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Abstract

In this paper, an experimental technique dedicated to thermal diffusivity or
thermal conductivity identification in isotropic and orthotropic materials is
investigated. A method based on the analysis of thermal waves induced by
periodic excitation in planar samples is proposed. Either frequency sweep at a
single point in space or spatial fluctuations at a single frequency are considered.
In such a context, in order to state both the accuracy and robustness of the
data manipulation, a complete mathematical study is performed. Moreover, a
sensitivity analysis allows us to implement an optimal strategy for the unknown
parameter identification. Forward model and inverse problem are validated
both on numerical simulation and known materials. Then, the presented
experimental device developed is implemented for the analysis of orthotropic
materials.

Nomenclature

Latin letters

Bi Biot number
Cp constant pressure specific heat (J kg−1 K−1)
M modulus of the periodic component Tperiodic (K)
R radius of the heat flux distribution (m)
T temperature (K)
Tsteady steady component of the temperature T (K)
Tperiodic periodic component of the temperature T (K)
X∗ reduced sensitivity functions
e thickness (m)
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f frequency (Hz)
h convective heat transfer coefficient (W m−2 K−1)
t time (s)
(x, y, z) space coordinate (m)
z axial coordinate (m)

Greek letters

� heat flux (W m−2)
α thermal diffusivity (m2 s−1)
β model parameters
ϕ phase lag (rad)
η observable
λ thermal conductivity (W m−1 K−1)
μ diffusion length (m)
ρ density (kg m−3)
ω time pulsation (rad s−1)
(ωx, ωy) spatial Fourier pulsations
τ(ωx, ωy, z, ω) complex Fourier transform of the temperature
�(ωx, ωy) complex amplitude of the heat flux 2D spatial Fourier transform

1. Introduction

The development of new materials in order to obtain attractive properties in usual terms
is a crucial step for industrial purposes. Material processing improvement as well as
specific property achievement often requires a relevant predictive model and thus an accurate
material properties identification. Thermal properties measurement is a crucial problem that
affects many areas of engineering and material science. Many well-known identification
methodologies are based on the observation of a material’s thermal behaviour exposed to a
calibrated excitation. These dynamic methods are usually classified according to the type
of thermal excitation, the more usual being the step function, the Dirac pulse, the sine-wave
modulation and more recently the pseudo-random sequences. Each of these categories of
methods includes advantages and drawbacks that means either can be more applicable in a
given configuration.

Periodic methods enable us to deduce thermal properties of a material from observations
of its behaviour when it is submitted to a periodic heat source. The main advantage of these
methods is to allow the periodic signal repetition many times. Thus, they can be used when
the signal-to-noise ratio on observable output is low. The periodic excitation is generally
made out on a limited volume whose characteristic dimension depends on diffusion properties
of the sample and on the excitation frequency (see, for example, Autrique et al (2007 for an
application to microscale thermal investigations).

In the following, a complete methodology dedicated to thermal characterization using
a non-invasive periodic optical technique is proposed. Based on infrared observations, the
presented measurement technique is attractive for global estimation in heterogeneous materials
when other non-invasive optical techniques are usually devoted to local behaviour analysis. Its
main advantage when compared with forced Rayleigh light scattering or pulsed photothermal
radiometry is to provide observations over a geometrical domain which can be adapted
to the studied material and to the thermal phenomena scale. For example, investigations
can be performed on orthotropic materials in a real three-dimensional model, which takes
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into account the spatial heterogeneity of the studied material (carbonic fibres in an epoxy
matrix, for example). However, pulsed photothermal radiometry is best suited for thin film
samples characterization (Macedo et al 2008), while forced Rayleigh light scattering can be
implemented in a wide range of materials (organic liquids, ruby crystals, . . . ); see (Venerus
et al 1999) for an application of this technique to thermal diffusivity estimation.

In order to widely investigate the proposed approach, modelling of thermal waves in the
frequency domain, direct problem resolution, sensitivity analysis, data inversion, experimental
device and experimental results are successively addressed.

In the following section, the heat transfers modelling in a domain submitted to a surface
periodic heating input is investigated. Relevant observations for analysis in the frequency
domain are usually both the modulus and phase lag of the output signal. A forward system
based on partial differential equations is shown and forward problem is solved thanks to an
inverse Fourier transform. Then, results of sensitivity analysis are discussed. In this section,
the aim is to propose an optimal methodology: nuisance parameters are carefully investigated
in order to minimize their effects on the relevant observable. Thermal diffusivity can be
estimated thanks to observations either versus the excitation frequency or versus the distance
from the excitation. In the specific case of anisotropic materials characterization, while a
frequency sweep at a single space point cannot be used, it is shown that the use of a space
distribution of the observable on the rear face (state for a single time frequency) ensures planar
thermal diffusivities identification. The algorithms implemented for both the forward and
the inverse problem resolutions are validated for numerical situations described in section 4.
Experimental device which has been developed for materials characterization is then exposed.
In section 6, several applications are proposed: the first one is dedicated to known metallic
samples for validation purposes, while an unknown orthotropic material is studied for the
second one.

