Robotics Tutorial 3: Trajectory Planning

Exercise 1:

Compute the joint trajectory from q(0) = 1 to q(2) = 4 knowing that initial and final velocities and accelerations are null.

Propose a script MatLab or Scilab to display trajectories q(t), $\dot{q}(t)$ and $\ddot{q}(t)$ for $0 \le t \le 2$.

Exercise 2:

Compute the timing law q(t) for a joint trajectory with velocity profile of the type $\dot{q}(t) = k(1 - \cos(at))$ from q(0) = 0 to q(2) = 3 knowing that final velocity ($\dot{q}(2)$) is null. Propose a script MatLab or Scilab to display trajectories q(t), $\dot{q}(t)$ and $\ddot{q}(t)$ for $0 \le t \le 2$.

Exercise 3:

Given the values for the joint variable : q(0) = 0, q(2) = 2 and q(4) = 3, compute the two fifth-order interpolating polynomials (the first one for points defined between times 0 and 2, the second one for points defined between times 2 and 4) with continuous velocities and accelerations knowing that initial and final velocities ($\dot{q}(0)$, $\dot{q}(4)$) and accelerations ($\ddot{q}(0)$, $\ddot{q}(4)$) are null. Velocity at time 2 ($\dot{q}(2)$) is equal to the mean velocities in the intervals [0,2] and [2,4]. Likewise, acceleration at time 2 ($\ddot{q}(2)$) is equal to the mean accelerations in the intervals [0,2] and [2,4].

Propose a script MatLab or Scilab to display trajectories q(t), $\dot{q}(t)$ and $\ddot{q}(t)$ for $0 \le t \le 4$.

Exercise 4:

Given the values for the joint variable: q(0) = 0, q(2) = 2 and q(4) = 1, find the interpolating polynomial with 2 linear segments and 1 parabolic described below.

Propose a script MatLab or Scilab to display trajectories q(t), $\dot{q}(t)$ and $\ddot{q}(t)$ for $0 \le t \le 4$.