
1/19

Lab 1 - Presentation of the Dobot Magician and the DobotStudio

Framework

Jean-Louis Boimond

University of Angers

Objectives of the 4 labs using the Dobot robot:

▪ Lab 1: Presentation of the robot and its framework DobotStudio (elementary operations,

movement instructions, environments: Teaching & Playback, Blockly),

▪ Lab 2: Calculation of the direct geometric model, representation of the reachability

space and simulation of the robot arm,

▪ Lab 3: Calculation of the inverse geometric model, drawings of a straight line and a

figure in the Joint space.

▪ Lab 4: Use of a camera to position the robot successively at the centers of circles

arranged on a A4 sheet.

Table of Contents
I. Introduction .. 1

II. Starting/Stopping the robot .. 5

III. DobotStudio Framework .. 5

A. Introduction .. 5

B. Connection/Disconnection of the Robot to DobotStudio ... 6

C. Basic Operations .. 7

D. Manual Robot Control .. 7

1. Movement in the Joint Space ... 8

2. Movement in the Operational Space .. 9

E. About Movement : Point To Point, Continuous Path, ARC .. 10

F. Teachning & Playback and Blockly Programming Environments 12

1. Teaching & Playback ... 13

2. Blockly ... 15

Lab 1 introduces the Dobot robot by presenting its features and its DobotStudio framework.

Two programming environments (Teachning & Playback, Blockly) are presented, enabling the

robot arm to perform trajectories and tasks at specific points. Six questions are asked during

this lab.

I. Introduction
Dobot Magician is an educational robot arm equipped with various tools and accompanied by

a programming environment. The robot arm can be controlled:

- through the DobotStudio framework, which provides different programming environments

such as Teachning & Playback, Blockly, Script,

- or by using more standard languages such as Python, MatLab, C#.

Equipped with the appropriate tool, DobotStudio enables you to perform certain tasks, such as

writing/drawing, moving a part, 3D printing.

2/19

The robot arm features:

- different bodies in particular: a base, a rear arm, a forearm, a support for attaching a tool/end-

effector,

- and 5 joints,

see the following figure in which the tool is a suction cup.

Figure 1: Description of the robot arm equipped with a suction cup.

Locate these different elements on the Dobot robot arm.

When the tool is a suction cup or a gripper, a servo motor is linked with the tool to activate joint

5, for example, to maintain a constant orientation of the tool. Note that this joint is inactive (its

angular value is equal to zero) when the tool is a Pen.

Joint 4 is not controllable due to the fact that its value is mechanically fixed according to the

angular values applied to joints 2 and 3, so that the axis of joint 5 is always orthogonal to the

table/plane on which the robot arm is placed.

Attach the Pen tool (without removing the cap) to the end of the robot arm. Check on the Dobot

robot that the Pen tool is parallel to the axis 𝑂0𝑧0
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ of the reference (World) frame of the robot

arm, whatever the posture considered.

Technical data:

Maximum payload 500 g

Maximum reachability 320 mm

Motion rang of joint 𝑞1(= 𝐽1) [−90°;+90°]

Motion rang of joint 𝑞2(= 𝐽2) [0°; +85°]

Motion rang of joint 𝑞3(= 𝐽3) [−10°;+85°]

Motion rang of joint 𝑞5(= 𝐽4) [−135°;+135°]

Maximum speed (with a 250g

payload)

Rotational speed of joints 1, 2, 3, 4: 320°/s,

Rotational speed of joint 5: 480°/s

3/19

Repeated positioning accuracy 0.2 mm

The following figure shows the dimensions of the links of the robot arm and of the Pen tool.

Figure 2: Dimensions of the links of the robot arm, the tool mounting bracket, the Pen tool.

The reference (World) frame of the robot arm, 𝑥0, 𝑦0, 𝑧0, and the frame associated with the Tool,

𝑥, 𝑦, 𝑧, are shown in the following figure.

Figure 3: Operational space, World and Tool frames.

4/19

The following figure represents the robot arm, equipped with the Pen tool, positioned in its

initial configuration (i.e. when 𝑞1 = ⋯ = 𝑞4 = 0). The frames associated with the different

links of the robot arm are also represented in particular the frames World (𝑅0) and Tool (𝑅5).

Note that point 𝑂5 (= 𝑃𝐹) corresponds to the tip of the pen.