2. The general principle of periodic methods and modelling in the frequency domain

The basic principle of these methods, devised by Angström (1863), is to periodically heat a
sample and to measure the temperature along the sample which varies with the same period but
with diminishing amplitude. Moreover, as the temperature wave travels along the sample with
finite velocity there is a varying phase relationship. Measurement of the amplitude decrement
and either the phase difference or velocity enables the diffusivity to be determined. As with
static methods it is necessary to use a solution of the considered problem, which is appropriate
to a particular experimental arrangement and to the boundary conditions. Periodic excitation
signals can be and usually are designed to excite only a frequency band of interest and they
have no significant power outside that band. This helps to keep excitation power as low
as possible and to avoid on one hand unnecessary nonlinear effects, and on the other hand
material damages.

Temperature measurements can be performed in two kinds of configuration for plane
samples (figure 1):

• the first one (reflection) where temperature measurement and excitation are realized on
the same sample side;

• the second one (transmission) where temperature measurement and excitation are realized
on the opposite face of the sample.

Evolution of the system state (temperature T) at instant t for each point (x, y, z) ∈ R
3 of the

sample periodically excited can be written as a sum of two components:

T (x, y, z; t) = Ttransient(x, y, z; t) + Toscillating(x, y, z; t), (1)
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Temperature measurement
(reflection)

Periodic heat flux

Sample

Temperature measurement
(transmission)

Figure 1. Temperature measurement configurations.

where Ttransient(x, y, z; t) is an increasing function of t (see figure 2) and
Ttransient(x, y, z; t)−−−−−→

t→∞ Tsteady(x, y, z). In experimental configurations, system

observations are performed once the transient component ceases: for t � tsteady. Various
techniques can be implemented in order to estimate tsteady and in practice, the noise level has
to be taken into account. For the specific framework related to the applications (materials
thermal diffusivity identification) presented in section 6, authors consider that the steady state
is reached if during 20 periods, both the maximum temperature and the minimum temperature
for each period i

(
T max

i , T min
i

)
satisfy for i = 1, . . . , 20: T̃ max − δ < T max

i < T̃ max + δ and
T̃ min − δ < T min

i < T̃ min + δ, where T̃ is the average value of Ti (considering 20 periods) and
δ depends on the standard deviation of the temperature measurements.

For t � tsteady, considering that the steady state is reached, the sample temperature can be
written as a sum of a steady component and a periodic component whose period is the same
as excitation (Gurevich et al 2003, Muscio et al 2004).

T (x, y, z; t) = Ttransient(x, y, z, t) + Toscillating(x, y, z; t)−−−−−→
t→∞ Tsteady(x, y, z)

+ Tperiodic(x, y, z; t),

with Tperiodic(x, y, z; t) being a periodic non-harmonic signal written as (2) for a given angular
frequency ω (rad s−1):

Tperiodic(x, y, z; t) =
∞∑

k=1

Mk(x, y, z) ejkωt ejϕk(x,y,z), (2)

where Mk (K) is the modulus and ϕk (rad) is the phase lag of the kth harmonic. Mk and ϕk

depend also on ω.
Both modulus Mk and phase lag ϕk are connected to thermal properties of the material.

(Note that for an orthotropic material, the thermal conductivities tensor is diagonal). Thus,
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Figure 2. Phase lag and modulus definition.

considering ρ to be the density (kg m−3), Cp the specific heat (J kg−1 K−1), and

⇒
λ =

⎡
⎣λx 0 0

0 λy 0
0 0 λz

⎤
⎦

the thermal conductivities tensor (W m−1 K−1), it comes

⇒
α =

⎡
⎣αx 0 0

0 αy 0
0 0 αz

⎤
⎦

the thermal diffusivities tensor where αi = λi

ρCp
en (m2 s−1). μ =

√
max

⇒
α

πf
is called diffusion

length (the excitation frequency is denoted by f (Hz)). It is usual to consider that at a distance
up to 3μ, at least 95% of the thermal wave has disappeared.

In this work, we want to identify:

• the thermal diffusivity of isotropic materials (the thermal conductivities tensor is a
constant) from phase-lag observations in any point;

• the thermal diffusivities tensor of orthotropic materials from phase-lag observations versus
the three main axes.

