
1/8 
 

Lab 1 - Robot Stäubli TX2-40 / Cs9 / SP2: Trajectory Generation 

Jean-Louis Boimond 
University of Angers 

The objective of this lab is to allow a Stäubli TX2-40 robot arm, initially stretched vertically, 
equipped with a Cs9 controller and an electric gripper Schunk EGP 40-N-N-B: 

- to pick up a rectangular part (22 × 22 × 40 𝑚𝑚3) located on an initial location, denoted E1, 
- move the part to a work area, denoted E2, to wait for a time delay (to simulate a certain 

treatment), 
- to deposit the part on a final location, denoted E3, 
- to return the robot arm to vertical position, 

knowing that the trajectory of the part from one location to the next is constrained by the presence 
of an obstacle through which the part must move: the first, between E1 and E2, in the form of a 
corridor, entitled Corridor; the second, between E2 and E3, in the form of a quarter circle, entitled 
Circle. 

To obtain this, an introduction to programming a Stäubli robot is proposed in part 1 of the 
document. Part 2 is related to the use of the Schunk gripper. The crossing points (also named 
relevant points) of the trajectory to be achieved are acquired in part 3. The programming of the 
trajectory from these points is done in parts 3 and 4. 

Table of Contents 
1) Introduction to programming a Stäubli robot ......................................................................... 1 

2) Using the Schunk gripper ..................................................................................................... 2 

3) Acquisition of the relevant points of the gripper trajectory ..................................................... 3 

4) Programming the robot to situate the TCP at the point 𝑃0 ...................................................... 5 

5) Programming the robot trajectory ......................................................................................... 5 

 

1) Introduction to programming a Stäubli robot 
The aim is to get started with the robot, as well as to introduce you to the basics of its VAL 3 
programming with the Teach Pendant (called SP2 at Stäubli), using the document entitled ‘Getting 
started with the TX2-40/Cs9 Stäubli robot, SP2 teach pendant, VAL 3 programming’ accessible 
<here>. It is up to you to test the features described in the document by making, among other 
things, a first program called First_steps, while being careful when the power is put on the 
robot arm. 

In particular, please reduce the speed of the arm to 25% (see section 1.3, p. 4, of the basic 
training document of the robot) during this lab. 

In the following, you will have to complete an application, called TP_3A, located in the hard drive 
of the controller. This application contains the basic code for the application to be created, 
including in particular certain variables used (and described) later. 

http://perso-laris.univ-angers.fr/~boimond/Getting_started_with_the_Staubli_TX2-40_robot.pdf


2/8 
 

2) Using the Schunk gripper 
A Schunk EGP 40-N-N-B gripper is attached to the flange of the robot arm to be able to grasp, or 
release, the part to be moved. To do this, a variable entitled tPinceSchunk, of type tool, has 
been created in the TP_3A application. It is characterized by the values 𝑋 = 0, 𝑌 = 0, 𝑍 =

151.7, 𝑅𝑥 = 0, 𝑅𝑦 = 0, 𝑅𝑧 = 0, and by a link with 2 logical outputs entitled FastIO/fOut0, 
FastIO/fOut1 allowing the gripper to be closed or opened. The use of this variable, rather than 
the flange variable (used by default), in a motion instruction will allow the Tool Center Point 
(TCP) to be located at the level of the part to be handled. Indeed, the 𝑅𝑇𝑜𝑜𝑙  frame associated with 
the tool (the gripper) corresponds to that of the 𝑅𝐹𝑙 frame (associated with the flange) after a 
151.7 𝑚𝑚 translation along the 𝑧𝐹𝑙 axis, as shown in the following figure. Notice that the 𝑂𝑇𝑜𝑜𝑙  
origin of the 𝑅𝑇𝑜𝑜𝑙  frame corresponds to TCP.    

  

Figure 1: Diagram of the Schunk gripper with a representation of the 𝑅𝐹𝑙 frame associated with 
the robot flange and the 𝑅𝑇𝑜𝑜𝑙  frame associated with the gripper. 

Question 1: The gripper being attached to the robot arm and assuming (because it is not the case) 
that the First_steps application (described in the document on how to get started with the 
robot) contains the tPinceSchunk variable (described above), what changes would you observe 
in the First_steps application if the motion instruction: 

 movej(pExamplePoint,flange,mNomSpeed) 

was replaced by: 

 movej(pExamplePoint,tPinceSchunk,mNomSpeed) ? 