Figure 4: Association of the frames 𝑅0, … , 𝑅5 with the links of the robot arm.

Question 1: Locate the different links of the robot arm and the Pen tool in Figure 4. Deduce

also from the Figure the coordinates of the points 𝑂3, 𝑂4, 𝑃, 𝑃𝐹 in the frame World (𝑅0) when

the robot is in its initial configuration. Locate these points on the robot arm.

With reference to the Denavit-Hartenberg method used later, let us define the angular value

𝜃𝑗(𝑡) of the joint 𝑗 as the value at time t of the rotation angle between the axes 𝑂𝑗−1𝑥𝑗−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ and

𝑂𝑗𝑥𝑗
⃗⃗ ⃗⃗ ⃗⃗ ⃗ around the axis 𝑂𝑗𝑧𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗.

Question 2: Express the values 𝜃1(0),… , 𝜃5(0) corresponding to the initial configuration of

the robot arm (see Figure 4).

We set: 𝜃𝑗(𝑡) = 𝑞𝑗(𝑡) + 𝜃𝑗(0), ∀𝑡, which leads to 𝑞𝑗(0) = 0, ∀𝑗 when the configuration is

initial.

Note that the angular value 𝜃3(𝑡) of joint 3 is actually equal to 𝑞3(𝑡) − 𝑞2(𝑡) + 𝜃3(0) which

means that it depends on 𝑞3(𝑡) and 𝜃3(0) but also (negatively) on the value 𝑞2(𝑡) (applied to

joint 2).

The (uncontrolled) value 𝜃4(𝑡) of joint 4 is such that the mounting support of the tool is always

positioned horizontally (as illustrated in Figures 1, 2 and 3), i.e.:

𝑂4𝑥4
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑂1𝑥1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ; 𝑂4𝑧4
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑂1𝑦1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ (see Figure 4).

Thus, the pen will always be located vertically (along the axis 𝑂5𝑧5
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) being always orthogonal

to the plane (𝑂0, 𝑂0𝑥0
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑂0𝑦0

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗).

Question 3: Show that 𝜃4(𝑡) = – 𝑞3(𝑡).

5/19

II. Starting/Stopping the robot
• To start the robot: position the arm and forearm of the robot so that there is an angle of

about 45° between them, then press the power button located on the base of the robot. After

about 7 seconds, a beep is emitted and the LED indicator, located on the base as shown in

Figure 1, changes from yellow to green indicating that the arm is operational.

Note: The LED turns red when the robot arm reaches a limit position. Press (continuously) the

unlock button, located on the robot forearm (represented by an open padlock), to move the arm

to a desired (and reachable) position; once the button is released, the LED will turn green.

• Stopping the robot: press the power button on the base of the robot; the forearm then

folds (slowly) towards the robot arm.

III. DobotStudio Framework

Installing and launching version 1.9.4 of DobotStudio:

▪ Copy to your desktop the file DobotStudioSetup_V_1_9_4.zip accessible from the link

DobotStudioSetup_V_1_9_4.zip,

▪ Once the file is unzipped, double-click on the .exe file to install DobotStudio, during this

phase, accept the request to install the Device driver,

▪ To launch DobotStudio, double-click either its icon located on your desktop, or the

DobotStudio.exe file, usually located in the C:\DobotStudio directory.

Notation: The values (in degrees) of joints 1, 2, 3 and 5 are denoted in DobotStudio as Joint1,

Joint2, Joint3 and Joint4 (rather than Joint5), see the box to the right of the Figure below. They

are such as:

Joint1(𝑡) = 𝑞1(𝑡), Joint2(𝑡) = 𝑞2(𝑡), Joint3(𝑡) = 𝑞3(𝑡), Joint4(𝑡) = 𝑞5(𝑡).

A. Introduction
DobotStudio enables the robot arm to be controlled through several programming environments

such as: Teaching & Playback, Blockly, see the following figure and table.

http://perso-laris.univ-angers.fr/~boimond/DobotStudioSetup_V_1_9_4.zip

6/19

Figure 5: The home page of DobotStudio.

Teaching &

Playback

Enables to easily associate the learning/point acquisition phase with

movement instructions.

Blockly Enables through a graphical approach the generation of trajectories and tasks

at certain points, by Drag and Drop of blocks (the blocks being represented in

the form of a puzzle).

