Robotics Tutorial 1: Basic Concepts

Exercise 1:

Exercise 1. Consider the following matrix: $R_{A,B}(\rho,\beta) = \begin{pmatrix} \cos\rho & -\sin\rho & 0\\ \sin\rho\cos\beta & \cos\rho\cos\beta & -\sin\beta\\ \sin\rho\sin\beta & \cos\rho\sin\beta & \cos\beta \end{pmatrix}$.

- 1) Prove that $R_{A,B}(\rho,\beta)$ is a rotation matrix (representing thus the orientation of a frame B with respect to a fixed frame A) for any value of angles (ρ, β) .
- 2) Express the matrix $R_{A,B}(\rho,\beta)$ as a product of 2 elementary rotation matrices $R(\beta)R(\rho)$ (specify the axes of rotation for each of the 2 matrices).
- 3) Let $\rho = 90^{\circ}$ and $\beta = -90^{\circ}$, give the coordinates with respect to frame A of vectors x_B, y_B, z_B (of frame B). Give also the coordinates of a point P knowing that its coordinates with respect to frame B is $(0,5 \quad 0,5 \quad 0)$.

Exercise 2:

A frame $B = \{O_B, x_B, y_B, z_B\}$ is displaced and rotated with respect to a fixed reference frame $A = \{O_A, x_A, y_A, z_A\}$. The displacement is represented by the vector $\overrightarrow{O_A O_B} =$ $(3 \ 7 \ -1)^T$, while the orientation of B with respect to A is represented by the following sequence of three Euler angles:

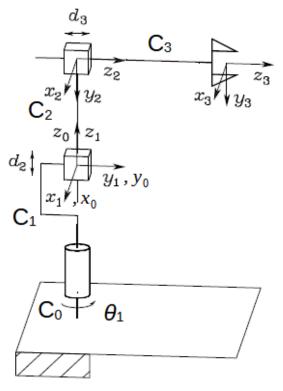
$$\psi = \pi/_4$$
 , $heta = -\pi/_2$, $arphi = 0$,

according to the convention (Z, Y', X'').

Provide the coordinates of a point P with respect to frame A knowing that its position with respect to frame B is given by $(1 \ 1 \ 0)^T$.

Exercise 3:

Consider the cylindrical arm represented in the following figure where a frame is attached at each link of the robot.



¹ The rotation is about an elementary axis, that is, x, y or z.

- 1) Provide the homogeneous transformation matrices $T_{0,1}, T_{1,2}, T_{2,3}$. Calculate $T_{0,3}$ to deduce the direct geometric model of the robot (that is $R_{0,3}$ and $\overline{O_0O_3}|_0$).
- 2) From $T_{0,3}$, give the location of the end-effector $(R_{0,3}, \overline{O_0O_3}|_0)$ when the configuration/posture of the arm is initial. Verify on the figure the location of the frame R_3 with respect to the frame R_0 .
- 3) From $T_{0,3}$, give the location of the end-effector when $\theta_1 = \frac{\pi}{4}$, $d_2 = 5 \, cm$, $d_3 = 10 \, cm$.
- 4)
- i) Deduce from $T_{0,3}$:
- the joint variables that set the orientation of the frame R_3 with respect to the frame R_0 ,
- the ones that set the coordinates x and y of $O_3|_0$,
- the ones that set the coordinate z of $O_3|_0$.
- ii) Calculate the inverse geometric model.