|
(Event+Time).Variant Operators
2.3
Operators for Timed Discrete Event Systems in Dioids
|
Class for monomials in the semiring E[[d]]. More...
#include <Ed.h>
Public Member Functions | |
| Ed () | |
| init as neutral element | |
| Ed (int n, int d) | |
| init as g^n.d^t | |
| Ed (int n, unsigned m, unsigned b, int np, int d) | |
| init as g^n.m_m.b_b.g^np.d^t | |
| Ed (int n, unsigned nabla, int np, int d) | |
| init as g^n.nabla_mb.g^np.d^t | |
| Ed (const E_op &w, int t) | |
| init as w.d^t element | |
| E_op | getE_op () const |
| returns the E-operator w of w.d^t | |
| void | setE_op (const E_op &) |
| sets the E-operator w of w.d^t | |
| int | getD () const |
| returns the t (delay) exponent of w.d^t | |
| void | setD (int d) |
| returns the t exponent (delay) of w.d^t | |
| void | getGain (unsigned int &mu, unsigned int &beta) const |
| gives the gain mu/beta of the E-operator w of w.d^t | |
| Ed | operator* (const Ed &m) const |
| returns w.d^t =w_this.d^t_this * w_m.d^t_m | |
| Ed | otimes (const Ed &m) const |
| returns w.d^t =w_this.d^t_this * w_m.d^t_m | |
| polyEd | operator* (const polyEd &p) const |
| returns the polynomial w_this.d^t_this * p | |
| polyEd | otimes (const polyEd &p) const |
| returns the polynomial w_this.d^t_this * p | |
| seriesEd | operator* (const seriesEd &s) const |
| returns the series w_this.d^t_this*s with s=(p+q.r*) | |
| seriesEd | otimes (const seriesEd &s) const |
| returns the series w_this.d^t_this*s with s=(p+q.r*) | |
| polyEd | oplus (const Ed &m) const |
| returns w_this.d^t_this + w_m.d^t_m which is a polynomial polyEd | |
| polyEd | operator+ (const Ed &m) const |
| returns w_this.d^t_this + w_m.d^t_m which is a polynomial polyEd | |
| polyEd | oplus (const polyEd &p) const |
| returns w_this.d^t_this + p which is a polynomial polyEd | |
| polyEd | operator+ (const polyEd &p) const |
| returns w_this.d^t_this + p which is a polynomial polyEd | |
| Ed | inf (const Ed &m) const |
| returns w.d^t =inf(w_this.d^t_this,w_m.d^t_m) | |
| Ed | lfrac (const Ed &m) const |
| returns w.d^t =w_m.d^t_m.d^t_this | |
| Ed | rfrac (const Ed &m) const |
| returns w.d^t =w_this.d^t_this/w_m.d^t_m | |
| std::string | toString () const |
| std::string | toStringAsMuVar () const |
| void | canon () |
| put in a canonical form | |
| bool | operator== (const Ed &) const |
| check Ed equality | |
| bool | operator!= (const Ed &) const |
| bool | operator<= (const Ed &) const |
| bool | operator>= (const Ed &) const |
| void | toPov (graphicPR::PovRay &pov, graphicPR::PovRay::Color c, Ed *prec, Ed *next) |
| used to create PovRay graphical output | |
| Ed | odot (const Ed &m) const |
| Ed | osum (const Ed &m) const |
Static Public Member Functions | |
| static Ed | E () |
| neutral operator | |
| static Ed | g (int n) |
| basic operator as Ed element : Ed::g(n)=g^n.d^0 | |
| static Ed | m (unsigned mul) |
| basic operator as Ed element : Ed::m(mul) = m_mul | |
| static Ed | N (unsigned mul, unsigned beta) |
| basic operator as Ed element : Ed::N(mul,meta) = m_mul.b_beta | |
| static Ed | N (unsigned mb) |
| basic operator as Ed element : Ed::N(mb) = m_mb.b_mb | |
| static Ed | b (unsigned b) |
| basic operator as Ed element : Ed::b(b) = b_b | |
| static Ed | d (int d) |
| basic operator as Ed element : Ed::d(t) =d^t | |
Class for monomials in the semiring E[[d]].
No epsilon, no top element
| std::string etvo::Ed::toString | ( | ) | const |
returns a string with the description of the current term w.d^t The format depends on the current canonical form of gNg terms
m1 = Ed(gNg(3, 2, 3, 5),5); // g3.m2.b3.g5.d5
gNg::setCanonForm(0); // left form
cout << m1.toString() << endl; // g5.m2.b3.g2.d5
gNg::setCanonForm(1); // central form
cout << m1.toString() << endl; // g1.m2.g2.b3.g2.d5
gNg::setCanonForm(2); // right form
cout << m1.toString() << endl; //g1.m2.b3.g8.d5
| std::string etvo::Ed::toStringAsMuVar | ( | ) | const |
returns a string with the description of the current term w.d^t as a variable weighted operator <seq> For instance (m3.b2.g1 + g2.m3.b2).d3 =g0.m<2,1>.d3 This method returns a descriptions as a sum of monomials g^n.m<seq>.d^t