B. Connection/Disconnection of the Robot to DobotStudio
Click on the Connect button located at the top left of the home page. The robot is connected to

DobotStudio when the Connect button becomes a Disconnect button, see the following figure.

In the same way, it is disconnected when the Disconnect button becomes a Connect button.

Figure 6: Connecting to the DobotStudio application.

Note that it is possible to connect the robot in a quick mode if precision of movement is not

required. A dialog box appears on this subject during the connection phase, see the following

figure.

7/19

Figure 7: Dialog box for a quick connection (OK) or not (Cancel).

C. Basic Operations
The drop-down menu, positioned in the center of the following figure, is located in the box

located at the top right of the home page of DobotStudio. It enables you to select the type of

tool (SuctionCup in the figure) attached to the end of the robot arm. Possible tools are:

SuctionCup, Gripper, Laser, Pen, Advanced, with Advanced enabling another tool to be

characterized by coordinates, denoted xBias, yBias, zBias.

Figure 8: Tool selection, Setting, Home, Emergency Stop buttons.

In this box (see previous figure), three basic operations are also available through Setting,

Home, Emergency Stop buttons. The following table briefly describes them.

Setting To set basic parameters of the robot, see Table 5.2 of the User Guide

(located on p. 32-33) for details.

Home Allows the arm to return to its initial position to obtain a correct reference

position. Perform this operation before a movement requiring precision,

following a blockage of movement due to an obstacle or a contact of the

arm with one of its limit stops.

Emergency Stop To stop the robot arm in an emergency.

D. Manual Robot Control
The Operation Panel box, located on the right in the DobotStudio home page as shown in the

figure below, enables you to:

- move the robot arm manually (not automatically), by considering the Joint space

(Joint1, Joint2, Joint3, Joint4) or the Operational space (𝑋, 𝑌, 𝑍, 𝑅),

- control a tool such as a Gripper, Suction Cup or Laser.

8/19

Figure 9: Operation Panel box for manual control of the robot arm and the selection of certain

tools.

Note: Linear rail control can be disabled by selecting the ≡ symbol located at the top right of

the Operation Panel box, and unchecking the Linear rail control box.

1. Movement in the Joint Space
The robot arm is set in motion by clicking on J1+/-, J2+/-, J3+/-, J4+/-, see the figure below.

9/19

Figure 10: Control of the joints J1, J2, J3, J4 in the + or - direction.

The movement is axis by axis. The angular values 𝐽1, 𝐽2, 𝐽3 refer to joints 1, 2, 3 respectively.

The value 𝐽4 refers to joint 5 (activated by a servo motor attached to the tool when it is a Gripper,

Suction Cup or Laser).

For example, joint 1 moves in the positive direction (i.e. counterclockwise) by clicking on the

J1+ button; it moves in the negative direction by clicking on the J1- button.

Verify that setting joint 2 in motion sets joint 3 in motion, as mentioned in I. Introduction, p. 5.

2. Movement in the Operational Space
The arm is set in motion by clicking on X+/-, Y+/-, Z+/- (X, Y, Z representing the axes of the

reference frame (𝑅0) of the robot arm, cf. Figure 3), or on R+/- (R being the angle between the

axes 𝑥0⃗⃗⃗⃗ and 𝑥5⃗⃗⃗⃗ around the axis 𝑧0⃗⃗ ⃗, that is, 𝐽1 + 𝐽4 where 𝐽1 is the angle between the axes 𝑥0⃗⃗⃗⃗ and

𝑥1⃗⃗ ⃗ and 𝐽4 is the angle between the axes 𝑥1⃗⃗ ⃗ = (𝑥4⃗⃗⃗⃗) and 𝑥5⃗⃗⃗⃗ (around the axis 𝑧0⃗⃗ ⃗)).

The end of the robot arm moves along the X, Y, Z axes, in the positive or negative direction

depending on the press of the X+/-, Y+/-, Z+/- buttons.

For example, the end of the robot arm moves along the X axis in the positive direction by

clicking on the X1+ button, it moves in the negative direction by clicking on the X1- button.

Clicking on R+/- button causes the tool to rotate (effective when the servo motor is attached to

the Gripper, Suction Cup or Laser tool) around the R axis (in the positive or negative direction).

