. In order to provide a general alternative for the
resolution of equations (6), (7), the FEM is implemented.

A sensitivity study of an observable S on the model
parameters β = [β1, β2, . . . , βn] allows us either to reduce
the forward model or to discuss the possibility of accurate
identification of physical parameters [3]. Sensitivity functions
are defined as the absolute variation of the observable induced
by an absolute variation of the considered parameter. In order
to compare these coefficients with each other, the reduced
sensitivity functions of η versus parameter β are defined by the
following relation: X

∗
βi

= βi
∂S(β)

∂βi
. In the studied framework, a

reduced sensitivity study of the modulus (|θω|) and of the phase
lag (ϕ = arg(θω)) on model parameters has been previously
performed. This sensitivity study has been realized for the
unknown parameters but also for the known parameters (which
are a priori known with given uncertainties). These results are
not presented but discussed all the same:

• Even if phase lag and modulus are calculated and/or
measured, only the phase lag observations lead to a
correct identification. In fact, the sensitivity study puts
in evidence that the modulus is correlated not only with
unknown thermal diffusivities but also with nuisance
parameters (heat flux, convective heat losses, etc).

• Nevertheless, the convective heat losses h could be
identified according to the modulus but their effects on
phase lag observations h

∂ϕ

∂h
are not significant enough to

perturb the thermal diffusivity identification.
• It is important to accurately control the periodic

excitation ω.

In the following, only phase lag predictions and
measurements are exposed. Even if phase lag spatial
distribution can be considered for thermal diffusivity
identification [15], results are shown for frequency scanning.
Phase lag is measured and computed at a given distance of the
heating laser (on the material surface). Then from phase lag
versus frequency, thermal diffusivity can be identified.

Table 2. Error estimation.

Metal alit (mm2 s−1) ameas (mm2 s−1) |1− alit/
(purity > 99.9%) (literature) (measured) ameas| (%)

Titanium 9.09 9 1
Rhenium 16.43 14 15
Platinum 25.46 29 14
Gold 125.75 112 11
Silver 172.98 191 10

3. Simulation and numerical result

3.1. Validation for homogeneous material

Let us consider a titanium sample. On its surface �1, a
Gaussian heating flux is considered: φ(r) = φ0 exp

(− r2

r2
0

)
where φ0 = 5 × 108 W m−2 and r0 = 1.5 µm. Numerical
results are shown considering the following thermo-physical
parameters: a = 9 × 10−6 m2 s−1, λ = 21.6 W m−1 K−1

and h = 10 W m−2 K−1. Boundary conditions are (see
figure 1)

∀X ∈ �1 − λ
∂θω(X)

∂�n = φ(rX) − hθω(X)

∀X ∈ �2 − λi

∂θω(X)

∂�n = 0.

Figures are presented as follows:

• Figure 1: implemented meshes (initial mesh and refined
mesh).

• Figure 2: phase lag versus excitation frequencies
predicted by analytical approach [9] for several metallic
materials.

• Figure 3: phase lag versus excitation frequencies
and comparison between FEM approach and analytical
approach [9] and measurements given by the experimental
device presented in section 4.

For figure 2, thermal diffusivities of metallic materials
are listed in table 2 from the values given in the literature.
It is obvious that phase lag is strongly affected by thermal
diffusivity. Thus, phase lag measurements can lead to thermal
diffusivity identification and metallic sample recognition even
if data are ‘moderately’ noise perturbed.

Considering figure 3, several remarks are proposed.
Differences between the initial mesh (red curve) and the refined
mesh (blue cross) are close to zero, so an unrefined mesh
can be considered since numerical results are correct and
computational time is smaller. Numerical predictions obtained
from a semi-analytical approach are slightly different than
those obtained from FEM. This could be due to the different
numerical algorithms and to the heat flux φ(r) modelling
which is Gaussian shape for FEM and cylindrical shape in [9].
Measurements performed with the photo-thermal microscope
seem to be in good agreement with predicted results on the
titanium sample.