The considered problem and its simplified geometry are shown in figure 3.
Let us consider an e thick versus z-axis orthotropic material, where the x and y dimensions

are chosen so that boundary effects are neglected on the lateral faces of the plane-parallel
sample. The thermal excitation produced by a periodic heat flux is centred on its front face in
(x, y, z) = (0, 0, 0). The convective heat losses h (W m−2 K−1) are taken into account on the
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Figure 3. Simplified geometry of the forward model.

front face (z = 0) and on the back face (z = e) of the sample. The system state evolution is
described by the following heat equation:

ρCp

∂T

∂t
= div(

⇒
λ

−−−−→
grad T ). (3)

Boundary conditions are⎧⎪⎪⎨
⎪⎪⎩

z = 0: −λz

∂T (x, y, 0, t)

∂z
= �(x, y, 0, t) − hT (x, y, 0, t)

z = e : −λz

∂T (x, y, e, t)

∂z
= hT (x, y, e, t),

(4)

where �(x, y, 0; t) is the periodic heat flux in (W m−2). Without lack of generality, initial
condition in the whole domain is written such as:

t = 0: T = 0. (5)

In most non-academic situations, the forward model (3)–(5) is quite difficult to solve by an
analytical way in the real space. Moreover, numerical resolution is not appropriate since
time evolution analysis is less relevant than modulus and the phase-lag analysis (in steady
state). Thus, a complex Fourier transform versus x and y axes can be implemented. Let
τ(ωx, ωy, z, ω) be this complex Fourier transform:

τ(ωx, ωy, z, ω) =
∫

R
2
M1(x, y, z, ω) e−jωxx e−jωyy ejϕ1(x,y,z,ω) dx dy, (6)

where ωx and ωy are the spatial Fourier pulsations. Let us assume that flux excitation has a
‘top hat’ space distribution of radius R, and a periodic time evolution with angular pulsation
ω = 2πf . The corresponding 2D Fourier transform �(ωx, ωy) can be written such as:

�(ωx, ωy) =
∫

R
2
�(x, y) cos(ωxx) cos(ωyy) dx dy =

2π�0RJ1
(
R

√
ω2

x + ω2
y

)
√

ω2
x + ω2

y

(7)

with R (m) being the heat source radius and J1 the Bessel function of the first kind. In
fact, periodic excitation signals have been chosen in order to excite only a frequency band
of interest. So they have no significant power outside the first harmonic. Thus, considering
τ(ωx, ωy, z, ω) in (3) and by dividing (3) by ρCp it comes

(−ω2
xαx − ω2

yαy − jω
)
τ(·) + αz

∂2τ(·)
∂z2

= 0. (8)
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Equation (4) becomes⎧⎪⎪⎨
⎪⎪⎩

z = 0: −λz

∂τ

∂z
= � − hτ,

z = e : −λz

∂τ

∂z
= hτ.

(9)

It is important to note that τ (·) is not time dependent and solution of system (8), (9) is as
follows:

τ(·) =
[

(λzr + h)�(·)
(λzr + h)2 + (λzr − h)2 exp−2er

]
exp−rz +

[
(λzr − h) exp−2er �(·)

(λzr + h)2 + (λzr − h)2 exp−2er

]
exp+rz,

(10)

with r =
√

ω2
xαx+ω2

yαy+jω
αz

. At this step, it can be possible to put in evidence the Biot number:

Bi = he
λz

in equation (10) such as:

τ(·) =
[

(er + Bi)�(·)e
λz((er + Bi)2 − (er − Bi)2 exp−2er )

]
exp−rz

+

[
(er − Bi) e−2er�(·)e

λz((er + Bi)2 − (er − Bi)2 exp−2er )

]
exp+rz . (11)

Then, for a known set of input parameters {αi, λz, Bi, R, ω, e,�0}, the complex Fourier
transform of the temperature τ(ωx, ωy, z, ω) is obtained thanks to the computation of the
spatial Fourier pulsations (ωx, ωy). The return in temperature space is obtained by means of
an inverse Fourier transform defined by

M1(x, y, z, ω) ejϕ1(x,y,z,ω) =
∫ ∫

R
2
τ(ωx, ωy, z, ω) ejωxx ejωyy dωx dωy. (12)

Then, calculation of the inverse Fourier transform is numerically performed to determine both
phase lag ϕ1 and modulus M1. For the numerical implementation, it is important to note
that the studied geometry is such that the material is assumed to be a semi-infinite plate (see
figure 3). For experimental configurations, it is quite important to verify that lateral boundaries
effects do not affect thermal waves propagation: sample dimensions among x and y axes have
to be large enough (greater than 3μ). Then equation (12) is numerically solved:

M1(x, y, z, ω) ejϕ1(x,y,z,ω) = ∫
�F ⊂R

2 τ(ωx, ωy, z, ω) ejωxx ejωyy dωx dωy,

where �F = [−ωmax
x , ωmax

x

] × [−ωmax
y , ωmax

y

]
is defined such that signal energy is closed to

zero in R
2 − �F . For (x, y) ∈ R

2 − �F , M1(x, y, z, ω) ejϕ1(x,y,z,ω) ≈ 0. Both ωmax
x and ωmax

y

are numerically obtained considering the energy spectral density. Then,

M1(x, y, z, ω) ejϕ1(x,y,z,ω) = ∫
�F ⊂R2

f (·) dωx dωy = ∑
k/Pk⊂�F

f̃ kAk

where Pk is the kth rectangular element of the discretized domain �F, Pk surface is denoted
by Ak and f̃k = mean

Pk

(τ (ωx, ωy, z, ω) ejωxx ejωyy). Angular space frequency discretization

(determining Pk) is chosen such that M1(x, y, z, ω) ejϕ1(x,y,z,ω) computation is not affected by
a more accurate discretization.

In figure 4, an example of numerical results is shown for an orthotropic material according
to the following data: αx = 3.7 × 10−6 m2 s−1, αy = αz = 4.5 × 10−7 m2 s−1,
λz = 0.7 W m−1 K−1, Bi = 0.07, R = 2 × 10−3 m, ω = 0.005 rad s−1 and e = 5 × 10−3 m.
Modulus is expressed as the dimensionless ratio: M̄ = M(x,y,z)

max M(x,y,z)
= M(x,y,z)

M(0,0,0)
.

7



Inverse Problems 25 (2009) 045011 L Perez and L Autrique

Figure 4. Phase lag and modulus estimated for an orthotropic material.

The ellipsoidal shape of both modulus and phase-lag distributions is characteristic of
orthotropic material (αx 	= αy) thermal behaviour when submitted to a periodic excitation.
In the following section, a brief sensitivity analysis is performed in order to investigate the
interest of phase-lag observation in order to identify thermal diffusivity.

3. Sensitivity analysis

In order to optimize the identification methodology, sensitivity analysis is a crucial requirement
and several key points have to be investigated:

• Are modulus and phase-lag observations able to estimate thermal diffusivity?
• Several model parameters are assumed to be known. It is essential to determine if their

uncertainties do no dramatically affect the thermal diffusivity identification.
• Some ambient parameters are quite difficult to control and their effects have to be as

weak as possible. From the experimental point of view, it is obvious for example that the
convective exchange coefficient is a nuisance parameter.

While the process state evolution is obtained by considering resolution of a set of
partial differential equations {Sdir} (and solving a forward problem), the sensitivity analysis
is performed by computing the sensitivity functions which are solutions of the sensitivity
problem derived from {Sdir}. A sensitivity study of an observable η (in our case, the observed
phase lag or the modulus of the measured temperature η = {M,ϕ}) on model parameters
β = {αi, λz, Bi, R, ω, e,�0} allows either to reduce the forward model or to discuss the
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possibility of accurate physical parameters identification (Beck and Arnold 1977). Sensitivity
functions are defined as the absolute variation of the observable induced by an absolute
variation of the considered parameter. In order to compare these coefficients with each other,
the reduced sensitivity functions of ηi versus parameter β j are defined by the following relation:

X∗
ηi ,βj

= βj

∂ηi(β)

∂βj

. (13)

It is important to note that this reduced sensitivity function represents not only the amplitude
variation but also its sign. For a given application, if the reduced sensitivity function versus
an unknown parameter is weak on the considered domain (space, time, frequency domain
. . . ) then information on this parameter contained in observable measurements is poor. It
comes that if this reduced function is equal to zero, then the considered parameter cannot be
identified from this observable. Moreover, if the reduced functions versus two parameters
are linearly dependant, it can only be possible to identify a relationship between these two
parameters. This sensitivity study has to be performed for the unknown parameters but also for
the known parameters (which are a priori known with given uncertainties). It is usual to reduce
the number of uncertain parameters in order to simplify the sensitivity analysis. However,
in a preliminary step, a screening procedure based on numerical design of experiment can
be implemented in order to determine which reduced sensitivity functions X∗

ηi ,βj
have to be

carefully investigated (see Rouquette et al 2007).
Usually, a design of experiment (DOE) is a set of experimental runs that are chosen in

order to estimate the factor effect on a response; see, for example, Montgomery (1997). In a
numerical situation, considering a model describing the relation between a desired property
and some process parameters, a set of numerical runs is analysed and model analyses are
proposed.