Note that moving along the Y axis also causes the R axis to move (effective in the presence of

the servo motor attached to the Gripper, Suction Cup or Laser tool), to ensure a constant posture

of the tool during the movement.

10/19

Figure 11: Setting in motion, in the + or - direction, along the X, Y, Z axes

of the reference frame of the robot arm, or around the R axis.

Question 4: With the Pen tool (with its cap) attached to the end of the robot arm, check that the

arm, once placed in its initial position/configuration (see Figure 4), is such that:

- the coordinates of the point 04, calculated in Question 1, correspond to those (denoted X, Y,

Z) obtained in the Operation Panel box by selecting beforehand, in the Advanced tool, the

appropriate values of xBias, yBias and zBias, knowing that these axes relate to the coordinate

system (𝑂4, 𝑥5, 𝑦5, 𝑧5) (be careful: these are the axes 𝑥5, 𝑦5, 𝑧5 and not the axes 𝑥4, 𝑦4, 𝑧4!!);

- the coordinates of the point P, calculated in Question 1, correspond to those obtained in the

Operation Panel box by selecting beforehand the appropriate values of xBias, yBias and zBias.

Check that these coordinates also match those obtained by selecting the Pen tool;

- the coordinates of the point PF, calculated in Question 1, correspond to those obtained in the

Operation Panel box by selecting beforehand the appropriate values of xBias, yBias and zBias.

E. About Movement : Point To Point, Continuous Path, ARC
Let's take a look at the types of movements you can use:

- Point To Point (PTP) movement: MOVJ, MOVL, and JUMP.

1) MOVJ instruction (joint movement): The calculation of the tool trajectory is done in the

Joint space. Each joint evolves simultaneously from its initial/current angular position

to that of destination. In the example shown in the figure below, the execution of the

MOVJ B instruction leads to the movement of the tool from its initial/current point

(denoted A in the figure) to point B.

2) MOVL instruction (rectilinear movement): The calculation of the tool trajectory is done

in the operational space to perform linear trajectory. In the example shown in the figure

11/19

below, each joint moves in order that the tool moves in a straight line from the

initial/current point A to the destination point B (associated with the instruction).

Figure 12: Instructions MOVJ B, MOVL B.

3) JUMP instruction: The movement is similar to the MOVJ instruction with the addition

of a move up above the initial/current point (A) and a move down to the destination

point B (associated with the instruction). Each joint evolves simultaneously to perform

the following sequence of movements, as shown in the figure below:

- Move up the tool in a straight line at a height ℎ𝐴 above the initial/current point A

(𝐴̅ being the resulting point),

- Horizontal movement of the tool (according to a behavior analogous to MOVJ)

from the point 𝐴̅ to a point 𝐵̅ (located at a height ℎ𝐵 above the point B),

- Move down the tool in a straight line towards the destination point B.

About the values of ℎ𝐴, ℎ𝐵:
- if 𝑍𝐴 = 𝑍𝐵 then ℎ𝐴 = ℎ𝐵 = 𝐽𝑢𝑚𝑝𝐻𝑒𝑖𝑔ℎ𝑡 where 𝐽𝑢𝑚𝑝𝐻𝑒𝑖𝑔ℎ in mm is defined in

the Setting/Playback/JumpParam tab (see Figure 14),

- if 𝑍𝐴 > 𝑍𝐵 then ℎ𝐴 = 𝐽𝑢𝑚𝑝𝐻𝑒𝑖𝑔ℎ𝑡 (with ℎ𝐵 > 𝐽𝑢𝑚𝑝𝐻𝑒𝑖𝑔ℎ𝑡),

- if 𝑍𝐴 < 𝑍𝐵 then ℎ𝐵 = 𝐽𝑢𝑚𝑝𝐻𝑒𝑖𝑔ℎ𝑡 (with ℎ𝐴 > 𝐽𝑢𝑚𝑝𝐻𝑒𝑖𝑔ℎ𝑡).

Figure 13: JUMP B when 𝑍𝐴 < 𝑍𝐵.

12/19

Figure 14: Assignment of the JumpHeight parameter.

- Continuous Path (CP) movement: Such tool movement is performed from the initial/current

point to a point (associated with the instruction) without stopping there (unlike the PTP mode),

to go, via another movement instruction, to another point (without stopping there or

destination), which allows a certain fluidity of the movement when passing by this point.