3.2. Numerical results for heterogeneous material

Let us consider a cylindrical fibre (radius rf ) inside a matrix.
In most cases, fibre diffusivity and matrix thermal diffusivity

3
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Figure 1. Initial and refined mesh for the titanium sample.

Figure 2. Phase lag versus frequency for several metallic materials.

are quite different. When diffusion length is smaller than
the fibre radius (δ � rf ), the boundary effect due to the
matrix can be neglected and a semi-analytical approach can
be implemented. However for a small fibre radius, a semi-
analytical approach can lead to erroneous estimates since
thermal waves propagation is different in fibre and matrix.

The investigated geometry is shown in figure 4. In
figures 5 and 6, results are shown for 4 µm � rf � 35 µm,
observations are performed on the surface �1 (distance to the
axis equal to 3 µm) and the excitation frequency is equal
to 1 kHz, 10 kHz and 100 kHz. The following parameters
are taken into account: in figure 5 afibre = 10−6 m2 s−1

and amatrix = 20 × 10−6 m2 s−1, and in figure 6 afibre =
20 × 10−6 m2 s−1 and amatrix = 10−6 m2 s−1.

Remarks

• Figure 5: for the studied case where afibre < amatrix, at a
high frequency (100 kHz) diffusion length is δ ≈ 1.8 µm
and for rf > 3δ ≈ 5.4 µm phase lag in the fibre is
not affected by the matrix properties. For rf < 3δ,
boundary effects cannot be neglected and the maximal
difference is about 4◦. For a medium frequency (10 kHz),
δ ≈ 5.6 µm, the same fibre radius threshold (equal to 3δ)
can be taken into account in order to neglect boundary
effects. For a low frequency (1 kHz), smaller phase lags
are obtained and one can see that for a small fibre radius,
matrix properties cannot be neglected.

• Figure 6: for the studied case where afibre > amatrix, at a
high frequency (100 kHz) diffusion length is δ ≈ 8 µm

4



Finite element modelling for micro-scale thermal investigations

Figure 3. Phase lag versus frequency for the titanium sample (observations for r = 10 µm).

Symmetry axis

( )0;0

1Γ

2Γ

2Γ

r

rf

matrix
fibre

Figure 4. An example of a heterogeneous material.

and for rf > 3δ ≈ 24 µm phase lag in the fibre is
not affected by the matrix properties. For rf < 3δ,
boundaries effects cannot be neglected and the maximal
difference is about 5◦. For a medium frequency (10 kHz),
δ ≈ 25 µm, and a low frequency (1 kHz), δ ≈ 79 µm,
matrix properties cannot be neglected for a small fibre
radius.

Thus, considering the results shown in figures 5 and 6, a
semi-analytical approach (assuming in [9] that the material is
homogeneous) can lead to erroneous estimates of the thermal
diffusivity for a small fibre radius. For the investigated
examples, FEM has to be implemented for rf < 3δ =
3
√

afibre/(πf ).
In the following, the effect of the difference between

matrix and fibre thermal diffusivities is studied. Let us
consider afibre = 10−5 m2 s−1 and ratio 0.1 � afibre

amatrix
� 10.

The fibre radius is rf = 10 µm, observations are performed
on the surface �1 (distance to the axis equal to 3 µm), and the
excitation frequency is equal to 1 kHz, 10 kHz and 100 kHz.
Results are presented in figure 7.

In this situation, numerical results provided by the semi-
analytical approach are correct for afibre

amatrix
= 1 since the

materials are identical (from the phase lag point of view).
However, for fibre thermal diffusivity, quite different from
matrix thermal diffusivity, phase lags estimated by FEM differ
from homogeneous material. Moreover, at low frequency
and high frequency, phase lag difference behaviour is not the
same. Thus while drawing phase lag versus frequency (as in
figure 2) the curve shape is different when afibre and amatrix are
significantly different.