In a second step, the choice of the non-studied parameters can be based upon a priori
knowledge, experimental results, etc. Three methods have usually been used to calculate these
reduced sensitivity functions:

• if an analytical solution of the forward problem exists, directly by calculating the
corresponding derivative;

• if the forward problem is nonlinear versus parameters, by calculating the Gateau derivative;
see for example an application in Abou Khachfe and Jarny (2001);

• if only a numerical or a semi-analytical solution of the forward problem exists, by
calculating the corresponding numerical derivative.

Then, it becomes evident that the sensitivity study must be carefully performed in order
to determine parameter identifiability. In the following, the interest of periodic approach in
several configurations is stated.

3.1. Example of sensitivity analysis for a steel sample: frequency scanning

Let us consider the specific geometry described in figure 3 where the sample is a steel thin
plate. We are mainly interested in the identification of its thermal conductivity λ while ρCp

is assumed to be known. Then, the model parameters are β = {ρCp, λ, Bi, R, ω, e,�0}. Let
us consider the following parameters: ρCp = 3.7 × 106 J K−1 m−3, e = R = 2 × 10−3 m
and Bi = 4.6 × 10−4. For sensitivity analysis, a value has to be chosen for the unknown
parameter and let us assume that λ = 40 W m−1 K−1. In this example (in transmission),
thermal behaviour of the steel sample is observed in the centre of the non-solicited face while
a frequency range is scanning ω

2π
= f ∈ [0.01, 1].
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Figure 5. Reduced sensitivity functions for a frequency scanning (example of a steel plate).

Reduced sensitivity functions are estimated by discretizing these partial derivatives.
Results are shown in figure 5 for both modulus and phase lag. It is obvious that
thermal conductivity λ cannot be estimated using modulus measurements. In fact, since∣∣X∗

M,�0

∣∣ >
∣∣X∗

M,λ

∣∣, parameters characterizing heating flux (which are quite difficult to
quantify) are considered as nuisance parameters which prevent from estimating λ considering
M observations. In the following, only phase-lag measurements are taken into account. It
is shown in figure 5 that for thermal conductivity identification, it is essential to accurately
known {ρCp,R, e} while phase lag does not depend on {Bi,�0}. It is important to note
that this methodology is dedicated to thermal diffusivity α = λ

ρCp
identification and then it is

obvious that λ identification is meaningful if ρCp is well known. Lastly, if modulus is great
enough to ensure signal observations, experiments can be performed for high frequency.

3.2. Example of sensitivity analysis for an insulating material: spatial scanning

In this studied situation (in transmission), thermal behaviour of the sample is observed along
the x-axis for a given frequency. Let us consider a glass thin plate. Model parameters are
β = {α, λ, Bi, R, ω, e,�0}. Let us consider the following parameters: λ ≈ 1.4 W m−1 K−1,
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Figure 6. Reduced sensitivity functions for a spatial scanning (example of a glass plate, f =
0.001 Hz).

ρCp ≈ 1.5 × 106 J K−1 m−3, α ≈ 1.4
1.5×106 ≈ 0.9 × 10−6 m2 s−1, e = R = 2 × 10−3 m

and Bi = 1.4 × 10−2. Thermal conductivity (that is λz in equations (9) and (11)) is taken
into account in Biot number definition. Thus |X∗

ϕ,λ| is not considered but only |X∗
ϕ,α| and

|X∗
ϕ,Bi | are investigated in this paragraph. For a given frequency, f = 0.001 Hz, it is shown in

figure 6 that

• heating flux amplitude (�0) inaccuracies have no influence on phase lag;
• |X∗

ϕ,e| > |X∗
ϕ,α|: sample thickness (e) has to be accurately known;

• |X∗
ϕ,Bi | > |X∗

ϕ,α|: thus, for low frequency, since convective exchange is quite difficult to
estimate, thermal diffusivity identification cannot be performed.

For a greater given frequency, f = 0.01 Hz, thermal diffusion length is
√

10 times lower.
Then, thermal transfers are quite different as is shown in figure 7. Thus, for high frequency, it
is shown that if the heating source spatial distribution radius (R) has to be accurately known,
a specific spatial range (for this example x ∈ [0, 0.015]) can be considered for phase-lag
observations. In fact, in this spatial range and at this given frequency, |X∗

ϕ,Bi | � |X∗
ϕ,α|. Then,

inaccuracies on convective exchange estimation do not dramatically affect thermal diffusivity
identification.

3.3. Example of sensitivity analysis for an orthotropic material

Let us considered the orthotropic material studied in section 2: αx = 3.7 × 10−6 m2 s−1,
αy = αz = 4.5 × 10−7 m2 s−1, λz = 0.7 W m−1 K−1, Bi = 0.07, R = 2 × 10−3 m and
e = 5 × 10−3 m. Two configurations can be considered in transmission: thermal behaviour of
the sample observed in the centre of the non-solicited face while a frequency range is scanning
(case 1) or among each axis (in the plane (0, x, y)) for a given frequency (case 2). Phase-lag
sensitivity to heating flux (�0) amplitude is neglected since it has been shown equal to zero in
sections 3.1 and 3.2.