- ARC movement from the initial/current point, denoted A, in the form of an arc defined by 2

other points B, C (an intermediate point (denoted cirPoint), an end point (denoted toPoint))

not aligned, as described in the figure below, for example, to avoid an obstacle.

Figure 15: Arc trajectory.

NB: Movements in Continuous Path mode are not accessible in the Teaching & Playback and

Blockly environments. Movements in ARC mode are not accessible in the Blockly

environment.

F. Teachning & Playback and Blockly Programming Environments
There are several ways to implement a robot arm control program in DobotStudio, especially

the Teaching & Playback and Blockly environments described below.

13/19

1. Teaching & Playback
After connecting the robot to DobotStudio, the development environment, described in the

figure below, appears by clicking on Teaching & Playback on the DobotStudio home page.

Figure 16: Teaching & Playback page.

▪ It is possible to: switch between the Easy (default) and Pro modes (the Pro mode is not of

interest in the context of the practical work); assign the number of loops, speed and

acceleration (in percentage). See the following figure and descriptive table.

Figure 17: Assignment of Easy/Pro, Loop, Speed et Acceleration.

Items Description

Easy/Pro Compared to Easy mode, Pro mode adds features such as offline mode,

I/O interface.

Loop Sets the number of times the robot arm replays the recorded steps

(default: 1, value range: 1-999999).

Speed Sets the speed ratio when playing (default: 50%, value range: 0-100%).

Acceleration (Acc) Sets the acceleration ratio during playback (default: 50%, value range:

0-100%).

Exit Back to the DobotStudio home page.

▪ The command lines are programmed in the development window (see Figure 16):

- by defining the type of movement knowing that possible movement instructions are

MOVJ, MOVL, JUMP, ARC,

- by saving the points to be associated with the instructions,

- by setting the pause time associated to certain points,

14/19

see the following descriptive table.

Items Description

Movement

mode

Select the movement mode:

- Point To point (PTP) with access to MOVJ, MOVL or JUMP instructions,

- ARC given an initial point (reached for example via a MOVJ statement),

an intermediate point cirPoint and a destination point toPoint.

+Point Create a new point in the list of saved points.

Pause time Set the pause time (in seconds) associated with a point.

More precisely, a command line is defined by the following fields:

- MotionStyle to select the MOVJ, MOVL, JUMP or ARC movement mode,

- Name to associate (if necessary) a name with the command line,

- X, Y, Z, R to define the coordinates of the point associated with the instruction (X, Y, Z are

the Cartesian coordinates in the reference frame 𝑅0, R is the angle of rotation of the servo

motor of the joint 𝐽5). Note the necessity to add the coordinates X', Y', Z', R' to define the

second point in the case of an ARC instruction. Moving the arm to a desired position is done

by pressing the Unlock button located on the robot's forearm and represented by an open

padlock. Pressing the +Point button will record the point in connection with the current

movement instruction (note: it is possible to record a point as soon as you release the Unlock

button if you first check the Enable Handhold Teaching function (by choosing release the

UNLOCK button from the drop-down menu) located in the Setting>PlayBack>HandHold

Teaching page).

- PauseTime to associate a pause time (in seconds) with the point associated with the

movement instruction.

A field on a command line can be modified (copied, pasted, cut, etc.) by highlighting it (by

double-clicking), see the figure and the descriptive table that follow.

Figure 18: List of instructions.

Items Description

Right click In the Popup menu, you can edit a highlighted saved point with copy,

paste, cut, etc.

15/19

Double-click Double-click a field to change its value.

Question 5: Create a program in the Teaching & Playback environment that draws a continuous

path within the permitted area from point A to point B, then from point C to point D, using the

Pen tool on the A4 sheet provided by your supervisor.

2. Blockly
Based on an Google open source project, Blockly is a graphical programming environment that

lets you create command lines in a development window by importing blocks (represented by

puzzle pieces) from a drag and drop library.

The development environment appears by clicking on Blockly on the home page of Dobot

Studio. Consider the example described in the following figure.

Figure 19: Blockly development environment.

The New, Open, Save, SaveAs buttons, located at the top left, allow you to create, open, save

a file, knowing that the default path, which can be modified via SaveAs, is: C:..

\DobotStudio\config\bystore.

The Start, Stop buttons, located after the New, Open, Save, SaveAs buttons, allow the start

and stop of the current program.

