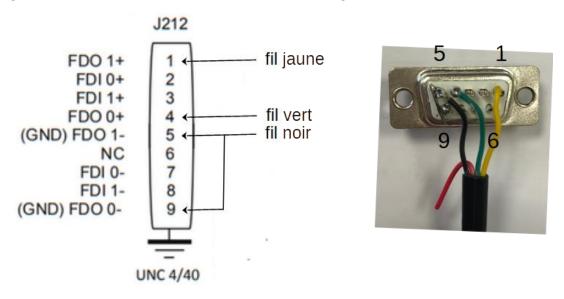
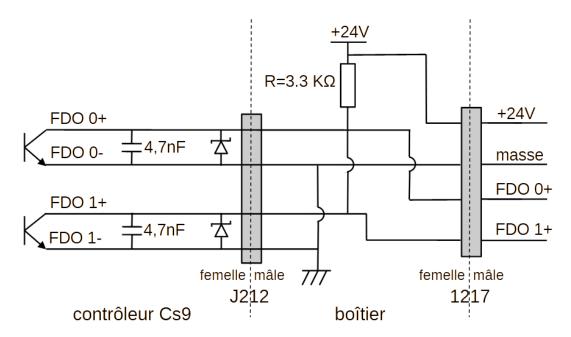

Câblage entre les 2 « Sorties Rapides » (FastOutputs) du contrôleur Cs9, le bras TX2-40 du robot Stäubli et la pince Schunk EGP 40 N-N-B

Jean-Louis Boimond Université Angers


1) Schéma général de câblage entre le contrôleur Cs9, le bras TX2-40 et la pince Schunk

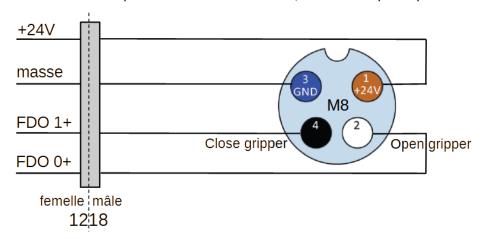
Le connecteur mâle 1217 (M12), situé sur le socle du bras TX2-40, est relié au connecteur femelle 1218 (M12), situé au niveau de la flasque du bras.


2) Connecteur J212 du contrôleur Cs9

Les deux sorties utilisées pour actionner la pince Schunk sont situées au niveau du connecteur femelle J212 du contrôleur Cs9 du robot ; elles sont intitulées *FastOutputs* FDO 0 et FDO 1 et correspondent aux signaux : FDO 0-/FDO 0+ et FDO 1-/FDO1+, voir le brochage ci-dessous :

3) Détails sur le boîtier situé entre le contrôleur Cs9 et le socle du bras TX2-40

Le montage électrique du boîtier (à concevoir) est le suivant :

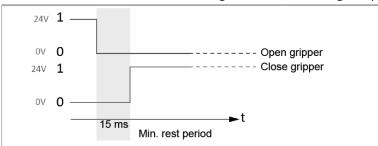


Le boîtier comporte :

- en entrée, FDO 0-/FDO 0+ et FDO 1-/FDO1+, signaux issus du connecteur J212;
- en sortie, +24V, la masse, les signaux FDO 0+ et FDO 1+, accessibles au niveau du connecteur 1217. Noter que la tension de +24V est fournie par le boîtier, la baie Cs9 ne mettant pas à disposition une telle alimentation.
- ✓ La valeur de la résistance R, de l'ordre de 3.3KΩ, fait que le courant circulant au niveau des deux transistors (situés dans le contrôleur Cs9) est de l'ordre de 7,3mA (~ 24V/3,3 $10^3Ω$) sachant que le courant doit être de l'ordre de 10mA.

4) Connexion entre la flasque du bras TX2-40 et la pince

Les 4 signaux (+24V, masse, FDO 0+ et FDO 1+), accessibles au niveau du connecteur 1218, sont utilisés pour alimenter et actionner la pince *via* son connecteur M8, voir la description qui suit :


Connection assignment

Pin	Wire strand	Signal
1	Brown	+ 24 V
2	White	Open gripper
3	Blue	GND
4	Black	Close gripper

avec la logique de commande (pour ouvrir ou fermer la pince) *via* les Pins 2 et 4 (du connecteur M8) suivante :

Function	Pin 2 (open)	Pin 4 (close)
De-energized drive (shutdown, motor is short-circuited)	0	0
Open the gripper	1	0
Close the gripper	0	1
Rectify error (shutdown, motor is short-circuited)	1	1

Noter que le temps minimum entre 2 commandes est égal à 15ms, voir la figure qui suit : :

Le montage électrique du boîtier est tel que la logique de commande (pour ouvrir ou fermer la pince) via les signaux FDO 0+ et FDO 1+ est la suivante (les signaux FDO 0- et FDO 1- sont mises à la masse) :

Fonction	FDO 0+	FDO 1+
Ouverture de la pince	1	0
Fermeture de la pince	0	1

5) Actionnement en mode « manuel » de la pince

Il est possible de tester à l'aide du *Teach Pendant* SP2 l'ouverture et la fermeture de la pince en agissant directement sur les *FastOutputs*, notées *Fast Output* 1 et *Fast Output* 2, du contrôleur Cs9 : ouverture de la pince quand *Fast Output* 1=Off et *Fast Output* 2=On ; fermeture de la pince quand *Fast Output* 1=On et *Fast Output* 2=Off. Pour cela, appuyer sur *IO* > *Boards* > *J212 FastIO*, puis sélectionner l'onglet *Digital Out* ; le changement d'état des sorties se fait en appuyant sur la touche correspondante.

Veiller à ce que les sorties ne soient pas verrouillées à travers un appui sur la touche cette touche est opérationnelle lorsque le profil est celui de *maintenance*. Pour cela aller dans la fenêtre Settings > Profiles en mettant dans l'encadré *Current Profile* : *maintenance* (et non *default*) dans le champ *Name* et *spec_cal* (et non une chaîne vide) dans le champ *Password*.