Case 1: frequency scanning ω
2π

= f ∈ [0.001, 0.1]
In figure 8, it is shown that thermal diffusivity identification among z-axes (αz) can be
performed considering phase-lag measurements in the centre of the non-solicited face
while f ∈ [0.001, 0.1] if the material thickness is known with a great accuracy. It
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Figure 7. Reduced sensitivity functions for a spatial scanning (example of a glass plate, f =
0.01 Hz).
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Figure 8. Reduced sensitivity functions for a frequency scanning (example of an orthotropic
material).

is important to note that inaccuracies in (αx, αy) do not affect the (αz) estimation since∣∣X∗
ϕ,αx

∣∣ ≈ ∣∣X∗
ϕ,αy

∣∣ � ∣∣X∗
ϕ,αz

∣∣.
Case 2: spatial scanning versus Ox and Oy: (x, y) ∈ [0, 0.015]2

In figure 9, it is shown that if the material thickness is known, thermal diffusivity identification
among x-axes (αx) can be performed considering phase-lag measurements among x-axes:

• for x < 0.005 if (αz) is well known (thanks to a preliminary frequency scanning as in
case 1) since

∣∣X∗
ϕ,αx

∣∣ � ∣∣X∗
ϕ,αy

∣∣ ≈ ∣∣X∗
ϕ,R

∣∣ ≈ ∣∣X∗
ϕ,Bi

∣∣;
• for x > 0.01 since

∣∣X∗
ϕ,αx

∣∣ � ∣∣X∗
ϕ,αz

∣∣ ≈ ∣∣X∗
ϕ,αy

∣∣ ≈ ∣∣X∗
ϕ,R

∣∣ ≈ ∣∣X∗
ϕ,Bi

∣∣.
In figure 10, it is shown that the material thickness has always to be well known and

several areas can be considered for the identification of the thermal diffusivity identification
among y-axes (αy) considering phase-lag measurements among y-axes

• for x < 0.005 if (αz) is well known (thanks to a preliminary frequency scanning as in
case 1) since

∣∣X∗
ϕ,αy

∣∣ � ∣∣X∗
ϕ,αx

∣∣ ≈ |X∗
ϕ,R| ≈ |X∗

ϕ,Bi |;
• for x > 0.005, the heating source spatial distribution radius (R) has to be accurately known

and
∣∣X∗

ϕ,αy

∣∣ � ∣∣X∗
ϕ,αz

∣∣ ≈ ∣∣X∗
ϕ,αx

∣∣ ≈ |X∗
ϕ,Bi |.
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Figure 9. Reduced sensitivity functions for a spatial scanning versus x (example of an orthotropic
material f = 0.005 Hz).
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Figure 10. Reduced sensitivity functions for a spatial scanning versus y (example of an orthotropic
material f = 0.005 Hz).

Let us note that even if |X∗
ϕ,e| is obtained with numerical noises, the trend is verified and

it is crucial to accurately know the material thickness.

4. Thermal diffusivity identification considering noisy disturbed simulated phase lag

Previous sensitivity analysis has shown the interest of the methodology based upon periodic
solicitations and phase-lag observations for thermal diffusivity identification. In the following,
a minimization algorithm is presented and results are discussed. A Levenberg–Marquardt
numerical algorithm (Levenberg 1944, Marquardt 1963) for the resolution of the inverse
problem has been developed in order to identify the unknown parameter α considering given
parameters {Bi,R, ω, e} and phase-lag observations (Alifanov 1994, Isakov 1998, Walter and
Pronzato 1997).

13
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Figure 11. Example of simulated phase lags and estimated phase lag for frequency scanning.

The Levenberg–Marquardt algorithm provides a numerical solution to the problem of
minimizing a quadratic criterion χ2(α) describing the difference between measured phase lags
ϕ̂i and simulated phase lags ϕi:

χ2(α) =
∑

(ϕ̂i − ϕi(α))2. (14)

The Levenberg–Marquardt algorithm is an iterative procedure and can be thought of as a
combination of steepest descent and the Gauss–Newton method. In each iteration step, the
parameter vector is modified and the corresponding function ϕi (issued from the forward
problem resolution) is approximated by the computation of the Jacobian matrix of ϕi.
Moreover, a damping term (Gill et al 1981) is adjusted at each iteration to assure a reduction
in error.