 



3/8 
 

Manipulation 2: Load the TP_3A application into RAM. Verify that the tPinceSchunk variable 
is declared in this application with the characteristics described above. 

The instructions for opening or closing the gripper are as follows: 
- to open the gripper: 

// gripper opening 

  dioSet(diClose,0) 

  dioSet(diOpen,1) 

- to close the gripper: 
// gripper closing 

  dioSet(diClose,1) 

  dioSet(diOpen,0) 

where the diOpen and diClose variables are connected to the logical outputs FastIO/fOut0, 
FastIO/fOut1. 

Programming 3: As in the First_steps application, declare in the TP_3A application a jDpt 
variable, of type jointRx, such as 𝐽1 = ⋯ = 𝐽6 = 0 (see 2.2.2, 2.2.3 of the document on how to 
get started with the robot), which will allow the arm to be extended vertically. Complete the 
start() program of the application in order to: position the arm in this posture (see 2.3 of the 
document on how to get started with the robot), close the gripper (if it is not already!), then open 
it 2 second later to test the functioning of the gripper. 

Ask your supervisor to check your code before running the application. 

N.B.: It is possible to open or close the gripper by acting from the Teach Pendant on the 
FastIO/fOut0 and FastIO/fOut1 logic outputs of the Cs9 controller. To do this, press 
IO>Boards>J212 FastIO and select the Digital Out tab. The output status changes by pressing 

the corresponding key . Make sure that the outputs displayed, i.e., Fast Output 1 (for 

FastIO/fOut0) and Fast Output 2 (for FastIO/fOut1), are not locked by pressing the key 

 knowing that this key is operational when the profile is the maintenance one (to do this, go 

to the Settings>Profiles window by putting in the Current Profile sidebar: maintenance (not 
default) in the Name field and spec_cal (not an empty string) in the Password field). 
The gripper is opened when the outputs Fast Output 1=Off and Fast Output 2=On; it is closed when 
the outputs Fast Output 1=On and Fast Output 2=Off. 

3) Acquisition of the relevant points of the gripper 
trajectory 

The trajectory to be realized is based on the data of certain points, considered relevant, able to 
locate (i.e., position and orientate) the locations (E1, E2, E3) and the obstacles (Corridor, Circle) 
which are fixed on a millimeter plate. These points, represented by crosses in the following figure, 
will enable the robot arm to move the TCP (corresponding to the point of "contact" with the part, 
see Figure 1) from one location to the next, taking obstacles into account. Let: 

- 𝑃0 the point relating to the initial location (E1), 
- 𝑃1, resp. 𝑃2, the point relative to the input, resp., output, of the Corridor obstacle, 
- 𝑃3 the point relative to the work area (E2), 
- 𝑃4, resp., 𝑃5, the point relative to the input, resp., output, of the Circle obstacle, 
- 𝑃6 the point relative to the final location (E3). 



4/8 
 

 
Figure 2: Locations of points 𝑃0, … , 𝑃6 on the millimeter plate. 

Question 4: Recall why the 𝑧 axis of these 7 points is opposite the 𝑧0 axis of the reference frame 
of the robot arm. 

The following manipulation will allow the acquisition in the application TP_3A of these 7 points 
(so that the TCP is able to be located on these points). 

These points are not declared in joint space (via a jointRx variable), but in Cartesian space by 
giving: 3 coordinates to position the point and 3 others to orientate it in relation to a reference 
frame (by default, the reference frame of the robot arm) in a pointRx variable. 

To have precise measurements, the acquisition of these points will be done while the gripper is 
holding the part (to be moved). In addition, the posture adopted to reach all the points will be such 
that the shoulder is on the left with the elbow up. 

The 𝑧 values of these points must be such that the position of the TCP corresponds to the 
description given in the following figure when the gripper closes, or opens, to grip, or release, the 
part (of height equal to 40 𝑚𝑚). 

 

Figure 3: Position of the TCP when the gripper closes, or opens, to grip, or release, the part. 