Numerical results presented in section 3.1 (for
homogeneous materials) and section 3.2 (for heterogeneous
materials), validate the predictions obtained by FEM and
show that an unrefined mesh can lead to good estimations.
Moreover, limitations of the semi-analytical approach [9]
are exposed for a small fibre radius and when fibre thermal
diffusivity and matrix thermal diffusivity differ. Thus for
identification purposes, FEM is implemented in specific
configurations investigated by photo-thermal microscopy. The
experimental device is exposed in the following section.

4. Experimental device

The experimental device used for obtaining measurements
able to characterize the micro-scale thermal behaviour
of heterogeneous materials is a versatile photo-thermal
microscope. Although the principle of such a device is well
known since Rosencwaig et al [16], it will be recalled in order
to point out its main advantages and drawbacks.

4.1. Description

The measurement technique is based on the sample’s thermal
response when it is submitted to a micro-scale periodic thermal
excitation. A modulated laser beam (pump), focused by a
microscope objective onto the sample surface, produces a
local thermal excitation (≈ 1 µm diameter spot). At a given
distance (≈ 4–5 µm), a continuous laser beam (probe) is used

5
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Figure 5. Phase lag for afibre = 10−6 m2 s−1 and amatrix = 20 × 10−6 m2 s−1.

Figure 6. Phase lag for afibre = 20 × 10−6 m2 s−1 and amatrix = 10−6 m2 s−1.

to detect the thermal wave diffusion by observing the variations
of the surface optical reflectivity that depend on temperature
[4, 7, 13]. In our experiment (see figures 8 and 9), the thermal
excitation is delivered by an ion-argon laser (Coherent, Innova
305) with its 514 nm wavelength selected.

An acousto-optic modulator (Isomet 1211) driven by
a computer-programmable function generator and a RF
amplifier modulates the beam at the desired frequency. After
shape setting, the beam is reflected by a dichroic plate
and focused by a microscope objective (50×, Mitutuyo) on
a Gaussian micro-scale spot at the sample surface. The
632 nm measurement beam, originated from a He–Ne laser

(Oriel 79200), crosses a polarization beam-splitter and the
dichroic plate, then is directed to the same objective which
focuses it close to the heating spot. The distance between
spots (called offset) is accurately adjusted by means of
wedge prism rotation. The reflected part is sent back to
the polarization beam-splitter which reflects it towards a
fast response photodiode. The photodiode ac component
signal is amplified and analysed by a wide bandwidth
lock-in device (EGG 5302), the reference signal of which
comes from the acousto-optic controller. The lock-in amplifier
output (amplitude and phase lag) is finally recorded by the
control computer. The phase lag between optical reflectivity
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Figure 7. Phase lag for 0.1 � afibre
amatrix

� 10.
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Figure 8. Schematic drawing of the photo-thermal microscope.

variations and heating laser modulation corresponds to the
thermal diffusion process between excitation (pump) and
observation (probe) spots.

The unknown thermo-physical properties are thus micro-
scale characteristics of the investigated zone. These properties
are then identified by analysing the evolution of the phase lag
versus an adjustable parameter (independent variable) such as
excitation frequency, distance between spots or distance from
a thermal discontinuity.

4.2. Calibration procedure

The experimental system (optical and electronic devices)
introduces an additional phase shift that should be subtracted
from the measured value to keep only the thermal contribution.
For that purpose, a calibration procedure consists in picking up

with an optical fibre a small part of the pump beam and sending
it directly to the detector. The resulting phase, measured on
the whole frequency range, is stored in a table that will be
used to correct the set of experimental values obtained from
the samples. Because of the short distance between pump and
probe spots, their shape and size are to be taken into account.
Although commercially available beam analysers do allow
measurements of micro-scale beams, they are not adapted
for analysing beams focused by such high numerical aperture
objectives. The spot characteristics are investigated by a two-
step procedure [5]. A scanning slit beam profiler (Data Ray
Beamscope P5) capable of measuring focused beam profiles
of some tens of micrometres is used to analyse the beam shape
in several locations upstream and downstream of the waist.
This step allows the verification of the beams’ Gaussian shape
and the determination of their quality coefficient. It then
becomes possible to extrapolate the value of the waist diameter
by applying the Gaussian beam propagation law. Analysis
performed on the system equipped with the specified objective
(50×, Mitutuyo) gives the following results:

• Pump spot diameter: 1.00 ± 0.04 µm.
• Probe spot diameter: 1.24 ± 0.04 µm.