Robustness of this approach is investigated while a realistic noise is generated on simulated
data (a Gaussian random generator is used N(0, 2)). Noisy disturbed simulated phase lags
are considered for both frequency scanning (in the centre of the non-irradiated face) and
spatial scanning (at a given frequency). Let us consider a thermal conductor material and the
following parameters: Bi = 4.6 × 10−4 and e = R = 2 × 10−3 m.

Case 1: frequency scanning
Sensitivity analysis has shown that thermal diffusivity α identification can be performed
considering model parameters β = {Bi,R, ω, e}. Let us consider the following frequency
range: ω

2π
= f ∈ [0.01, 1]. Simulated phase lags are obtained for α = 10−5 m2 s−1.

Identification results are presented in figure 11. Convergence is achieved in few iterations and
identified thermal diffusivity is α = 9.7 × 10−6 m2 s−1. Results are quite satisfactory since
even noise is overestimated, convergence is fast and error on identified parameter is about 3%.

Case 2: spatial scanning
The given frequency is f = 0.05 Hz. Simulated phase lags are obtained for α = 10−5 m2 s−1.
Identification results are presented in figure 12. Convergence is achieved in few iterations and
identified thermal diffusivity is α = 9.9 × 10−6 m2 s−1. Results are quite satisfactory since
even noise is overestimated, convergence is fast and error on identified parameter is about 1%.

In figure 12, reduced sensitivity functions X∗
ϕ,β with β = {Bi,R, ω, e} are plotted.

Realistic uncertainties have been considered from the experimental point of view, since several
nuisance parameters can be accurately measured independently. Let us consider: Bi ± 10%,

14
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Figure 12. Example of reduced sensitivity, simulated phase lags and estimated phase lags for
spatial scanning.

R ± 2%, ω ± 1% and e ± 2%. It is important to note that in a specific configuration, |X∗
ϕ,Bi |

can be reduced considering great excitation frequency (see section 3.2).
Thermal diffusivity identification has been performed according to several initial values

of the minimization algorithm and results are quite accurate. Whatever the initial value is,
and considering noisy disturbed simulated data, convergence of the minimization algorithm
is achieved. Thus, the methodology seems to be relevant and the identification numerical
algorithm is validated. An experimental device has been developed for identification based
on our approach. Phase-lag measurements are performed by an infrared camera for two-
dimensional analysis which is dedicated to orthotropic materials. For isotropic materials, a
single axis scanning is sufficient and a cheaper pyrometer with an oscillating mirror can be
implemented.

5. Measuring bench

An experimental device has been developed in order to identify thermal diffusivity of materials
by non-destructive observations. This experimental bench comprises three main parts (see
figure 13):
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Figure 13. Experimental bench.

(1) The sample part where the tested material is located in the focal plane of a Köhler optical
device.

(2) The excitation part constituted by a halogen lamp (36 V, 400 W) under this assembly
associated with a process control to generate a periodic input (square, sinusoidal, . . . ) on
the back face of the sample.

(3) The measurement part made up by an IR camera placed on the front face of the sample
linked to a signal processing.

The spatial distribution of the temperature on the sample recorded by the IR camera
is representative of the material’s nature (isotropic for circular distribution, orthotropic for
ellipsoidal distribution, . . . ). The signal processing allows extraction of the amplitude of the
signal and the phase lag between periodic input and thermal response of the material, even if
the noise level is high. Spatial distributions analysis is performed in order to define the sample
geometry, the maximum temperature, the excitation frequency and the distance between IR
camera and the observed face. 512 pictures are recorded in order to measure more than
10 periods.

A previous sensitivity analysis has shown that even if phase lag and modulus are
measured, only phase-lag observations lead to a correct identification (since modulus is
correlated to nuisance parameters). However, modulus cartographies are taken into account
in order to determine the low level of attenuation for which output signal is not significant
enough. Considering 512 pictures (256 × 100 pixels), modulus (corresponding to temperature
amplitude around the steady state) and phase-lag cartographies are deduced thanks to a lock-in
algorithm. Several experimentations have been performed in order to estimate the noise level
for both the modulus (±1 K) and the phase lag (±10%).
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Figure 14. Phase-lag measurements.

6. Experimental results

In this section, the number of harmonics used to compute theoretical phase lag is (nx)max =
(ny)max = 512.

6.1. Validation for isotropic materials

Experiments have been performed with known metallic materials in order to validate both
the methodology and the experimental device. The heating source radius on the excited
face is R = 3 × 10−3 m. The first sample is a steel thin plate (e = 0.3 × 10−3 m)

exposed to an excitation frequency f = 0.1 Hz, while the second one is a silver thin
sheet (e = 0.1 × 10−3 m; f = 0.11 Hz). Biot numbers are Bisteel = 3.7 × 10−4 and
Bisilver = 4.7 × 10−6. Measured phase lags obtained thanks to the experimental device
are shown in figure 14. Identification algorithm has been used for the inverse problem
resolution. Then, identified thermal diffusivities are αsteel ≈ 30 × 10−6 m2 s−1 and
αsilver ≈ 160 × 10−6 m2 s−1. These values are much close to those of the literature (Brady
et al 1997). Difference is less than 10%. The correct fit is shown in figure 15.