Manipulation 5: The aim is to store the points 𝑃0, … , 𝑃6 in the TP_3A application done in 
Programming 3. For this, move the robot arm to point 𝑃0 and store this point (corresponding to 
the current point where the TCP is at the end of the move) in the Cartesian variable pP0; do the 
same thing for the other 6 points, i.e. 𝑃1, . . . , 𝑃6, to store them in the variables pP1,...,pP6. To 
do this, see the N.B. at the end of appendix A.3 of the document on getting started with the robot. 



5/8 
 

More precisely: 
- for pP0 point, first position the part on the initial location (E1). Then move the arm slowly (at 1% 

of its speed) close to E1 until the gripper is ready to grip the part, then close the gripper (see 
previous N.B.). This point will then be stored in the variable pP0; 

- for safety reasons, the points relative to the two obstacles, i.e. pP1, pP2, pP4, pP5, must 
be such that the bottom face of the part (to be moved) is at a safe distance of 5 𝑚𝑚 from the 
obstacle supports (relative to the point pP3, the part will not be released once located on 
location E2); 

- finally, the point pP6 must be such that the gripper can open at this point to (carefully) deposit 
the part on the final location (E3). 

Ask your supervisor to check your results before proceeding. 

4) Programming the robot to situate the TCP at the point 
𝑃0 

As the approach movement towards 𝑃0 point is not (yet) managed, the part (to be moved) is not 
supposed to be positioned on the initial location (E1) (at the risk of the gripper not gripping it 
correctly!!). The aim is to complete the TP_3A application to enable: 

- locate the TCP at jDpt point to stretch the robot arm vertically, open the gripper and wait 1 
second (at jDpt point); 

- locate the TCP at 𝑃0 point, close the gripper (to grip the part), then open it after 2 seconds (to 
release the part); 

- reposition the robot arm vertically. 

Programming 6: Complete/modify the start() program in the TP_3A application so that the 
robot arm achieves the objective described above. 

Ask your supervisor to check your code before running the app. 

5) Programming the robot trajectory 
It is assumed that the part (to be moved) is positioned on the base of the initial location (E1) and 
that the TP_3A application is loaded in RAM. 

The trajectory to be achieved is such that the robot arm must: 
a) Position itself in its initial configuration, i.e. locate the TCP at jDpt point; then open the gripper 

and wait 1 second; 
b) Grip the part located at initial location E1. To do this: 

- locate the TCP at a height of 10 𝑐𝑚 above 𝑃0 point, 
- move the TCP down in a straight line to 𝑃0 point, 
- close the gripper, then wait 1 second (the part is gripped); 

c) Move the part to the input of the Corridor obstacle. To do this: 
- move the TCP up in a straight line at a height of 10 𝑐𝑚 (above 𝑃0 point), 
- locate the TCP at a height of 10 𝑐𝑚 above 𝑃1 point, 
- move the TCP down in a straight line to 𝑃1 point; 

d) Move the part to the output of the Corridor obstacle. To do this: 



6/8 
 

- move the TCP in a straight line to 𝑃2 point; 
e) Move the part to the work area E2. To do this: 

- move the TCP up in a straight line at a height of 10 𝑐𝑚 (above 𝑃2 point), 
- locate the TCP at a height of 10 𝑐𝑚 above 𝑃3 point, 
- move the TCP down in a straight line to 𝑃3 point, 
- wait for 2 seconds (delay simulating a certain processing of the part); 

f) Move the part to the input of the Circle obstacle. To do this: 
- move the TCP up in a straight line at a height of 10 𝑐𝑚 (above 𝑃3 point), 
- locate the TCP at a height of 10 𝑐𝑚 above 𝑃4 point, 
- move the TCP down in a straight line to 𝑃4 point; 

g) Move the part to the output of the Circle obstacle. To do this: 
- move the TCP by doing a quarter circle towards 𝑃5 point; 

h) Release the part on the final location E3. To do this: 
- move the TCP up in a straight line at a height of 10 𝑐𝑚 (above 𝑃5 point), 
- locate the TCP at a height of 10 𝑐𝑚 above 𝑃6 point, 
- move the TCP down in a straight line to 𝑃6 point, 
- open the gripper, then wait for 1 second (the part is put on the base of the location); 

i) Move the TCP up in a straight line at a height of 10 𝑐𝑚 (above 𝑃6 point); reposition the robot arm 
in its initial configuration. 