The following table describes the different windows in the development environment.

No. Window description

1 Window containing the Blockly blocks used to program the robot. To facilitate their

use, these blocks are stored in different modules (Logic, Loops, Math, Lists, ... and

DobotAPI). Note that DobotAPI is specific to DobotStudio and allows you to: set the

speed/acceleration; set up the tool; set the robot arm in movement in the Joint or

Operational space; configure I/O interfaces.

16/19

2 Development window where the blocks from window 1 are imported, by drag and

drop, to form the Blockly program able to realize the trajectory of the robot arm and

the tasks to be performed during the trajectory.

3 ‘Running Log’ window where the execution log of the current Blockly program is

described.

4 ‘General Code’ window containing the automatically generated lines of API

(Application Programming Interface) codes, equivalent to each of the blocks of the

current Blockly program.

As an example, the Blockly program described in the figure below allows the gripper attached

to the robot arm to perform 3 times a go and back movement along the Z axis with a one-second

pause at the 2 points defined by the ‘Go to X .. Y .. Z ..’ instructions.

Figure 20: Example of a Blockly program.

Description of the previous program instructions:

+ Chose End Tools Gripper indicates that the considered tool is the gripper; thus the geometric

model of the robot will be such that the Tool Center Point is at the end of the gripper,

+ repeat 3 times do repeats the following 4 instructions (in the loop) 3 times:

+ Go to X 200 Y 0 Z 30 sets the robot arm in motion so that the Tool Center Point reaches

the coordinate point (200, 0, 30) (defined in the reference frame 𝑅0),

+ Delaytime 1 s causes a pause of 1 second at the current point,

+ Go to X 200 Y 0 Z 60 sets the robot arm in movement so that the Tool Center Point

reaches the coordinate point (200, 0, 60),

+ Delaytime 1 s causes a pause of 1 second at the current point.

• Description of some blocks specific to the robot (contained in the DobotAPI module)

+ basic blocks of the Basic sub-module:

Home Positions the robot arm in its default posture to obtain a correct position

reference (by default 𝑞2 = 90°, 𝑞3 = 0° knowing that these values can be

changed via "Setting>Initial Pos").

GetTime

Delaytime 0 s Causes a pause (here 0) in second between 2 commands.

+ configuration blocks of the Config submodule:

17/19

ChooseEndTools SuctionCup (Gripper,

Laser or Pen)

Indicates the type of tool (SuctionCup, Gripper,

Laser, or Pen) is considered to be attached to the

end of the arm.

Set End Effector Params XBias 0

YBias 0 ZBias 0

Indicates the (non-standard) tool attached to the

end of the arm, through the XBias, YBias, ZBias

values relative to the frame (𝑂4, 𝑋5, 𝑌5, 𝑍5) shown

in Figure 4.

SetMotionRatio VelocityRatio 20

AccelerationRatio 50

Sets the ratio of velocity (here 20% of 500mm/s)

and acceleration (here 50% of 500mm/s2).

SetJointSpeed Velocity 20

Acceleration 50

Sets the ratio of velocity (here 20% of 500mm/s)

and acceleration (here 50% of 500mm/s2) of

joints 1, 2, 3 and 5.

SetCoordinateSpeed Velocity 20

Acceleration 50

Sets the ratio of velocity (here 20% of 500mm/s)

and acceleration (here 50% of 500mm/s2) relative

to the Cartesian coordinates X, Y, Z and rotation R

(joint J4).

SetJumpHeight Height 20 Set the height (here 20mm) used with the JUMP

instruction.

+ Motion blocks of the Motion submodule:

JumpTo X 200 Y 0 Z 0 Sets the robot arm in JUMP mode to reach

the coordinate point (𝑋, 𝑌, 𝑍) equal to (200,

0, 0) in mm.

MoveTo X 200 Y 0 Z 0 Sets the robot arm in motion in MOVL mode

to reach the coordinate point (𝑋, 𝑌, 𝑍) equal

to (200, 0, 0) in mm.

MoveDistance  0 Y 0   Sets the robot arm in motion in MOVL mode

to reach a coordinate point defined by the

increments ∆𝑋, ∆𝑌, ∆𝑍 relative to the current

coordinate point.

SetR 0 Sets the angular value R, in this case to 0,

without changing the other angles.