4.3. Sample holder and positioning

The sample is held by a two-stage micro-positioning system
(0.1 µm resolution) driven by the computer. This allows
one-dimensional (1D) scanning of the sample surface that
will be used for thermal parameter estimation, or two-
dimensional (2D) scanning for imaging the map of surface
thermal transfers. Heterogeneous samples often comprise
materials of different hardness and so the polishing results
in surface altitude variations of some micrometres. Because
of the low depth-of-field, these variations have to be corrected.
The sample holder involves a third movement in the r-direction
so as to maximize the probe laser reflected beam.
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A CCD camera sights the surface by means of a beam-
splitter. Its aim is an accurate positioning of both spots on the
sample surface as well as a measurement of distance between
the spots. (Note that the disturbing reflections observed in
figure 10 come from colour filters and not from the surface.)
The various illumination levels (pump and probe spots, surface
lighting) are very different and so a raw image would be
saturated and unusable. In order to balance them, the surface is
lightened by a pulsed 932 nm diode and the composite
beam reflected by the surface passes through colour filters
attenuating the 514 nm and 632 nm wavelengths.

5. Identification algorithm

Once the thermal model is established (section 2) and the direct
problem is numerically solved (section 3), measurements
obtained by the experimental device (section 4) are taken into
account for parametric identification. It is essential to note that
as well as the hypothesis required for semi-analytical solutions
validity not being verified, the well-known linear relation
between phase lag and excitation frequency is not valid either.
Then, an identification procedure has to be developed in order
to estimate thermal diffusivity by minimizing the difference
between simulated phase lag (figure 5) and measured phase

lag (figure 11). For the resolution inverse problem, one can
refer to [1, 3, 11, 20].

5.1. Numerical results

In this section, measured phase lags are considered in
order to identify both fibre and matrix thermal diffusivity.
Let us consider noisy simulated data for identification
algorithm validation. The first step is to identify matrix
thermal diffusivity (amatrix = 10−7 m2 s−1). The Levenberg–
Marquardt algorithm is implemented (Matlab R© and Femlab R©)
in order to minimize in a least-squares sense the quadratic
difference between the measured and simulated phase lags.
Results are shown in figure 10. Once amatrix is identified,
measurements are performed in order to identify the thermal
diffusivity (afibre = 10−5 m2 s−1) of the fibre (radius 4 µm).
Results are shown in figure 11.

Remarks. The Levenberg–Marquardt algorithm implemented
for the matrix’s thermal diffusivity identification provides
efficient minimization. In figure 12, it is crucial to consider
simulated phase lags obtained by the FEM approach. In fact,
the dashed line corresponds to afibre = 10−5 m2 s−1 in a semi-
infinite domain which verifies the geometrical assumptions
required by the semi-analytical approach. In the studied
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Figure 11. Matrix thermal identification from noisy simulated data (observations for r = 6.17 µm).

Figure 12. Fibre thermal identification from noisy simulated data (observations for r = 3 µm).

situation, the small fibre radius (4 µm) prevents us neglecting
the matrix environment. Thus, minimization based on the
semi-analytical approach and linear relation between phase
lag and excitation frequency will lead to erroneous estimation
of the fibre’s thermal diffusivity.