In addition to the instructions presented in the document concerning the handling of the robot, 
such as movej(), waitEndMove(), delay(), let us describe three useful instructions to 
achieve the desired trajectory. 

(a) Approach and release from a point 
The appro instruction enables you to define a Cartesian point at a certain distance from another 
point. For example, the appro instruction combined with the movej instruction as follows: 

movej(appro(pP,{0,0,h,0,0,0}),tPinceSchunk,mNomSpeed) 

locates the TCP at a distance ℎ (in 𝑚𝑚) from a pP point along its 𝑧𝑝𝑃 axis. An illustration is given 
in the following figure with ℎ = −100 where the point reached after execution of the previous 
move instruction is denoted by pP1. 

 
Figure 4: Example of how to use the appro() instruction. 

Let be a point pP2 such that its 𝑧𝑝𝑃2 axis is opposite to the 𝑧0 axis of the reference frame of the 
robot arm, which is the case of points 𝑃0, … , 𝑃6. In this case, the following three instructions: 

movej(appro(pP2,{0,0,-50,0,0,0}),tPinceSchunk,mNomSpeed) 

movej(pP2,tPinceSchunk,mNomSpeed) 

movej(appro(pP2,{0,0,-50,0,0,0}),tPinceSchunk,mNomSpeed) 

will: 
- locate the TCP above pP2 point at a height equal to 50 𝑚𝑚 (1st instruction), 



7/8 
 

- perform an approach movement by positioning the TCP at pP2 point (2nd instruction), 
- perform a release movement by repositioning the TCP above pP2 point at a height equal to 

50 𝑚𝑚 (3rd instruction). 

Note that it is possible to perform movements in Cartesian space (and not in joint space via the 
movej instruction) in order to control the trajectory performed by the TCP at all times, see 
sections b and c below. 

b) Straight-line movement 
The instruction for moving the TCP in a straight line from the current point (i.e. the point reached 
by the TCP (just) before executing of the move instruction) to a pPoint point (of type pointRx) 
is as follows: 

movel(pPoint,tPinceSchunk,mNomSpeed) 

In the case of the Corridor obstacle, such an instruction is particularly interesting with regard to 
the orientation of the part during its movement within the obstacle, in the sense that the 
orientation during the movement of the frame associated with the TCP does not change because 
the orientation of the current point (corresponding to 𝑃1 point located at the input of the 
Corridor obstacle) is the same as that of 𝑃2 point (located at the output of the obstacle), see 
Figure 2. 

c) Circular movement 
The instruction for moving the TCP in a circular movement from the current point to a 
pPointDestination destination point (of type pointRx), passing by a 
pPointIntermediate intermediate point (of type pointRx), is as follows: 

movec(pPointIntermediaire,pPointDestination,tPinceSchunk,mNomSpeed) 

The orientation of the frame associated with the TCP during movement is derived from 
interpolation between the orientations of the current point, the intermediate point and the 
destination point. This feature is particularly useful for moving the part within the Circle 
obstacle, given the orientation of the 𝑃4, 𝑃5 points (see Figure 2) and the 𝑃4_5 intermediate point 
measured below. 

Manipulation 7: As you did in Manipulation 5, we need to move the robot arm in order to acquire 
in the TP_3A application the 𝑃4_5 Cartesian point (located on the arc of the circle to be traversed), 
described in the figure below. Let: 
 - 𝑋, 𝑌, 𝑍 are the position coordinates of 𝑃4_5 point; 
 - 𝑅𝑋, 𝑅𝑌, 𝑅𝑍 are the orientation coordinates of 𝑃4_5 point, knowing that its 𝑥 axis forms an 
angle of 45° with the 𝑥 axis of 𝑃4 point, see the figure below. 
Let pP4_5 be the variable of type pointRx containing these coordinates. As with the points pP1, 
..., pP5, the point pP4_5 must be such that the bottom face of the part (to be moved) is at a 
safety distance of 5 𝑚𝑚 from the Circle obstacle. 

Ask your supervisor to check your results before proceeding. 



8/8 
 

 
Figure 5 : Situation du point P4_5 dans l’obstacle Cercle. 

Programming 8: Complete/modify the start() program  of the TP_3A application  so that the 
robot arm completes the trajectory described through steps a, b, ..., i at the beginning of section 
5. 