SetJointAngle Joint1 0 Joint2 45 Joint3 45 Sets the robot arm in motion in MOVJ mode

corresponding to the values J1, J2, J3, here

equal in degree to 0, 45, 45 respectively (the

value of J4 remaining unchanged).

GetCurrentCoordinate x (y, z ou r) Gets the value of the Cartesian coordinate

𝑥, 𝑦, 𝑧 or r (here x).

GetJointAngle Joint1 (Joint2, Joint3, or

Joint4)

Gets the value of the angular coordinate

𝐽1, 𝐽2, 𝐽3 or 𝐽4 (here 𝐽1).

SuctionCup ON (OFF) Activates the air pump (ON) or OFF.

18/19

Gripper Gripper (Release ou OFF) Closes the gripper (Gripper), releases it

(Release), or makes it inactive (OFF).

The blocks contained in the I/O submodule allow interaction with the I/O interface. The blocks

contained in the Additional submodule can specify some additional parameters relating to the

Laser and the photoelectric sensor.

Note: The ‘set (item) to’ block, from the Variables module, allows the use of variables in a

program. For example, the 2 command lines described in the following figure allow to:

- assign the Z axis coordinate of the current position (see the Unlock button, located on the robot

forearm, to position the arm) to the ‘z’ variable,

- move the Tool Center Point to the position defined by the Cartesian coordinates (200, 0, 𝑧).

Figure 21: Use of variable ‘z‘ in Blockly.

Question 6: Attach the gripper to the robot arm, see the following figure for wiring. From the

cubes "1" and "2" initially positioned respectively on slots A and B (see the diagram described

on the A4 sheet provided by your supervisor), create a Blockly program that can:

 - position cube "1" on the slot C,

 - stack cube "2" on cube "1",

 - wait 2 seconds,

 - position the cubes "1" and "2" on the locations D and E respectively.

Figure 22: Connecting the gripper and mini-compressor to the robot arm.

• Block interpretation in the form of APIs

Each block has its command lines, based on APIs. For example, the Blockly block:

 SetJoint Angle Joint1 0 Joint2 45 Joint3 45

corresponds to the following 2 lines of code:

 current_pose = dType.GetPose(api)
 dType.SetPTPCmdEx(api, 4, 0, 45, 45, current_pose[7], 1)

To allow the execution of the code corresponding to the Blockly blocks, lines of code are placed

above et below without appearing in window 4 (shown in the Figure 19) such as:

19/19

 import DobotDllType as dType

 CON_STR = {
 dType.DobotConnect.DobotConnect_NoError: "DobotConnect_NoError",
 dType.DobotConnect.DobotConnect_NotFound: "DobotConnect_NotFound",
 dType.DobotConnect.DobotConnect_Occupied: "DobotConnect_Occupied"}

 #Load Dll
 api = dType.load()

 #Connect Dobot
 state = dType.ConnectDobot(api, "", 115200)[0]
 print("Connect status:",CON_STR[state])

for respectively:

- import the DobotDllType library by renaming it dType,

- load the APIs by obtaining the object, named api, of type load,

- connect the robot to the DobotStudio application (by writing the connection status).

The current_pose = dType.GetPose(api) instruction calls the GetPose API (described on p.13

of the Dobot Magician API description), defined by:

 int GetPose(Pose *pose),

to obtain the position of the robot arm (in real time), in the sense that current_pose is a table

containing the position and joint values, namely, x, y, z, r, J1, J2, J3, J4.

The dType.SetPTPCmdEx(api, 4, 0, 45, 45, current_pose[7], 1) instruction uses the

SetPTPCmdEx API, described on p.36 of the Dobot Magician API description, defined by:

 int SetPTPCmd(PTPCmd *ptpCmd, bool isQueued, uint64_t *queuedCmdIndex)

and enables the robot arm to move to reach the point, knowing that:

- 𝑃𝑇𝑃𝑀𝑜𝑑𝑒 = 4 is such that the movement takes place in the joint space with the joint values

𝐽1 = 0, 𝐽2 = 45, 𝐽3 = 45, 𝐽4 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑒[7] where 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑒[7] corresponds to

the values J4 of the current position,

- 𝑖𝑠𝑄𝑢𝑒𝑢𝑒𝑑 = 1 to add the command to the "execution queue" (each command placed in the

"execution queue" being executed in the order in which it arrived in the queue).