5.2. Estimation errors

If β and β̂ are respectively the exact value and the estimated
value of the parameter vector, the estimation error eβ stems
generally from several sources:

• Errors due to numerical modelling (round, truncation).
When the direct model has an analytic solution, this type

of error can be neglected because, by definition, the exact
analytic solutions are exact and the round errors on the
phase are much lower than the resolution of the lock-in
amplifier, i.e. 0.01◦. When the direct model has a semi-
analytic solution (includes an integral to be calculated
numerically), the truncation error is not so difficult to
evaluate. In the case of use of a finite element method,
the choice of mesh, space steps, etc are to be taken into
account.

• Errors on model assumptions. The model is based on
a series of assumptions: flat sample, Gauss distribution
of the heat source, negligible heat losses (in this
frequency range), constant thermal parameters (in this
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Figure 13. Errors of supposed known parameters.

temperature range), steady stage regime, etc. Each of
these assumptions has been analysed and validated for
actual cases. In addition, the estimation residuals are
systematically investigated in order to seek a possible
‘signature’ that would be the sign of a wrong assumption
[3].

• Errors due to measurement noise. A useful tool for
estimating the effect of the measurement noise on the
estimated uncertainty is the Cramer–Rao inequality.
Under some assumptions concerning the noise nature,
this theorem (1) express a lower bound for the variance
of any unbiased estimator of β and (2) gives the existence
condition of an estimator reaching this bound. In this case,
the estimator is qualified as MVU (minimum variance
unbiased) [12]. A detailed analysis of the measurement
noise and application of the two cases (constant variance
or linearly dependent variance with frequency) with
different estimators (least-squares, Gauss–Markov, etc)
is given in [8].

• Error related to metrology. With the observable parameter
being the thermal phase lag, precautions have to be
taken in order to avoid additional phase lags introduced
by the measurement chain: function generator, acousto-
optic modulator, photodiode, differential amplifier. The
sum of these potential phase lags is measured by
sending the attenuated heating beam directly to the
measurement photodiode. Then, the table obtained
for a series of frequency values is used to correct all
the experimental photo-reflection data. Note that the
resolution of the measurement device (lock-in amplifier)
is 0.01◦, so more than enough compared to the other
error sources.

• Errors in supposed known parameters. This component
is investigated by analysing the reduced sensitivities of

the supposed known parameters and parameters to be
estimated [3]. Figure 13 shows, for a Gaussian source
of radius r0, the evolution of the different sensitivity
coefficients: diffusivity, frequency, offset (the distance
between the two lasers) versus the offset distance r . Three
zones can be distinguished in these curves:

• For small r values, the sensitivity is low for all parameters.
• The sensitivity to spot radius passes a maximum for a

value close to that of the diameter.
• For large r values, the results tend to that of the spherical

model. The sensitivities to parameters a, r and f

are correlated such that Sa = −Sf = −0.5Sr . The
identifiable group is r

δ
.

An accurate knowledge of the offset is the most critical
parameter.

The sum of these potential errors has been evaluated for
an example of experiment: α = 10 mm2 s−1, r = 5 µm,
r0 = 0.62 µm. The upper bound for eβ is 30%. In fact,
measurements on standard samples show that the error is
always lower than 15%.

6. Concluding remarks

In this paper, the interest of a finite element approach
in parametric identification is presented. An experimental
device (dedicated to microscopic-scale study) is developed
for the identification of thermal diffusivity in heterogeneous
materials. To estimate this property, a direct model is
presented and resolution by the FEM is proposed in order
to improve the identification when semi-analytical solutions
cannot be considered. Thus, this experimental device
(dedicated to micro-scale thermal diffusivity characterization)
associated with our numerical approach (dedicated to complex
temperature estimation) allows us to investigate heterogeneous

10
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materials. In further works, this methodology has to be
performed for thin interface characterization (in specific coated
materials, for example) as well as for thermal discontinuities
detection (for example, in crack formation due to thermal and
mechanical cycling).
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and Serror S 2001 Local thermal characterization of inner
gun barrel refractory metallic coatings Microscale
Thermophys. Eng. J. 5 209–23

[8] Gervaise C, Nouals C, Calderan C, Bénet S and Serra J J 1999
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