In the following section, identification results are presented for an unknown orthotropic
material.

6.2. Test for orthotropic material

An orthotropic material (a fibre composite) has been studied. We are mainly interested in
in-plane diffusivity identification (αx and αy) considering phase lag among x and y-axes
observed for a fixed excitation frequency. In figure 16, a modulus distribution is shown for a
given frequency.

The ellipsoidic shape is due to λx 	= λy . Heating power is chosen in order to avoid
boundary effects (a semi-infinite plate has to be considered for the forward model). It is
important to note that the spatial resolution of the infrared camera is different versus x-axis and
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Figure 15. Measurements and simulation computed with identified values.

Figure 16. Modulus cartography for orthotropic material.

y-axis. Dimensions of rectangular pixels are �x ≈ 0.56 × 10−3 m and �y ≈ 0.96 × 10−3 m.
Thus more accurate observations are obtained versus x-axis. Modulus (figure 16) can be
considered to set the sample x-axis or y-axis. Relevant spatial domain is also deduced from
figure 16 since modulus is also useful for the determination of the low level of attenuation for
which output signal is not significant enough.
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Figure 17. Phase-lag cartography for orthotropic material.

Figure 18. Identification results.

Then phase-lag cartography can be considered (see figure 17). The previous minimization
algorithm has been modified to take into account the diffusivity tensor. Resolution has been
performed according to the phase lag observed on each axis (deduced from cartography shown
in figure 17).

The correct convergence of the algorithm is presented in figure 18 and it has been estimated
that αx ≈ 10αy and that αx ≈ αz. This preliminary result is characteristic of a fibre stack in a
reinforced matrix.
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7. Concluding remarks

In this paper, a non-destructive approach for parametric identification has been proposed.
Based on the analysis of system state behaviour when submitted to a modulated input,
a periodic methodology has been presented: forward model, inverse problem, sensitivity
analysis, numerical validation, experimental device, experimental validation, and application
to isotropic and orthotropic materials. Forward problem is semi-analytically solved thanks
to an inverse Fourier transform. For the inverse problem, quadratic criterion describing the
difference between simulated and observed phase lags is minimized in order to identify the
unknown thermal diffusivities tensor. Robustness of the identification method has been tested,
considering several initializations and noisy disturbed observations. Sensitivity analyses have
been widely investigated and optimal strategies for the identification of the unknown parameter
have been pointed out. It has been shown in orthotropic specific configurations that phase-lag
spatial fluctuations at a single frequency are more informative than a frequency sweep at a
single point in space. Moreover, in order to minimize the effect of nuisance parameters (such
as the Biot number) a suitable excitation frequency range is determined thanks to the reduced
sensitivity functions analyses. An experimental device is presented: periodic input is carried
out by a heating lamp and an infrared camera is used for modulus and phase-lag observations.
Experimental results are shown and assert the measurement bench validation.

Several outlooks can be considered. From the experimental point of view, the foreseeable
prejudicial effect of convective heat transfer for low solicitation frequencies has to be carefully
taken into account. For the identification method, the iterative algorithm can be modified in
order to identify the thermal diffusivity versus z-axis considering phase lag between the heated
face centre and the observed face centre. The forward model can be also written using the
thermal quadrupoles (Maillet et al 2000) in order to characterize multilayered materials. It
is also crucial to investigate the confidence of our identification results; the development of
interval analysis methods seems to provide an attractive approach (Braems and Jaulin 2001,
Jaulin et al 2002). Then, based on the presented millimetric experimental device and on a
second micrometric device in our institute (Autrique et al 2005), a multiscale analysis can be
performed in order to better understand, considering orthotropic materials, the relation between
local properties of both fibre and matrix and global property of orthotropic sample. Moreover,
the analysis of the thermal waves propagation generated by a periodical solicitation could
lead to the characterization of the isotropy rate of anisotropic materials such as unidirectional
carbon fibres reinforced polymer. In fact, geometric considerations will allow quantifying the
rate of fibres liable for the preferential direction of the thermal waves.

Last but not least, both the use of the amplitude of the signal (with an unknown
proportionality constant that can be estimated) and the phase can be implemented in a
composite criterion to be minimized in order to get a better estimate. This attractive aspect
will be investigated in the immediate future.
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